
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Learning neural proprioceptive-tactile arm
representations in a humanoid robot

Diploma thesis

Jana Harvanová 2021

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Learning neural proprioceptive-tactile arm
representations in a humanoid robot

Diploma thesis

Study program: Cognitive Science

Field of study: 2508 Informatics

Department: Department of Applied Informatics

Supervisor: prof. Ing. Igor Farkaš, Dr.

Bratislava, 2021

Jana Harvanová

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Jana Harvanová
Study programme: Cognitive Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Learning neural proprioceptive-tactile arm representations in a humanoid robot

Annotation: People are able to reach so-called somatosensory goals specified by
proprioceptive (joint angles) and tactile information, without reliance on
vision. Self-touch represents an important developmental process, allowing
autonomous construction of a complex relationship between these two
modalities, as parts of the body schema.

Aim: Buiding on the existing work (Pecen, 2019), improve and test a neural
network model that learns to associate proprioceptive representations and tactile
representations in a simulated iCub robot. Generate a larger set of inputs from
robotic simulator where the robot explores its own body by touching itself.
Analyze the model behavior.

Literature: Hoffmann M. & Bednárová N. (2016). The encoding of proprioceptive inputs
in the brain: knowns and unknowns from a robotic perspective. In Kognice a
umělý život XVI, pp. 55-66.
Hoffmann, M.; Straka, Z.; Farkaš, I.; Vavrečka, M. & Metta, G. (2018). Robotic
homunculus: Learning of artificial skin representation in a humanoid robot
motivated by primary somatosensory cortex. IEEE Transactions on Cognitive
and Developmental Systems 10 (2), 163-176
Pecen M. (2019). Akvizícia proprioceptívno-dotykových reprezentácií tela u
humanoidného robota. Diplomová práca, FMFI UK v Bratislave.

Supervisor: prof. Ing. Igor Farkaš, Dr.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 06.01.2020

Approved: 06.02.2020 prof. Ing. Igor Farkaš, Dr.
Guarantor of Study Programme

Student Supervisor

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Jana Harvanová
Študijný program: kognitívna veda (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Learning neural proprioceptive-tactile arm representations in a humanoid robot
Učenie neurálnych proprioceptívno-dotykových reprezentácií rúk
u humanoidného robota

Anotácia: Ľudia sú schopní dosahovať tzv. somatosenzorické ciele určené
proprioceptívnymi (uhly kĺbov) a hmatovými informáciami bez toho, aby sa
spoliehali na videnie. Dotyk samého seba predstavuje dôležitý vývinový proces,
ktorý umožňuje autonómne budovanie komplexného vzťahu medzi týmito
dvoma modalitami ako súčasti schémy tela.

Cieľ: Vychádzajúc z práce Pecen (2019), vylepšite a otestujte model neurónovej siete,
ktorý sa učí spájať proprioceptívne a hmatové reprezentácie v simulovanom
robotovi iCub. Vygenerujte väčšie množstvo trénovacích dát z robotického
simulátora, kde robot skúma svoje vlastné telo pomocou dotykov svojich rúk.
Analyzujte správanie modelu.

Literatúra: Hoffmann M. & Bednárová N. (2016). The encoding of proprioceptive inputs in
the brain: knowns and unknowns from a robotic perspective. In Kognice a umělý
život XVI, pp. 55-66.
Hoffmann, M.; Straka, Z.; Farkaš, I.; Vavrečka, M. & Metta, G. (2018). Robotic
homunculus: Learning of artificial skin representation in a humanoid robot
motivated by primary somatosensory cortex. IEEE Transactions on Cognitive
and Developmental Systems 10 (2), 163-176
Pecen M. (2019). Akvizícia proprioceptívno-dotykových reprezentácií tela
u humanoidného robota. Diplomová práca, FMFI UK v Bratislave.

Vedúci: prof. Ing. Igor Farkaš, Dr.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 06.01.2020

Dátum schválenia: 06.02.2020 prof. Ing. Igor Farkaš, Dr.
garant študijného programu

študent vedúci práce

Acknowledgements

I wish to express my sincere thanks to my supervisor prof. Ing. Igor Farkaš, Dr. for

his invaluable advice, guidance and patience while I was programming and writing this

thesis. I would also like to thank Mgr. Matěj Hoffmann, PhD. for his advice and help

with iCub simulator and insight into data collection, and Dr. Lúčny for his approval of

using some parts of his code. Finally, I am grateful for the emotional support I received

from my family and partner.

i

Abstract

People are able to reach so-called somatosensory goals specified by proprioceptive (joint

angles) and tactile information, without reliance on vision. Self-touch represents an

important developmental process, allowing autonomous construction of a complex re-

lationship between these two modalities, as parts of the body schema. Vision is not

required for this process, although it does get involved in later stages of development.

In this master thesis, we built upon an existing thesis by Martin Pecen in which he has

implemented a biologically-inspired neural network model for this purpose. We con-

centrate on one of the proposed models BAL. Before associating the two modalities,

both sets of input signals are topographically preprocessed using self-organizing maps.

The main contribution of this work was expanding the data set and executing different

experiments not done in the original work. The final data set consists of hundreds of

samples, fully auto-generated, using the simulator of iCub by babbling its arms resulting

in self-touch. The model achieved decent performance and generalization during both

training and testing on both touch and non-touch data.

Keywords: proprioception, iCub, robotics, neural networks, bidirectional associative

learning

ii

Abstrakt

Ľudia sú schopńı dosahovať tzv. somatosenzorické ciele určené propriocept́ıvnymi (uhly

ḱlbov) a hmatovými informáciami bez toho, aby sa spoliehali na videnie. Dotyk samého

seba predstavuje dôležitý vývinový proces, ktorý umožňuje autonómne budovanie kom-

plexného vzťahu medzi týmito dvoma modalitami ako súčasti schémy tela. Zrak nie je

nevyhnutná súčasť tohto procesu, hoci v nejskoršom štádiu vývinu je aplikovaný tiež. V

tejto diplomovej práci nadväzujeme na existujúcu diplomovú prácu od Martina Pecena,

v ktorej implementoval biologicky inšpirovanú komplexnú neurónovú sieť. V našej práci

sa sústred́ıme na jeden z navrhnutých modelov BAL. Pred asociovańım týchto dvoch

modaĺıt , obe vstupné množiny dát sú topograficky predspracované použit́ım samoorga-

nizujúcich sa máp.Hlavný ciěl práce je otestovať model na väčšom data sete a ďaľśıch ex-

perimentoch, ktoré neboli v pôvodnej práci vyskúšané. Finálny dataset obsahuje stovky

vzorov, je plne autogenerovaný pomocou navrhnutého algoritmu pomocou simulátora

iCub. Simulátor hýbal rukami iCuba ktoré sa navzájom dotýkali. Model dosiahol re-

lat́ıvne dobrú presnosť a schopnosť generalizácie, na dotykových aj nedotykových dátach.

Kľúčové slová: propriocepcia, iCub, robotika, neurónové siete, asociat́ıvne učenie

iii

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Biological motivation . 2

1.2 Proprioception . 3

1.2.1 Terminology . 3

1.2.2 Role of proprioception in motor skills acquisition 3

1.2.3 Somatosensory cortex . 4

1.3 Current state of the study field . 5

2 Technology and tools 8

2.1 YARP . 8

2.1.1 Usage . 9

2.2 Robot iCub . 9

2.2.1 Physical specification . 10

2.2.2 Proprioception of the robot . 10

2.2.3 Artificial skin, sensing touch . 11

2.3 iCub Simulator . 11

2.3.1 iCub SIM modules . 12

2.3.2 MotorGui . 13

2.3.3 iCubSkinGui . 13

3 Data acquisition 15

3.1 Simulator data pre-processing . 15

3.2 Data representation . 16

3.3 Data validation . 17

3.4 Babbling algorithm . 18

3.5 A simple Motor babbling algorithm . 19

3.6 Final data set and data collection . 21

3.7 YARP Data dumper . 21

4 Neural network models 24

4.1 Self-organizing maps . 24

4.2 MRF-SOM Model . 27

4.2.1 MRF-SOM training process . 29

4.3 Multilayer perceptron . 30

iv

Contents v

4.4 Bidirectional associative learning . 31

5 Proprioceptive–tactile association 33

5.1 Experiments . 33

5.2 Training and visualizing SOM models . 33

5.3 Training and visualizing MRF-SOM models 35

5.4 Data normalization . 35

5.5 Data representation . 37

5.6 BAL associators . 38

5.6.1 Setting different thresholds on prediction 39

5.6.2 Weight enhancements during training 40

5.6.3 Model training and final accuracy 40

5.7 Investigating hidden layers . 43

5.8 Predicting proprioceptive configurations from a touch vector 44

6 The complete model 46

6.1 Model scheme . 46

6.2 The filter . 46

6.3 Testing the overall model . 48

6.4 Winner neighbors counted as correct . 48

Conclusion 50

Bibliography 51

List of Figures

1.1 Somatosensory cortex location . 4

1.2 Somatosensory homunculus depicting separate body parts, topologically
organized. Exact areas of separate body representations are not univer-
sally fixed, there can be differences among individuals. As mentioned
above, note the differences in size in relation to frequency of usage. 5

1.3 The humanoid robot James (Jamone et al., 2006) 6

2.1 Well-known pose of waving iCub [left], iCub grasping a plush toy and
looking at it [right] . 10

2.2 Right arm of iCub, with skin mounted on the forearm, palm and fingertips.
In the red box, a detailed view of the forearm cover and the placement of
the sensors (Del Prete, 2013). 12

2.3 An example of how the user interface of MotorGui looks. For the sake of
clarity, only the first three joints are shown. 13

2.4 Simulated iCub standing, his left hand touching his right forearm. One
iCubSkinGui instance showing the skin emulation of left hand, the index
and middle finger sensors are active. 14

3.1 Example of one batch of values for proprioception (’left-pos’ and ’right-
pos’) and touch data (other entries, either 0.0 or 255.0 values shown).
. 17

3.2 An example of a running yarpmanager instance, with a loaded configu-
ration file of multiple yarpdatadumper modules. 22

4.1 An Overview of SOM neural network. Source: (Lan, 2018) 25

4.2 MRF masks differentiated by color, separate the input space. In this
example, there are 8x8 neurons at the top, 20x20 inputs (simulated taxels)
at the bottom. The color code and the span of weight vectors mark the
maximum receptive field size of every output neuron area. Taxels with
multiple colors mark the overlap of maximum receptive fields (Hoffmann
et al., 2018) . 29

5.1 Visualization a 6 x 5 neurons of SOM representing the left forearm po-
sitions the network learned. Topological organisation of the weights can
be observed. 34

vi

Contents vii

5.2 Visualisation of touch representations of MRF-SOM , describing left fore-
arm. Every rectangle correspond to a forearm consisting of 23 taxels in
the simulator. Every point is differentiated by color, the brighter the
color, the higher the intensity of touch. Yellow represents touch. The
blue-green represents a possible touch, and the blue/purple represents
non-touch. Topological properties can be observed. The MRF mask for
forearms separates the area into four quadrants. 36

5.3 The learned touch representations of a hand MRF-SOM, showing right
hand. Every image shows a palm with fingers, consisting of 9 taxels total
- 4 for palm, 5 for fingers. Every point is differentiated by color, the
brighter the color, the higher the intensity of touch. Yellow represents
touch. The blue-green represents a possible touch, and the blue/purple
represents non-touch. Topological properties can be observed here as well.
The MRF mask for hands separates map into two areas - the fingers and
palm . 37

5.4 The classification errors produced when predictions were classified as no
touches instead of touches, threshold=0.6. Showing BAL Associator for
right hand. 39

5.5 Graphs presenting the mean square error and classification error decreas-
ing during training. 41

5.6 The training progress of BAL associator for right hand. 42

5.7 The activations on the hidden layer of the left forearm. The heat map
shows 70 random data samples. The Y coordinate are the data samples,
while the X coordinate represent individual neurons, of complete 300,
which was the size of the hidden layer. 43

5.8 The activations of all 300 neurons on the hidden layer, for the left forearm,
sorted by the least to most varying neurons/activations. The top graph
represents the activations for the proprioceptive data, the bottom graph
for touch data. 44

5.9 Comparison of the original proprioceptive configuration (upper image)
with predicted configuration (lower image) using touch data. 45

6.1 Schema showing the complex model used for association of proprioceptive
and tactile inputs. 47

List of Tables

3.1 The ranges of degrees of freedom, for all 16 individual joints 16

3.2 The final ranges of all limb joints which were changed during the motor
babbling algorithm. 20

5.1 The quantization error values of Final SOM models. 35

5.2 Table displaying the average of all training/testing accuracies, over 10x
model training, with 350 neurons on the hidden layer, 800 epochs 42

6.1 The results of different test runs. The first data set contained only non-
touch data. The second was generated by the babbling, and dumped
through yarpdatadumper . 48

6.2 The results of different test runs. MRF-SOM neighbors of the winner
count as a correct prediction. 49

viii

Chapter 1

Introduction

It is increasingly more common for researchers and the automation industry to have

an interest in robotics, or more specifically, how to create robots which can function

reliably and independently when performing their respective tasks in our increasingly

technological world.

One of the crucial concepts some of these robots will need is the awareness of their

surroundings, so they will not collide with the environment, people, animals, other

robots etc. causing harm to themselves or others. An important part of this concept is

the robots’ own body representation, for them to have an understanding of where they

are oriented in space and knowing how different movements of their body affects this

position in the environment. This is useful for grasping and interacting with objects,

but also in knowing which movements would cause them to collide with their own body,

and if so, where.

In humans, the ability to perceive their body’s position in space (proprioception) is

gained in infancy. This stage of human life is characterized by the fact that eyesight

is not yet fully developed, and therefore the baby explores its body mostly without

using its eyes. According to research, the children at this stage perceive their body by

moving their limbs around, during which they sometime collide, and this stimuli is the

information needed for learning the body schema.

Understanding how humans have this knowledge represented in the brain and being able

to model it by using neural networks could be useful for both robotics, and for further

research into how the process develops in humans.

This diploma thesis consists of two main parts: the first part is an algorithm for ac-

quisition of proprioceptive data with their corresponding touch inputs from a humanoid

robot named iCub. The second part is a complex neural network model, which will

1

Contents 2

use the acquired data to learn the associations of which proprioceptive configurations

correspond to which (if any) touches occurring, and where. In this first chapter, we

will discuss the current state-of-the-art of the research field regarding proprioception,

body schema acquisition/representation using humanoid robotics. In Chapter 2, we will

introduce the technical aspects of the thesis and talk about iCub, YARP, and other tech-

nologies and approaches used. Chapter 3 will introduce the aspects of data acquisition,

multiple approaches to automating this process we’ve tried, what was used in the end,

and why. In Chapter 4, specific neural networks used as a part of the complex model

will be described. Chapter 5 contains the experimental results.

This chapter introduces how something quite complex as self-body representation is

thought to be organized in the brain, and diving into deeper definitions and understand-

ing of some terms which are crucial for this work.

1.1 Biological motivation

Research suggests that an implicit sense of self is developing from birth, long before chil-

dren begin to manifest explicit (conceptual) self-knowledge by the second year (Rochat

and Striano, 2000).

Most of the processes involved in self-perception regarding the body seem to occur in

infancy, before the child is even one year old. Some part of this time-frame, in the early

months, sight isn’t fully developed which means the learning of the body schema takes

place (in part) without visual perception (Kandel and Schwartz, 2000).

At that stage, the small child acquires this body representation by babbling - flailing

his or her feet and arms around, moving so that sometimes they collide with physical

objects in their environment, but more importantly, making contact with their own body

at different places. This is a sensory stimuli the child feels on their skin and, in a very

abstract manner, an association happens in the brain of what position of their body

causes which stimulus - if any.

The outcome of this representation is the ability to understand where one’s body is

positioned in space, and recognizing that by executing some movement, a touch on on

some specific body part happens (or not), even when closing our eyes.

Contents 3

1.2 Proprioception

In the acquisition of self-body schema, there is one crucial ability involved and that

is perception. People have the ability to perceive their surroundings and reacting to

incoming stimuli from the environment. These stimuli are processed through the recep-

tors of the respective sensory organ, and this signals travel all the way to the central

nervous system. In the nervous system, they are sent further and ultimately into the

brain, which produces neural responses to the stimuli.

1.2.1 Terminology

The term proprioception was passed down to us by Sherrington (Sherrington, 1907).

He stated, “In muscular receptivity we see the body itself acting as a stimulus to its

own receptors — the proprioceptors.” Traditionally, the term proprioceptor has been

restricted to receptors concerned with conscious sensations, and these include the senses

of limb position and movement. (Proske and Gandevia, 2012)

We could therefore say that proprioception is responsible for perceiving one’s body

position in space, as well as coordinating the movement of limbs and torso.

More so, even when we are not directly looking at our limbs, we are still able to reason-

ably predict where they are located, as well as whether they are static or moving.

1.2.2 Role of proprioception in motor skills acquisition

A more expansive question is in what role does proprioception play in the acquisition

and development of motor skills in children. There has to be a regular re-calibration of

the body schema, because the body of children undergoes a lot of changes in relatively

short periods of time.

Pioneering observations by Laszlo and Bairstow (Laszlo and Bairstow, 1980) have led

to the view that the ability of children to use proprioceptive feedback has matured by

the age of 7 years. Other reports suggest that there is ongoing learning of movement

control which continues through adolescence (Goble et al., 2005), and even to adulthood.

(Hearn M, 1989).

So, development of proprioceptively controlled movements continues beyond the period

required for acquisition of motor skills, thought to be complete by the age of 10 years

(Seefeldt and Haubenstricker, 1982) (Proske and Gandevia, 2012)

Contents 4

If we were to look on proprioception from the bio-physical perspective, proprioception

can be understood as the body’s ability to collect and process information by using

skin receptors, various movements and actions coming from the muscles and bones, and

transferring them to a part of the brain called the somatosensory cortex, which will be

more closely introduced in the next subchapter.

Sensory neurons carrying these nerve impulses from sensory stimuli (the skin, musles

etc.) toward the central nervous system and brain, are called afferent neurons. Afferent

neurons carry signals to the brain and spinal cord as sensory data. Then in the gray

matter, these signals are further processed, and an output which describes the current

state of the body is produced. (Proske and Gandevia, 2012)

1.2.3 Somatosensory cortex

An area of the brain that receives and processes sensory information from the entire

body is called the somatosensory cortex Penfield and Rasmussen (1950). This area of

the brain processes the received sensations of touch, pain, and vibration from the entire

body. It is divided into two parts:

1. Primary somatosensory area or cortex (S1)

2. Secondary somatosensory area or cortex (S2)

The reason for this division is that a distinct and separate spatial orientation of different

parts of the body is found in the two areas (Ronthal, 2004) , but most activations seem

to happen in the Primary somatosensory area or cortex part.

Its location is in the forebrain, which is present in the parietal lobe (Ronthal, 2004).

Fig. 1.1 Somatosensory cortex location

Since the somatosensory areas react to the stimuli and sensations of the whole body,

specific representations for different body parts is present.

Contents 5

What is interesting is that the proportion of the representation differs - the proportion

of the cortex representation for an individual body part depends not on its size, but on

its functionality or frequency of usage. In fact, the area occupied by a particular body

part is proportional to the number of sensory receptors present in it.

Fig. 1.2 Somatosensory homunculus depicting separate body parts, topologically or-
ganized. Exact areas of separate body representations are not universally fixed, there
can be differences among individuals. As mentioned above, note the differences in size

in relation to frequency of usage.

Another interesting finding is from a very recent research regarding the primary so-

matosensory cortex actively encoding information also with imagined movement only,

with absence of sensory information.

Specifically, the research shows that single units in human primary somatosensory cor-

tex encode imagined reaches in a cognitive motor task (but not other sensory–motor

variables such as movement plans or imagined arm position). (Jafari et al., 2020) with

quite good temporal and spatial precision of the single unit activations.

It seems to hint to the fact that the (imagined) arm movements and positions (proprio-

ception) as well as (imagined) reaching towards objects have a common representation.

Additionally, in some cases also an imagined stimuli can activate neurons in these areas,

but for others, only physical stimuli are reactive.

1.3 Current state of the study field

This subsection will briefly summarize the state of the research field concerning hu-

manoid robots, proprioception or self-body representation so far.

Contents 6

Fig. 1.3 The humanoid robot James (Jamone et al., 2006)

One research conducted in University of Genoa, Italy, has designed a humanoid robot

called James, which they equipped with moving eyes and neck, an arm and a highly

anthropomorphic hand. The design of this robot has been guided by the concept of

embodiment, material compliance and embodied interaction (Jamone et al., 2006).

The main point of the research was to design experiments to see the relationship of tactile

sensing and proprioception in getting information about grasped objects of similar shape,

but different softness and elasticity, and correctly classifying them.

For this, two Self Organizing Maps (SOM) were used to cluster and visualize data

- one had been trained only with proprioceptive information, the other one on both

tactile and proprioceptive information. The results have shown that small changes in

proprioception of the hand with similar objects wasn’t enough to consistently predict the

correct object. With both proprioceprive and tactile information, James was notably

more accurate with classifying the objects he grasped.

Another study done by Hoffman et. al, they presented work studying how a humanoid

robot iCub with sensitive skin could learn a topographic representation of its body

surface from experience, by receiving tactile stimulations all over its artificial skin (Hoff-

mann et al., 2018).

In this case, it had been also SOMs used for the topological representation of the robot’s

skin, however, instead of the classic SOM algorithm, they proposed a modification of it

(MRF-SOM) that allows to prespecify certain, partially overlapping, receptive fields of

the output layer neurons. This modification was biologically inspired, as we have already

mentioned above when we introduced the somatosensory cortex a.k.a somatosensory ho-

munculus.

Contents 7

Another study, which was also done using iCub, proposed a biologically inspired ap-

proach to model a concept of peripersonal space - region of space immediately surround-

ing our bodies - for robots. Guided by the present understanding of the neurophysiology

of the fronto-parietal system, they developed a computational model inspired by the re-

ceptive fields of polymodal neurons identified in brain areas such as F4 or VIP (Roncone

et al., 2016)

The conducted experiments had shown that iCub was able to learn its peripersonal

space, in real-time, by a relatively easy way in simple interaction with the robot. It also

lead to the generations of behaviours, such as avoiding an unknown object approaching

the robot, or reaching for an object presented to the robot in the peripersonal space.

Chapter 2

Technology and tools

This chapter will introduce the tools and technologies used. Before going into further

details of YARP and iCub which will make up most of this chapter, the only program-

ming language used for implementation of the whole model and all associated scripts

was Python 3.7, with everything running on a Windows 10 x64 machine.

2.1 YARP

YARP (Yet Another Robotic Platform) supports building a robot control system as a

collection of programs which communicate in a peer-to-peer way, using ports.1 It is very

flexible in that it supports multiple connection types such as TCP, UDP, Muliticast/Lo-

cal and more.

Originally, YARP was written for C++, but using other technologies such as SWIG.

makes it possible to use it also from other, higher-level languages such as Python, C#,

Ruby and others.

SWIG is an interface compiler that connects programs written in C and C++ with

scripting languages. It works by taking the declarations found in C/C++ header files

and using them to generate the wrapper code that scripting languages need to access

the underlying C/C++ code. Since our experience with C++ is limited, we had tried

this approach with SWIG to create YARP bindings for python. Unfortunately it turned

out that compiling the bindings was quite problematic on windows, but in the end, with

the permission from Dr. Andrej Lúčny, we used YARP bindings which had already been

compiled and used by him in his course Introduction to robotics.

1https://www.yarp.it/latest/

8

https://www.yarp.it/latest/

Contents 9

2.1.1 Usage

As already mentioned, the communication between YARP processes is implemented

through ports. It is possible to open ports, connects ports to other ports, and create

a data stream which can be read for another port. The messages are sent through the

network adapter, which means that it is not required for all processes to run on the same

computer.

Some of the most useful commands possible to write in the command line are:

• yarpserver - starts a yarp server instance.

• yarp read /port name - opens a port for reading.

• yarp write /port name - creates a port where data will be streamed (and acces-

sible from other ports for reading this data)

• yarp connect /port1 /port2 - creates a connection between two ports. This

makes it possible for them to exchange data.

• yarp disconnect /port that is writing /port that is reading - removes the

connection between the ports specified

The same functionality is accessible through the library method calls, so for example in

our case, YARP functionality was accessible from Python directly.

2.2 Robot iCub

iCub is a humanoid robot widely used for research purposes with regards to human

cognition and artificial intelligence. The whole project is open-source, all hardware,

software and documentation related is released under the GPL license.

This robot is approximately 1 meter tall and was designed by the RobotCub Consor-

tium, with collaboration of several universities in Europe and ultimately constructed by

the Italian Institute of Technology icub-humanoid-robot. The naming of iCub is part

acronym, where ’cub’ stands for Cognitive Universal Body.

The motivation behind the creation of a robot so closely resembling a human is the

Embodied cognition hypothesis.

Embodied cognition holds that cognitive processes are deeply rooted in the body’s in-

teractions with the physical world. embodied-cognition. A baby learns a lot of cognitive

Contents 10

Fig. 2.1 Well-known pose of waving iCub [left],
iCub grasping a plush toy and looking at it [right]

abilities by directly interacting with the environment it exists in by using its senses and

limbs. Consequently, its internal model of the world is in no small part determined by

the form of the human body - since, should the body be different, then the experienced

sensations through the hypothetical other-body would be different as well.

This robot was designed with this goal in mind - to try to accurately re-create the

perceptual system of a small child, so that researchers could create scenarios which

simulate cognitive learning similar to what a small child would experience. Of course, it

is also possible to use iCub for various other experiments in robotics, AI, and cognitive

science where a humanoid robot is appropriate.

2.2.1 Physical specification

iCub is approximately 1 meter tall, weights 25 kilograms and has 53 motors that enable

the movement of the head, individual parts of hands, forearms, legs, and torso. It is

equipped with sensors which make it possible for iCub to hear and see (Metta et al.,

2010) as well as artificial skin - pressure sensors that can detect touching. It is capable of

crawling, grasping objects, interacting with people. Additionally, it has a semi-limited

ability to display different facial expressions thanks to eyebrows and mouth, simulated

as red LED pixels and lines on its head.

2.2.2 Proprioception of the robot

iCub’s proprioceptive system consists of 53 motors, which control individual limb joints.

Every joint can be rotated , some in one direction, others at most in three directions.

Contents 11

Each of these motors moving the joints is restricted in a way which would resemble real,

human joint movements as much as possible.

The term used in robotics in general for describing this movement range of one joint is

called the degree of freedom, expressed in degrees and angles. For iCub, the range of all

degrees of freedom is between 44° and 270°. Also, not every joint has the same range of

movement, as is seen in real-life people. Additionally, individual degrees of freedom are

not symmetrical around the value 0 (Metta et al., 2010), and every degree of freedom

has a default, non-zero value set.

The internal proprioceptive system is fully observable by the robot at any point in time,

meaning that at any time it knows all degrees of freedom of all the joints in its body.

This can be understood as a very simplified analogy of proprioceptive information in the

robot’s ’brain’. For living beings, these information consist of the sensations perceived

by their skin, muscles and bone movements, rotations and positions. From the robot’s

perspective, it is simply the numeric values of angles for each motor joint at a given

time.

Further in the thesis, we will refer to limb positions consisting of n joints expressed by

each joint’s current degree, as limb configurations.

2.2.3 Artificial skin, sensing touch

As briefly mentioned above, iCub’s hands, forearms and the torso are covered by artificial

skin. Physically, this skin is composed of multiple triangular chips, with each containing

10 individual touch sensors - taxels, which are capable of detecting pressure.

In practice, multiple of these triangular chips are connected together and form a surface

of a body part, as we can see illustrated below.

2.3 iCub Simulator

Beside the physical iCub robot, an open source simulator iCub SIM was developed.

The simulator tries to replicate the behaviours and properties of the physical robot as

accurately as possible.

It is not trivial to obtain a physical iCub model, since they are quite expensive. Fur-

thermore, it definitely is more practical to do research and initial testing of a model

Contents 12

Fig. 2.2 Right arm of iCub, with skin mounted on the forearm, palm and fingertips.
In the red box, a detailed view of the forearm cover and the placement of the sensors

(Del Prete, 2013).

or solution in a simulator in the early stages of a project, since it is a safe environ-

ment where mistakes do not pose unforeseen, irreversible damage to the hardware, for

example.

2.3.1 iCub SIM modules

In order to have a working iCub SIM environment, we first need to install YARP and

create a yarpserver instance. After the server is running, we can run the command

iCub SIM in the command line, which will recognize the yarpserver running, sets up all

the required ports, and initalizes a 3D graphical interface with the simulated iCub.

By default, after installing iCub SIM, the collision and skin emulation are turned off. In

order to enable them, we need to manually change the settings in one of the configuarion

files called iCub parts activation.ini (the concrete steps for this process are specified

on the official iCub wiki) before running the simulator instance.

If they would stay disabled, collision wouldn’t occur when changing the limb positions,

potentially causing the limbs to overlap with themselves, or other body parts. If the

skin emulation would stay turned off, we wouldn’t get any tactile information from the

ports.

Other than the main simulator instance, there are additional optional modules used for

visualisation or additional control of the robot, some of which we will briefly describe.

Contents 13

Fig. 2.3 An example of how the user interface of MotorGui looks. For the sake of
clarity, only the first three joints are shown.

2.3.2 MotorGui

MotorGui is a graphical application which can be run alongside the simulator. It auto-

matically detects which ports the simulator is using, and can be used to change individual

joint positions of individual limbs, head, or torso.

We have used this module mostly in the initial stages of development, when we de-

signed a simple, automated babbling algorithm for data acquisition. More details will

be mentioned later in chapter 3.

2.3.3 iCubSkinGui

iCubSkinGui is a module for skin visualisation. When executed, it shows a ’map’ of a

specified body part, and visualizes a real-time activation of its tactile sensors. Note that

one iCubSkinGui instance can visualize a single body part only, so for multiple different

body parts, multiple instances need to be started.

Also, with contrast to MotorGui, the ports need to be connected manually. What

that means is that after running the base iCub SIM instance, and the skin emulation is

enabled, you connect the iCub’s skin port to a virtual port like

yarp connect /icubSim/skin/left hand comp /skinGui/left hand:i

which tells YARP to stream the data from the port /icubSim/skin/left hand comp to

the /skinGui port - which is the one read by the iCubSkinGui module.

And then, the iCubSkinGui instance can be run like:

iCubSkinGui --from [path to skin config file name.ini]

Contents 14

Fig. 2.4 Simulated iCub standing, his left hand touching his right forearm. One
iCubSkinGui instance showing the skin emulation of left hand, the index and middle

finger sensors are active.

Then, the instance shows the state of skin emulation for the specified body part (in this

example, the left hand.)

Chapter 3

Data acquisition

In this chapter, we will describe our approaches to data generation and data collection on

which our neural network model was later trained, and the problems we had encountered

on each of them. The idea was to have an automatized program which the user could

run for a parametrized amount of time, during which the iCub’s arms would move to

different positions, while simultaneously tracking the state of iCub’s skin - essentially

collecting pairs of proprioceptive data to touch data, at a given point in time.

As we’ve mentioned in the previous chapter, despite the fact that YARP was originally

developed in C++, we have acquired compiled Python bindings for YARP from professor

Lúčny. This enabled us to access YARP modules directly from Python. We’ve also used

a pre-coded interface of iCubLimb written in Python, also by prof. Lúčny. The interface,

after creating an instance of it in code, can represent one whole arm. It sets up all the

YARP connections to correct ports, had a Get method for getting the current joint

positions, and a Set method for changing the joint position to specified values.

We have enhanced the iCubLimb interface with implemented methods for babbling, so

from the outside main script, we could babble either one or the second arm by a simple

method call.

3.1 Simulator data pre-processing

When collecting the data from iCub, we noticed that the number of all taxels and

number of all values for one touch data sample is different. The underlying reason for

this discrepancy was that iCub is sending in total 192 values for every group of triangular

chips, even though some groups were incomplete and consisted of less than 16 triangles.

15

Contents 16

Hand min max Forearm min max

fingers - out/in spread 0 60 shoulder - vertical -90 10
thumb - towards palm 10 90 shoulder - horizontal 0 160
thumb - towards fingers 0 90 shoulder - rotating -35 80
thumb - cur/uncurl 0 180 elbow 15 105
index finger - lower 0 90 elbow - rotating -90 90
index finger - upper 0 180 wrist - horizontal -90 0
middle finger - lower 0 90 wrist - vertical -20 40
middle finger - upper 0 180
ring and pinkie fingers 0 270

Tab. 3.1 The ranges of degrees of freedom, for all 16 individual joints

One triangular chip consists of 12 values, in which 2 are always 0 (specifically, the values

on the fourth and seventh position serve as potential memory and is reserved for future,

set to 0 by default).

Additionally, we noticed that for forearms on ports /icub/skin/left forearm comp and

/icub/skin/right forearm comp, iCub was sending 384 values instead of 276. There

were multiple zero-values reserved by the system for other operations, and their valeus

never changed from 0. The specific ranges of the always-zero values in the touch vector

were 193–204, 217–252, 265–288, 325–336, and 361–384.

After deleting these obsolete values, we had the complete touch information

of 108 + 276 = 384 values, for one limb. Important thing to note is the simulator works

in a way that, if at least one taxel was signaled as a touch, then the whole triangular chip

is considered as a touch and the taxel’s remaining values are signaled as well - therefore,

we could reduce the 384-length vector to just 32 values, without any information loss.

For proprioception, one limb has 16 joints in total - 5 are for manipulation of shoulder and

elbow, the remaining 11 for hand, wrist and fingers. Total proprioception information

consisted of two vectors of length 16, and later, since individual joints have different

degrees of freedom (as can be seen in Table 3.1), we have normalized the values to fall

into [0, 1] as:

vali =
vali −mini
maxi −mini

3.2 Data representation

Irrespective of which babbling algorithm was used for data generation, the data repre-

sentation format was the same.

Contents 17

Fig. 3.1 Example of one batch of values for proprioception (’left-pos’ and ’right-pos’)
and touch data (other entries, either 0.0 or 255.0 values shown).

The first data format was a simple JSON file , with raw data values of both limb joints

and touch values from individual ports. The file format was introduced by Martin Pecen

in his diploma thesis for data collection, we’ve only re-created the format and script in

python (originally was in C++).

The entries for ’left-pos’ and ’right’pos’ are proprioception data. Only first 4 out of all

16 values are displayed, for illustration purposes. Other entries are touch data, in this

case either zero values, or value 255 (signalling touch).

After each data collection session, this file was created.

From this file, another JSON file was created. This file had the data normalized, and

the touch vectors reduced, as described in the previous section. Additionally, all touch

vectors were changed to show either a zero (on place where no touch was detected) or 1

(if touch occured), instead of the original scale of [0, 255].

The reason for the larger [0,255] range coming from the simulator is that there is an

existing skin pressure functionality - which was not needed for our purposes and was

turned off, but the simulator still represents a touch as a 255 value.

3.3 Data validation

For data validation, we’ve created a script that was able to ’replay’ the process of data

collection. It needed to have iCub SIM running, and then simply loaded the first JSON

file with collected simulator raw data, read the data entry batches, and set the propri-

oceptive values form the batch to iCub SIM limb joints. This was useful for looking at

the data as well as sanity checks of the collected configurations - for instance, as we were

setting the proprioceptive configurations to the simulator’s joints, we could compare the

recorded touch data from the batch with the values read from the simulator’s touch

ports and check if they match. Other than that, we could check for touch / no touch

Contents 18

configurations visually, potentially detect a mistake during data collection (i.e propri-

oceptive configurations would result in iCub having its limbs far apart, but the touch

vectors would signal a touch occuring, which would mean the batch was incorrect.)

3.4 Babbling algorithm

The first approach we tried was a replication of an open source babbling module im-

plemented in C++. The module was developed to issue pseudo random (sinusoids)

commands to the iCub, which could be done either with several joints, or an individual,

specified joint.

The original source code can be found on robotology’ github1.

The main idea behind the algorithm was to generate a new value for joint i by an

equation:

xi = starti + asin(ft2π)

where a is amplitude, f is frequency, and t stands for time.

smalli is the starting value of joint i. These initial values were specified during module

initialization, before calling the babbling method.

The amplitude and frequency were parametrized by the user. The defaults were 5 for

amplitude, 0.2 for frequency.

The final, new joint value has been calculated as:

valuei = 10 ∗ (xi − encoderi)

where encoderi was the i th joint before the change value xi was computed.

Using this algorithm, we could generate different limb configurations.

Depending on the selected start positions, and the values set to a and f, the degree of one

babbling change were more or less pronounced. The main limitation in this approach

was that, since the underlying joint changes were always calculated based on the sinusoid

and other parameters in time, the babbling was not truly random, the movements looked

artificial and were repeated frequently.

Additionally, since we truly wanted to create an approach that would be more biologically

plausible, we thought that generating joint changes based on mathematical functions

didn’t serve this goal very well.

1https://robotology.github.io/icub-hri/doxygen/doc/html/babbling_8cpp_source.html

https://robotology.github.io/icub-hri/doxygen/doc/html/babbling_8cpp_source.html
https://robotology.github.io/icub-hri/doxygen/doc/html/babbling_8cpp_source.html

Contents 19

What could potentially increase the variation of limb configuration would be to change

the ’initial’ limb positions, originally set only at the beginning of babbling, also during

the babbling process.

3.5 A simple Motor babbling algorithm

This approach was tried after the previous implementation above. Since the original

babbling was using a mathematical function, we wanted to create a more biologically

motivated approach, which would be more randomized.

For this, we have designed a simple method of babbling. We defined an list of integers

k describing the potential values by each joint could be moved.

k = [5, 8, 10, 12, 15, 20, 30]

For every joint, we had decided on a minimum and maximum values possible to generate.

This was decided by empirical observations during observations of the babbling.

One arm was fixated during the babbling phase, as the second arm was babbled. The

babbling took a parametrized amount of time, during which:

• For every joint, a random value n from k was taken as a reference by which the

joint should change.

• For every joint, after determining the value of n, direction d was chosen randomly,

d ∈ {1,−1}.

• New joint value jt+1 was calculated as

jt+1 = jt + (kd)

where jt+1 was also verified that it wouldn’t fall out of bounds of specified minimum

and maximum values of joint j. If it did, then the minimum/maximum was set

instead.

We didn’t do any specific checks for ensuring that the babbled limb made contact or not -

after running the babbling for some time, both non-touch and touch limb configurations

emerged.

As can be observed in table 3.2, it was mostly the shoulder/elbow joints which were

babbled, with slight movement of wrists and fingers. The main reason was to keep it

Contents 20

Joint description min max

Shoulder - vertical -35 0
Shoulder - horizontal 0 60
Shoulder - rotating 85 105
Elbow - rotating -10 30
Wrist - vertical -30 0
Wrist - horizontal -15 15
Fingers - spreading in/out 40 58

Tab. 3.2 The final ranges of all limb joints which were changed during the motor
babbling algorithm.

simple, as moving the fingers too much before could sometimes lead to the limbs getting

stuck. Then, further code-behind setting of the joint positions from the babbling script

would sometimes try to move the arms where they couldn’t physically be moved - because

of enabled collision - and, in worst case scenario, caused iCub SIM to crash.

We identified several limitations of the method. One problem was that, for ensuring

that a reasonable amount of touch configurations would occur in some time frame, the

space which is covered by the limited joint ranges is only a subset of all possible DoF

the simulator is capable of achieving. This would limit the limb movements to (mostly)

in front of iCub, with some area on both sides of his body.

There is no exploration of arms moving i.e above the head, reaching towards the back,

or down. It could be argued that the area in front of iCub is also the area a child is

probably exploring the most, since in infancy, the baby is mostly lying down on its back.

Nevertheless, it needs to be mentioned and acknowledged.

With this fact is another associated issue arises, which is that after some time (2 hours

of babbling), some limb configurations started to repeat, which lead to only around

75-80% of the data being unique. This was somewhat expected, as the ranges of some

joint movements aren’t as large. Originally, we’ve had the joint ranges larger, but that

caused a significant drop in touch configurations. Nevertheless, it wasn’t that big of an

issue, since overall on the longer babbling sessions, the generated amount of different

touch configurations amounted to 200-400. Non-touch data count was even higher.

Lastly, having one arm fixated could also be considered a limitation. We could move

both arms at the same time, though again, it would be harder to get as many touch

configurations. This is more of a drawback addressed towards biological plausibility - in

itself, the configurations are not incorrect, since symmetrically, we would get the same

limb configurations if the arms were reversed.

Because of this, we’ve also generated the symmetrical complements to the collected data,

after the data was collected.

Contents 21

3.6 Final data set and data collection

In the end, we decided to use the second approach of data generation, since it had more

varied amount of limb configurations.

For data collection, we’ve done so as a part of the data generation algorithm. After

every limb joint change, the program waited for a short time (2seconds) for the changes

to truly take place in iCub SIM, all motors finish moving and the simulator’s joints have

stabilized. Then, the touch ports were queried and their values stored in memory during

the program was running. When babbling finished, all the collected proprioceptive/touch

configurations were dumped into a JSON file described at the start of this chapter.

However, later when training the model, we couldn’t achieve a reasonable training or

testing accuracy. Other metrics for describing the trained model were also either insuf-

ficient, or oscillating during the whole time the training took place.

Later, when validating the collected data and visualizing them in iCub SIM, we have

found out that some configurations were desynchronized - meaning that some proprio-

ceptive limb configurations were assigned an incorrect touch data, and thus were incor-

rectly classified as a touch or not. This was evident when we restricted the visualization

to display only limb configurations in which touch has occurred, but the visualisation

had shown the limbs not touching at all.

We’ve tried multiple approaches to eliminate this problem such as synchronizing threads

during the babbling process, waiting for longer between every joints babbling, to no end.

In the end, we concluded that it was probably an issue with how YARP was accessed and

operated through the Python bindings in our case, and as the probable delays causing

the desynchronization were internal, we couldn’t address them. The solution was using

a separate module for data collection called the YARP data dumper.

3.7 YARP Data dumper

YARP data dumper acquires and stores data from a YARP port. When launched, the

service monitors the presence of incoming data and stores it within a folder called with

the same name as the service port.

Another module called yarpmanager can be used to manage individual yarpdatadumper

services. It exists both as a console version and a version with user interface.

Contents 22

Fig. 3.2 An example of a running yarpmanager instance, with a loaded configuration
file of multiple yarpdatadumper modules.

For our purposes, we have used the version with a user interface. There is a possibility

to use a config file, which specifies individual modules - yarpdatadumper instances -

each specifying a port from which the data should be read, and the location where the

data should be dumped.

There was only one problem which needed to solve, and that was the data synchroniza-

tion out of all 6 yarpdatadumper services - 2 for proprioceptive left/right arm, and 4

for touch info - forearms and hands, of both arms.

It is possible to select multiple rows in YARP manager and start multiple services at the

same time. Despite that, there were small offsets in the timestamps across the dumped

files, since the sampling of proprioceptive data is done every 10-30ms, and for touch/skin

data the sampling is 30-70ms.

In order to have complete data batches - have all 6 values under one timestamp - we

made an optimisation parser for the dumped files. We will briefly describe the process

of parsing one file, the process was the same for the remaining five.

• For every line in the dumped file, round the timestamp to three decimal places

(the timestamps were in UNIX format).

• Then, based on this timestamp, there were two options: either this same timestamp

was already encountered (possible because of the rounding) , or it was new.

Contents 23

1. If it was new, it was remembered, and all the dumped data were assigned to

this timestamp

2. If the timestamp already existed, then the values were averaged with the

remembered values

After finishing process for all 6 dumped files, we ordered all the rows of data by the

rounded timestamps.

For every such row, if it had all 6 values, we remembered it as a full data batch. If it

had at least 3 values, then we looked one row up and down to check if the missing parts

could be filled from there. If yes, then the batch was remembered, if not, the row was

ignored and the program continued to the next row.

This process worked quite well, and after validating the data, there were no longer any

error configurations produced.

Chapter 4

Neural network models

Here we will introduce the neural network models used in our approach to learning as-

sociations between the proprioceptive limb configurations and correct touch predictions.

First, we will shortly summarize the well-know artificial neural network trained using

unsupervised learning, self-organized map (SOM) (Kohonen, 1982).

Aside from SOM, we will also talk about a modification of it proposed in (Hoffmann

et al., 2018) which, compared to traditional SOM, uses maximum receptive fields (MRF-

SOM) for clustering touch information, and we will be explain how this approach works.

From supervised learning, we will say a few sentences about multi-layer perceptron,

and lastly, the model of Bidirectional Associative Learning (BAL) (Farkas and Rebrová,

2013).

4.1 Self-organizing maps

Self-organizing maps (SOMs) are widely used and popular artificial neural network mod-

els. They are readily simple and highly visual, effective for clustering and reducing the

dimensions of the input data for the purpose of data analysis. They are used to repre-

sent high-dimensional input data in a form that has lower amount of dimensions - for

example, a projection to a 2-dimensional grid of neurons.

SOMs differ from other artificial neural networks as they apply competitive learning as

opposed to error-correction learning (such as backpropagation with gradient descent),

and in the sense that they use a neighborhood function to preserve the topological

properties of the input space (Wang and Zhang, 2020). For this purpose, they are

positioned in a grid-like, usually hexagonal or rectangular shape.

24

Contents 25

SOM

Fig. 4.1 An Overview of SOM neural network. Source: (Lan, 2018)

When positioned this way, they represent the topological space of the neural network

where the distance between two neurons is the Euclidean distance between the input-

to-hidden layer weights of each neuron.

As can be seen in Fig. 4.1, the network has only one layer of neurons, with the input

layer fully connected to the ’competitive’ layer, so every neuron has information about

the value of all input data.

The training of the neural network is the competing among the neurons regarding which

one of them will be adapted to the training vector the most. More specifically, which

neuron will be the ’winner’, and thus its position in the grid will be shifted to represent

the training vector the most, and by how much much other neighboring neurons of this

winner shift as well. The degree of how much the neighboring neurons shift is determined

by the neighborhood function of the network.

Individual steps of training the SOM (Kohonen, 1982)) are following:

1. The initialization of neuron weights:

The weights of neurons are which represent their position in the grid, their change

being the individual neuron’s shifting position depending on the training data. At

the start of the training process, the weights are initialized to small values.

Contents 26

If we do know the training data, then positions from the training set can be chosen

randomly. The learning rate α should be set to α < 1, and a number representing

the epochs for training emax is chosen.

2. The selection of vector from the training set:

In each epoch, it is important to iterate over all the vectors that make up the

training set. Therefore, in every epoch, every training vector from the training set

should be used exactly once. The selection of which one should be used is chosen

randomly.

3. The selection of the winner neuron for the training vector:

The winner neuron for the specific training vector is the one which will have the

shortest distance to the training vector. As the metric for determining the distance,

we use Euclidean distance:

i∗ = argmini||x− wi|| (4.1)

where x is is the training vector, and wi is the position of the i -th neuron in the

space of the competing layer.

4. The adaptation of weights in the competing layer:

The winner neuron is shifted towards the training vector, and its neighbors are

shifted with him. The farther away the neighboring neuron is, the smaller the shift

of its position.

wi(t+ 1) = wi(t) + α(t) · h(i∗, i) · [x(t)− wi(t)] (4.2)

where wi(t) is the weight (position) of the i -th neuron, h(i*,i) is the function

calculating the distance between the neighbor and the winner neuron. This is

calculated as a discrete:

h(i∗, i) =

1 if i ∈ Ni∗ ,

0 otherwise.
(4.3)

or a continuous Gaussian neighborhood:

h(i∗, i) = exp(−d
2(i∗, i)

λ2(t)
) (4.4)

where d(i∗, i) is the distance of neurons i* and i in the grid.

The shifting of neuron weights is done every time after a winner neuron is evalu-

ated. Based on the equation above, the weights are recalculated for of all neurons

Contents 27

in a defined area of Ni∗. During the training process, the value of the learning rate

is continuously reduced, as well as the area surrounding the winner neuron which

is done by the parameter λ.

The training of the neural network can be though of as consisting of two phases.

The first phase is doing large shifts of neuron weights, it serves to ’map’ the whole

network to the training data.

In the second phase, the shifting is smaller, because the goal is to fit the neurons

to represent the data as accurately as possible.

The parameters of α and λ are determined as follows:

α(t) = αs(
αf

αs
)(

e−1
emax

) (4.5)

λ(t) = λs(
λf
λs

)(
e−1
emax

) (4.6)

5. The length of the training - selecting the amount of epochs:

The neural network will be trained for emax epochs. Selecting this value of this

parameters depends on the size of the training data. Simple rule would be to

increase the value of emax proportionally to the size of the training set - the larger

the set, the larger the amount of epochs, in order to give the network time to ’fit’

the data set.

In the beginning, all weights of neurons are set to random values taken from the

training set. Setting the learning rate (α) has a significant influence of both the

speed and final accuracy of the trained neural network, initially its value is set

close to 1. The parameter defining the neighborhood size λ is also set, and both λ

and α are decreased over the process of the training.

4.2 MRF-SOM Model

For representing the areas of possible touches occuring on the forearms or hands, we

used the modification of the classic SOM model.

MRF-SOM uses maximum receptive fields, which are biologically inspired since they are

based on the observations of the somatosensory area of the brain in primates (Leyton

and Sherrington).

These observations have attracted attention of other researchers, since this information

was significant for better understanding of how the body is represented in the brain.

Contents 28

The brain as well as the individual areas of the body representations had been already

discussed in the first chapter, along with the illustration of the ”somatosensory ho-

munculus” (Fig. 1.2). There we introduced how different body parts are represented in

different areas of the somatosensory homunculus, as well as the topological organization

properties of said brain area.

Since this is topological organization is known to occur in the physical brain of humans,

primates and possibly in other animals, the question is how to transfer this structure

to a neural network model for simulation and research purposes. That is what lead

to the invention of MRF-SOM maps in (Hoffmann et al., 2018) which was designed to

represent the skin sensations and stimuli of different body parts. In general, there were

two opinions regarding the origins of these representation in the brain. One stated that,

the fact that the topographic maps develop is native to the neural system in a broader

sense, in which there are no specific neural activations required.

The second one has taken an inverse approach to the former, where the neural activations

occurring during the development of the somsatosensory neural area are seen as being

crucial to the process. This idea of two opposing view was written by Crair in 1999

(Crair, 1999).

The MRF-SOM model was designed with the second approach in mind - that the struc-

ture of neural activity is important. The outcome of the paper was to invent, create and

train these modified SOMs, and test them against different parts of the training vectors

to validate that different neurons are more reactive to different parts of the information.

To achieve the outcome that neurons are reactive to only specific parts of the training

vectors, a mask is introduced.

The mask in MRF-SOM is a binary vector of the same dimensions as the training vector.

Every neuron in MRF-SOM will have this mask specified, which will define which part(s)

of the input vector the neuron should ignore. These masks are not assigned to the

neurons randomly - they are assigned to each neuron individually and specifically, based

on what part of the input the neuron should react to.

We can see the division of the input space in Fig. 4.2. The division is also not entirely

discrete, but the masks slightly overlap. The reason for this is that, should the areas

be discrete, the map would become deformed. This enables a very slight changes of the

SOM from the other areas, but still retains the activations to be grossly localized.

Contents 29

Fig. 4.2 MRF masks differentiated by color, separate the input space. In this example,
there are 8x8 neurons at the top, 20x20 inputs (simulated taxels) at the bottom. The
color code and the span of weight vectors mark the maximum receptive field size of
every output neuron area. Taxels with multiple colors mark the overlap of maximum

receptive fields (Hoffmann et al., 2018)

4.2.1 MRF-SOM training process

The training of MRF-SOMs is very similiar to the training process of SOM. However, in

contrast to classical SOMs, MRF-SOMs are more specific - since they were invented to

represent touch information - and thus there are some changes. The concrete training

steps for training an MRF-SOM are following:

1. Neuron weights initialization:

The weights of all neurons are initialized to small values. If the training data are

known, then we can choose random training vectors. We set the learning rate

α < 1. The masks are initialized for each neuron, and the number of epochs from

training emax.

2. The selection of vector from the training set:

In each epoch, all vectors from the training set are iterated through exactly once.

Which one is selected during the iteration is random every time.

3. The selection of the winner neuron for the training vector:

In MRF-SOM, the winner neuron is not found by calculating Euclidean distance

as is the case in SOM, but the winner i∗ is calculated by the dot product:

Contents 30

i∗ = arg max(wT
i · x(t)) (4.7)

The reason for this change compared to SOM are the masks, and the data.

MRF masks serve to zero the values of the input vector which fall outside of the

range the neuron should be sensitive to, consequently making these values not

influential in the selection of the winner.

4. The adaptation of weights in the competing layer:

wi(t+ 1) =
wi(t) + αh(i∗, i)x(t)

||wi(t) + αh(i∗, i)x(t)||
(4.8)

The entire process of weight adaptation can be summed in three steps:

(a) full vector = wi(t) + αh(i∗, i)x(t)

(b) masked vector = full vector ∗maski
where * means element-wise product of the mask and vector - which results

in the ’adjusted’ vector specific to the receptive field it belongs to. In the

end, the change can be written also as:

(c) wi(t+ 1) = masked vector
||masked vector||

4.3 Multilayer perceptron

Multilayer perceptron is a well-known type of neural network and is considered an uni-

versal approximator thanks to its nonlinear properties. This feedforward neural network

uses supervised learning for its training. It is one of the most widely used network mod-

els.

A perceptron consists of multiple fully-connected layers of neurons, and each synaptic

connection has its own weight. A multilayer perceptron consists of an input layer, at

least one hidden layer and an output layer. In case a multilayer perceptron has multiple

hidden layers, it is also known as a deep neural network.

Compared to a simple perceptron, Multilayer perceptron has improved computational

power because of its multiple hidden layers and activation functions, which enables it to

solve non-linear problems.

Forward pass of a perceptron is calculated in the following way:

hk(n+ 1) = f

n−1∑
j=0

wkjhj(n)

 (4.9)

Contents 31

hk(n + 1) is the k-th neuron of the (n + 1)th layer, f is a differentiable (activation)

function, wkj is the weight of a specific synapse and hj(n) is the activation value of j-th

neuron in the n-th layer.

There are multiple activation functions that can be used, some of the most commonly

used are for instance the sigmoid

σ(x) =
1

1 + e−x
(4.10)

or hyperbolic tangens. Before training, we assign small random values to the weights

and set the learning rate 1 > α > 0. Perceptron is trained by supervised learning, which

means that its output is compared to desired output. The calculated difference between

the actual output y and the desired output d is the error, (d − y). Weight adjustment

of the output layer is calculated in the following way:

wik(t+ 1) = wik(t) + α(di − yi)f ′ihk (4.11)

where wik(t + 1) is the synapse weight in epoch t + 1 , α is the learning rate, di is the

desired output, yi is the calculated output and hk is the activation of k-th neuron.

After adjusting the weights of output layer we need to train the other layers.

To train the input and hidden layers we use the error back-propagation algorithm.

δk =
n−1∑
i=0

(wikδi)f
′
k (4.12)

where δk is error of k-th neuron of a particular layer, δi are errors of the next layer

propagated back. Afterwards, we update the weights as

wkj(t+ 1) = wkj(t) + αδkxj (4.13)

4.4 Bidirectional associative learning

Bidirectional Associative Learning (BAL) (Farkas and Rebrová, 2013) is a bidirectional

neural network model that is biologically plausible in its design. The architecture is

similar to a perceptron with one hidden layer, but the association of the two modalities

happens simultaneously both forward and backwards. This is in contrast to classic

Backpropagation, which is not a biologically plausible approach (O’Reilly, 1996)

Compared to a perceptron with one hidden layer, in BAl every synaptic connection

between neurons has not one, but two weights. One of the weights is updated only

Contents 32

during a forward pass through the network, and the other only through a backward

pass.

Since the architecture is bidirectional, it is possible to do a backwards association, natu-

rally with the input and output vectors (and their corresponding dimensions) swapped.

In our case this means not only predicting the touches from a proprioceptive config-

uration, but also potentially predicting the limb positions from a touch vector. This,

however, is a one-to-many association which presents multiple challenges further de-

scribed in Chapter 5.

In contrast to perceptron, BAL is learning based on local information. When we have

two modalities between which we want to associate, then the model should learn how

to represent this relationship as a shared information. The place for encoding these

information is the hidden layer.

For BAL, one epoch of training also means randomly iterating over all data samples from

the training set, and every data sample is passed both froward and backward through

BAL. During the backward pass, the prediction is done based on the target vector from

the data sample, not the one predicted from BAL. All activation values are remembered,

and then the weights are updated. For every layer - the hidden and output layer in the

forward, and the hidden and input layer in the backward pass - the weights are updated

in the following way:

wF
ij = wF

ij + αbFi (aBj − aFj) (4.14)

where wF
ij is the weight of a neuron in the forward direction, α is the learning rate, bFi

is the pre-synaptic activation in the forward pass aBj is the post-synaptic activation in

the backwards pass, and aFj is the post-synaptic activation in the forward pass.

The update of weights in the backward pass is done analogically (the ’F’ and ’B’ are

exchanged).

Chapter 5

Proprioceptive–tactile association

5.1 Experiments

In chapter 5, we will describe all the experiments we’ve tried. First, we will describe and

show the Self Organizing Map models for forearms and hands, the MRF-SOM models

used for touch representation, and the results of trained BAL associators with different

parameters.

Then, we will describe the final, complex neural network model which learns to represent

which proprioceptive limb configurations lead to self-touch, and which do not. The last

two experiments was examining the Hidden layer of BAL associators, where we observed

and visualized the weights, and we tried to predict proprioceptive vector from a touch

vector using the trained BAL associator.

Additionally, we also tried to create a simple Hebbian associator, with no hidden layer.

Unfortunately, we couldn’t get the model to associate the two modalities due to some

problem with stabilizing the weights. After some time of not being able to fix the

problem, we’ve abandoned the experiment due to time constraints, and so no reportable

results were obtained.

5.2 Training and visualizing SOM models

For both right and left limb, we’ve trained two SOM models, separately for the hand

and forearm. All were generated with a rectangular grid of neurons. For forearms, we’ve

decided to represent the space as an area of 9 x 12 neurons, and for hands an area

of 8 x 8 was chosen.

33

Contents 34

The models were trained on the dataset which we’ve described in chapter 3, with a 80/20

split of training and testing data, respectively. The accuracy of the model was evaluated

by calculating a Quantization error for every SOM, for both training and testing data.

Final training was done on 500 Epochs, with a starting α = 0.5, which produced the

best results with relation to the data and the size of the data set.

For visualizing the model, we’ve created an automatized script which can translate

the SOM neurons (weights) to a corresponding proprioceptive configuration, load this

configuration to iCub, and take a screenshot. Due to the larger size of neurons, only

every second neuron was evaluated this way. The final outcome is a grid of screenshots

topologically representing the trained SOM model. The visualisation can show which

neurons were sensitive to which proprioceptive configuration of the specific limb part.

Fig. 5.1 Visualization a 6 x 5 neurons of SOM representing the left forearm positions
the network learned. Topological organisation of the weights can be observed.

Contents 35

SOM Quantization Error - training Quantization error - testing

Left hand 0.0068 0.0112
Left forearm 0.02156 0.02177
Right hand 0.00683 0.01128
Right forearm 0.02174 0.02130

Tab. 5.1 The quantization error values of Final SOM models.

5.3 Training and visualizing MRF-SOM models

For representing the touch information, we have used the MRF-SOM architecture de-

scribed in Chapter 4. For forearms, we chose 12 x 9 neurons, and for the hand 7 x 7

neurons to represent the touch area. For training the MRF-SOMs, we didn’t use the

data collected from iCub, as was the case for proprioceptive SOM models. The reason

for this decision was to adequately represent all possible touches occuring on the hands

and forearms - not just a subset of possible touch configurations collected from iCub.

For the sake of visualisation, we’ve re-used Martin’s python script for the forearms. In

case of hands, we’ve modified our own implementation of the visualisation, where the

fingers are rectangular shapes instead of small dots, as was the case in the original thesis.

5.4 Data normalization

As was already described in Martin’s thesis, he tried training the models on collected

data from iCub, normalized to interval of [0, 1] for all joint values on the proprioceptive

side, and the touch data transformed to vectors consisting of 0 or 1s instead of the ranges

[0, 255] the simulator uses. In our case, we also approached data normalisation this way.

What we tried additionally were multiple different data scaling approaches on the pro-

prioceptive side, and consequent training of the SOMs and BAL associators. In the sim-

ulator, iCub’s limb joints have different degrees of freedom, as was already mentioned

in Chapter 3. What we wanted to see is how different data scalings would influence the

accuracy of the models, and which normalisation would be the closer to optimal.

We tried scaling the data in the following ways:

1. A simple constant (100) by which every join value in the proprioceptive data

were multiplied. This didn’t bring promising results, since both SOMs and BAL

associators were not rescaled. Some joints have larger degrees of freedom, some

smaller, and simply multiplying by a constant didn’t change this fact.

Contents 36

Fig. 5.2 Visualisation of touch representations of MRF-SOM , describing left forearm.
Every rectangle correspond to a forearm consisting of 23 taxels in the simulator. Every
point is differentiated by color, the brighter the color, the higher the intensity of touch.
Yellow represents touch. The blue-green represents a possible touch, and the blue/pur-
ple represents non-touch. Topological properties can be observed. The MRF mask for

forearms separates the area into four quadrants.

2. Normalizing all joint values to fall between [0, 1] by taking the global minimum

Contents 37

Fig. 5.3 The learned touch representations of a hand MRF-SOM, showing right hand.
Every image shows a palm with fingers, consisting of 9 taxels total - 4 for palm, 5
for fingers. Every point is differentiated by color, the brighter the color, the higher the
intensity of touch. Yellow represents touch. The blue-green represents a possible touch,
and the blue/purple represents non-touch. Topological properties can be observed here
as well. The MRF mask for hands separates map into two areas - the fingers and palm

and maximum possible value out of all joints. This ensured that all joints were

represented by values [0, 1], but also that some joints would be represented on a

smaller interval compared to other joints with more DoF.

3. Normalizing all joint values to fall between [0, 1] , but every joint was normalized

independently. This preserved the ranges of all individual joints while simultane-

ously ensuring that all joints are represented in the space of [0, 1] values. This

approach was significantly more successful, and was the one we used for all final

trainings reported in this chapter.

5.5 Data representation

After the data were normalized, we will describe how both proprioceptive and touch

data were further represented for training the BAL associators by using SOMs and

Contents 38

MRF-SOMs for prediction.

For every data sample from the normalized data set:

1. The sample was divided into two parts: the proprioceptive and touch information.

2. For the proprioceptive part, a winner vector was selected from each corresponding

SOM, and was returned as one-hot-encoded vector. All 4 vectors were concate-

nated into a single vector containing exactly 4 ones.

3. For the touch part, similarly a winner of each MRF-SOM was retrieved and one-hot

encoded. However, the touch vector always contained exactly 2 ones - depending

on where the touch occurred (i.e right hand touched left forearm) for any data

sample.

In other words, the data set was systematically separated into 4 different sets depending

on where the touch occurred. Implicitly, we were training BAL associators only on

touch data, since in Martin’s work, he concluded that the model was significantly more

successful when trained on touch data only.

This way, the normalized data was pre-processed into 4 different files used to train all

the individual BAL associators, for each limb part.

5.6 BAL associators

We’ve trained 4 individual BAL associators, similarly to how they were trained in the

original master thesis. We experimented with different parameters to see how their

values influence the success of the model.

In general, the associators were trained on around 200-400 data samples. Also, for every

associator, we measured the model accuracy by calculating the mean square error of the

predicted output:

MSE =
1

n

n∑
i=1

(di − yi)2 (5.1)

where n is the dimension of the output, di is the expected output, and yi is the target

value on ith component. The mean square error will be evaluated in both forward and

backward direction. Aside from that, we also state the classification accuracy, expressed

in percentage.

Contents 39

5.6.1 Setting different thresholds on prediction

After each epoch, we evaluated the classification error of the model at that point in time.

The prediction by making a forward pass has given us the predicted touch vector, with

values ranging between [0, 1] . Since the target vectors are one-hot encoded, we needed

to choose a treshold to decide which values should be 0 and which 1 when evaluating

the predicted vector.

At first, the threshold was set to 0.5 which lead to BAL associators predicting a signif-

icant amount of errors where the prediction was evaluated as a zero vector (no touch

occuring), even though the target was a touch vector. Afterwards, we raised the thresh-

old to 0.6, which produced nearly no change.

Fig. 5.4 The classification errors produced when predictions were classified as no
touches instead of touches, threshold=0.6. Showing BAL Associator for right hand.

When observing the predicted vectors more closely, we noticed that those which should

be evaluated as ones were often in the range between 0.4 and 0.5. This was most likely

due to the vectors being sparse, and so the values were lower than average as well. The

Contents 40

threshold set to 0.4 turned out to be the most optimal parameter, as 0.3 led to the

opposite problem of incorrectly predicted touches where none existed.

5.6.2 Weight enhancements during training

Additionally to changing the threshold when predicting the touch vectors, we tried

enhancements to weight changes during training. This was applied to both the forward

and backward pass during training.

The basic case was leaving this threshold equal to 0.5, which had similar problems as

we’ve already discussed above.

Another approaches were flooring and enhancing. Flooring was setting the value to either

0 or 1 if a certain threshold was reached: 0.75 for 1, and 0.35 to 0. When running the

training with this modification, it proved to be too aggressive; the steep change would

introduce a larger error in some cases, which lead to larger corrections, and caused the

training to oscillate.

Enhancing was essentially a milder flooring: instead of flooring the values to 1 or 0

directly, the values were either increased by a constant σ if a value was at least 0.65,

or decreased by σ if the value was lower than 0.35. Naturally, we prevented the values

from falling outside of the interval [0, 1] when enhancing.

The conclusion was that with a smaller σ, the model was trained somewhat slower, but

no oscillation occurred, while the accuracy has stayed the same or slightly increased.

We used the value σ = 0.15 for final training of the associators.

5.6.3 Model training and final accuracy

Initially, we tried to replicate the results that were achieved in the previous master thesis,

but with our generated data set. The model was not learning however, both metrics

(mean square error and classification error) showing either oscillating or not converging

to stable, low values.

What we realized was that due to the size of our data set being approximately three

to four times larger than the data set the associators were trained on originally, the

size of the hidden layer was insufficient and thus was incapable of capturing all the

proprioceptive and touch associations.

Contents 41

Original count of neurons present on the hidden layers was set to 110. We tried 150,

200, 250, 300 and 350. Out of all these, 300-350 seemed to produce the best result as

further increase has not improved the final training/testing accuracy.

By increasing the number of neurons present on the hidden layer and tweaking other

parameters mentioned in the previous subsection, the model looked to be trained very

well, the training accuracy between 88-95% on all 4 associators similarly.

Fig. 5.5 Graphs presenting the mean square error and classification error decreasing
during training.

Unfortunately, while the training accuracy in Fig. 5.5 was quite high, when evaluating

the testing accuracy we observed it to be very low (between 10-40% on average). This

meant that the the model was prone to overfitting on the training data, and would not

generalize well.

We addressed this issue by introducing a condition to the training: During the training,

after each epoch we evaluated the accuracy the model was attaining on the testing set

at that point in training. If the testing accuracy was at least 80% and the training has

reached at least half the amount of total epochs specified, the training of the model

would be stopped at this stage.

This has introduced more balance to the model regarding its generalization capabilities,

but also simultaneously reduced the training accuracy.

The main problem with not reaching a more precise accuracy can in our case be explained

by the data. Since everything was automatically generated by our babbling algorithm,

there were some proprioceptive configurations which were almost touching, but were

not touching in reality. As we can see the accuracy was higher for both training and

testing data for the hands in comparison to the forearms. This is most likely due to

Contents 42

Associator average training accuracy (%) average testing accuracy (%)

Left hand 86.42 80.28
Left forearm 76.27 80.31
Right forearm 77.17 80.49
Right hand 84.12 81.54

Tab. 5.2 Table displaying the average of all training/testing accuracies, over 10x model
training, with 350 neurons on the hidden layer, 800 epochs

higher variation in proprioceptive configurations for forearms. As described in chapter

3, the babbling was not changing the degrees of freedom for hands nearly as much as it

did for the forearms. This in combination with the many to one relationship between

proprioceptive configurations and touch occurrence results in lower success rate.

Fig. 5.6 The training progress of BAL associator for right hand.

As we can see in Fig.5.6 the training condition we introduced influenced the results.

Classification error oscillates around 10-20%, however, the corresponding testing accu-

racy was around 80%.

Contents 43

5.7 Investigating hidden layers

This experiment was focused on the properties of the hidden layer in BAL associators.

The aim was to investigate whether there are some neurons which are more active

for some inputs compared to others, and whether the differences are pronounced - for

instance, some neurons very close to 1, and others almost 0. Evaluating this for a data

sample in both forward and backward pass, we wanted to see whether we could observe

similar activations. This result was represented as a heat map, each pixel on the X

axis representing a neuron, and the Y axis representing a data sample which was passed

through the layer.

Fig. 5.7 The activations on the hidden layer of the left forearm. The heat map shows 70
random data samples. The Y coordinate are the data samples, while the X coordinate
represent individual neurons, of complete 300, which was the size of the hidden layer.

Additionally, we wanted to see how responsive each neuron was to the input, both

through a forward pass, and a backward pass. How responsive in this case refers to

the neuron’s activation/value. This was expressed as a graph of points, each point

Contents 44

representing the mean value of the activation, with a vertical line intersecting it. The

vertical line represents the minimal and maximal value the neuron produced. Therefore,

the shorter the line, the less varied the neuron’s activation was, and vice versa.

As can be observed, the proprioceptive activations have more variations compared to

the touch neurons. This can be explained by the fact that, the touch is a more con-

crete information - it either occurs or not. Furthemore, since there can be multiple

proprioceptive configurations associated with the same touch, the variation will always

be greater for proprioceptive information.

Fig. 5.8 The activations of all 300 neurons on the hidden layer, for the left forearm,
sorted by the least to most varying neurons/activations. The top graph represents the

activations for the proprioceptive data, the bottom graph for touch data.

5.8 Predicting proprioceptive configurations from a touch

vector

One property of the model we wanted to test was its ability to predict the input vec-

tor from target vector. In other words doing the backwards prediction from one hot

encoded touch vector to its proprioceptive representation. Naturally, this problem is

non-deterministic one touch configuration can be represented by multiple propriocep-

tive configurations of the limbs. It was found that in such cases BAL should predict the

mean value as the target (Farkas and Rebrová, 2013).

For this experiment we tested it the following way:

Contents 45

1. We randomly selected a touch configuration where left hand was touching the right

forearm.

2. Then we ensured that we could retrieve MRF-SOM winners for this touch config-

uration.

3. We made a backward pass through BAL using concatenated winner vectors as

input.

4. This way we received a one hot encoded proprioceptive configuration as the output.

Then we used SOMs to find the winners for forearms and hands. This way we

received a specific proprioceptive configuration as the output.

Fig. 5.9 Comparison of the original proprioceptive configuration (upper image) with
predicted configuration (lower image) using touch data.

As expected the predicted proprioceptive configuration rarely matched the original limb

positions. Additionally, in some cases the predicted position of the limbs resulted in a

slightly different touch, as can be seen on Fig. 5.9.

Chapter 6

The complete model

This chapter introduces the final, complex model consisting of all the neural network

models introduced in this work. The goal of this experiment is to see how reliably the

model can predict whether a proprioceptive configuration ends in a touch, and if it does,

where.

The final model is quite complex, and is visualized in Fig.6.1. The main difference

compared to the complex BAL model in Pecen (2019) is that we use four SOMs for

proprioceptive representations instead of only two.

6.1 Model scheme

The model consists of three parts. The first part is the filter. The second part transforms

the proprioceptive and tactile inputs to one hot encoded vectors via SOMs and MRF-

SOMs, respectively. The third part associates transformed data using BAL model.

BAL always associates full proprioceptive information(both arms) with one MRF-SOM

(touch on one part of the limbs) in this complex model.

Since we’ve already explained how we trained SOMs and MRF-SOMs in Chapter 5, we

will only introduce the filter.

6.2 The filter

The one additional neural network model used in the complex schema is a filter for de-

tecting touch configurations. The purpose of this filter is to pass the current data sample

46

Contents 47

Fig. 6.1 Schema showing the complex model used for association of proprioceptive and
tactile inputs.

further through the complex model only when the data sample is a touch configuration.

If not, it should be filtered away, and no further predictions are necessary.

The filter was implemented using TensorFlow and Keras Python libraries. The archi-

tecture of the filter is a multi-layer perceptron with 2 hidden layers. The dimensions

of layers are 32, 64, 70 and 1, respectively. We used 80:20 split between training and

testing data. The touch information was simplified into 0 or 1 instead of the full touch

vector. We trained the perceptron over course of 250 epochs. The training accuracy was

around 98-99% and the testing accuracy was around 90%.

Contents 48

6.3 Testing the overall model

For the final testing of the whole complex model, we load all the SOM, MRF-SOM and

BAL associator models, and the filter. We’ve tried testing the model on various data

sets.

First, we used a small set consisting of only non-touch data, the same one used in

Pecen (2019). This was mostly to check whether the filter would correctly exclude

these configurations. These data were created manually, using iCub and the MotorGui

interface. The results were a 100% success - the multilayer perceptron has correctly

identified all 60 configurations as non-touches.

However, it is still important to report the filter accuracy on the larger, generated data

set. Especially for configurations which do not end in touch but are very close to touch-

ing, and vice versa.

Data set Success Correct Ghost Missed Other errors

notouch.data 100% 60 0 0 0
T0-dumped.data 80% 4261 823 84 133
smaller.data 74% 197 43 7 20

Tab. 6.1 The results of different test runs. The first data set contained only non-touch
data. The second was generated by the babbling, and dumped through yarpdatadumper

In Table 6.1 , we report results of multiple test runs. The explanation for the terms in

the headers are following:

• Correct - amount of data samples for which every part of the complex model

predicted the correct result.

• Ghost - cases where MLP filter has incorrectly evaluated non-touch configurations

as touch ones

• Missed - opposite to Ghost touches. Configuration resulted in a touch, but it was

incorrectly filtered out.

• Other errors - configurations in which at least one incorrect prediction was made,

either by an MRF-SOM or the BAL associator.

6.4 Winner neighbors counted as correct

We tried to re-run the tests with one change. In table 6.2, the change made is in

evaluating the validity of touch predictions.

Contents 49

Originally, the one-hot vectors predicted by BAL needed to equal MRF-SOM outputed

vector. In this case, we also look at the neighbors of the MRF winner, and should

the prediction from BAL match either one of the neighbors, we evaluate it as a correct

prediction.

Data set Success Correct Ghost Missed Other errors

test-notouch.data 100% 60 0 0 0
test-T0-dumped.data 83% 4383 823 84 11
test-smaller.data 80.2% 214 43 7 3

Tab. 6.2 The results of different test runs. MRF-SOM neighbors of the winner count
as a correct prediction.

As can be observed in 6.2, this has improved the results, but only slightly, by 2-3% on

average. Ultimately, it is evident that the limitations in the final model lay in the BAL

associators, which were shown to attain the accuracy around 80-85% during training and

testing. The most significant but complicated problem lies in recognizing very similar

proprioceptive configurations in which some are touch, but some are not.

Conclusion

The outcome of the thesis was a complex neural network model used for learning and

representation of proprioceptive information of iCub. The model consists of three parts:

four SOM models representing proprioceptive information of iCub’s arms, a filter which

determines whether the proprioceptive configuration occurs in a touch on one of the

arms, and lastly the association of proprioceptive information with touch information

represented by MRF-SOM maps. The mapping of these modalities is achieved via four

BAL associators. The individual models were trained separately before combining them

to the final complex model.

For input data collection, used for iCub training, we have tried two different babbling

algorithms. The first approach was a modification from an existing babbling algorithm,

which was changing individual joints in relation to time to a sinusoid function. The

second was designed by us and was ultimately used to generate the final dataset, which

consisted of thousands of data samples.

Additionally, we performed additional experiments that investigated the properties of

BAL hidden layer, the activations of hidden layer’s neurons and their variation, and

observing the backwards prediction capabilities of trained BAL.

Ultimately, we succeeded in implementing a way to acquiring many data, but there is

room for improvements regarding the classification capabilities of BAL, as we couldn’t

get over 90% in the final testing of the complex model.

50

Bibliography

Crair, M. (1999). Neuronal activity during development: permissive or instructive?

Current opinion in neurobiology, 9(1):88—93.

Del Prete, A. (2013). Control of Contact Forces using Whole-Body Force and Tactile

Sensors: Theory and Implementation on the iCub Humanoid Robot. PhD thesis.

Farkas, I. and Rebrová, K. (2013). Bidirectional activation-based neural network learning

algorithm. In TODO.

Goble, D., Lewis, C., Hurvitz, E., and Brown, S. (2005). Development of upper limb pro-

prioceptive accuracy in children and adolescents. Human movement science, 24:155–

70.

Hearn M, Crowe A, K. W. (1989). Influence of age on proprioceptive accuracy in two

dimensions. Percept Mot Skills, pages 811–818.

Hoffmann, M., Straka, Z., Farkaš, I., Vavrečka, M., and Metta, G. (2018). Robotic

homunculus: Learning of artificial skin representation in a humanoid robot motivated

by primary somatosensory cortex. IEEE Transactions on Cognitive and Developmental

Systems, 10(2):163–176.

Jafari, M., Aflalo, T., Chivukula, S., Kellis, S. S., Salas, M. A., Norman, S. L., Pejsa, K.,

Liu, C. Y., and Andersen, R. A. (2020). The human primary somatosensory cortex

encodes imagined movement in the absence of sensory information. Communications

Biology, 3(1):757.

Jamone, L., Metta, G., Nori, F., and Sandini, G. (2006). James: A humanoid robot

acting over an unstructured world. In 6th IEEE-RAS International Conference on

Humanoid Robots.

Kandel, E. and Schwartz, H. (2000). Principles of Neural Science. 4 edition.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.

Biological Cybernetics, 43:59–60.

51

Contents 52

Lan, H. (2018). Analyzing climate patterns with self-organizing maps (soms).

Laszlo, J. I. and Bairstow, P. J. (1980). The measurement of kinaesthetic sensitivity

in children and adults. developmental medicine and child neurology. Developmental

medicine and child neurology, (22(4)):454–464.

Leyton, A. and Sherrington, C. Observations on the excitable cortex of the chimpanzee,

orang-utan, and gorilla. Experimental Physiology, 11:135–222.

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., Hofsten, C.,

Rosander, K., Lopes, M., Santos-Victor, J., Bernardino, A., and Montesano, L. (2010).

The icub humanoid robot: An open-systems platform for research in cognitive devel-

opment. Neural Networks, 23:1125–34.

O’Reilly, R. C. (1996). Biologically plausible error-driven learning using local activation

differences: The generalized recirculation algorithm. Neural Computation, 8(5):895–

938.

Pecen, M. (2019). Akviźıcia propriocept́ıvno-dotykových reprezentácíı tela u hu-

manoidného robota. Master’s thesis, Comenius University in Bratislava.

Penfield, W. and Rasmussen, T. (1950). The Cerebral Cortex of Man: A Clinical Study

of Localization of Function. MacMillan.

Proske, U. and Gandevia, S. C. (2012). The proprioceptive senses: Their roles in sig-

naling body shape, body position and movement, and muscle force. Physiological

Reviews, 92(4):1651–1697.

Rochat, P. and Striano, T. (2000). Perceived self in infancy. Infant Behavior and

Development, 23:513–530.

Roncone, A., Hoffmann, M., Pattacini, U., Fadiga, L., and Metta, G. (2016). Periper-

sonal space and margin of safety around the body: Learning visuo-tactile associations

in a humanoid robot with artificial skin. PLOS ONE, 11(10):1–32.

Ronthal, M. (2004). Textbook of Clinical Neurology. Wolters Kluwer Health, 2 edition.

Seefeldt, V. and Haubenstricker, J. (1982). Patterns, phase, or stages: An analytical

model for the study of developmental movement. The development of movement

control and coordination, pages 309–318.

Sherrington, C. S. (1907). On the proprio-ceptive system, especially in its reflex aspect.

Brain, 29(4):467–482.

Contents 53

Wang, S. and Zhang, X. (2020). Analysis of self-organizing maps (som) methods for cell

clustering with high-dimensional oam collected data. 2020 IEEE 5th International

Conference on Cloud Computing and Big Data Analytics (ICCCBDA), pages 229–

233.

	List of Figures
	List of Tables
	1 Introduction
	1.1 Biological motivation
	1.2 Proprioception
	1.2.1 Terminology
	1.2.2 Role of proprioception in motor skills acquisition
	1.2.3 Somatosensory cortex

	1.3 Current state of the study field

	2 Technology and tools
	2.1 YARP
	2.1.1 Usage

	2.2 Robot iCub
	2.2.1 Physical specification
	2.2.2 Proprioception of the robot
	2.2.3 Artificial skin, sensing touch

	2.3 iCub Simulator
	2.3.1 iCub_SIM modules
	2.3.2 MotorGui
	2.3.3 iCubSkinGui

	3 Data acquisition
	3.1 Simulator data pre-processing
	3.2 Data representation
	3.3 Data validation
	3.4 Babbling algorithm
	3.5 A simple Motor babbling algorithm
	3.6 Final data set and data collection
	3.7 YARP Data dumper

	4 Neural network models
	4.1 Self-organizing maps
	4.2 MRF-SOM Model
	4.2.1 MRF-SOM training process

	4.3 Multilayer perceptron
	4.4 Bidirectional associative learning

	5 Proprioceptive–tactile association
	5.1 Experiments
	5.2 Training and visualizing SOM models
	5.3 Training and visualizing MRF-SOM models
	5.4 Data normalization
	5.5 Data representation
	5.6 BAL associators
	5.6.1 Setting different thresholds on prediction
	5.6.2 Weight enhancements during training
	5.6.3 Model training and final accuracy

	5.7 Investigating hidden layers
	5.8 Predicting proprioceptive configurations from a touch vector

	6 The complete model
	6.1 Model scheme
	6.2 The filter
	6.3 Testing the overall model
	6.4 Winner neighbors counted as correct

	Conclusion
	Bibliography

