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Abstrakt

Cieľom práce bolo preskúmať možnosti vytvorenia agenta založeného na učení posilňo-
vaním, ktorý by sa dokázal naučiť logickú hru 2048. Táto hra predstavuje pre agenta
neľahkú úlohu, keďže obsahuje prvok náhodnosti. Navrhli sme a otestovali základný
model agenta využívajúceho hlbokú doprednú neurónovú sieť, spolu s niekoľkými mod-
ifikáciami pôvodnej hry a dvoma spôsobmi kódovania stavu v sade experimentov.

Agenta sme implementovali pomocou knižnice Keras s pozadím TensorFlow v jazyku
Python. Na vizualizáciu priebehu učenia sme použili knižnicu Matplotlib. Natrénované
agenty sme nechali odohrať 10000 hier a porovnali sme ich výkon s agentom vybera-
júcim akcie náhodne. Aj keď sme nedosiahli očakávanú úroveň úspešnosti využívajúc
pôvodnú odmeňovaciu funkciu hry, podarilo sa nám agenta naučiť dosahovať relatívne
dobré výsledky pomocou jej modifikácie, čo považujeme za zaujímavé zistenie. Najlepší
model dokázal dosiahnúť políčko 2048 vo viac ako 7% testovacích hier.

Kľúčové slová: Učenie posilňovaním, Umelá inteligencia, Dopredné neurónové siete,
Logické hry
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Abstract

The goal of this thesis was to research the possibilities of creating a reinforcement
learning based agent, that could learn to play the 2048 board game. This game in-
troduces a difficult task due to its factor of randomness. We designed and tested a
base model of the agent using of a deep feedforward neural network, together with a
few modifications of the original game and two types of input encoding in a number of
experiments.

We implemented the agent using the Keras library with TensorFlow backend in
Python language. For visualization of its performance we used Matplotlib library.
We let the trained agents play 10000 games and compared their performance to an
agent that selects actions randomly. Even as we did not achieve the expected level
of performance with the original reward function, we were able to train the agent to
achieve reasonably good results using its modification, which we consider an interesting
finding. The best model reached the 2048 tile in more than 7% of the testing games.

Keywords: Reinforcement Learning, Artificial Intelligence, Feedforward Neural Net-
works, Board Games
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Introduction

Reinforcement learning (RL) has been on the rise in the last years, mostly because
of its ability to learn how to play games that were not possible to be handled by an AI
player before. A notable example of such a game is Go, a grid based puzzle of whose
number of possible games is much larger than in chess, even far exceeding the number
of atoms in the observable universe. For this reason it was resilient to traditional tree
search AI methods until the recent success by Google DeepMind (Silver et al., 2016).
Their approach was based on training deep neural networks with reinforcement learning
by self play with the combination of tree search and observing human experts, and was
able to win the most of the games with the world champion Lee Sedol.

Reinforcement learning is a methodology that resembles the way learning happens
in nature. In contrast with the standard AI approaches, like tree search or supervised
learning, RL algorithms learn by trying and observing the environment they are placed
in, i.e. much like animals or human beings. Therefore it is important in autonomous
robotics, where robots have to learn how to deal with their surroundings.

Board games introduce an interesting challenge for reinforcement learning algo-
rithms. They often require planning ahead and sometimes to deal with randomness,
which is a difficult setting when the algorithm does not perform exhausting search of
possibilities, but rather learns how to play by trial and error. One of such board games
that both include randomness and require a portion of planning is 2048. Developed in
2014 by Gabrielle Cirulli as a free web application, it became immediately very popu-
lar. Human players are able to learn a strategy that often leads to a good score, if not
to winning the game. Our goal was to find out whether RL algorithms can achieve the
same level of abstraction.

We chose a particular RL algorithm called Deep Q-learning and performed a set of
experiments with the intention to find a setting in which our model can learn how to
play the game as well as human players.

1



Chapter 1

Description of the 2048 game

Although the 2048 became viral immediately upon its release in March 2014, the me-
chanics of the game may not seem immediately obvious. For that matter we will
describe the gameplay and create a coherent overview of the game’s aspects.

1.1 Game overview

2048 is a single-player puzzle game developed by Gabriele Cirulli 1 during a single
weekend. The game gained a significant amount of popularity due to its addictive
gameplay style. The game is based on 1024 by Veewo Studio and is similar to Threes!
by Asher Vollmer. 2048 is played on a board of size 4×4 where the player in each turn
slides the board in one of the four directions in order to merge tiles of equal values and
create tiles of higher values.

Initially, there are two tiles on the board. Their positions are chosen randomly and
the values of the tiles are either 4 or 2 with probabilities 0.1 and 0.9, respectively. A
player in each turn performs an action from the set {Up,Down, Left, Rright}. Each
such action causes all tiles on the board to slide to the associated direction, stopping
only on collision with the border of the board or with another tile. When two tiles of
equal value collide, they merge into a tile of their sum. After each such turn, a new
tile of value 4 or 2 spawns randomly on a an empty place with the same probabilities
as initially. However, performing an action is only possible if that action will slide at
least one tile.

For each pair of merged tiles of value 2x the player gets 2x+1 points. The goal of
the game is to obtain the tile of value 2048, but can be played further after reaching
it and higher valued tiles can be obtained. 2 In this work, we will assume the goal
of reaching the 2048 tile, since it is difficult enough. The game ends when there is no

1the original game can be played at https://gabrielecirulli.github.io/2048/
2the highest recorded tile is 32768

2
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Figure 1.1: An example of the game state from the original version by Gabrielle Cirulli.

valid action to perform.
It turns out that one of the general strategies most players quickly discover is to

keep the board sorted, i.e. to keep the biggest tile in one of the corners. That way
the spawning tiles can be easily merged with other low-valued tiles and gradually slid
into the bigger valued ones. However, sometimes the only valid move is to slide the
highest tile away from the corner and due to the tiles spawning randomly, the newly
spawned tile can take the place in the corner where the highest tile was, thus breaking
the strategy.

Another minor heuristic is used to speed up the early stage of the game, where it
is suitable to simply pick the first few moves at random. As the number of tiles on the
board remains reasonably low, the possibility of reaching a terminal state is negligible.

Since the release of the original game, there has been a tremendous amount of
different versions that modified the gameplay in various ways, some of them being
played on a hexagonal board, using arithmetic operations as tiles, or a version where
a player drops tiles in order to prevent AI player from reaching the 2048 tile.

1.2 2048 in research

There were many attempts at solving the game by an artificial intelligence. Szubert
and Jaśkowski (2014) used Temporal Difference (TD) learning together with N-tuple
network to achieve a winning rate of 97%. Here, the N-tuple networks contained
predetermined positions on the board with weights associated with each observable
sequence. This approach was extended by Wu et al. (2014) by Multi-Stage Temporal
Difference (MSTD), adapting the agent to several stages of the game. The MSTD
reached the 32768-tile with a rate of 31.75%, a significant improvement compared to
0% by TD. Oka and Matsuzaki (2016) extended previous TD approaches and discovered
that the positions of N-tuples significantly influence the performance of the algorithm.
Dedieu and Amar (2017) implemented a deep Policy Network, but their agent was not
able to achieve the 2048-tile a single time.



Chapter 2

Artificial intelligence

In this chapter we present the basic concepts of artificial intelligence (AI) that we will
use later in the work. This chapter was written according to Russell and Norvig (2009),
Sutton and Barto (2017) and Kvasnička et al. (1997).

2.1 Markov decision process

In order to introduce Reinforcement learning, we will first define the finite Markov
Decision Process (MDP). MDP is a framework used for modeling decision making in
stochastic (i.e. random) environments in many areas, such as robotics or economics.
Formally, MDP is a 5-tuple (S,A, P.(·, ·), P.(·, ·), γ), where

• S is a finite set of states

• A is a finite set of actions

• Pa(s, s′) = Pr(st+1|st = s, at = a) is the probability that action a in state s in
time t will result in state s′ in time t+ 1

• Ra(s, s
′) is the immediate reward received after a transition from state s to state

s′ by taking action a

• γ ∈ [0, 1] is the discount factor, which represents the difference in importance
between future and present rewards

MDPs model the process of learning by interacting and observing. We call the
entity that performs the learning an agent and everything the agent interacts with is
called an environment. The agent interacts with the environment on a basis of discrete
time steps, each step consisting of taking an action at ∈ A, observing an immediate
reward rt ∈ R and changing the current state st to a new state st+1. In MDPs, the
outcome of taking an action a ∈ A in a state s ∈ S depends only on the definition

4
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Figure 2.1: An agent interacting with the environment within a Markov Decision Pro-
cess (Sutton and Barto, 2017).

of the transition probability function Pa(s, ·) and not on states that the agent visited
before. This crucial property is called Markov property (Sutton and Barto, 2017).

With the agent interacting with the environment comes a notion of discounted
future rewards. That is, when we are evaluating the sum of discounted future rewards
starting from time t - Rt, the importance of each next reward decreases with the
magnitude of γ as following:

R = rt + γrt+1 + γ2rt+2 + ...+ γt+nrt+n + ...

The key problem for MDPs is to find an optimal policy π (π : S → A), that is
a function which maps states to actions such that picking action π(s) in the state s
at any time will result in maximizing some cumulative function of random rewards
called utility. Utility function for a policy π, Uπ(s), is usually defined as the expected
discounted sum of rewards we get when we start in state s and follow policy π:

Uπ(s = s0) = E

[
∞∑
t=0

γtRat(st, st+1)

]
(2.1)

2.2 Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning (ML) that has been studied
by animal psychologists over the past 60 years (Russell and Norvig, 2009). In RL, an
agent learns from its own experience, rather than by being presented with desired be-
havior as in supervised learning. The agent takes actions in an environment (commonly
formulated as MDP) an observes rewards, otherwise called reinforcements (hence the
name) as a feedback in order to find an optimal (or at least nearly optimal) policy. In
RL, the agent does not need to have knowledge about the model of the environment or
the reward function, therefore it is also feasible for continuous environments with only
partial observability. In RL, the reward also does not need to come immediately after
taking an action, but can be delayed.
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The three basic types of RL agents as presented in Russell and Norvig (2009) are:

1. A reflex agent learns a policy that directly maps states to actions

2. A utility-based agent learns a utility function defined on states that measures
how good a particular state is and uses it to select the best actions in order to
maximize the expected utility

3. A Q-learning agent learns an action-utility function, commonly defined as
the Q-function that represents the expected utility of taking a given action in
a given state

In RL, the agent has to explore as many states as possible in order to learn how
to behave optimally. However, the agent only visits states that its current policy
allows him, so we need to encourage him to sometimes select actions that are not
optimal according to agent’s knowledge. One particular strategy that addresses this
problem is called ε-greedy exploration, in which the agent takes a random action with
the probability of ε and the best action according to the current knowledge with the
probability of (1-ε). The value of ε can be altered during training.

2.3 Feedforward neural networks

We will use the concepts of Feedforward Neural Networks in the design of our agents,
therefore we present a brief introduction into their architecture and mechanics. This
section was written according to Haykin (2009).

2.3.1 Learning methods

There are two distinct methods of how artificial neural networks (ANNs) can be learned.
Supervised learning is a type of learning in which an output function is inferred by
processing labeled training data. The training data consist of a set of pairs, each pair
consists of an input object and a desired output. In unsupervised learning there
are no desired outputs and the network has to recognize some hidden structure in the
presented data. In the next sections, we focus on the supervised type of learning.

2.3.2 Neurons

Basic building elements for ANNs are neurons, which receive one or more inputs and
accordingly produce an output. A neuron computes the weighted sum of the inputs,
commonly referred to as net, which is then passed through a non-linear function known
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Figure 2.2: A neural network consisting of three layers (Haykin, 2009).

as activation function or transfer function. The network is created by connecting
outputs of neurons to inputs of other neurons, forming a directed, weighted graph.

Neurons usually possess a so called bias unit which is added to the weighted sum of
inputs to allow the network to shift the output values along the x-axis. We can treat
the bias unit as another weight if we augment the input with another dimension of
fixed value xn+1 = 1. The output from a neuron can be therefore written as

y = f(
n+1∑
i=1

wixi) = f(net) (2.2)

Where f is the activation function. Activation functions are usually sigmoid func-
tions (named by their shape, which in the form of a letter ’S’), but may also take
form of other non-linear functions. A desirable property of activation functions is to
be continuously differentiable so we can use them in gradient-based training methods.
Below, we give example of two commonly used activation functions

S(x) =
1

1 + e−x
(2.3) R(x) = max(0, x) (2.4)

Function R(x) (2.4) is called Rectified Linear Unit (ReLU) and it is not differen-
tiable at 0, but it is still usable for gradient-based as it is rarely exactly at 0.
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2.3.3 Forward propagation

Feedforward Neural Networks are arranged into layers of neurons, with the same activa-
tion function used within a layer. The output of each neuron in each layer is connected
to inputs of some neurons in the next layer, therefore the graph of connections is acyclic
(as opposed to Recurrent Neural Networks 1). When each neuron in a layer is con-
nected to each neuron in the next layer, we call it full connectivity. The layers between
the input layer and the output layer are called hidden layers. In order to get an output
from a neural network, the information at the input must flow progressively through
all neurons in all layers directly or indirectly connected to the input neurons. This
process is called a forward propagation or forward pass, meaning that the input flows
forward across the layers of the network. To demonstrate a forward pass, assume a
three layer network. Let us define the output for the k-th neuron in the hidden layer,
assuming full connectivity:

hk = f(nethk) = fhid(
n+1∑
j=1

wjkxj) (2.5)

where n is the number of neurons in the first (input) layer, xj is the value of the j-th
neuron in the input layer (note that xn+1 = 1 is the augmentation of the input for the
bias unit) and wjk is the weight between the j-th neuron in the input layer and k-th
neuron in the hidden layer. Then the output of the i-th neuron in the output layer of
the network is defined as:

yi = f(netyi) = fout(
m+1∑
k=1

wkihk) (2.6)

where m is the number of neurons in the hidden layer.

2.3.4 Training process

The major issue we need to address is how to update the weights of an ANN in order
to obtain better results in the future. Let P = {(~x 1, ~d 1), (~x 2, ~d 2), ..., (~xn, ~dn)} be
the training set, where ~x i ∈ Rm is the input and ~d i ∈ Rk is the desired output for
1 ≥ i ≥ n. Firstly, we need choose an error function E, that would serve as a notion
of how close the outputs from an ANN are to desired ones. There are many types of
error functions, one of the most common is the mean squared error (MSE) defined as:

E =
1

2n

n∑
i=1

(di − yi)2 (2.7)

1more on recurrent neural networks can be found in (Haykin, 2009)
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where yi is the actual output from the network. Note that the factor of 2 is put there
for convenience to cancel out with the power of 2 when differentiating the function.
Then, to be able to know the direction to which we need to change the weights, we
need to know what is the gradient ∇wij

E of the error E with respect to each of the
weights wij:

∇wij
E =

∂E

∂wij
(2.8)

By knowing this, we can change each of the weights by a small amount in the
opposite direction of the gradient according to the update rule:

wij(t+ 1) = wij(t)− η∇wij(t)E (2.9)

where wij(t) denotes the value of a weight wij at a training iteration t and η ∈ [0, 1] is
the learning rate parameter, which prevents large updates that can cause instability in
the network. The gradient of the error function is computed using the Backpropagation
algorithm (described in Chapter 4 in Haykin (2009)).

2.3.5 Training optimizations

The training algorithm presented in the section before uses the whole training set P
in each training iteration. This is inefficient when the training set is large, so instead
a randomly chosen subset (named a batch) is used for training each iteration. Due to
its randomness this method got named Stochastic Gradient Descend (SGD).

Another improvement is based on an observation that the weight updates often
oscilate for a long time before reaching a value that is satisfactory. The updates can be
alleviated by adding a momentum, i.e. a difference between the current value and the
value before the previous update, multiplied by a momentum rate parameter µ ∈ [0, 1]:

wij(t+ 1) = wij(t)− η
∂E

∂wij
+ µ(wij(t)− wij(t− 1)) (2.10)

The learning rate parameter η can also be altered during training. It was shown
by Hinton et al. (2012) that exponentially shrinking the learning rate leads to better
results. Also, we can tune the learning rate so that each network weight has its own
value of ηwij

, which is, for example, the case of RMSprop algorithm. In the experimental
part of this thesis we used Adam method (Kingma and Ba, 2014), which extends this
idea further by adding a momentum to the update rule.

2.3.6 Network pruning techniques

One of the commonly encountered problems in ANN training is overfitting. Overfitting
is when the network learns the details of the training set so well that it also learns
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the noise and does not generalize beyond the training patterns as we would require.
Regularization is a set techniques for preventing this kind of behavior. We distinguish
four different types of regularization.

The first type is called data augmentation. It is common in deep learning that the
overfitting happens due to small training sets. Depending on the problem, the training
set can be sometimes artificially augmented, i.e. we can add more new training samples
by modifying the ones we already have. This is common in visual data, where various
changes to pixel colors, rotations and scaling produce new data.

The second type of regularization is called early stopping. The idea is very simple,
we stop the training right when the network is sufficiently trained and still can gener-
alize well. To know when to stop the training, we divide the training set further into
an estimation set and a validation set. The network is trained only on the estimation
set and regularly tested on the validation set whether it still performs well on data it
has not been trained on.

Another type of regularization is called a Dropout layer (Srivastava et al., 2014).
Dropout layer can be inserted after an input layer of any hidden layer, and it consists
of selecting a portion on the input neurons and ignoring their outputs during a forward
and a backward pass in one training iteration. Besides speeding up the training process,
the network is prevented from overfitting, because the neurons do not co-adapt too
much.

The last type of regularization is weight penalty. Weight penalizing tries to prevent
the weights from growing too large and consequently causing overfitting. There are
many ways of how to realize weight penalizing, but one of the most popular is to add
a term to the cost function that penalizes large weights as following:

Ê(w) = E(w) +
1

2
λ
∑
i

|wi| (2.11)

where λ ∈ [0, 1] is a parameter that determines the strength of the penalization. This
way of regularization is called L1 regularization. There is also L2 regularization, which
is defined as:

Ê(w) = E(w) +
1

2
λ
∑
i

w2
i (2.12)



Chapter 3

Q-learning

In this chapter we present and describe the idea of Q-learning, which is one of the most
popular reinforcement learning algorithms, as well as some of its recent improvements.

3.1 Q-learning

Q-learning is a model-free (i.e. that the agent does not need to have a model about
the environment) reinforcement learning algorithm. The aim of Q-learning is to learn
an optimal policy by learning a state-action value function called Q-function. This
function, taking a state s and an action a as parameters, is defined as the expected
cumulative reward we get when we take an action a in state s and then follow the
optimal policy. When we are dealing with a Q-function in terms of some policy π,
we write it as Qπ. The optimal Q-function, Q∗, is the maximum expected cumulative
reward achievable from state s by taking an action a:

Q∗(s = s0, a) = max
π

E

[
r0 + γr1 + γ2r2 + ... =

]
= max

π
E

[
∞∑
t=0

γtrt

]
(3.1)

where γ is the discount factor. Q∗ satisfies the following Bellman equation:

Q∗(s, a) =

r, if s’ is a terminal state

r + γmaxa′ Q(s
′, a′), otherwise

(3.2)

where r is again the immediate reward obtained by the transition from state s to state
s′ by taking action a.

The optimal policy in Q-learning is learned by starting from a random policy and
performing update rules to obtain better estimates of Q∗ and eventually converging to
it. The update rule is defined as:

11
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Qt+1(s, a)← Qt(s, a) + α

[
r + γmax

a′
Qt(s

′, a′)−Qt(s, a)

]
(3.3)

where α ∈ [0, 1] is a learning rate. It has been proven in Watkins and Dayan (1992) for
0 ≤ α < 1 and any MDP, that Qn → Q∗ as n→∞, but in some cases it is extremely
slow.

3.1.1 Deep Q-Network

As Q-learning can be generally applied to any MDP, it is not always seen as a feasible
solution from a practical point of view. The most common encountered problem is that
the number of possible states is too high to be stored in any affordable memory, often
even exceeding the physical possibility of storage.

The solution for reducing the size of the Q-table is to learn an approximation
of the Q-function using a neural network model. This allows us to trade the memory
complexity of a Q-table for that of a neural network, which can be significantly smaller.
In exchange we get worse estimation properties as the convergence to optimal policy
is now not guaranteed and at times also hard to reach.

This way, the Q-function is also a function of the weights of the neural network θt,
therefore being Q(s, a; θt). The loss function is then defined as:

L(θ) =
(
r + γmax

a′
Q(s′, a′; θ)−Q(s, a; θ)

)2
(3.4)

This led to the design of so called Deep Q Networks (DQN), which are essentially
multi-layered neural networks that accept a state s as an input and output a vector of
action values Q(s, .; θ).

3.1.2 Double Deep Q Network

In the standard Q-learning, the Q-values sometimes tend to be overestimated (Hasselt,
2010). This itself would not be a problem if all the Q-values would be overestimated
by the same value, but that is not the case. Since it is the difference between the
action values that is important, selecting overestimated values results in overoptimistic
estimations of next values and therefore poor policies.

The proposed solution for this problem by Hasselt (2010) is to decouple action
evaluation and selection of the best action in the max operator. The original solution
dealt with the basic tabular Q-learning, but it was extended to Deep Q Networks in
Wang et al. (2016). Decoupling in DQN can be done by maintaining two independent
networks for both tasks. The prediction network estimates the action values for the
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current state and the target network selects the best action. The loss function then
becomes:

L(θ) =
(
r + γQ(s′, argmax

a′
Q(s′, a′; θ−); θ)−Q(s, a; θ)

)2
(3.5)

This network architecture is called Double DQN (DDQN). To ensure the decoupling,
we use the same network for selection as for evaluation, but with different set of weights.
Therefore we maintain weights θ for the evaluation network and θ− for the target
network. Each t iterations of the learning loop we copy the weights from the evaluation
network to the target network and keep it fixed since. The evaluation network is trained
according to the standard DQN update.

3.1.3 Dueling DQN architecture

In many environments it is common that there is a significant number of states in
which we do not need to know the state-action values for all actions as some state-
action values might be irrelevant for a given state. To address this problem, a network
architecture called Dueling Deep Q Network was proposed in Wang et al. (2016).

The key concept of the solution was to separate the network architecture into two
streams of fully connected layers, one for estimating the state-value V (s) and the other
to estimate the action-values, defined as an advantage function A(s, a). These two
streams are then combined together at the final layer by a certain kind of aggregation
to form an estimation of Q(s, a). The naive approach of aggregating the two streams
together would seem to be simply a summation of their output values as follows:

Q(s, a; θ, α, β) = V (s; θ, β) + A(s, a; θ, α) (3.6)

Figure 3.1: Dueling DQN architecture with the first 3 layers in fully-connected fashion
and then separated into V (s) and A(S, ·) streams which are finally combined into a
Q(S, ·) value.
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where α are the parameters of the advantage stream and β of the value stream. How-
ever, it is necessary to observe that A(s, a; θ, α) is actually |A| values in total, so to
compensate for that we would have to add V (s; θ, α) into the summation for every
action. Another thing to note is that this way is not possible to obtain the advantage
and the value function values from the output, because there are infinitely many ways
of summing values that result in the same Q-value. Therefore it is not a good way to
estimate the state-action values like this. A better approach presented in the original
paper was to remove the advantage of the chosen action from A(s, .; θ, α) values in the
sum as follows:

Q(s, a; θ, α, β) = V (s; θ, β) +
(
A(s, a; θ, α)−max

a′∈A
A(s, a′; θ, α)

)
(3.7)

When we aggregate the streams like this, we can get the state value and the advan-
tage values from Q(s, a; θ, α, β), because the following equation holds

argmax
a′∈A

Q(s, a′; θ, α, β) = argmax
a′∈A

A(s, a′; θ, α) = V (s; θ; β) (3.8)

Hence, the Q-value is a combination of two unique stream values. Also, an alter-
native approach is to subtract the mean from the advantage function values:

Q(s, a; θ, α, β) = V (s; θ, β) +
(
A(s, a; θ, α)− 1

|A|
∑
a′∈A

A(s, a′; θ, α)
)

(3.9)

It is important to note that as this technique only alters the architecture of neural
network, it can be used together with the Double DQN.

3.1.4 Experience replay

A basic DQN agent learns from every experience et = (s, a, r, s′) that is encountered
and does not process it further on. This is often infeasible as in many environments
experiences that come sequentially one after another are strongly correlated and the
agent is not presented with sufficient variance of transitions. Mnih et al. (2013) over-
came this obstacle by storing experiences in a buffer pool D = {e1, e2, ..., en} from
which it draws samples to learn from with uniform probability.

3.1.5 Prioritized experience replay

While using experience replay is a good way of providing an agent with a variance of
independent experiences to learn from, it is not always efficient to draw the learning
samples randomly, as some experiences are more beneficial for the network than others.
A better approach appears to be to use some kind of prioritization scheme according
to some criteria. One such criterion is the TD-error δ that indicates how unexpected a
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certain experience for the network is and so we can conclude that the bigger TD-error,
the more the network learns from such experience.

However, greedily selecting the experiences according to the TD-error can lead to
over-fitting since the most erroneous experiences would be replayed at a very high
frequency and the least erroneous effectively never. The fact that we update the errors
for experiences that were replayed does not help much, because the error usually shrinks
at only small pace. Finally, when a replay memory is implemented as a sliding windows,
hence deleting the oldest experiences to make place for new ones, this would mean losing
many potentially valuable experiences.

A solution proposed in Schaul et al. (2016) finds a balance between randomly select-
ing samples and using a purely greedy strategy. The solution lies in using a stochastic
method to sample prioritized experiences. Let us define a probability of an experience
being sampled as

P (i) =
pαi∑
k p

α
k

(3.10)

where pi is the priority of i-th experience. The parameter α determines the mag-
nitude with which the priorities are taken into consideration (note that α = 0 refers
to the greedy case). The two variants of assigning priorities to experiences that were
proposed in the original paper are:

• Direct, proportional priority pi = |δ| + ε where ε is some small constant that
prevents transitions from not being sampled when their TD-error becomes zero

• Indirect, rank-based priority pi = 1
rank(i)

where rank(i) is the position of the i-th
transition in the pool buffer when sorted according to |δ|.

This prioritization scheme changes the distribution of the transitions and affecting
learning in a negative way. This is corrected by importance sampling weights:

wi =
( 1

N
· 1

P (i)

)β
(3.11)

where N is the number of experiences in the pool buffer and β ∈ [0, 1] is the amount
of compensation for the non-uniform probabilities. We can use these weights in a
Q-learning update rule as a multiplier of the δ error.
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Implementation

In this chapter we will explain the motivations behind choosing the tools for our ex-
perimental purposes, as well as for implementing the game environment.

4.1 Game environment

The original 2048 game by Gabriele Cirulli is implemented in Javascript. While it is
possible to write AI agents in Javascript or in another language and interact with the
web application externally, we chose to use Python implementation of the game as the
intention was to write agents in this language. C++ was also considered due to its
efficiency, but we later put aside this idea, mostly because debugging and changing
C++ code for ML algorithms can be time demanding, but also because there is not
as wide variety of ML libraries for C++ as is for Python. Therefore, the focus was to
implement the game environment with sufficiently simple API (Application Program-
ming Interface) that would be intuitive to use when developing AI agents. We dropped
the need for a GUI, because a simple text-based board representation suffices our needs
for debugging purposes.

The board is represented as a 2-D numpy array of integer values representing the
exponents of the tile values. One exception is that the value 0 represents an empty place
on the board. The game function step(action) in game environment performs one
move on the board and returns a news state, a reward obtained by the state transition
and a boolean value indicating whether the games has ended. The function reset()
resets the game environment to a beginning state and exponentiate() returns an
actual game board with tiles as powers of two as in the original game.

16
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4.2 AI agents

For our agents implementation, we used machine learning libraries TensorFlow and
Keras for Python. The first, simpler experiments were written using TensorFlow,
but as the models became complex and we needed to change the code often, we switched
to Keras with TensorFlow as its backend for convenience.

Although we have written most of the code by ourselves, we used some parts
from external sources. Namely, we used and existing implementation of prioritized
experience replay memory from OpenAI baselines 1, which is a set of implemen-
tations of reinforcement learning algorithms made for the research community with
an MIT license. For the basic, not prioritized experience replay memory, we used
collections.deque from Python’s standard library.

We implemented the agents as base classes, whose parameters can be easily altered.
Each agent class has a _build_model(self) function that creates and returns the
neural network for approximating the Q-function, along with defining the optimizer
and the loss function for training. The function choose_action(state) samples
the best action from the output of the network based on the state as an input,
with the probability of self.epsilon of taking a random action. The function
store_experience(state, action, reward, new_state, done) simply
stores the whole state transition into a memory pool, either prioritized or not. In
agents that make use of the double DQN architecture, the function
update_target() copies all the weights from the evaluation model to the target
model. All agents possess functions save_model() and restore_model() for
simple serialization, and are trained using the train() function, of which parameters
depend on the type of the agent. For serializing data outside of the model, as for
example the scores throughout the time, we used a Pickle library. Additionally, all
the graphs we plotted were made with Matplotlib plotting library.

1available at https://github.com/openai/baselines

https://github.com/openai/baselines


Chapter 5

Experiments

In this following chapter we present the results of simulations, differing in reward
designs and state encoding.

5.1 Experimental settings

As we discover in the following experiments, the original game of 2048 cannot be
grasped by reinforcement learning as easily as, for example, Atari games, due to its
stochastic nature. For that purpose, we introduce modifications of the game that would
improve the potential for the learning of the agents.

5.1.1 Performance measurements

While an intuitive measurement technique seems to be the total cumulative score at
the first glance, we will rather keep track of the sum of the board tiles at the end of
each game. Such measurement has lower variance and better assesses the performance
of the agent considering the goal of obtaining the 2048 tile. Therefore, when we refer
to a ’score’ in the following text, we mean the latter definition. Simultaneously, we will
also keep track of the maximum tile obtained throughout each game.

5.1.2 Invalid moves

In the original version of the game, moves that do not change the position of any tile
on the board are simply not permitted. This creates an issue we need to address. One
possible option is to introduce a negative reward for each invalid move. Alternatively,
we can treat invalid moves like valid moves, with a new tile spawning randomly after-
wards. After the consideration, we decided to pursue the second path, since making the
environment for the agents more ’friendly’ would probably lead to smoother learning
curve.

18
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5.1.3 Reward functions

The standard reward in the original version of the game is the sum of the values of
newly created tiles by merging. It is important to note that DQN algorithms work
considerably better when the rewards are in the range [−1, 1]. This is because scores
between games do not vary that much, which prevents the agent from making large
updates on the network. So to make the learning more stable, we will scale the rewards
to the range [−1, 1] making the Q-values relatively small. For the original reward, this
can done by dividing it by 80, since 8 is the upper bound for the maximum number
of pairs of tiles that can be merged and the maximum value for a tile on board is 10
(210 = 1024 and when 2048 appears the game ends). However, this upper bound is
not very tight since we will never merge 8 pairs of tiles, so we can lower the factor
arbitrarily and in case it exceeds the value of 1, we simply take 1 as the reward.

Since our original intention was to learn the state-action value function without
any interference in the reward function other than scaling, as we will later see, some
changes needed to be made in order to achieve better learning progress. For that
matter, introducing a reward of −1 for reaching a terminal state seems like a good idea,
because it will encourage the agent to play for a longer time. Also, the original reward
may appear noisy to the agent. Keeping this in mind, we devised three alternative
reward functions R1, R2 and R3 in order to achieve better stability in learning:

R1(s, s
′) =

1, if obtained 2048 tile

(#tilesMerged(s, s′)− 1)/8, otherwise

R2(s, s
′) =

−1, if s′ is a terminal state

min(#tilesMerged(s, s′)/4, 1), otherwise

R3(s, s
′) =


−1, if s′ is a terminal state

1, if R(s, s′) ≥ α

R(s, s′)/β, otherwise

where R(s, s′) represents the original reward in terms of exponents instead of powers of
2 and in case of R3 the parameters α and β are chosen in advance. Functions R1 and
R2 should be able to eliminate most of the noise for the cost of reducing the complexity
of the game, while R3 is closer to the original reward function, but has potential to be
learned more smoothly than the original.

5.1.4 State encoding

As neural networks work best with the inputs scaled so that each neuron receives an
input from range [0, 1] (or [−1, 1]), we employed 2 different ways of encoding a game
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state into a form suitable for a neural network input. 1

1. The most intuitive strategy is to encode a state as a vector of length 16 with ex-
ponents of the tiles as its elements - values between 0 and 11 (with 0 representing
an empty place on board). However, to provide a better input to a neural net-
work architecture, we normalize this vector by dividing it by 11 to obtain values
in the range [0, 1].

2. This encoding strategy uses the idea of Gray code. Gray code is such an ordering
of binary numbers that each two successive numbers differ only in one bit. This
encoding could help the NN to identify the symmetries in the game board more
easily. Therefore, each exponent of a tile value is encoded into a 4-bit gray code,
which are then concatenated into a vector of length 16 · 4 = 64.

5.1.5 Base model description

We describe the basic structure of the model for our agents. We used a combination
of double DQN with dueling architecture, using the mean type of merging the value
stream with the advantage stream. We also added proportional prioritized experience
replay. For the approximation of the Q-function, we used a considerably deep network.
The sizes of the hidden layers were set to [300, 300, 200, 200, 100]. The
activation functions of all hidden layers before separating into streams is set to ReLU.
The value stream was then constructed by adding a fully connected layer of 60 neurons
and 1 output neuron for the state value. Similarly, the advantage stream consists of a
fully connected layer of size 100 and then 4 output neurons for action values. The first
fully connected layer in each stream has a ReLU activation function and output layers
are linear, to allow the Q-function to also have negative values.

Figure 5.1: An architecture of the neural network used to approximate the Q-function.

1We also experimented with one-hot encoding which turned out to be less successful than the
normalized board
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Other choices for our model include:

• Adam algorithm to optimize the stochastic gradient descend (Kingma and Ba,
2014). Although good results were achieved using RMSprop when learning to
play Atari games (Mnih et al., 2013), Adam was developed a year after their
effort and should be able to eliminate some of RMSprop’s drawbacks.

• Mean squared error (MSE) as the loss function.

• L1 regularization with a very small regularization rate of 10−6, as our network
has a considerably larger number of weights.

We used the learning rate α = 0.0001 and the discount factor γ = 0.995. We
updated the target network every 50 steps of the game and performed a training update
each 32 steps with a batch size 32. After each step of the game, we store the associated
experience into a memory pool. The memory pool’s maximum size was set to 10000
(after reaching this limit, each new experience replaces the oldest one). For exploration,
we used the ε-greedy strategy, with ε initially set to 1 and decaying after each training
update with magnitude of 0.9999 to the minimal value of 0.1 that was kept until the
end of the training.

5.1.6 Training and testing

Our model has a large number of parameters to alter and so it is computationally
very difficult to find the right combination. Performing an automated grid search or a
random search of parameters would be too costly. For this reason, in our experiments
we had to mostly rely on the recommended parameters from similar algorithms as well
as our intuition and try to set the parameters right on the first time. Nevertheless, we
did many experiments of which we present those which were trained for a sufficiently
long time and we consider them referential. After we trained each agent for a sufficiently
long time, we let it play 10000 games and arranged the counts of maximum obtained
tiles into a table.
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5.2 Experiment 0: Random Agent

To have some reference baseline for our agents in the following experiments, we will
first measure the performance of a random agent. Since the results of the randomly
played games are independent, we plot the resulting scores into a histogram.

Figure 5.2: A histogram of scores over the 10000 random games sample. By the score
we mean the the sum of the tiles at the end of each game.

Max. tile 2 4 8 16 32 64 128 256 512 1024 2048
Game count 0 0 3 273 2373 5192 2113 46 0 0 0

Table 5.1: Distribution of 10000 random games according to the maximum tile
achieved.

From figure 5.2 it is evident that the most of the random games ended up with a
score slightly bellow 200 and only a small portion achieved 300 or more. Moreover, as
we can see in table 5.1 a tile of 512 or higher was not reached in a single game and 256
was reached in only 46 games.



CHAPTER 5. EXPERIMENTS 23

5.3 Experiment 1

In this experiment we chose the Gray encoding method with the original reward func-
tion, rescaled as: min(R(s,s′)−5

10
, 1). We also added a reward of 1 for obtaining the 2048

tile and no penalty for losing the game.

Figure 5.3: The training progress of experiment 1. The scores are smoothed out by
the average of 2000 consecutive results.

Max. tile 2 4 8 16 32 64 128 256 512 1024 2048
Game count 0 0 82 4125 4859 917 17 0 0 0 0

Table 5.2: Distribution of 10000 testing games played by the first agent after the
training, according to the maximum tile achieved.

The slope in figure 5.3 is caused by the decaying of ε, as at the early stage random
moves are better than those of an untrained model. However, this agent appears to be
unable to learn how to play better and as we can see from table 5.2, it performs even
worse than the random agent.
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5.4 Experiment 2

In this experiment, we used the R2 reward function and tried the Gray encoding once
more. The result we obtained is much better, even though the learned policy is still
far from winning the game.

Figure 5.4: The training progress of experiment 2. The scores are smoothed out by
the average of 2000 consecutive results.

Max. tile 2 4 8 16 32 64 128 256 512 1024 2048
Game count 0 0 1 35 702 3732 4463 1056 11 0 0

Table 5.3: Distribution of 10000 testing games played by the second agent after the
training, according to the maximum tile achieved.

Although we only achieved the 512 tile in only 11 games out of 10000, it is an
improvement over the first agent, which failed to achieve the 256 tile a single time.
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5.5 Experiment 3

In this experiment, we chose the R3 reward function for α = 8 and β = 60 with the
first type of encoding. The progress we achieved is much more consistent.

Figure 5.5: The training progress of experiment 3. The scores are smoothed out by
the average of 2000 consecutive results.

Max. tile 2 4 8 16 32 64 128 256 512 1024 2048
Game count 0 0 0 0 10 102 661 3058 5158 1011 0

Table 5.4: Distribution of 10000 testing games played by the third agent after the
training, according to the maximum tile achieved.

Even though experiment 3 never reached the 2048 tile, it is much closer to it than
the previous model, and also significantly more consistent at reaching the 512 tile.
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5.6 Experiment 4

In the final experiment, we used the normalized encoding as in the previous one, but
this time we used the R1 reward function.

Figure 5.6: The training progress of experiment 4. The scores are smoothed out by
the average of 2000 consecutive results.

Max. tile 2 4 8 16 32 64 128 256 512 1024 2048
Game count 0 0 0 0 0 4 17 361 3430 5408 780

Table 5.5: Distribution of 10000 testing games played by the fourth agent after the
training, according to the maximum tile achieved.

In Experiment 4 the agent was able to win the game in 7.8% training games, which
is our best result.



Chapter 6

Discussion

6.1 Analysis of results

We were able to progressively achieve better results by modifying the reward function
we used together with the encoding of the input. As we can see in figure 6.1, the third
agent plays significantly better than random. Even as we did not find a model that
could learn a policy which would achieve the 2048 tile regularly, it is possible that it
can be done by the Deep Q Learning with another combination of parameters. In our
experiments, we were limited to explore only a small part of the parameter space.

Figure 6.1: The comparison of the distributions of 10000 games played by a random
agent and the best agent we trained (experiment 4).

27
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In figure 6.1 we can see that the scores of the best agent have bimodal distribution,
with one peak around a score of 1350 and the other over 2250. The explanation for
this is that an agent often reaches two tiles of 512, but not always it is able to merge
them into 1024 tile. When it does not merge them, it usually leads to the end of the
game soon because of the space they occupy, otherwise it frees space for the game to
continue.

A problem we encountered during the training is that sometimes the agent gets
stuck at a point of reaching very similar score every time and therefore not learning. It
happens because the agent’s current policy is not good enough to reach higher scores
and to get out of this position, it has to wait for the epsilon greedy strategy to trigger
suitable random moves. However, the value of ε is almost always at its minimum
when the problem occurs. This could be solved by tracking the progress of learning,
increasing ε again when necessary and letting it decay afterwards as usual.

6.2 Future work

The next step in improving the performance of the algorithms would be adding more
hidden layers to the advantage stream and the value stream of the network, to achieve
more robust estimations of the state action value. Further tweaking the reward function
may help too, as well as the parameters of our base model. Importantly, we can also
assume an alternative version the game where a player has a possibility to step undo
the last action, which significantly simplifies the game.

Although we achieved results that are close to our goal, our model is not the current
state-of-the-art in reinforcement learning algorithms. We believe that the quantile
regression DQN (Dabney et al., 2017) may achieve learning better policies and even
potentially deal with the noise in the original rewards. Another improvement of the
efficiency of learning is the use of delayed rewards in n-step Q-learning. This method
uses the discounted reward over n steps to update the Q(s, a) value. N-step Q learning
can be extended to Asynchronous n-step Q-learning (Mnih et al., 2016) using multiple
actor-learner threads. Also, further exploring the possibilities of the Policy Network
model (Dedieu and Amar, 2017) can bring success.

We trained our agents using only CPU power, which is slow with models that have
a large number of parameters. A significant speed-up can be achieved by training the
agents on a graphics card, for example with CUDA technology by NVIDIA. Asyn-
chronous methods of learning (Mnih et al., 2016) also improve the speed by the factor
of simultaneously running threads, where each thread employs an independent agent.



Conclusion

We designed, implemented and tested a number of agents based on the Deep Q Network
RL algorithm, enhanced by the combination of dueling and double DQN architecture
and prioritized experience replay. Even though we did not believe that our agents would
achieve the same level of performance as the tree search techniques, it was unexpected
that the agents are unable to grasp the game’s mechanics from the original reward
function. It turns out that the game of 2048 is a difficult challenge for reinforcement
learning algorithms, due to the high variety of rewards which may appear noisy and
the factor of randomness of the transition function.

Even though our best performing agent can win the game by achieving the 2048
tile at times, human players are more quicker at discovering the right moves that often
lead to winning. This tells us that the game requires a deeper level of abstraction
and planning forward than the most of Atari games, in which the associated rewards
usually come immediately, or in a short time.

Nevertheless, we showed that encoding the state as Gray code is not helpful as the
network fails to recognize patterns in state representation where each merge of two
tiles results in a tile that differs in only one bit from those it was created from.

We believe that the 2048 game is an interesting testing environment for reinforce-
ment learning algorithms. To achieve better results, enhancing the pure RL approach
with a supervised training as in AlphaGo (Silver et al., 2016) seems promising.
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