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Issued: Bratislava, 2011





Univerzita Komenského v Bratislave
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Abstrakt

Táto dizertačná práca skúma spracovanie prirodzeného jazyka pomocou rekurentných

neurónových siet́ı. Okrem jednoduchej rekurentnej siete (SRN) pre modelovanie použ́ıvame

aj novšie modely, medzi ktoré patria siete s echo stavmi (ESN) a siete s explicitným

pozornostným mechanizmom (A-SRN). Dizertačná práca pozostáva z troch hlavných

čast́ı. Prvá čast’ sa venuje modelovaniu nesusedných závislost́ı medzi slabikami v rámci

súvislého ret’azca. Oveŕıme hypotézu variability, ktorá tvrd́ı, že spracovávanie jazyka

u l’ud́ı sa opiera o nesusedné závislosti v pŕıpade, že susedné neposkytujú dostatočnú

štatistickú informáciu. Ukážeme, že ked’ je variabilita susedných závislost́ı pŕılǐs vysoká,

tak neurónová siet’ preferuje použitie nesusedných závislost́ı. V druhej časti sa zameriame

na akviźıciu gramatiky zjednodušených jazykov. Túto úlohu modelujeme pomocou ESN,

pričom oṕı̌seme vplyv rôznych vstupných reprezentácíı na úspešnost’ modelu. Ukážeme,

že štatistické vlastnosti vstupných reprezentácíı, vytvorených predspracovańım dát zo

vstupného jazyka, sú len čiastočne zodpovedné za zvýšenie úspešnosti ESN. Druhou

nutnou podmienkou je správna škála vstupných vektorov. V d’aľsom texte navrhneme

a implementujeme vytvorenie vstupnej reprezentácie, ktorá nesie dostatočné sémantické

informácie a je vytvorená pomocou viacerých behov siete s echo stavmi, bez nutnosti

použitia iných štatistických metód. Tretia čast’ dizertačnej práce je venovaná modelovaniu

jazykom riadenej pozornosti v rámci vizuálnej scény. Budeme prezentovat’ viaceré

modely s explicitným pozornostným mechanizmom (A-SRN) a porovnáme ich s modelmi

SRN a ESN. Preskúmame význam pridanej vizuálnej scény na úspešnost’ spracovávania

prirodzeného jazyka a ukážeme, že situačný vstup pomáha modelom správne predikovat’

konkrétne akcie a objekty v opisovanej udalosti. Na druhej strane ukážeme, že jazykový

opis upriamuje pozornost’ modelu na správne objekty v rámci vizuálnej scény. Výhoda

nášho modelu spoč́ıva vo fakte, že umožňuje aj spracovávanie zložiteǰśıch scén, čo

testujeme použit́ım dvoch až troch súčasných vstupných udalost́ı v jednej vizuálnej scéne.

Kl’účové slová: spracovanie prirodzeného jazyka, rekurentné neurónové siete, nesusedné

závislosti, akviźıcia gramatiky, modelovanie pozornosti





Abstract

This dissertation thesis examines natural language processing using recurrent neural

networks. Apart from the standard simple recurrent network (SRN), we also use more re-

cent models like the echo-state network (ESN) and networks with multiple feedback connec-

tions which model explicit attentional mechanism (A-SRN-based models). The dissertation

thesis deals with three main topics. The first area of interest concerns the non-adjacent

dependencies between syllables in continuous syllable sequence. We model the variability

hypothesis which claims that human readers can focus on non-adjacent dependencies when

the adjacent dependencies do not provide satisfactory statistical information. We show

that when the variability of adjacent dependencies is too high, the neural network prefers

use of non-adjacent dependencies. In the second part, we concentrate on grammar acqui-

sition of simplified English languages. We model this task using ESN and describe the

effect of various input representations on the model performance. We show that statistical

properties of input representations, created by preprocessing of the language data, are only

partly responsible for the improvement of ESN performance. The other necessary condition

is the correct scaling of inputs. Additionally, we propose and implement the generation of

reasonable input representation with the multiple executions of ESN, without the need to

preprocess the language with statistical methods. In the third part of this thesis, we deal

with modelling of the utterance-driven attention within the visual scene. Hence, we focus

on language processing not in isolation but rather in the context of the visual information.

We present several models with explicit attentional mechanism (A-SRN) and compare them

with SRN and ESN. We examine the effect of added visual scene to the performance of

language processing and show that the scene input helps the models to correctly anticipate

particular actions and objects of the described event. On the other hand, we show that

the language drives the model in focusing attention to correct objects from the scene. The

benefit of our model resides in the fact, that it can process more complex visual scenes,

what was tested using up to three concurrent input events within one visual scene.

Key words: natural language processing, recurrent neural networks, non-adjacent de-

pendencies, grammar acquisition, utterance-mediated attention
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Chapter 1

Introduction

Language is an important feature of human intelligence. It gives us possibility to

communicate, allows us to exchange information and experience, describe surrounding

world and make joint decisions (Siskind, 2001). Language markedly separates humans

from other animal species.

Over time, two computational approaches of language modelling have emerged. Sym-

bolistic approach uses for language processing set of rules, operating with finite number

of symbols. Formal nature of symbolistic approach allows us to elegantly describe various

classes of language and prove their properties. It allows also description of complex lan-

guages with possibly recurrent structure. Downfall of this approach is, that it is unclear

how to map existing real world objects to the symbols and how to choose degree of detail

(symbol-grounding problem; Harnad, 1990).

Connectionist (subsymbolic) approach deals with input data using artificial neural net-

works. Neural network is trained directly on input data using general learning procedures,

therefore it does not require task-specific design (i.e. one network can process various data

sets). The advantages of subsymbolic language processing approach are:

• Generalization: neural networks are able to generalize and adapt to the novel

inputs, using their similarities with already learned concepts. Since natural language

is very complex and often uses new words and combination of concepts, this ability

is crucial for its successful processing.

• Learning: connectionist models learn from experience, what enables their improve-

ment also in changing environment. Learning from examples does not require hand-

designed architecture and allows reusability of the model for different tasks.

• Distributed environment: many neural architectures can be executed within dis-

tributed environment what decreases the execution time.
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• Biological plausibility: in spite of the fact that artificial neural networks are only

simplified models of real neural networks, they are more biologically plausible than

symbolic systems and therefore allow better understanding of human language pro-

cessing. Neural networks are often used for modeling human behaviour with its strong

and weak properties.

• Modeling of defects: people makes lot of mistakes during language processing. In

serious cases are the individuals unable to perform certain language-processing tasks.

These illnesses are called lesions. Damaging a neural network is often used to model

lesions what helps us to understand why they develop and how they can be avoided

and cured.

Natural language processing domain consists of various subtasks, which can be split

into following categories (Christiansen and Chater, 1999b). On the lower level, people

need to process single words, detect their boundaries in continuous sequences of characters,

learn to comprehend and to pronounce them correctly. Moreover, natural languages have

complicated rules and exceptions mechanisms for processing word morphology. Complex-

ity of these tasks is magnified by fact, that children in early stages of life have no direct

feedback for development of lexical processing skills. The higher level of language pro-

cessing applies to sentence processing. Most important tasks in this domain are: sentence

parsing (syntactic analysis), sentence comprehension and sentence production. Alongside

with these main tasks, we observe supportive subtasks like word prediction and grammar

acquisition. They are used during sentence production (by iteration of word prediction

process) and ease the production and comprehension by accessing correct concepts with a

top-down mechanism. During the last decade, research into human language comprehen-

sion has begun to examine processing of human language in presence of the visual scene.

Visual scene enhances spoken language, providing features of underlying concepts, while

on the other side spoken language drives attention to different parts of the scene. Many

of the cognitive processes can be assessed using the visual world paradigm, which is an

excellent method for studying language, vision, memory and attention and to understand

their mutual interplay (Huettig et al., 2011).

In Chapter 2 we describe neural network architectures which are commonly used in

natural language processing. In chapter 3 we summarize the current state of the research

field for prediction paradigm. In later text, we focus on three of the previously mentioned

subtasks. In Chapter 4 we investigate the performance of the echo-state networks (see

chapter 2.3) in predicting of non-adjacent dependencies and its ability to detect word

boundaries in the continuous sequence of syllables. Chapter 5 uses echo-state networks

to process sentences and acquire underlying grammar. Throughout analysis of the effect

of input representations is presented in this chapter, taking into consideration localist,

random distributed and statistical representations. In the last section of this chapter we
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present technique to create reasonable input representations with the multiple executions

of the echo-state network. In Chapter 6 we model the utterance-driven visual attention

with various recurrent neural network architectures, including A-SRN (see Chapter 2.2)

which uses an explicit attentional mechanism.
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Chapter 2

Neural network architectures

2.1 Simple recurrent network

Simple recurrent neural network (SRN) was developed by Elman (1990) as an extension

of the feed-forward neural network. Elman trained SRN on character and word prediction

tasks and showed that model is able to learn underlying grammar. Architecture of SRN

extends multilayer feed-forward network with additional recurrent layer. State of the hid-

den layer is copied to the context layer and is presented back in next step via a set of

recurrent weights. The activation of simple recurrent networks in time t can be expressed

using formulas:

ahid(t) = G(Winain(t) + Whidahid(t− 1))

aout(t) = F (Woutahid(t)),

where G(net) is the hidden and F (net) is the output activation function. The most com-

monly used functions are:

f(net) =


net linear function

tanh(net) hyperbolic tangent
1

1+e−λnet
unipolar sigmoid

2
1+e−λnet

+ 1 bipolar sigmoid

SRN can be trained using standard error backpropagation, backpropagation through

time (BPTT; Rumelhart et al., 1986) or real-time recurrent learning (RTRL; Williams

and Zipser, 1989). The latter two algorithms are more computationally demanding but

achieve better results. We have trained SRN with BPTT algorithm which is described in

more detail in Chapter 2.2. The latest and most successful training methods use Kalman

and the extended Kalman filters. However, these algorithms require increased amount of

memory and are computationally very complex, making the training method ineffective for
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Figure 2.1: Architecture of SRN. Activation of hidden layer is copied to context layer and

presented to hidden layer in next step.

tasks which does not require such advanced training procedure or tasks with large data

sets.

Recurrent connection allows SRN to successfully process various time series, including

signal sequences, melodies, simplified natural language and data generated by context-free

grammars. State of recurrent layer represents most current part of input sequence, demon-

strating both markovian and non-markovian behaviour. Čerňanský and Makula (2007)

have shown that RNN possesses architectural bias and activations of recurrent units exhibit

structural differentiation even before training. The amount of structural differentiation of

untrained RNN is comparable to variable length Markov models. Čerňanský and Makula

(2007) claimed, that fixed point attractors for each input exist even before training but

they are randomly placed. During training, attractors change their positions to express

characteristics of input data, placing attractors for similar data to the same regions.

2.2 Recurrent network with explicit attentional me-

chanism

We have introduced simple recurrent network with explicit attentional mechanism (A-

SRN) in Švantner et al. (2011b) and further improved it in Švantner et al. (2011a). As the

name suggests, the network architecture is extended with extra connection, which is de-

signed to model attentional mechanism. The network activation is fed back and multiplied

with input, creating a sigma-pi connection. In sigma-pi connection, the weights are applied

to higher level neurons whose activations are computed as the multiplication between the

corresponding activations and inputs (Rumelhart and McClelland, 1986). Based on which

part of network activation is fed back, we can distinguish the following models:

27



• A-SRN model (Fig. 2.2) uses output activation to modify network input.

• In case of A-SRN+ model, sigma-pi connection activation from A-SRN is merged

with current input, what decrease the propagation of misleading activation in case

of incorrect network prediction.

• A-SRNbck model (Fig. 2.3) uses hidden activation with extra set of weights, creating

an internal attentional mechanism.

Figure 2.2: Architecture of A-SRN with a language-mediated, top-down attention mecha-

nism. Network output is fed back and multiplied component-wise with the current input

via sigma-pi connection.

A-SRN-based models1 process two types of inputs - the linguistic input lin represents

spoken language and situational input sin describes visual scene via object (OBJ) and event

(EV) representations (for further details, see Chapter 6). The A-SRN-based models can

also use only one input layer but for the needs of model from Chapter 6 we will describe its

more complex form. Sigma-pi connection alter only situational input sin, leaving linguistic

input linintact. The activation of the hidden layer for all models (including SRN which is

used as reference) is computed as follows:

ahid(t) = σ(WinL.lin(t) + WinS.s
′

in(t) + Whid.ahid(t− 1))

where s
′
in(t) expresses:

s
′

in(t) =


sin(t) for SRN

sin(t). ∗ aout(t− 1) for A-SRN

γ sin(t) + (1− γ) sin(t). ∗ aout(t− 1) for A-SRN+

sin(t). ∗ σ(Wbck.ahid(t− 1)) for A-SRNbck

(2.1)

1We will use this term to name all three models A-SRN, A-SRN+ and A-SRNbck.
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In eq. 2.1 ‘. ∗ ‘ denotes component-wise multiplication of the two vectors parameter γ

influence the effect of input and sigma-pi connection activation. The output activation is

similar to one, we could see in SRN:

aout(t) = [cout(t), eout(t)] = σ(Wout.ahid(t)),

where [u, v] stands for concatenation of vectors u and v. For training A-SRN-based models

we have used BPTT algorithm. It uses the target tgt(t) and errors f1, f2, f3 for two separate

error propagation paths.2 The following algorithm represents training procedure at time t

with window of size T = 3. Steps 2 and 3 are repeated T -times (with index s ∈ [0, T − 1])

before proceeding to step 4. The symbol > denotes transpose operation.

(0) initialization

∆WinL := 0

∆WinS := 0

∆Whid := 0

∆Wbck := 0

∆Wout := 0

(1) output weights

f1 := tgt(t)− aout(t)

f1 := f1. ∗ (aout(t))
′

∆Wout := ∆Wout + f1.ahid(t)>

f1 := W>
out.f1

f2 := 0

====== (2) hidden weights ======

f2 := f1 + f2

f2 := f2. ∗ (ahid(t− s))′

∆WinL := ∆WinL + f2.lin(t− s)>

∆WinS := ∆WinS + f2.s
′

in(t− s)>

∆Whid := ∆Whid + f2.ahid(t− s− 1)>

f3 := f2

f2 := W>
hid.f2

f1 := 0

2Just in case of A-SRN-based models; in case of SRN, only one error propagation path is used.
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(3) feedback

f1 := W>
inS.f3

f1 := f1. ∗ (aX(t− s− 1))′. ∗ sin(t− s)
∆WX := ∆WX + f1.ahid(t− s− 1)>

f1 := W>
X.f1

====== (4) weight change ======

WinL := WinL + α∆WinL

WinS := WinS + α∆WinS

Whid := Whid + α∆Whid

Wbck := Wbck + α∆Wbck

Wout := Wout + α∆Wout

(5) end

In the above equations, s
′
in(t− s) follows the definition from eq. 2.1 and subscript X in

step 3, is notation for output or backward layer, based on type of the model (A-SRN or

A-SRNbck respectively). In case of SRN, step 3 is not executed. Model A-SRN+ is trained

in the same way as A-SRN.

A-SRN-based models have been used to model explicit utterance-driven visual attention

(Švantner et al., 2011b), exhibiting more biologically plausible behaviour compared to a

simple recurrent network.

Figure 2.3: Architecture of A-SRNbck model with an internal explicit language-mediated

attention mechanism. The hidden layer activation is fed back to input via extra set of

weights Wbck.
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Figure 2.4: Architecture of ESN. Only dashed connections are adjusted during training.

Weights in the hidden layer form a dynamical reservoir.

2.3 Echo-state networks

The model introduced by Jaeger (2001) was designed to predict the next input in signal

sequences using a more effective training procedure. Echo-state network (ESN) architecture

is almost similar to SRN with one crucial difference – recurrent and input weights are not

trained (as we can see in Fig. 2.4). Hidden neurons form a dynamical reservoir whose

complex dynamics can be easily mapped to the output with a single layer neural network.

This allows the usage of linear regression instead of less efficient gradient training methods.

Echo-state networks can be extended with optional direct input-output connection and/or

feedback connection from output to hidden layer. Optional direct input-output connection

is trained. Network activation is expressed as:

ahid(t) = G(Winain(t) + Whidahid(t− 1) + Wbckaout(t− 1))

aout(t) = F (Wout[ain(t), ahid(t)]),

Hidden activation function G(x) is mostly represented by bipolar sigmoid or tanh func-

tion, while output activation function F (x) by identity, hyperbolic tangent or sigmoid.

In order for the ESN to work, the reservoir must express contractive dynamics satisfying

the echo-state property: ’if given a long enough sequence, the network will always end up

in the same state, regardless of the starting state’ (Tong et al., 2007). The resulting state is

therefore determined only by the input sequence. Over time, there were discussed several

approaches how to achieve the echo-state property. Jaeger (2001) has shown that reservoir

which has spectral radius (the largest absolute eigenvalue) of the weight matrix λ(W) < 1,

leads in most cases to echo-state property. To achieve this, the components wi,j of weights

from matrix W are adjusted according to the formula

wi,j = λD

w′i,j
|λm(W′)|

,
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where λ(W′) is the largest eigenvalue of the original matrix and λD is the desired spectral

radius. However, it was shown that λ(W) < 1 is not a necessary nor a sufficient condition of

echo-state property. What we can only claim is, that echo-state property is violated for zero

input if λ(W) > 1 using reservoir with tanh nonlinear neurons (Lukosevicius and Jaeger,

2009). To fulfil an echo-state property, we need to provide the reservoir weight matrix

whose greatest singular value meets the condition σ(W) < 1 (Jaeger, 2001). Similarly, also

maximum singular value of the matrix can be altered to the desired value by modifying

the components wi,j of weights from matrix W

wi,j = σD

w′i,j
σm(W′)

.

Before training, both Win and Whid weights are usually initialized as sparse random

matrices. Only output weights Wout are adapted during ESN training. Apart from gradient

training methods, we can use linear regression, by solving the equation:

Atgt = WoutAhid

Wout = AtgtA
−1
hid,

where Ahid ∈ <TxN is a collected matrix of reservoir activations and Atgt ∈ <TxN is a

matrix of target activations (considering N as the number of neurons in reservoir and T as

the data set size). Since Ahid is not a square matrix we must compute its pseudoinverse

A+
hid instead of inverse A−1

hid. Pseudoinverse computation has high numerical stability but

is memory demanding for larger data sets. To resolve this problem we can alter previous

equations as follows:

AtgtA
>
hid = WoutAhidA

>
hid

Wout = AtgtA
>
hid(AhidA

>
hid)−1 (2.2)

The use of eq. (2.2) decreases memory usage because the matrix AhidA
>
hid ∈ <NxN , but

the drawback is that numerical stability of the solution is decreased. This can be corrected

by Tikhonov regularization (Lukosevicius and Jaeger, 2009).

Wout = AtgtA
>
hid(AhidA

>
hid + α2I)−1,

where α = 0.5 is the regularization factor and I ∈ <NxN is the identity matrix. Matrices

AtgtA
>
hid and AhidA

>
hid can be rewritten as:

AtgtA
>
hid =

T∑
t=1

atgt(t)a
>
hid(t)

AhidA
>
hid =

T∑
t=1

ahid(t)a>hid(t),
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Figure 2.5: Architecture of self-organizing map. Similar inputs are mapped to neighbouring

output neurons.

where atgt(t) ∈ <Nx1 and ahid(t) ∈ <Nx1 are target and reservoir activations in time t,

respectively. These equations remove memory requirements and allow processing of large

data sets. Additionally, ESN can be tested during training to get preliminary results.

Echo-state networks are very popular in prediction of the next input from the symbol

sequences (for example, Čerňanský and Makula, 2007). Recently, they were applied also

to language domain (Frank, 2006a,b; Tong et al., 2007)). It was shown that ESN has the

ability to predict upcoming words, to adapt to long distance dependencies and to facilitate

acquisition of grammar structure.

2.4 Self-organizing map

Self-organizing map (SOM) shown in Fig. 2.5 was introduced by Kohonen (1990). Each

input activates certain area of network’s output what results in topological organization of

input vectors (similar objects are grouped together in the resulting map). To achieve this

behaviour, the model uses unsupervised learning, selecting winner for each input. After

activation, winner’s weights and weights of its surrounding neurons are adapted, while

other weights are left intact. To find the index i∗ of the winner we use the formula:

i∗ = arg mini‖x(t)−wi‖, (2.3)

where x(t) is current input, wi is the weight vector for i-th neuron and ‖.‖ denotes the

Euclidean norm. After selection of the winner, surrounding weights are changed using the

formula:

4wi = α(t)h(i, i∗)(x(t)−wi),

where α(t) expresses learning rate at time t. Neighborhood function h(i, i∗) between i-th

neuron and the winner, can be expressed by two possible distances:

h(i, i∗) =

{
e−d(i,i∗)2/σ2(t) Gaussian distance

1 iff dM(i, i∗) ≤ λ(t), 0 otherwise Manhattan distance,
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Figure 2.6: Architecture of auto-associative network. This particular network encodes

agent-action-patient triplet into one 64 dimensional vector using input matrix Wenc. AAN

inner representation can be decoded using output weight matrix Wdec

where d(i, i∗) denotes Euclidean distance and dM(i, i∗) denotes Manhattan distance between

positions of i-th neuron and the winner in the two-dimensional rectangular map. Size of

affected neighborhood is let to decrease during training. In case of the Gaussian distance

this is done by function σ(t) and in case of Manhattan distance by decreasing function

λ(t) . Learning rate is also time-dependent, mostly expressed by functions α(t) = 1/t or

α(t) = exp{−k.t} for constant k.

Self-organizing maps are suitable for visualization of high-dimensional data , using their

topological mapping property. They can be used also for preprocessing of complex data,

where topological organization eases the later data processing (Švantner et al., 2011a). Ad-

ditionally, more advanced SOM architectures (see Section 2.6) are also used for processing

and visualization of data sequences.

2.5 Auto-associative network

Auto-associative network (AAN) (Cottrell et al., 1989) is a feed-forward network with

one hidden layer. During training, every input is presented also as a target, what forces

network to create its compressed representation on the hidden layer. Auto-associative

networks are therefore often used to reduce dimension of object representation (Cottrell et

al., 1989). Original representation can be afterwards easily decoded with the AAN output

layer. Activation of AAN is expressed as:
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Figure 2.7: Architecture of RecSOM network. Activation of hidden layer is copied to the

context layer and presented to hidden layer in next step.

ahid(t) = G(Wencain(t))

aout(t) = F (Wdecahid(t))

Auto-associative network is often trained with back-propagation training algorithm.

Similar inputs tend to have similar AAN codes what leads to resembling behaviour as we

could see in self-organizing networks. Use of AAN can be found for example in Švantner et

al. (2011b), where we trained the network to create representation of visual event, which

respects order of the event constituents. Introduction of the recurrent layer helps auto-

associative network to process sequential or structured data. Recurrent auto-associative

network (RAAM) was successfully used for this task in Farkaš and Pokorný (2009).

2.6 Recursive self-organizing map

RecSOM architecture was presented by Voegtlin (2002) as an extension of SOM. In

each time step, the activation of the output layer is copied to the context layer what allows

model to remember previous inputs. Activation of i-th neuron within RecSOM network

can be expressed as:

yi(t) = exp{−di(t)},

where

di(t) = α‖x(t)−wi‖2 + β‖y(t− 1)− ci‖2

Parameters α > 0 and β > 0 influence effect of input and context respectively. Context

layer is created in each time step as direct copy of the output layer. After selection of
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Figure 2.8: Architecture of SardNet network. Previous winners remain activated also after

presenting next input. Their activation is decayed by decay factor κ.

the winner, the weights wi are adjusted similarly as in SOM and context weights ci are

adjusted using formula:

∆ci = η(t)h(i, i∗)(y(t− 1)− ci)

RecSOM is often used to represent symbol sequences. Resulting representations are

organized in Markovian manner, mapping subsequences with common suffix close to each

other (Tiňo et al., 2006). Vančo and Farkaš (2010) compared RecSOM with other recursive

SOM models (SOM SD, MSOM) on more complex tree data structures.

2.7 SardNet model

Sequential Activation Retention and Decay Network (SardNet) was introduced by

James and Miikkulainen (1995). It originates from SOM architecture, leaving previous

winners activated also during succeeding inputs. However, previous winners activation is

decayed via formula yi := κyi using decay factor 0 < κ < 1. Moreover, each winner is

removed from competition and cannot represent later inputs, allowing its neighbours to

represent similar future items of sequence.

SardNet can be used only for finite sequences, whereas all other models with self-

organization also for infinite sequences. Another difference is that a sequence in SardNet is

represented as a distributed pattern (of winners), while in the other models the sequence

representation is localist.

SardNet is suitable for representation of symbol and word sequences because gradually

activated neurons are able to memorize all items of sequence. Additionally, information

about order of presented items is retained too. SardNet was used by Mayberry and Miikku-

lainen (2003) and Farkaš and Crocker (2006) in memorizing of word sequences task. Farkaš

and Crocker (2006) used the combination of RecSOM and SardNet named RecSOMsard
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Figure 2.9: The architecture of RecSOMsard network. RecSOMsard is a combination of

RecSOM and SardNet model.

for word prediction task. In RecSOMsard, output of RecSOM is transformed to the output

with mechanism used in SardNet. The model was able to effectively predict words, proving

that models with an unsupervised module are applicable in this domain.
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Chapter 3

Prediction paradigm in natural

language processing

We can split the natural language processing domain into two main parts. Lexical

processing is responsible for word reading, morphology and pronunciation. The higher-

level language processing operates on the words and it participates in sentence parsing,

comprehension, word prediction and production. Next chapters focus on the prediction

task, because we believe that it eases the parsing and comprehension and enables the

language production.

3.1 Syllable prediction

The first attempt to model the syllable and word prediction was made by Elman (1990).

He trained the simple recurrent network (SRN) to predict the next characters of a simple

artificial language. Input of the network was represented by a sequence of concatenated

English words (without space between them). The network showed the ability to detect

word boundaries at locations of high entropy, demonstrating that word segmentation is

facilitated by prediction mechanism. Moreover, according to Mintz et al. (2002) and Saffran

(2002), the statistical learning plays an important role in syntax and language morphology

acquisition.

A more complex subtask in language processing is the utilization of non-adjacent de-

pendencies between syllables. The non-adjacent dependencies are often used in the natural

language, for example representing the common number or tense of the subject-action pair

(e.g. in the sentence Peter has arrived). Peña et al. (2002) experimented with persons

and came to the conclusion that people are not able to generalize1, using only statistical

1To use known dependencies with the novel paddings. In the sentence Peter has arrived, the padding

is expressed by syllables ‘arriv‘.
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information from the language and must utilize additional cues (like pauses between words

and phonological characteristics) via algebraic computational (i.e. rule-like) mechanism.

Gómez (2002) reproduced these experiments and showed that inability of generalization

was caused by characteristics of the used language. Language used in Peña et al. (2002)

exhibited only small variability of the padding, what caused that people could rely on

adjacent dependencies. The variability of the padding is defined as the number of possible

subsequences between the dependent words. Peña et al. (2002) have summarized these

findings as the variability hypothesis. Onnis et al. (2003) and Onnis et al. (2004) have

further extended the variability hypothesis, stating that word generalization occurs when

variability of padding is zero or large. They showed on the input data used in Peña et al.

(2002), that people are able to simultaneously segmentate the words and generalize using

novel paddings. These findings prove that statistical properties of the input language are

sufficient to generalize under certain circumstances.

The segmentation of words and the variability hypothesis was successfully modelled

using simple recurrent network by Černák (2005) and Farkaš (2009). Černák (2005) has

additionally modelled both tasks using ESN, being successful only in the case of word

segmentation. In case of variability hypothesis his model was unsuccessful because the

reservoir, as it turned out, was not carefully chosen and initialized.

3.2 Next word prediction

Recurrent neural networks have proven to be a successful modelling tool for natural

language processing also on the sentence level. Elman (1991) extended his work and trained

an SRN in the next word prediction task. Since then, the SRN has been often used for

processing language data (e.g. Lawrence et al., 2000; Christiansen and Chater, 1999a).

Elman (1991) demonstrated, that the SRN is able to learn an underlying grammar, when

trained on (simplified) English sentences. Moreover, SRN was able to create meaningful

context-dependent representations of the words at its hidden layer, despite the fact that it

was trained on localist inputs.

Simple recurrent network was able to process complex sentences only after gradual

increasing of complexity of sentences during training. This result corresponded to the ’less-

is-more’ hypothesis introduced by Newport (1990). According to this hypothesis, children’s

ability to learn the first language to a greater degree of fluency, is caused by infant’s limited

cognitive abilities. Elman (1993) modelled this hypothesis and showed that memory span

impairments at the early stages of child’s life and its gradual development also facilitates

development of primary language. However, Rohde and Plaut (2003) argued against this

hypothesis by claiming that gradual growth of the sentence complexity and memory span

impairments are not advantageous but in fact harmful for language acquisition.
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Elman’s results were repeated by Tong et al. (2007) who additionally compared SRN

with an echo-state network. His findings show that the ESN exhibits similar performance as

the simple recurrent network. However, it has been argued that the SRN was trained using

BPTT training method which does not guarantee best possible results. SRN trained for

this task with extended Kalman filter exhibit superior performance, while the performance

of ESN is only similar to performance of common statistical methods (like variable-length

Markov models).

Čerňanský et al. (2007) showed that activations of recurrent units lead to structural dif-

ferentiation even before training (architectural bias). Amount of structural differentiation

of untrained RNN is comparable to variable length Markov models. They claimed, that

fixed-point attractors for each input exist even before training and that they are randomly

placed in the state space. During training, attractors change their positions to express

characteristics of input data. Attractors for similar data are placed to the same regions.

Farkaš and Crocker (2006) used an alternative approach to modelling the word pre-

diction task. Instead of using supervised learning algorithms, they used a combination

of recursive self-organizing map (RecSOM; Voegtlin, 2002) and SardNet (James and Mi-

ikkulainen, 1995). They argued, that self-organizing models are more biological plausible

and can be easily extended also for more complex languages. After development of inner

self-organized representations, these were mapped to predicted words via supervised me-

chanism. The model had performed in the simulating word prediction task and displayed

high robustness after lesioning the hidden layer.
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Chapter 4

Syllable prediction

In this chapter we will examine the effect of adjacent and non-adjacent dependencies

on the syllable prediction task. We will model the variability hypothesis (Peña et al., 2002)

using echo-state network trained on a simple artificial language processed at syllable level.

Results of this chapter come from Farkaš and Švantner (2007).

4.1 Experiments

As input data, we will use artificial language concatenated from three syllable words. In

total, we will use 3 different input sets S1, S2, S3 with different size of lexicon. The input

words are created from 3 different word frames AiXjBi: ba te, gu do and pi ra, which are

used with same probability. Input sets S1, S2, S3 are created as all possible combinations

between word frames and padding sets X1, X2, X3 which we can see in Table 4.1. Syllables

from the word frames are never used in the padding. According to Peña et al. (2002),

we can divide the words into 3 different groups. The grammatical words (GW) are valid

words from input sets S1, S2, S3 with the transition probabilities1 P (Xj|Ai) = 1/|X|,
P (Bi|Ai) = 0, P (Bj|Xj) = 0.33 and P (Ai|Bi) = 0.5 (because words frames were not

allowed to repeat consecutively). Since the input is the sequence of concatenated input

words the model may incorrectly detect word boundaries. In this case the part words (PW)

are created. More formally, the PW is composed from the last (third) syllable of one word

and first two syllables of second word or from last two syllables of first word and first

syllable of the second word. For example in input:

gudidobaditepidiragudidopidirabaditepidira,

are some PWs marked with bold and every other grammatical word is overlined. Since the

PWs represent alternative possibilities of word division, they can be used for the evaluation

1P (A|B) stands for the conditional probability, that event A occurs given that B has occurred.
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Set Content

X1 di

X2 di, ku, to, pa

X3 be, bi, bo, bu, by, ta, ti, to, tu, ty, ga,

ge, gi, go, gy, da, de, di, dy, pa, pe, po,

pu, py, re, ri, ro, ru, ry

Table 4.1: Padding sets for input languages S1,S2,S3. S1 set represents padding set with

no variability (1 syllable), S2 contains four syllables and S3 represent padding set with

high variability (29 syllables).

of word segmentation. If the model prefers the GWs over PWs it is able to correctly segment

words from the input sequence.

Rule words (RW) are words with schema AiAjBi or AiBjBi (e.g. bagute or pidora from

the S1 = {badite, gudido, pidira}). Rule words contain syllables from the word frame

also in the padding, so we can use them as a generalization of GWs. They have used

transition probabilities P (Aj|Ai) = P (Bi|Aj) = 0 and P (Bj|Ai) = P (Bi|Bj) = 0, with the

only dependency between non-adjacent syllables. Rule words have never been used during

training and they contain only non-adjacent dependencies in opposition to the part words,

so they are suitable as generalization test for matching the non-adjacent dependencies.

More formally, if the model counts the adjanced dependencies it should prefer PW over RW

in case of small variability of the padding. In case of counting non-adjacent dependencies

it should rely on most statistically reliable dependencies, which are in this case P (Bi|Ai).
This will allow to create correct segmentation of the words (both GWs and RWs).

4.2 Model specification

The task was modelled using ESN. Its task was to predict next syllable within the

continuous sequence. The syllables were encoded with one-hot encoding, creating 7, 10

and 35-dimensional input and output vectors for S1, S2, S3 respectively. The input layer

weights of the ESN were set to -0.1 and 0.1 with same probability and reservoir was

randomly initialized to contain 50 neurons and have spectral radius λmax = 0.8. Its sparsity

was 80%. The output layer weights were randomly initialized from interval [-0.5,0.5] and

altered with the standard delta rule with learning rate α = 0.1. As an activation function

for reservoir neurons we have used unipolar sigmoidal function and for output neurons we

have used softmax function. To evaluate the network preference between two words we

have used following procedure:

• we choose N words and N non-words for N=20
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Figure 4.1: Segmentation performance of grammatical words for three input sets with

different syllable padding variability.

• for each word, we compute its value: after resetting the reservoir state (to isolate input

from previous activations) the first two syllables are presented to the input. Value

of the word u is defined as the sum of activations of output neurons corresponding

to the next syllables which will be presented at input in second and third step:

u = u(2) + u(3).

• we choose N words with largest activation and find how many of them belong to word

category (GW or RW) and how many belong to non-word category (PW).

4.3 Results

To test segmentation performance of the ESN model, we evaluated network preference

between grammatical GW and part words PW. The model was able to segmentate words

successfully for all three input sets as we can see from the Figure 4.1. The average result

for S1 was 73%, for S2 65% and for S3 75%.

To test the preference of non-adjacent dependencies we evaluated the model with rule

and part words. In S1 the preference in favor of the rule words was 5.5%, in S2 42.5%

and in S3 66%. In contrary to the results presented in the Černák (2005), that modelled

this task using only small reservoir, we have confirmed the hypothesis of variability for the

large padding sets.

Our results does not fully confirm the hypothesis of variability as was predicted by Peña

43



Figure 4.2: Segmentation performance of rule words for three input sets with different

syllable padding variability.

et al. (2002) for zero variability. In this case, the preference of rule words is too small.

However the preference of RWs for zero variability was shown in the Onnis et al. (2003,

2004) just in case of segmentated input, what simplifies the task significantly.

4.4 Discussion

Learning of the dependencies between elements of sequences occurs rather unconsciously

in the form of implicit learning (Cleeremans et al., 1998). Earlier research had pointed out

that the people are computing only adjacent dependencies. However, the more recent

research shows that also non-adjacent dependencies are used. This method is more com-

binatorically complex, growing exponentially with the size of the padding. Therefore we

can assume that the usage of non-adjacent dependencies is possible only under certain cir-

cumstances. It was assumed that these circumstances are valid only in presence of certain

additional markings in the text (for example pauses and word segmentation). However,

Onnis et al. (2004) has argued that non-adjacent dependencies are used also in continuous

sequential input if the variability of the padding is large enough. Our experiments has

confirmed this hypothesis for the recurrent neural networks which processes single syllable

at time and use the statistical properties of the input text stream.
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Chapter 5

Next word prediction

We have focused our work on two areas of natural language processing on sentence

level - modelling of grammar acquisition based solely on language input and modelling of

utterance-driven attentional mechanism. This chapter is dedicated to grammar acquisition.

We will model next word prediction task using a simplified English language. Results of

this chapter come from Švantner and Farkaš (2009b,a) and Švantner (2010).

5.1 Experiments

5.1.1 Elman’s language

The input data were generated by a stochastic context-free grammar, very similar to

one used in Elman (1991) and Tong et al. (2007). The grammar uses a lexicon of the

|L| = 26 words which consists of 2 proper nouns, 4 nouns, 7 verbs 1 and inputs ’.’, ’who’

denoting end-of-sentence marker and conjunction, respectively. Input grammar is defined

in Table 5.1. The words can be differentiated into 6 possible categories: proper nouns,

nouns, special category for end-of-sentence marker and ’who’ and three categories for verbs.

These comprise verbs with prohibited object, verbs with mandatory object and verbs with

optional object.

The grammar generates the context-free language whose sentences often contain distant

dependencies between words. For example, in the sentence ’Boy who hits John lives.’ has

the most distant dependency padding of 3 words (between boy and lives). This recursive

structure is very complex to process and multiple embeddings absent in the spoken natural

languages (Karlsson, 2007).

1Both nouns and verbs are presented in singular and plural forms thus creating 8 and 14 inputs,

respectively.
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S → NP VP .

NP → PropN | N | N RC

VP → V | V NP

RC → who NP V | who VP

PropN → john | mary

N → boy | girl | cat | dog | boys | girls | cats | dogs

V → chase | feed | see | hear | walk | live | hit

chases | feeds | sees | hears | walks | lives | hits

Constraints:

- verb number agreement between N and corresponding V

- verb in RC → who NP V rule must allow a direct object

- verbs fall into 3 categories:

- require direct object: VP → V NP : (hit, feed, chase)

- optionally allow direct object: VP → V | V NP : (see, hear)

- preclude direct object: VP → V : (walk | live)

Table 5.1: Input grammar used for generating the basic language.

5.1.2 Extended language

Previous grammar is able to construct complex recursive sentences, but it uses just only

a small word set. We have extended the grammar to use a more realistic lexicon, extending

its size four times. To maintain ratios between different word groups, each of them2 was

enlarged by the same factor. The rules of the grammar were similar as in previous language

- the grammars were distinguished only by terminal rules and constraints. We can find

altered rules of extended grammar in Table 5.2.

For both languages we have generated a corpus of 5000 sentences, which was then

randomly split into training and test sets by ratio 90:10. The corpus contained 75% of

complex recursive sentences, in which the rule NP→N RC was applied at least once. The

average length of the sentence for both languages was over 8 words, not counting the

end-of-sentence marker.

5.2 The model

To model the grammar acquisition, we have used the echo-state network. ESN was

trained to predict next symbol of presented word sequence using randomly initialized reser-

voir with spectral radius of λmax = 0.98 and sparsity 27%. As an activation function for

2Except trivial ’.’ and ’who’ groups.
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PropNE → john | mary | kate | steve | anna | alice | bob | martin

NE →

boy | girl | cat | dog | man | woman | rabbit | lion | wolf

| bird | bear | mouse | king | queen | soldier | doctor |
boys | girls | cats | dogs | men | women | rabbits | lions

| wolves | birds | bears | mice | kings | queens | soldiers

| doctors

VE →

hit | hits | chase | feed | see | hear | walk | live | think

treat | like | love | admire | pet | read | write | count |run

| hate | beat | poke | hug | swim | understand | know |
defend | remember | entertain | educate | chases | feeds

| sees | hears | walks | lives | thinks | treats | likes | loves

| admires | pets | reads | writes | counts | runs | hates

| beats | pokes | hugs | swims | understands | knows |
defends | remembers | entertains | educates

Modified constraints:

- verbs fall into 3 categories:

- require direct object: VP → V NP :

(feed, hit, chase, treat, like, love, pet, hate, beat, poke, hug, defend)

- optionally allow direct object: VP → V | V NP :

(see, hear, admire, understand, know, remember, entertain, educate)

- preclude direct object: VP → V :

(walk, live, think, read, write, count, run, swim)

Table 5.2: Input grammar used for generating the extended language.
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reservoir neurons we have used tanh function. Output neurons used linear activation func-

tion. Word inputs and outputs were encoded with localist (one active neuron for each

word) or distributed codes. Localist representation gave us 26 and 98 dimensional input

and output, for simple and extended languages respectively. The distributed codes formed

representations of various lengths. We will describe them in a more detail in further text.

Due to the lexical ambiguity in forthcoming text, more candidate words are consistent

with the grammar, used for generating of the sentences. For this reason, a recurrent

network which uses localist representations on the output and is trained for the next word

prediction task, learns to approximate true posterior probabilities of the following words

rather than representation of the next word. We will name the posterior probabilities

according to Tong et al. (2007) as ground truth probabilities. They can be computed from

the underlying grammar. The processing of ambiguous sentence can be seen in Fig. 5.2.

Usage of distributed word representations for both inputs and targets requires subse-

quential transformation of the network output to meet the definition of the probability

distribution. The weighted average of representations of possible words can be computed

as

p+
G = L.pG,

where L is a matrix of word representations (in columns) and pG are column vectors for

ground truth.

Since the network tries to predict a weighted average of candidate word representations

a+
out, for the purpose of using evaluation measures defined below, we need to convert the

output vectors back, to obtain posterior probabilities a′out of all words in the lexicon. This

is achieved by the formula

a′out = L−1.a+
out,

where L−1 is the inverse of L. In case of a rectangular matrix L, we have used the

pseudoinverse L+ intead of L−1.

5.3 Performance measures

To evaluate the network performance, we have used two general (NNL and cos) and

three linguistically oriented measures (MPR, VAR, AUC) which have been discussed in

Tong et al. (2007).

Cosine between ground truth and the network output is defined as

cos(pG, a
′
out) =

p>G.a
′
out

‖p>G‖.‖a′out‖
.
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Acronym Description

NNL Normalized negative log-likelihood is the standard statis-

tical measure used for symbolic sequences.
COS Cosine between the network output a′out and ground

truth vectors pG.

MPR The maximum prediction rate expresses the number of

cases when the network’s most predicted word is consis-

tent with the grammar.

VAR Verb agreement rate measures the network ability to pre-

dict long-distance dependencies.

AUC Area under the receiver operator curve (ROC) uses the

assignment of the words into various semantic categories

and provides more details about network’s predictions.

Table 5.3: Quantitative measures used for evaluating model’s performance.

NNL is computed with formula

NNL = − 1

T

T∑
t=1

log|L| a
′
out(st),

where T is number of words in the testing set, |L| is size of the input language and a′out(st)

is the network prediction probability corresponding to the next word (symbol) in the test

sequence. The optimal prediction (i.e. if the model predicts the ground truth) results in

the language entropy and the model tries to reach this value from above. In case of our

data set, the estimated entropy equals 0.574. MPR is computed as:

MPR = NMPR/T,

where NMPR is the number of cases when pG(s∗(t)) > 0, considering s∗(t) as the word

corresponding to the most active neuron of the output layer in time t.

Verb agreement is computed as:

VAR = NCN
V /NV,

where NV is the number of the all verbs in the corpus and NCN
V is the number of cases

when the verbs with the correct number are predicted.

AUC is computed as:

AUC =
1

2

∑
x∈[0,1]

(R(x2) + R(x1)).(x2 − x1),
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Figure 5.1: ROC curve for different input representations for both simple and extended

language.

where R(x) is the value on the ROC curve using x in 0.001 steps. To plot ROC curve we

divide the words into 10 semantic categories (nouns, proper nouns, 6 verb groups, who and

end-of-sentence marker) and threshold the network’s output (using a parameter θ ∈[0,1] in

0.001 steps) to determine which kinds of words are “possible” and which are “impossible”.

For this, we compute hit and false alarm rates for each category. True positives (hits) occur

when the mean activation of a feasible class is above θ, while false positives (false alarms)

occur when a class is impossible despite being its average activation above θ. Dividing

the count of true positives by the number of currently possible classes yields the hit rate,

while the false alarm rate is formed by dividing the false positives by the count of currently

impossible classes. The ROC is obtained by plotting the hit rate as a function of the false

alarm rate. The example of the receiver operator curve curve can be seen in Figure 5.1.

5.4 Basic results

In the fist part we will investigate the performance of ESN on the basic and extended

languages. The results show that the model relatively successfully predicts future words of

language and is able to acquire properties of an underlying grammar. These findings are

supported by both statistical (COS, NNL) and linguistic measures (MPR, VAR, AUC).

Model’s performance has decreased during processing of the extended language. The com-

plexity of the language caused that ESN was able to assign words into desired categories

only to lesser degree of accuracy.

As we can see from Figure 5.3, the input and hidden representations of the ESN do not
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Boy who

hits John

lives
.

Figure 5.2: The processing of the sentence “Boy who hits John lives.” by the echo-state

network. We can notice that the output of the network is consistent with the ground truth.
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Model NNL COS MPR VAR AUC

ESN 50 0.686 0.831 0.856 0.805 0.874

ESN 300 0.666 0.848 0.884 0.839 0.899

ESN 1000 0.664 0.837 0.897 0.861 0.901

Table 5.4: Performance of ESN for the basic language.

Model NNL COS MPR VAR AUC

ESN 50 0.701 0.781 0.782 0.743 0.838

ESN 300 0.687 0.792 0.832 0.816 0.88

ESN 1000 0.699 0.734 0.791 0.833 0.876

Table 5.5: Performance of ESN for the extended language.

carry any semantic information. After the training, the output layer activations separates

the words into semantic categories. The activations were obtained similarly as in Elman

(1990), by taking the average activation of the particular layer for given word.

5.5 Role of input representations

In the later work, we have focused on the effect of various input representations on

ESN performance during language data processing. Apart from localist input and output

representations, we have explored three types of distributed word representations: one

with random components, ESN+ based and WCD based representations. The latter two

are created by corpus preprocessing with statistical methods, while random representations

are represented by vectors whose components are uniformly drawn from the interval [0, 1].

To investigate the effect of vector dimensionality we have generated random vectors with

26 and 52 components.

ESN+ word representations, introduced in Bullinaria and Levy (2007) and applied

in Frank and Čerňanský (2008) are based on word co-occurrences. The j-th component of

i-th word is computed as

li,j = N.
N(i, j) +N(j, i)

N(i).N(j)
, (5.1)

where N is the number of all words in the corpus, N(i, j) is the number of times when

word with index i immediately precedes word with index j and N(i) is the number of

occurrences of the word with index i in the corpus. ESN+ representations (matrix LESN+)
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Figure 5.3: Hierarchical cluster diagram of the input, hidden and output representations

for ESN model and simple language. Words connected with the lines more to the left are

more similar. We can see grouping of words based on their semantic properties.

reflect only word neighbourhoods, ignoring their mutual position. As we can see from its

definition, components of this representation are not normalized and can contain values

larger than one. To equalize the scale of ESN+ with other examined representations, it

was normalized to L1 norm (city-block distance).

WCD representations (Li et al., 2004) improves ESN+ in two ways. It evaluate left

and right co-occurrences separately, hence distinguishing mutual positions of words. Ad-

ditionally, they evaluate also non-adjacent word co-occurrences, taking into consideration

contexts of assumed length X.

lLi,j =
X−1∑
k=0

βkNk(i, j) and lRi,j =
X−1∑
k=0

βkNk(j, i) (5.2)

In previous equations, Nk(v, w) is the number of cases when distance of words v and

w 3 is k, X is the context width and β is a context-decay parameter. Both lLi and lRi
vectors are normalized to L1 norm to become probabilities. Additionally, also concatenated

word representation vectors [lLi , l
R
i ] with 52 components are evaluated, creating the matrix

LWCD
ESN . To describe different properties of our models, we use the following notation:

CLx,CRx,CLRx denote WCD with left, right and both contexts respectively, with context

size of x, Ry are ESNs with random vector representations with vector size y.

3Number of words between them.
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Model NNL COS MPR VAR AUC

CL1 0.658 0.841 0.885 0.833 0.887

CR1 0.653 0.836 0.892 0.838 0.891

CLR1 0.651 0.842 0.895 0.832 0.891

EN 0.653 0.835 0.896 0.862 0.900

R26 0.658 0.844 0.878 0.853 0.897

R52 0.653 0.847 0.885 0.858 0.905

Table 5.6: Performance of ESN with distributed representations without scaling.

Model NNL COS MPR VAR AUC

CL1x10 0.628 0.880 0.920 0.873 0.918

CR1x10 0.625 0.872 0.918 0.884 0.923

CLR1x10 0.614 0.883 0.919 0.875 0.928

ENx10 0.632 0.867 0.915 0.893 0.921

R26x10 0.662 0.858 0.862 0.833 0.906

R52x10 0.663 0.861 0.858 0.840 0.907

Table 5.7: Performance of ESN with distributed representations scaled by the factor of 10.

For the purpose of studying of the effect of vector scaling, all the representations were

scaled up in a component-wise manner to increase the discrimination of words. Motivation

for this step was the fact that the input weights of the ESN are not trained and therefore

the model cannot use the inputs in the most effective way. Our notation is as follows: xZ

means scaling the representation vector by a factor of Z and EN is the normalized version

of the ESN+ model (original ESN+ has scaling of order 10).

Table 5.6 shows that differences between normalized ESN+ and WCD representation for

left, right and both contexts are very subtle. However, as seen in Table 5.7, the scaling of

components improves performance of all models and emphasizes differences between them.

With larger scaling, the differences between the model with random representations and

semantic representations are magnified – the largest contrast is evident in case of linguistic

measures (MPR, VAR, and AUC). These differences are also illustrated in Figures 5.4, 5.5

and 5.6. Somewhat surprisingly, the context size and the size of the representation vector

do not play any visible role in model’s performance.

As we can see from Figure 5.7, the input and hidden representations of ESN+ model

carry slight semantical information, in contrary to ESN representations (see Figure 5.3).
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Figure 5.4: Performance of ESN with CL1

word representations with various scales.

Figure 5.5: Performance of ESN with

random word representations with various

scales.

Figure 5.6: The effect of the size of context used to create CLx word representations, on

the performance of ESN. Input representations were rescaled with the factor of 10.

55



Figure 5.7: Hierarchical cluster diagram of the input, hidden and output representations

for ESN+ model and the simple language. Words connected with the lines more to the left

are more similar.

Additionally, the output layer representations create better semantical clusters.

5.6 Construction of distributed representations using

ESN

The next possible step how to improve the language processing capabilities of the echo-

state networks, is to construct distributed input representation using the recurrent neural

network. Another instance of the echo-state network, which uses only localist input and

output representations, can be used for this purpose. This setup frees us from using the

statistical language preprocessing techniques. ESN stores inner representations within its

output layer weights Wout (because only these weights are actually trained). These weights

can be directly used as the word representation matrix LESN2 of the ESN2 model. The

transposed matrix L>ESN2 can be used similarly as we have used matrices LESN+ and LWCD
ESN .

During the creation of the ESN2 representations, we must take into consideration size

of hidden layer during first pass of network. When first instance of ESN had reservoir

with n neurons the ESN2 representation will have n + || +∞ components (using ESN

implementation which have direct connection between inputs and targets and take into

account threshold of the output layer).

Table 5.8 shows that ESN2 representations improved the performance of the ESN and
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Model NNL COS MPR VAR AUC

ESN 0.652 0.858 0.877 0.864 0.910

ESN+ 0.633 0.886 0.89 0.882 0.926

ESN2-28 0.624 0.891 0.901 0.849 0.926

ESN2-327 0.622 0.888 0.903 0.858 0.930

Table 5.8: The performance of various ESN models for simple language.

Figure 5.8: Hierarchical cluster diagram of the input for ESN2 model and simple language.

Words connected with the lines more to the left are more similar.

were even more successful than ESN+ model. Usage of the larger reservoir in the first

pass (300 neurons) had only slight significance over the usage of reservoir with only 1

neuron, showing that the network with very small reservoir is able to provide sufficient word

representations. All input representations were rescaled by the factor of 6.0 to magnify the

differences between compared models.

Figure 5.8 shows that the input ESN2 representations carry very similar semantical in-

formation as we could see in ESN+ model. These were created without an offline statistical

method.

5.7 Summary

This chapter was dedicated to the description of grammar acquisition process for sim-

plified context-free language. To model this task we have used the echo-state network.
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Although its performance is inferior compared to the SRN4, but it has very effective train-

ing method and therefore allows processing of the larger languages. However, the usage

of extended language leads to deteriorated network performance, showing that ESN in its

basic implementation suffers from the size of input language. This fact could be caused

by usage of the small training corpus (we have used 5000 sentences, for both simple and

extended language).

In further work, we examined various types of input and output representations in

ESN and their effect on network performance. Apart from localist and random distributed

codes, we evaluated language dependent representations, which were developed by the

preprocessing of the input corpus. We compared different methods for forming semantic

word representations - two methods with statistical preprocessing (ESN+ and ESNWCD)

and one with solely ESN-based representation (ESN2). Networks with various semantic

representations showed, somewhat counter-intuitively, very similar performance, ignoring

the size of input representation, method used for its creation, the size and type5 of context

during preprocessing.

The most visible effect on the ESN’s performance had the scale of the input repre-

sentations. Network performance was improved, revealing the differences between models.

The larger scale of input representations had favored the representations developed by the

statistical and ESN-based preprocessing over the symbolic (localist or random codes) ones.

This shows that previous results from Frank and Čerňanský (2008) were caused not only

by usage of semantic information in word representations but also by the correct scaling of

the input vectors (because the ESN+ representations have, given their definition, a large

scale). This fact is the consequence of the ESN’s simplified training method - untrained

input weights cannot correctly modify contribution of the inputs and therefore the input

representations needs to be correctly initialized.

4when trained with an extended Kalman filter
5the type of context (left, right, both) and presence of the word order.
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Chapter 6

Modelling of utterance-driven visual

attention

In previous chapters, we have considered language processing as an independent do-

main. However, human language typically does not occur in isolation. It is connected to

surrounding word, most commonly using visual context as source of data. Results of this

chapter come from Švantner et al. (2011b), Švantner et al. (2011a) and Švantner (2011).

6.1 Current state of the research field

During the last decade, research into human language comprehension using the visual

world paradigm has revealed that spoken language can guide attention in a related visual

scene. Moreover, scene information can immediately influence comprehension processes

(Tanenhaus et al., 1995). Findings have revealed rapid and incremental influence of visual

referential context (Spivey et al., 2002; Tanenhaus et al., 1995) and depicted events (Knoe-

ferle et al., 2005) on ambiguity resolution in online-situated utterance processing. Further

research demonstrated that listeners even anticipate likely upcoming role fillers in the

scene based on their linguistic and general knowledge (Kamide et al., 2003). Knoeferle and

Crocker (2006) identified several cognitive characteristics based on the above mentioned

findings, claiming that situated language comprehension is incremental, anticipatory, inte-

grative, adaptive, and coordinated, which led to the proposal of the coordinated interplay

account (Cia). In more detail, the interpretation of utterance should be developed after

each word (language comprehension is incremental), with ability to predict succeeding con-

stituents of target utterance (anticipatory). Moreover, the language comprehension should

adopt multiple information sources simultaneously (integrative), exploiting relevant infor-

mation as soon as it is accessible (adaptive). Moreover, the information sources can depend

on each other temporarily (language comprehension is coordinated).
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The recent CiaNet model (Mayberry et al., 2009) instantiates the Cia’s proposal and

accounts for a range of observed empirical findings. CiaNet is a recurrent sigma-pi neural

network that models the rapid use of scene information, exploiting an utterance-mediated

attentional mechanism. The model was shown to achieve high levels of performance (both

with and without scene contexts), while exhibiting hallmark behaviors of situated compre-

hension, such as incremental processing, anticipation of appropriate role fillers, as well as

the immediate use and priority of depicted event information through the coordinated use

of utterance-mediated attention to the scene. Other models which link language with the

visual world can be found for example in Roy (2005) and Yu et al. (2005).

6.2 Experiments

In the following two chapters, we will investigate a more general network architecture

that learns to adapt the explicit attention mechanism. Attention mechanism helps the

network to focus on described event and predict its upcoming relevant constituents. Our

implementation, in contrary to former models, is able to process more complex scenes1

and allows inhibition to operate at both the object and event levels (inhibition in CiaNet

operates only at event level.).

The network architecture is based on a simple recurrent network (SRN) and recur-

rent network with explicit attentional mechanism (A-SRN-based models). The networks

reconcile an incrementally presented utterance with a representation of the current visual

context to predictively recover the described event representation. Language is presented

in form of short sentences and the objects and events in the visual world are encoded by

scene representations. In each trial, the scene representation is presented at the visual

input and the associated sentence is presented at the linguistic input, one word a time.

The network’s task is to produce the relevant scene representation at the output. This

process is mediated by the hidden layer that combines scene-related representations with

the symbolic language. The target is available at the output during the entire sentence

processing. The explicit feedback (from the output or hidden layer) is added to the net-

work using a sigma-pi mechanism to model the process of focusing attention to relevant

constituents shown in the visual scene and mentioned in the associated sentence.

6.2.1 Scene representations

The scene representations are postulated to exist at two levels – the object-level (OBJ)

and the event-level (EV). The objects may be the constituents of the events – corresponding

to physical agents/patients that can be focused on, whereas the event level refers to specific

1The attention mechanism in CiaNet is restricted to favor one of the two concurrent events.
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actions in the concrete context (with given semantic roles, i.e. known agent and patient).

The combination of both levels of representation is hence assumed to constitute a semantic

representation of an event. The scene is assumed to consist of multiple events that may or

may not share a constituent (e.g. an agent of one event is a patient of the other event or

events share common patients), plus random count of distractors (see Fig. 6.1).

Figure 6.1: Example of a scene consisting of two events (boy chases dog) and (girl looks-at

boy) and two distractors (house, sparrow). Both events share the constituent (boy).

Objects

Objects include human agents (e.g. toddler, woman), animate agents (e.g. dog, don-

key) and one artificial agent (robot) that can be involved in various meaningful activities,

with or without a patient. Agents can operate on machines (forklift, bulldozer)2, on objects

(e.g. barrel, house) or food items (e.g. apple, juice). The actions include moving (e.g. walks,

sits), physical manipulation (e.g. lifts, holds), socially oriented activities (e.g. greets, looks-

at) and sustenance actions (eats, drinks). Agents and patients are manually assigned binary

features that encode various physical and functional properties and form 40-dimensional

vectors cA and cP, respectively. For further details see Tables 6.4 and 6.3. Each object

can take a role of a distractor, denoted as cD, using the same representation vector. Ana-

logically, actions are described by 16-dimensional vectors of binary features cV. Actually,

action encoding consists of only 8 binary features (see Tables 6.1 and 6.2), but the vectors

were doubled to increase the differentiation of compressed event representations, performed

by EV module.

We used the standard self-organizing map to learn the localized representations of ob-

jects. The SOM is constructed in advance, using only agents cA, patients cP and distractors

2In fact, these can serve as agents of some actions, too.
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A B C D E F G H

walk 1 0 1 0 0 0 0 0

run 1 0 1 0 1 0 0 0

sit 1 0 0 0 0 0 0 0

meditate 0 0 0 0 0 0 1 0

lift 1 1 1 1 1 1 0 0

push 1 1 1 1 1 0 0 0

pull 1 1 1 1 1 0 1 0

touch 1 1 0 1 0 1 0 0

hold 1 1 0 1 1 0 0 0

point-at 0 0 0 1 0 0 0 0

look-at 1 0 0 1 0 0 0 0

greet 0 0 0 1 0 1 0 0

hit 0 1 1 1 1 1 0 0

chase 1 0 1 1 1 0 0 0

eat 1 0 0 0 0 1 1 0

drink 1 0 0 0 0 1 1 1

Table 6.1: Feature vectors for actions.

A animate

B requires physical contact

C motion

D transitive

E requires physical effort

F temporary

G ego-centered (towards oneself)

H creates flow (liquids)

Table 6.2: Verb feature labels. The labels

can be linked with the Table 6.1.

A small K animal U vehicle e four-legged

B small-to-medium L artefact V juicy f winged

C medium M food-stuff W container g wheeled

D very small N male X structure h causal agent

E large O female Y dessert i instrument

F medium-to-large P canine Z staple j manipulate crates

G very large Q feline a drink k demolish

H animate R bird b self-moved l store objects

I inanimate S exotic c stationary m store liquids

J human T machine d two-legged n storage

Table 6.3: Object feature labels. The labels can be linked with the Table 6.4.
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n

toddler 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0

boy 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0

girl 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0

man 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0

woman 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0

dog 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

cat 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

sparrow 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

elephant 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

donkey 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

robot 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0

forklift 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0

bulldozer 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0

apple 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

crate 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

barrel 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

wardrobe 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

car 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0

house 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

cake 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

meat 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

milk 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

juice 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

toy 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

Table 6.4: Feature vectors for objects. Each object has associated 40 dimensional vector of

features. Features are represented by ’is present flag’ - if the object exhibit given feature,

the relevant dimension of its vector is set to 1, otherwise it is set to 0.

cD as inputs, one at the time. Actions are excluded from SOM training, they are included

only in event-level representation. The SOM is trained to provide a topographically orga-

nized map of objects according to their semantic features. Each object is represented in

the SOM by three most active units, focused around the winner, all other units are set to

zero. The index of winner i∗ was calculated with formula 2.3, having x(t) ∈ {cA, cP, cD}.
The activity of the three most active units was rescaled such that ybmu = 1. Resulting map

for different objects can be seen in Fig. 6.2. The SOM size was chosen to have 64 units to

allow unambiguous learning of each object (by assigning it a separate winner).

The purpose of using three most active units (instead of just a winner) is to allow the

activation overlap between similar objects with neighboring winners (this actually helped

the model to generalize better. The scene representation at the object level contains the

superimposed representations (in SOM) of all objects in the current scene (i.e. all being

simultaneously present) plus a few distractors resulting in SOM activation:

call
in = c

(1)
in + . . .+ c

(m)
in + c

(1)
D . . .+ c

(n)
D ,

where m and n denote the number of different objects and distractors in the scene, respec-

tively.
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Figure 6.2: SOM representations of all objects used in the simulations. Topographic order

according to semantic similarities is evident. Localist nature of representations allows their

combinatorial use without causing interference.

Events

To obtain representations ein of events, AAN is pretrained off-line on vectors [cA cV

cP] to form the compressed distributed representations at the hidden layer with 48 units.

Patient cP is optional, so its components are set to zero in case of its absence. The input

size dimension for training AAN was 40+16+40=96 dimensions. The functionality of a

trained AAN was checked via accuracy of compressed representations using the encoding

and decoding of novel agent-action-patient triplets. The accuracy reached almost 100% for

testing data.

Once the AAN is trained, the event-level representation corresponding to a scene is

taken as a superposition of all events in the situation, resulting in the vector:

eall
in = e

(1)
in + . . .+ e

(k)
in

.

The vector components are constrained in the interval [0,1]. Some components of the

event vector could become larger than one after superposition (i.e. if both events had the

same unit very active), therefore all components were divided by the value of the most ac-

tive component. Using the superposition is analogous to that used in CiaNet – it encodes

simultaneous information provided to the subject as the visual input. However, in CiaNet

the representational media for two events are separated whereas in our models the medium
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is shared. Unlike localist representations for objects, the superposition of distributed event

representations leads to an overlap between the two codes which expectantly makes the

decompression task more difficult. We experimented with decreasing this overlap by ma-

nipulating the profile of the sigmoidal activation function (gain and shift) of the hidden

units of AAN in order to get sparser compressed codes, but this had no significant effect.

6.2.2 Linguistic representation

The lexicon consists of 40 words, with one-to-one mapping to the objects and actions.

Words are treated as symbols and are assigned one-hot codes with 40-dimensions creating

an input lin. The sentences have a SV(O) form, such as toddler looks-at crate or woman

walks.

6.3 Model and network training

6.3.1 Model

To model utterance-mediated visual attention we have used a SRN, echo state net-

work and recurrent networks with attentional mechanism (for more information see chap-

ters 2.1, 2.3 and 2.2). All models use two output slots: cout is the object-level output

that tries to activate the target objects, taking part in the described event, while eout pre-

dicts the representation of the target event. Together, the network output (predicted scene

interpretation) is given as aout = [cout, eout]. The models have no linguistic output.

In total, we have experimented with five models. Beside the standard SRN, ESN

and A-SRN we have explored also A-SRN+ model, which was motivated by our initial

observations about the effects of feedback mechanism and was designed to help the network

avoid undesired object inhibition. A-SRN+ guarantees that input representation remains

preserved to a certain degree (we used γ = 0.3 in Eq. 2.1) which is desirable in cases when

output inhibition incorrectly suppresses valid inputs, hence hindering the correct output

of the network. In the terms of an architecture, A-SRN+ falls between A-SRN and SRN.

The last model, A-SRNbck, which is shown in Fig. 2.3, uses an alternative, internal atten-

tional mechanism, that is driven by direct connections from the hidden layer. It modulates

the input similarly to A-SRN but allows a different flow of error during training by using

an extra set of weights to separate the output representation (the scene interpretation)

from the attentional information.
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6.3.2 Network training

We have systematically looked for optimal network parameters which were then used

in testing the models and performing comparisons as described below. The hidden layer

of all networks was chosen to have 150 units, except the ESN where we used 300 reservoir

neurons. Reservoir of ESN was initialized to have largest singular value σmax = 0.95 and

sparsity 10%. As an activation function for both hidden and output neurons we have used

sigmoidal function, except ESN model where we used bipolar sigmoidal function for the

reservoir neurons. Networks were trained with BPTT algorithm by propagating the error

after each word (algorithm can be found in Chapter 2.2) , using the learning rate 0.01.

We have generated 10,000 scenes, each of which was associated with two events. Model’s

attention was driven by linguistic input to the single, major event of each situation. All

generated events were consistent with the world, obeying semantic constraints. With each

scene representation, a number of distractors (ranging from 0 to 3) was added to the input,

taken from the pool of remaining agents/patients. Randomly chosen 70% of situations

were used for training and the remaining 30% for testing. Data sets were distinguished by

major events used in the scenes.

6.4 Model evaluation

In further text we will evaluate performance of various models trained for utterance-

driven visual attention task and we present measures used in this evaluation. To investigate

model’s performance, we need to evaluate both components of network’s output (OBJ

and EV). For testing the accuracy of event level output eout we decode corresponding

output part (using the hidden-output weights of AAN) and count the percentage of correct

decodings in the test set. Regarding of object-level output cout, we compare the output

with all possible combinations of OBJ representations (in SOM), i.e. ctgt. Analogically,

we count the percentage of matches (for both agents and patients). The standard cosine

measure is applied for both EV and OBJ outputs. All measures can be evaluated after

each word presented, to capture the progress during sentence processing. We looked at

the output accuracy at the end of sentences and also on network’s anticipatory behaviour,

that is, its prediction of upcoming constituents during sentence processing (i.e. predicting

an action when reading a subject word and predicting a patient when reading a subject or

action words).

The illustration of a trained A-SRN during processing at the sentence boy chases dog

is shown in Fig. 6.3, and corresponds to the scene in Fig. 6.1. OBJ-related graphs contain

8×8 units, EV-related graphs contain 48-dimensional vectors, reshaped to 8×6 matrix for

convenience. On the right, OBJ input is the composition of various objects (including

distractors), EV input is the superposition of two events. Both inputs are presented to the
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Boy

chases

dog.

Figure 6.3: Example of A-SRN activation during sentence processing for sentence Boy

chases dog. We can notice improvement of output activation compared to targets for both

EV and OBJ output parts.
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network at the sentence beginning. On the left, both targets comprise only information

about the target event (and the pertaining objects). At the bottom, both input become

overriden by the the feedback attentional mechanism that filters out irrelevant objects and

non-target event information. Visual inspection of the network outputs (in the middle)

reveals that they match well with both corresponding targets.

6.5 Performance measures

We explain all measures used in Tables 6.6–6.13. Symbol ’x’ refers to the stage process-

ing in a sentence (if x=1, the first word is as the input). All measures share the property

that the closer the value to 1 (from below), the more accurate the value.

Acronym Description

cos cosine between the target situation vector and the net-

work output (both OBJ and EV parts concatenated)
EV quantifies the accuracy of network output by decoding

it at sentence end; successful if both objects and action

match the targets

EVa1 prediction of action when reading a subject; important

measure since action cannot be retrieved from OBJ (un-

like objects)

EVpx prediction of the patient before the sentence end

EVa1W predictions of the possible actions from output after the

first word; action is correctly decoded when it is consis-

tent with the world (i.e. it exists in the corpus in the

given context)

EVpxW predictions of possible patients; successful if consistent

with the world (i.e. it exists in the corpus in the given

context)

EVa1S action predictions; considered correct if the action was

present in the current situation (in visual input)

EVpxS predictions of patients; assumed correctly decoded if it

was present in current situation (in visual input)

OBJx prediction of agent/patient pairs; successful if both ob-

jects match the target

Table 6.5: Quantitative measures used for evaluating model performance.

Measures starting with EV- are related to event-level while measures starting with OBJ-
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are related to object level. Event-level measures are calculated from eout, while object level

measures are calculated from cout. The symbol x ∈ {1, 2}. For model evaluations, we have

used the measures listed in Table 6.5.

6.6 Evaluation properties

Results in all tables refer to the testing data. We focused at three factors when eval-

uating model performance. First, we compared the accuracy of four models at the end of

sentence; second, we manipulated the availability of the scene information during training

and investigated its effect on model behavior; third, we looked at predictive properties of

the model, i.e. the anticipation of upcoming consituents before the sentence end.

All results shown in tables are averages of 5 simulations, all with standard deviations

below 0.02. Standard deviation was larger only for results with fully omitted visual scene

inputs, with highest values reaching 0.1.

6.7 End-of-sentence behaviour

Model’s ability to yield correct interpretation of the event, mediated by linguistic ut-

terance, can be evaluated only at the end of sentence. Table 6.6 shows that all models have

learned to generate correct output with high accuracy for both parts of its representation.

SRN was observed to perform sufficiently what suggests that the feedback mechanism used

in A-SRN-based models is not crucial for this relatively simple task. However, the feedback

mechanism used in A-SRNbck improved the performance to nearly 100% accuracy.

Model cos EV OBJ

SRN 0.995 0.985 0.986

A-SRN 0.981 0.899 0.949

A-SRN+ 0.986 0.949 0.976

A-SRNbck 0.995 0.996 0.992

ESN 0.976 0.915 0.971

Table 6.6: Model performance with respect to the target event, evaluated at the end of

sentence.

In the case of trained A-SRN, we have examined its behavior and found out that it

might be the suboptimality of its strict attention mechanism that sometimes inhibits (via

sigma-pi connection) the target objects/actions at the input, hence reducing the output

accuracy towards the end of sentence. To test this hypothesis, we introduced the model

A-SRN+ and its performance was observed to be expectedly better than A-SRN.
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As we could see in chapter 5.5, it is crucial for echo-state networks to correctly initialize

input representations. The correct scale of the representation can be applied to input

weights Win with similar effect. We have applied the scale to the input weights WinL and

WinS and found out that the need of its correct initialization in this task is even more

important, because of extensive input preprocessing and different scale of both types of

inputs. Best results were achieved with ESN with 0% sparsity for both input matrices and

scaling factor of visual input 0.1.

6.8 Restriction of situational input

We have restricted the availability of the visual input during training, either completely,

or by randomly choosing 50% of sentences (in each training epoch). The purpose of this

manipulation was twofold: to simulate the lack of visual input (for example, to simulate

mere listening about the given event) but also to force the network to rely more on the

linguistic pathway in predicting the output. The models were then tested on two types of

novel inputs – those with and those without available visual inputs. Corresponding results

are shown in Table 6.7.

The simulations reveal, that partial omission of scene inputs during training positively

affects model accuracy, especially that of A-SRN. Interestingly, A-SRN yields a better

performance also on testing data patterns with corresponding scene inputs, compared to

the training mode with 100% availability of scene information (Table 6.6). The ESN

achieved imperfect performance because of alternating visual inputs. Input matrices which

are not trained, cannot provide sufficient dynamics of reservoir, necessary to represent

arbitrary presence of visual input. To achieve best performance, we have rescaled visual

input of ESN with factor 0.1.

The complete removal of the scene input during training lead to excessive bonding be-

tween visual contexts and spoken language resulting in good performance for data without

visual scene input (see EVe and OBJe in Table 6.7). However, when testing the network

with available visual inputs, the results have deteriorated (both measures EV & OBJ),

showing that the network does not have the ability to correctly comprehend the described

event within the visual world. Because of the top-down attentional mechanism, A-SRN-

based models could handle this type of testing much better, possibly taking advantage of

the initial output representation evoked by the (sole) linguistic input and fed back as the

scene input that eventually contributed to higher accuracy at the sentence end. On the

other hand, the ESN was not able to cope with completely novel visual inputs and failed to

comprehend described event. The output layer could not match novel states in reservoir3 to

the trained patterns, what caused low performance of the ESN. Best results for ESN were

3Affected by novel inputs, which were not modified by static input layer.
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achieved with 90% sparsity for linguistic weight matrix and the scaling factor of linguistic

input with value 10.

Model % cos EV OBJ EVe OBJe

SRN 50 0.995 0.995 0.989 0.995 0.992

A-SRN 50 0.991 0.989 0.988 0.991 0.990

A-SRN+ 50 0.993 0.992 0.990 0.995 0.994

A-SRNbck 50 0.997 0.998 0.994 1.000 1.000

ESN 50 0.980 0.920 0.980 0.790 0.900

SRN 0 0.929 0.504 0.627 0.999 0.997

A-SRN 0 0.963 0.769 0.823 0.998 0.994

A-SRN+ 0 0.947 0.671 0.688 1.000 0.994

A-SRNbck 0 0.970 0.863 0.822 0.999 0.999

ESN 0 0.510 0.090 0.100 0.950 0.970

Table 6.7: Model performance with respect to the target event for 50% and 100% empty

situation input, evaluated at the end of sentence. Performance was computed for the test

data with full (EV, OBJ) and empty (EVe, OBJe) scene input.

6.9 Anticipation of upcoming constituents

Tables 6.8–6.12 refer to the prediction accuracy (constituent anticipation) during sen-

tence processing. All five models predict the target action (EVa1) with ∼50% accuracy

(Table 6.8). These predictions are mostly consistent w.r.t. depicted scene (∼75%, Table

6.10) and almost always consistent with the world knowledge (∼97%, Table 6.9) .

Prediction of the patient can be assessed at two steps. Upon reading a subject (EVp1),

the predictability of the patient is around 50% w.r.t. the target but grows over 80% w.r.t. for

both world knowledge and the depicted scene. Prediction of a patient one step later (EVp2)

grows to about 65% w.r.t. target (except ESN), to about 95% w.r.t. the world knowledge

and to 85% w.r.t. the depicted scene. ESN model exhibited deteriorated performance,

namely for the prediction of patient w.r.t target and depicted scene during presentation of

the action.

Prediction at the level of agents and patients (OBJx) is slightly less accurate. Upon

processing the first word, the accuracy of predicting both objects remains at around 50%

(having agent accurate but the patient inaccurate), and only grows to ∼60% when process-

ing the verb. Also for this task, the ESN provided worse prediction abilities as the other

models.

Models with omitted scene-related inputs (Table 6.11) exhibit decreased prediction
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Model EVa1 EVp1 EVp2 OBJ1 OBJ2

SRN 0.522 0.575 0.706 0.501 0.625

A-SRN 0.503 0.510 0.645 0.452 0.588

A-SRN+ 0.491 0.517 0.667 0.484 0.608

A-SRNbck 0.498 0.545 0.697 0.479 0.597

ESN 0.489 0.447 0.553 0.252 0.302

Table 6.8: Network anticipation of upcoming constituents with respect to target.

Model EVa1W EVp1W EVp2W

SRN 0.975 0.872 0.964

A-SRN 0.971 0.836 0.939

A-SRN+ 0.969 0.843 0.952

A-SRNbck 0.971 0.857 0.963

ESN 0.964 0.783 0.915

Table 6.9: Network anticipation accuracy with respect to world knowledge.

Model EVa1S EVp1S EVp2S

SRN 0.765 0.841 0.883

A-SRN 0.742 0.806 0.856

A-SRN+ 0.732 0.815 0.864

A-SRNbck 0.754 0.830 0.894

ESN 0.753 0.814 0.778

Table 6.10: Network anticipation accuracy with respect to consistency with the depicted

scene.

ability because of missing visual scene information. When no situation inputs are presented

during training, model does not rely on this type of information, thus ignoring it also for

test set with visual information available. In addition, the prediction in the data set without

the visual input was not achieved by any model.

To describe anticipation abilities of the models with restricted scene input in more

detail, we have additionally examined their performance w.r.t. world knowledge. This

method is similar with evaluation of prediction accuracy used in Chapter 5. According to

Table 6.12, the usage of partly omitted scene inputs does not interfere with anticipation

w.r.t. world knowledge, in opposite to anticipation w.r.t. target. In almost all cases the

networks successfully predict suitable actions and patients during sentence processing. The

smallest prediction ability was observed during prediction of more distants constituents

(i.e. anticipation of patient during processing of the agent; measure EVp1W ).
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Model % EVa1 EVp1 EVp2 OBJ1 OBJ2

SRN 50 0.509 0.521 0.681 0.449 0.549

A-SRN 50 0.475 0.456 0.639 0.423 0.506

A-SRN+ 50 0.492 0.477 0.664 0.454 0.569

A-SRNbck 50 0.489 0.556 0.675 0.492 0.561

ESN 50 0.460 0.410 0.490 0.190 0.210

SRN 0 0.201 0.039 0.074 0.015 0.031

A-SRN 0 0.203 0.033 0.085 0.006 0.022

A-SRN+ 0 0.183 0.039 0.090 0.005 0.016

A-SRNbck 0 0.201 0.042 0.080 0.015 0.020

ESN 0 0.013 0.050 0.060 0.010 0.010

Table 6.11: Network anticipation of upcoming constituents with respect to the target for

models with omitted scene inputs (tested on data with available visual scene).

Model % EVa1W EVp1W EVp2W EVa1e
W EVp1e

W EVp2e
W

SRN 50 0.975 0.851 0.965 0.999 0.608 0.954

A-SRN 50 0.971 0.819 0.951 0.999 0.592 0.938

A-SRN+ 50 0.970 0.838 0.958 1.000 0.601 0.854

A-SRNbck 50 0.970 0.869 0.961 1.000 0.609 0.884

ESN 50 0.960 0.750 0.890 0.990 0.340 0.810

SRN 0 0.966 0.635 0.840 0.913 0.743 0.845

A-SRN 0 0.979 0.601 0.873 0.930 0.226 0.880

A-SRN+ 0 0.950 0.604 0.889 0.894 0.602 0.848

A-SRNbck 0 0.964 0.671 0.862 0.917 0.208 0.841

ESN 0 0.800 0.690 0.720 0.990 0.630 0.890*

Table 6.12: Network anticipation of upcoming constituents with respect to world knowledge

(tested on data with omitted scene inputs).

6.10 Processing situations with multiple events

To simulate a more realistic world environment, we created a data set with multiple

events per visual scene. Each scene contained two or three events (with 50:50 ratio) and a

random number of distractors. Similarly as in the previous text, the network task was to

select the target event mediated by the utterance.

Tables 6.13 and 6.14 show that all models were able to process situations with multiple

events, having surprisingly better performance at the end of sentences. Complexity of

visual scene has caused that models had to rely on linguistic inputs resulting in similar

behaviour as we could see in case of restricted scene input (Section 6.8). On the other
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Model cos EV OBJ

SRN 0.995 0.989 0.989

A-SRN 0.986 0.957 0.970

A-SRN+ 0.989 0.981 0.984

A-SRNbck 0.995 0.997 0.993

ESN 0.975 0.918 0.962

Table 6.13: Model performance for multiple events per visual scene evaluated at the end

of sentence.

hand, prediction accuracy suffers from multiple object and event possibilities, resulting in

deteriorated performance. Anticipation w.r.t. world knowledge expectedly is not affected

by the presence of multiple events but the anticipation w.r.t. depicted scene is aggravated,

because of numerous object combination within the visual scene.

Model EVa1 EVp1 EVp2 OBJ1 OBJ2

SRN 0.463 0.447 0.586 0.343 0.486

A-SRN 0.426 0.347 0.508 0.207 0.411

A-SRN+ 0.450 0.363 0.523 0.293 0.437

A-SRNbck 0.447 0.430 0.558 0.348 0.460

ESN 0.438 0.380 0.469 0.163 0.199

Table 6.14: Network anticipation of upcoming constituents w.r.t. target for multiple events

per visual scene.

Model EVa1W EVp1W EVp2W EVa1S EVp1S EVp2S

SRN 0.980 0.861 0.954 0.776 0.781 0.846

A-SRN 0.975 0.798 0.938 0.708 0.698 0.795

A-SRN+ 0.977 0.806 0.942 0.766 0.719 0.811

A-SRNbck 0.978 0.843 0.953 0.769 0.789 0.842

ESN 0.973 0.770 0.913 0.769 0.814 0.776

Table 6.15: Network anticipation of upcoming constituents w.r.t. world knowledge and

depicted scene for multiple events per visual scene.

6.11 Hidden-layer activations

If the network is able to correctly predict output, this ability should imply some orga-

nization of the network’s internal representations at the hidden-layer. We performed an
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analysis of the hidden representations, using the traditional technique, first presented in

Elman (1990). That is, the training data was again presented to the trained network in a

single sweep, the hidden activation were recorded, and then reordered with respect to the

same input word, and averaged over contexts. Like Elman, we could observe some degree

of internal organization between words, albeit to a lesser degree. However, there two dif-

ferences. First, out network was not trained on a next-word prediction task but shooting

at a static target. Second, out linguistic input is modulated (and noised) by situational

inputs. The example of a hierarchical cluster diagram is shown in Fig. 6.4. The order in

other three models was somewhat less evident.

Figure 6.4: Hierarchical cluster diagram of hidden-unit activation vectors of a trained

A-SRNbck model with the completely available scene input.

6.12 Analysis of attentional mechanism

To analyse attentional mechanism more deeply, we compared altered sigma-pi scene

input with the current target. Sigma-pi connection, driven by network output, filters irrel-

evant objects within visual scene, what causes larger correlation between altered input and
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target event vectors. To test this hypothesis, we have used the standard cosine measure,

comparing event part (EV), object part (OBJ) of the mentioned vectors and their con-

catenation (EV-OBJ). As we can see in Figures 6.5-6.7, the A-SRN and A-SRN+ models

indeed increase similarity between mentioned vectors. In case of A-SRN, the average cosine

decrease during processing of the second word, what is consistent with our observation that

output attentional mechanism can misguide network by activating incorrect event. This is-

sue is resolved in A-SRN+ model. The results in Figure 6.7 shows that the A-SRNbck uses

Figure 6.5: Cosine between modified sigma-pi scene input vector and target visual scene

vector during sentence processing with A-SRN network. During processing of the first

word, the network uses unmodified input.

Figure 6.6: Cosine between modified sigma-pi scene input vector and target visual scene

vector during sentence processing with A-SRN+ network.

different type of attentional mechanism, which does not predictively filter the objects and
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events in input visual scene. In fact, it inhibits the visual input significantly (Figure 6.8),

resulting in decreased cosine between input and target vectors (Figure 6.7). The network

probably uses its hidden layer more extensively to memorize the visual scene and in later

sentence positions focus on the language-output mapping since network outputs are more

accurate (as shown in previous sections).

Figure 6.7: Cosine between modified sigma-pi scene input vector and target visual scene

vector during sentence processing with A-SRNbck network.

6.13 Discussion

This chapter describes situated language processing using the visual world paradigm.

We compared SRN and ESN with several recurrent neural network models with an explicit

attentional mechanism to appreciate the role of the feedback in sentence comprehension

task. All models can almost perfectly learn to generate the end-of-sentence representa-

tion that is interpreted as the sentence meaning in the visual context. Having read the

sentence, each network correctly selects the target scene event and its corresponding con-

stituents (agent/patient). To a certain degree, all networks also demonstrate predictive

behavior reflected by the ability to anticipate upcoming constituents. SRN performs ex-

pectedly very well, but we have shown that adding an explicit attentional mechanism

(in A-SRNbck) results in slight improvement of the performance. The availability of the

attentional mechanism helps A-SRN models to perform better on testing data with and

without the scene information when trained on inputs with restricted scene information.

From the cognitive perspective, A-SRN’s attentional mechanism helps the network focus

on the relevant scene event and incorporates into the model the visual attention system

on an abstract level, and reveals similar anticipatory shifts in visual attention that have
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Girl

looks-at

robot.

Figure 6.8: Example of A-SRNbck activation during sentence processing for sentence Girl

looks-at robot. We can notice significant inhibition of the scene input with the activation

of the explicit hidden attentional layer.

78



been found using the visual world paradigm (Knoeferle et al., 2005; Knoeferle and Crocker,

2006). One exception is the A-SRNbck model which probably uses its hidden layer more

extensively to memorize the visual scene. Its attentional mechanism inhibits the visual

input in later sentence positions, probably using the language-output mapping to process

the last words of sentence more effectively. On the other side, the ESN have exhibited

deteriorated performance in many subtasks which was caused in most cases by inability to

cope with alternating inputs.

We have shown that models are able to process linguistic utterances also without visual

data but adding scene input helps network to correctly emphasize described event within

visual world and enables anticipation of particular upcoming event constituents. A-SRN-

based models differ crucially from CiaNet (Mayberry et al., 2009) that served as our

motivation, in their potential to deal with complex visual scenes containing more than two

events. This property allows describing more realistic world scenes and deal with complex

(possibly recursive) sentences with multiple relations between their constituents. Regarding

the world complexity, we expect that the benefits of the A-SRN model (i.e. anticipation of

objects in the scene) may in fact increase as the knowledge of the network scales up, that

is, when there’s a larger difference between what the network learns during training, and

what is currently depicted when processing a given sentence.
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Chapter 7

Conclusion

This thesis covers several subtasks of natural language processing. In the first part

(Chapter 4) we have explored the non-adjacent dependencies in the artificial syllables

language, showing that also echo-state networks are able to satisfy variability hypothesis.

Moreover, our modelling confirmed that ESN is able to find the places of high entropy

within continuous sequence of syllables, therefore splitting the sequence into words.

In the second part (Chapter 5) we have focused on higher language processing. We

have trained echo-state networks on next word prediction task within recurrent sentences

of simplified English language. We have extended the grammar acquisition tasks performed

in Tong et al. (2007) for more complex input language. Although, input language used

in Tong et al. (2007) has rich recurrent structure, lexicon it use has only 24 input words.

We have extended this language to use lexicon with 96 words and showed that ESN is

able to process also more complex languages. However, its performance has deteriorated.

Our assumption is that the combination of recurrent structure with larger lexicon size

creates too large corpus, what prevents ESN to successfully process all possible sentence

combinations.

To increase performance of echo state-networks we have used various input representa-

tions in addition to frequently used localist encoding. These comprise random distributed

representations and representations obtained by corpus preprocessing. ESN+ model, in-

troduced by Bullinaria and Levy (2007), use simple analysis of word neighbourhood, while

WCD representations (Li et al., 2004) take into consideration also larger contexts and or-

der of the neighbouring words. Our results confirm findings from Frank and Čerňanský

(2008), that using distributed representations obtained by preprocessing of corpus increases

performance of ESN. However, deeper analysis conducted in Švantner and Farkaš (2009a),

shows that ESN+ model takes advantage also from larger scale of generated representa-

tions. Normalized ESN+ and WCD representations exhibit comparable performance to

the one observed in random distributed and localist representation. The increase of scale

of representations distinguish the performance of ESN+ and WCD compared to random
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distributed and localist models. These findings led us to conclusion that performance of

echo-state networks depends also on scale of presented inputs and for different tasks we

need to scale input independently. This fact is logical, since input weights of ESN are not

trained and network cannot adjust them to its needs. On the other hand, the effect of

larger neigbourhood contexts and the order of words, have shown surprisingly only subtle

impact on ESN performance, even for the larger input scaling. In the further work, we

have generated reasonable input representations using the multiple executions of the ESN.

The echo state network which used these representations achieved similar performance to

ESN+ and ESNWCD models.

In the third part (Chapter 6) we have explored the impact of visual scene on lan-

guage processing and modelled attention incurred within visual world. Recurrent neural

networks (namely SRN, A-SRN and ESN) have been trained to filter described part of

visual scene and provide its representation on output. All networks showed almost perfect

end-of-sentence performance, correctly choosing described event and its objects. Our im-

plementation allows processing of more complex visual scene (as opposed to CiaNet; May-

berry et al., 2009), which comprises multiple concurrent events. None of the models had

any problems with this modification either. To model off-line description of visual event,

we have removed the visual input in randomly selected scenes, what resulted in better

end-of sentence behaviour. This can be explained by reinforced utterance-output mapping

during removal of visual scenes. However, removal of all visual inputs caused that networks

have exhibited deteriorated performance during presence of the scene in testing data. In

addition, visual input allows to predict particular action and objects of described event

even before end of utterance. It eases language processing and shows that models are in

addition to network shown in Chapter 5 able to filter object within complex visual scene,

focusing attention on important part of the scene.

Echo-state network did not successfully model all of previously mentioned behaviour.

Namely in prediction task and partly present visual input environment was its performance

deteriorated. ESN was not able to cope with variable visual input, even after proper

input scaling. To explicitly model attentional mechanism we have introduced A-SRN-

based models. These have shown comparable performance to one of simple recurrent

network in all previously mentioned tasks, exhibiting superior performance during omitted

visual input. In addition, A-SRN-based models offer better characterization of attentional

mechanism, exhibiting all of its desired properties.
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Resumé

Táto dizertačná práca sa zaoberá spracovańım prirodzeného jazyka pomocou

rekurentných neurónových siet́ı. V prvej časti upriamujeme pozornost’ na úlohu

predikcie nasledujúcich symbolov v prirodzenom texte. V krátkosti rozoberáme aktuálny

stav tematiky a opisujeme architektúry neurónových siet́ı, ktoré sa pri spracovávańı

prirodzeného jazyka použ́ıvajú. Medzi najpouž́ıvaneǰsie patria jednoduchá rekurentná siet’

(SRN, obr. 2.1) a siet’ s echo stavmi (ESN, obr. 2.4).

Kapitola 4 je venovaná predikčnej úlohe na úrovni slab́ık umelého jazyka. Na

jednoduchom jazyku, pozostávajúcom zo zret’azených trojslabičných slov, sme modelovali

predikciu nasledujúcej slabiky, ktorá využ́ıva susedné aj nesusedné závislosti medzi

jednotlivými slabikami (Farkaš a Švantner, 2007). Ukázali sme, že siet’ s echo stavmi je

schopná správne rozdelit’ slová na miestach s vysokou entropiou. Siet’ bola navyše schopná

zohl’adnit’ aj nesusedné závislosti medzi slabikami pri vel’kých výplniach, umožňujúc

generalizáciu (použitie známych závislost́ı aj pri nových výplniach).1 Tým sme čiastočne

potvrdili hypotézu variability, ktorá hovoŕı, že l’udia dokážu generalizovat’ v pŕıpade vel’mi

vysokej alebo nulovej variability slab́ık (výplne) medzi nesusednými slabikami.

V kapitole 5 sme modelovali spracovávanie viet a akviźıciu gramatiky pomocou siet́ı s

echo stavmi (Švantner a Farkaš, 2009b). Model bol trénovaný na úlohe predikcie d’aľsieho

slova vo vetách dvoch jednoduchých prirodzených jazykov, vychádzajúcich z angličtiny.

Ako základnú dátovú množinu sme mierne upravili jazyk (Tong a spol., 2007), ktorý má śıce

bohatú rekurźıvnu štruktúru, ale využ́ıva iba málo slov. Z tohto dôvodu sme ho rozš́ırili,

pridańım väčšieho slovńıka a ukázali sme, že siet’ s echo stavmi je schopná spracovávat’

aj o niečo zložiteǰsie jazyky (čo do vel’kosti slovńıka). Muśıme však podotknút’, že jej

úspešnost’ sa pri použit́ı zložiteǰsieho jazyka zńıžila. Predpokladáme, že zväčšenie slovńıka

v kombinácii so zložitou rekurentnou štruktúrou viet, viedlo k vytvoreniu množstva vetných

kombinácíı a siet’ nebola schopná správne zovšeobecňovat’ z dôvodu, že sa počas trénovania

stretla iba s malou čast’ou z nich.

Pre zvýšenie úspešnosti siete s echo stavmi sme pre jej vstupy vyskúšali rôzne

reprezentácie. Okrem lokalistických a náhodných distribuovaných kódov sme použili

1Napŕıklad, ako výplň medzi závislými slabikami ’l’udia’ a ’jú’ vo vete ’L’udia sa pozerajú na oblohu.’

považujeme čast’ vety ’sa pozera’.
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reprezentácie, ktoré vznikli štatistickým predspracovańım textu. Model ESN+, ktorý

bol navrhnutý v Frank a Čerňanský (2008), použ́ıva jednoduchú analýzu, založenú na

početnosti spoločných výskytov slov v rámci textu. WCD reprezentácie (Li a spol., 2004)

sú źıskané vel’mi podobnou metódou, avšak zohl’adňujú aj poradie v rámci spoločných

výskytov a umožňujú použitie väčš́ıch kontextov medzi skúmanými slovami. Naše výsledky

potvrdzujú zistenia z Frank a Čerňanský (2008), že použitie distribuovanej reprezentácie

źıskanej štatistickým predspracovańım textu (ESN+ a WCD reprezentácie) zvyšuje

úspešnost’ siet́ı s echo stavmi. Hlbšia analýza však ukázala (Švantner a Farkaš, 2009a),

že zvýšenie úspešnosti siet́ı s echo stavmi bolo z časti spôsobené zmenou škály vstupov.

Po normalizácii vstupov (škála vstupov bola zńıžená) bola úspešnost’ siet́ı s echo

stavmi použ́ıvajúcich reprezentácie źıskané pomocou štatistického predspracovania textu

porovnatel’ná s modelom využ́ıvajúcim lokalistické a náhodné distribuované kódy. Tieto

zistenia nás viedli k záveru, že úspešnost’ siet́ı s echo stavmi zálež́ı okrem iného aj na

škále vstupných reprezentácíı a pre rôzne úlohy potrebujeme zistit’ aj správnu škálu

vstupov. Tento fakt je logický, ked’že sa vstupné váhy v siet’ach s echo stavmi

netrénujú, a teda ich siet’ nie je schopná upravit’ pre svoje potreby. Ostatné variácie

vstupných reprezentácíı nepriniesli požadované zvýšenie úspešnosti siet́ı s echo stavmi.

Medzi skúmanými bola vel’kost’ kontextu medzi závislými slovami a poradie slov. V

d’aľsom výskume (Švantner, 2010) sme vytvorili sémantické reprezentácie vstupných slov

pomocou viacnásobného spracovania textu pomocou siete s echo stavmi. Ukázali sme,

že tieto reprezentácie umožňujú dosahovat’ podobné výsledky ako reprezentácie vytvorené

štatistickým predspracovańım textu. Ich výhodou je, že môžu byt’ modelované iba pomocou

neurónových siet́ı, čo je biologicky prijatel’neǰsie.

V kapitole 6 sme neskúmali jazyk iba ako samostatnú entitu ale študovali sme ho

v kontexte vizuálnej percepcie. Oṕısali sme vplyv vizuálnej scény na spracovávanie

prirodzeného jazyka a modelovali sme upriamovanie pozornosti na objekty vizuálneho

sveta. Úlohou rekurentných neurónových siet́ı bolo spoznat’ na opisovanú udalost’ v

rámci vizuálnej scény a poskytnút’ jej reprezentáciu na výstupe (Švantner a spol., 2011b).

Jednotlivé modely sme trénovali na vstupných dátach s vizuálnymi scénami, ktoré

obsahovali dve alebo tri súčasné udalosti. Udalosti boli zakódované pomocou auto-

asociačnej siete a ich kódy boli sč́ıtané po zložkách, aby vytvorili udalostnú čast’

reprezentácie scény. Všetky objekty scény2 boli upravené pomocou samoorganizujúcej

sa siete, ktorá mala za úlohu vytvorit’ podobné reprezentácie pre objekty s rovnakými

sémantickými vlastnost’ami (obr. 6.2). Výsledné reprezentácie boli následne sč́ıtané po

zložkách a vytvorili objektovú čast’ reprezentácie scény. Jazykový vstup opisujúci ciel’ovú

udalost’ bol predstavený postupne v podobe lokalisticky reprezentovaných slov. Všetky

siete boli na konci opisu schopné vybrat’ správnu udalost’ a určit’ všetky objekty, ktoré

2Poč́ıtajúc aj distraktory, ktoré slúžili na skomplikovanie scény.
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sa v nej podiel’ali. Naša implementácia, na rozdiel od Mayberry a spol. (CiaNet; 2009),

umožňuje modelovat’ pozornost’ aj v zložiteǰśıch vizuálnych scénach, ktoré pozostávajú z

viacerých súčasných udalost́ı.

V d’aľsom výskume sme z časti vstupných dát odstránili vizuálne vstupy. Motiváciou

tohto kroku bola snaha o modelovanie opisu aktuálne nepŕıtomnej scény. Úspešnost’

modelov sa zvýšila pri koncoch viet, čo bolo spôsobené posilneńım závislost́ı medzi

jazykovým opisom jednotlivých scén a ich vizuálnou reprezentáciou počas trénovania.

Vynechanie vizuálnych vstupov zo všetkých scén však spôsobilo zńıženie úspešnosti

všetkých modelov, lebo dochádzalo k pŕılǐsnému naviazaniu výstupných reprezentácíı na

opis. Opätovné predstavenie vizuálnych vstupov v testovacej množine zvýšilo chybovost’

modelov. Siete boli schopné do určitej miery predikovat’ budúce akcie a objekty v rámci

aktuálne opisovaných udalost́ı. Táto schopnost’ zefekt́ıvňuje spracovanie jazyka a ukazuje,

že rekurentné neurónové siete sú schopné odfiltrovat’ nepodstatné objekty z vizuálnej scény,

a preto sú vhodné na modelovanie pozornostného mechanizmu.

Siete s echo stavmi nedokázali úspešne modelovat’ všetky vyššie spomı́nané

podúlohy (Švantner, 2011). Zńıženú úspešnost’ zaznamenali menovite pri čiastočne

pŕıtomnom vizuálnom vstupe a pri predikcii. Siete s echo stavmi sa totiž nie sú schopné

vysporiadat’ so zmenou časti vstupov, dokonca ani po správnom preškálovańı ich vstupných

reprezentácíı.

Okrem štandardných modelov (SRN, ESN) sme pre túto úlohu vyvinuli siet’ A-SRN

(obr. 2.2), ktorá na modelovanie pozornostného mechanizmu použ́ıva pŕıdavné rekurentné

spojenie, priamo ovplyvňujúce vstupy siete (Švantner a spol., 2011b). A-SRN siet’

dosahovala podobnú úspešnost’ ako SRN vo všetkých spomı́naných úlohách a ukázala

takmer bezchybné výsledky pri podúlohe s čiastočne pŕıtomnými vizuálnymi vstupmi. Jej

rozš́ırenie, model A-SRNbck (Švantner a spol., 2011a), ktorého architektúru môžeme vidiet’

na obr. 2.3, použ́ıva jednu skrytú vrstvu navyše, ktorá predstavuje explicitný vnútorný

pozornostný mechanizmus. Zložiteǰsia architektúra umožňuje modelu A-SRNbck dosahovat’

lepšie výsledky takmer vo všetkých podúlohách. Siete A-SRN detailneǰsie charakterizujú

pozornostný mechanizmus a modelujú všetky jeho požadované vlastnosti.
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Švantner, J. (2011). Modelovanie vizuálnej pozornosti riadenej jazykom pomocou

neurónových siet́ı s echo stavmi. Kogńıcia a Umelý Život, XI, 273–278.
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Tiňo, P., Farkaš, I., & van Mourik, J. (2006). Dynamics and topographic organization in

recursive self-organizing map. Neural Computation, 18, 2529–2567.

Tong, M. H., Bickett, A. D., Christiansen, E. M., & Cottrell, G. W. (2007). Learning

grammatical structure with echo state networks. Neural Networks, 20(3), 424–432.
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