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Abstrakt

Ucenie sa kauzéalnych vztahov umoziuje [udom predikovat nasledky ich akcii v zndmom
prostredi a pouzit tuto znalost na planovanie komplexnejsich tikonov. Znalost kauzal-
nych vztahov taktiez zachytéva spravanie sa prostredia, ¢o je mozné vyuzit na jeho
analyzu ako aj na hladanie dovodov za takymto spravanim. V tejto praci skimame
schopnost ucenia sa kauzalnych vztahov pozorovanych v simulovanom robotickom pros-
tredi pomocou dopredného a inverzného modelu. InSpirujeme sa pri tom mechanizmami
pritomnymi v I'udskej kognicii a navrhujeme niekol’ko pristupov ku konstrukeii takychto
modelov. Dalej skuimame, ako tieto modely natrénované na syntetickych datach vy-
generovanych v simulacii vieme analyzovat, a ako z nich vieme extrahovat naucené
nizkouroviové kauzalne vztahy, ktoré mozu posluzit ako podklad k dimenzionélnej
redukcii stavovych reprezentacii daného prostredia. V poslednom bode navrhujeme
pristup k planovaniu akcii za cielom rieSenia jednoduchych robotickych manipula¢nych
tloh. Na tento ucel vyuzivame niektoré vyvinuté metody a koncepty uvedené v tejto
praci. Na vyhodnotenie navrhovanych metod vykonavame niekolko experimentov so
simulovanym robotickym ramenom, ktoré sa u¢i kauzalne vztahy v postupne néroc¢ne-

jsich ulohach.

Krlacové slova: kauzélne ucenie, dopredny model, inverzny model, interpretabilita,

plénovanie



Abstract

Learning causal relations allows humans to predict the effect of their actions on the
known environment and use this knowledge to plan the execution of more complex
actions. Such knowledge also captures the behaviour of the environment and can
be used for its analysis and the reasoning behind the behaviour. In this thesis, we
explore learning causal relations observed in a simulated robotic environment using
the forward and inverse models. Inspired by mechanisms of human cognition, we
propose multiple approaches to constructing such models. Further, we investigate how
these models trained on synthetic data generated in a simulation can be analyzed to
extract learned low-level causal relationships, which could be then used as a basis for
dimensional reduction of the environment’s state representations as well as for the
explainability of the environment’s behaviour at higher levels. Finally, we propose an
approach for planning actions for simple robotic manipulation task-solving using some
of the developed methods and concepts presented in this work. In order to evaluate
the proposed methods, we conduct several experiments concerning a simulated robotic

arm learning causal relations in tasks of increasing difficulty.

Keywords: causal learning, forward model, inverse model, interpretability, planning
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Introduction

Observing and learning causal relations in a given environment is an essential ele-
ment of cognition in humans and other higher animals. Thanks to this ability, agents
can assemble their intuitive knowledge (such as intuitive physics and psychology) about
the world in which they operate from multiple observations and use them to further
predict the environment’s behaviour, mainly in response to their actions. Such abil-
ity is principal to common sense understanding — a concept mastered even by young
children while having proven to be highly inapprehensible for artificial intelligence.

In this thesis, we were inspired by causal learning and other mechanisms observed
in human cognition, leveraging them in constructing system planning procedures to
be executed to solve simple robotic manipulation tasks in a simulated environment.
Specifically, we use forward and inverse models to learn the effects of actions performed
by an agent (a simulated robotic arm). These actions are a product of simple motor
babbling or other strategies allowing the agent to interact with the environment and
observe its behaviour.

Further, as a by-product of this approach, we hypothesize that these models trained
on a sufficient amount of observations contain knowledge about the environment and
the task the agent was performing. We argue that this knowledge is similar to intuitive
theories assembled by humans from causal experience collected since an early age. As
such knowledge can be helpful in the analysis of the environment, the task, and their
properties, we explore methods for extracting this information by analyzing the trained
forward model using explainable artificial intelligence methods.

Finally, we propose a model generating trajectories for solving simple robotic ma-
nipulation tasks. For this purpose, we use sequence modelling using recurrent neural
networks and leverage the trained forward and inverse models in post-processing gen-
erated trajectories. We were inspired by imitation learning, utilizing it for the sequence
modelling optimization within the supervised learning paradigm instead of in robotics,
the more commonly used reinforcement learning approach.

In Chapter 1, we provide an essential overview of concepts used in this thesis —
specifically, causal learning, neural forward and inverse models, reinforcement learning
and sequence modelling using recurrent neural networks. Chapter 2 lists related re-

search and alternative solutions to some methods and problems presented in this work.



2 Introduction

In Chapter 3, we define and describe the basic terms used throughout this thesis and
elaborate on the aims of our research, briefly presented in this section. In Chapter 4, we
propose the principal methods of this research and describe them in a general manner.
Finally, the application of these methods to the designed experiments is described in
Chapter 5. The chapter describes the experiments and testing procedures, the meth-
ods’ concrete implementation details, and provides the evaluation results, as well as

the relevant discussion and analyses.



Chapter 1
Preliminaries

In this chapter, serving as a theoretical overview, we summarize methods, ap-
proaches and technologies used in the thesis. Specifically, we provide an overview
of causality, causal relationships, and causal learning from both human cognition and
machine intelligence point of view as we use causal learning as a central concept in our
proposed methods (Chapter 4).

We further describe the biological and robotic backgrounds of forward and inverse
models used as facilitators for causal learning as well as artificial neural networks
used for their implementation. In addition, as we leverage the models’ analysis, we
summarize the principles behind the family of analysis methods used.

Lastly, we describe the principal components of sequence modelling and reinforce-

ment learning used for the proposed planning method.

1.1 Causal Learning

Causal learning refers to capturing and learning causal relationships from observa-
tions of the behaviour of an environment in which the agent (e.g., human or robot)
operates. This ability allows agents to form intuitive theories and use them to predict
the environment’s behaviour in response to their actions (Gerstenberg & Tenenbaum,
2017), establishing common sense understanding, including the knowledge of intuitive

physics and psychology (Lake et al., 2016).

Human Causal Cognition

Causal cognition has been studied extensively on both human and machine in-
telligence levels. Regarding human cognition, Gérdenfors and Lombard (2018; 2017)
propose a causal cognition evolution model categorizing levels of causal understanding
varying in complexity. This model’s grades range from understanding the perceived

effects of the agent’s motor actions to understanding interactions between entities of
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the environment and the ability to extrapolate from this knowledge.

Causality in Robotics

Regarding machine intelligence, Lake et al. (2014; 2016) argue that causality might
be one of three central “ingredients” needed to replicate rapid learning akin to human
learning.! The argument supports the current effort to transfer causal cognition to
robotics, involving embodied agents interacting with the world. Analogically to the
model of the evolution of human causal cognition mentioned above, Hellstrom (2021)
proposes a categorization of robot causal cognition ranging in difficulty from simple
sensorimotor learning to the ability to plan and beyond. These grades are divided into
three groups: learning causal relations, inferring the causes related to an interacting
human, and robot deciding how to act (Fig. 1.1).

In this work, we focus on low-level causality regarding two categories: sensorimotor
self-learning (C1) and learning the consequences of an agent’s own actions on objects
in the environment (C2). Causal relationships adhering to these two categories —
especially those following our definition (Chapter 3), may be conceptually equivalent
to sensorimotor contingencies (SMCs) (O'Regan & Noé, 2001; Noé, 2004) defined as
“law-like relations between actions and contingent changes in the sensory signals” (Maye
& Engel, 2012) with relation to contingency in psychology generally defined as “a

correspondence of one’s behavior to another’s behavior” (Yamaoka et al., 2007).

Causality in Machine Learning

Besides applications in robotics, causality is also studied as part of machine learning
(ML) research. Zhang et al. (2017) and Zhu et al. (2020) argue that causality under-
standing can be beneficial toward building more robust models with common sense. In
practice, one of the most common ML applications of causal learning is causal model
construction via Bayesian modelling. This approach concerns building symbolic repre-
sentations by identifying and extracting concepts and relations between them based on
the observations of the world in which the model operates. Lake et al. (2016) argue that
causal model construction as a primary learning mechanism could be an alternative to
classical pattern recognition methods currently dominating ML research.

Specific examples of causal model construction include human-like concept learning
through Bayesian program learning (Lake et al., 2015) and other probabilistic modelling
methods (Tenenbaum, 1998, 1999; Lake, 2014), and human-like learning of abstract
theory of causality (Goodman et al., 2011) using Bayesian networks (Pearl, 1985).

!The other two are compositionality (i.e., the ability to construct new representations from more
primitive elements) and learning-to-learn (i.e., the ability to reuse knowledge of related concepts or

tasks to accelerate learning of a new concept or task).
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Figure 1.1: Diagram of robot causal cognition categorization. Bold arrows refer to
learning causal relations, while thin solid arrows refer to “inference of causes related
to an interacting human”. Adjacent categories are required to facilitate the agent’s

understanding of respective relationships (Hellstrom, 2021).

As demonstrated by the mentioned research, causal model construction or, more
broadly, causal learning is predominantly part of the symbolic paradigm (Kotseruba &
Tsotsos, 2018) as it mainly operates with symbolic representations on different levels
(Scholkopf, 2022). This contrasts with the sub-symbolic models and systems (Rosen-
blatt, 1958) generally following the parallel distributed processing paradigm (McClel-
land et al., 1987, 1988) inspired by low-level brain mechanisms and neural structures.

For a further comprehensive overview of causal cognition in humans, in robots, and
causality research in ML, see Gérdenfors and Lombard (2018), Hellstrom (2021), and
Scholkopf (2022) and Zhang et al. (2017), respectively.
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1.2 Forward and Inverse Models

As de Lange et al. (2018) note, humans and similar higher animals have been
labelled “anticipatory systems” (Rosen, 2012) due to the fact that they can construct
predictive models (Clark, 2013) of themselves and their environment and use them to
“quickly and robustly make sense of incoming data”. Such models are representations
of the knowledge acquired by the agent from observations of the environment, allowing
it to infer expectations about the world’s behaviour.

More concretely, causal and especially sensorimotor knowledge produced by causal
learning performed by a robotic system, solving C1 and C2 tasks in our case, can be
represented by a pair of complementary internal models: the forward model (FM) and
the inverse model (IM) (Wolpert & Kawato, 1998).

While the FM (Dearden & Demiris, 2005) unambiguously predicts perceivable con-
sequences of the agent’s actions, the IM predicts actions needed to reach the desired
state from the initial state. In contrast to the FM, the IM is mathematically ill-defined
in general, as the IM also models inverse kinematics, which is ill-posed in redundant
robots (Nguyen-Tuong & Peters, 2011).

Forward and inverse models in robotics take inspiration from the internal model
principle of control theory (Francis & Wonham, 1976) modelling physiological internal
models (Wolpert & Flanagan, 2001; Miall & Wolpert, 1996; Sperry, 1950; von Holst &
Mittelstaedt, 1950). It is generally acknowledged (Dogge et al., 2019) that humans use
a forward internal model to predict the outcomes of their motor actions. Dogge et al.
(2019) describe “|physiological| forward models |. . .| as simulations of the motor system
that use a copy of the motor command, known as an efference copy |. . .|, to predict the
sensory consequences of the action in question (known as corollary discharge)”.

It should be noted that while in this thesis we use forward models to predict
environment-related outcomes beyond body-related outcomes, Dogge et al. (2019) ar-
gue that involvement of biological motor-based forward models to such extent is “limited
and hitherto unjustified”.

Artificial Neural Networks

As both FM and IM represent functions, modelling (learning) can be performed
by artificial neural networks as universal function approximators (Hornik et al., 1989).
For the forward and inverse modelling in this work, we specifically use multilayer
perceptrons (MLP) (Rosenblatt, 1958, 1962; Minsky & Papert, 2017) as universal
regressors.

The topology of MLP models consists of L layers of neural units with layers [ = 1,
l=L and 1 <[ < L defined as an input layer, output layer and hidden layers, respec-

tively. Each layer is composed of d; neural units, with d; = dim(x) and d; = dim(y)
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where x and y are real input and output vectors of a function f being approximated.
MLP is fully connected, meaning that each unit ¢ of each layer [ except the output
layer is connected with every neuron j of the subsequent layer [ + 1 using oriented
synapse with assigned weight wg-) € R. Then, activation of i-th neuron in [-th layer
can be computed as
di—1+1
WO — ( 3 wgph;l-D) | )
j=1

where ¢; denotes activation function of the [-th layer. Additionally, h(®) = § where g

is a predicted output. To reformulate, considering layer a function
hD(v) £ o, (W(l)v) (1.2)

where W ¥ is the weight matrix of the I-th layer, the approximation of sought function
f can be defined as

f@) 2 (MY ot Vo...oh®onW) (z). (1.3)

In order to train the regressor, the model’s weights are commonly optimized in a
supervised learning scheme where the error of generated predictions ¢ is computed
against the ground-truth targets y using an error function £ (g,y). The computed
error is further backpropagated (Rumelhart et al., 1986) through the whole network,
with new weights being calculated as

wg-) (t+1) = wg-) (1) + Awg-), (1.4)

where Awg) denotes weight adjustment defined as

oL
ow

)

Awg) =—n (1.5)
with 7 designating learning rate constant.

Recently, as an alternative to MLPs, Liu et al. (2024) have proposed Kolmogorov-
Arnold networks (KAN) as an application of Kolmogorov-Arnold representation the-
orem (Kolmogorov, 1961). The authors claim that KANs have a series of properties
such as “comparable or better accuracy than larger MLPs in function fitting tasks” or
interpretability. The interpretability results from KANs’ essential ability to decom-
pose multivariate functions being learned into simple univariate functions capturing
relationships between input and output features of these networks, thus providing an
alternative to explainability methods described in Section 1.3. Although we do not use
KANS in this thesis, they could be helpful in our future research (for more details, see

Discussion in Section 5.2).
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1.3 Model Analysis

In this thesis, we analyze neural models using explainable AT (XAI) methods.
Specifically, we study feature importance, evaluating the significance of a specific input

feature on the prediction of a specific output feature.

Shapley Values

Feature importance is commonly computed using Shapley values (Shapley, 1953)
while interpreting the task of a single output feature prediction for a single data point
x as a cooperative game. Input features are interpreted as players belonging to possible
coalitions S € P(F'), where F' is the set of all features. Then, interpreting a model
f trained on a set of features as a value function evaluating the worth of coalition,
Shapley value ¢; defines the marginal contribution of feature i for the input « for the
model f:

_ [SIECE] = 151 = 1)!
¢i(z) = Z 7! Ai(S ), (1.6)
SCF\{i}
where |S| and |F| denote the number of features in the coalition and the total number

of feature, respectively. A;(S,x) denotes the marginal contribution of feature i to

coalition S defined as

Ai(S,x) = fsup (Tsuy) — fs (xs) (L.7)

with fg and fsug; denoting trained models on the feature subset S and S including

the feature i, respectively, and g denoting the values of input features from S.

SHAP Methods

As computing Shapley values is generally NP-hard (Matsui & Matsui, 2001), various
methods for estimating them have been developed, with the most popular being SHAP
(Lundberg & Lee, 2017), which unifies different additive feature attribution methods.
Here, we were experimenting with two variants: KernelSHAP and DeepSHAP.

KernelSHAP is a model-agnostic kernel-based method utilizing the idea of local
surrogate models (Ribeiro et al., 2016) to estimate Shapley values. However, since it
does not make any assumptions about the analyzed model, it is generally slower than
model-specific methods on account of its combinatorial nature. DeepSHAP, on the
other hand, is applicable only to neural models as it uses attribution rules of DeepLIF'T
method (Shrikumar et al., 2017) to propagate SHAP values from the output layer back
to the input layer.

SHAP methods are local, providing an explanation for one prediction. However,
thanks to their properties, local explanations can be aggregated across the set of in-

stances, providing global feature importance within the analyzed model.
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For further comprehensive review of XAI methods, see (Zhang et al., 2021).

1.4 Reinforcement Learning

Reinforcement learning (RL) is an ML paradigm of algorithms learning by inter-
acting with a given environment. The principal objective of agents controlled by these
algorithms is to perform actions maximizing the cumulative reward. Although methods
proposed in this work operate beyond the RL paradigm, we reuse some of its principles
and nomenclature.

Problems solvable by RL methods are most commonly modelled as Markov decision
processes (MDP) (Bellman, 1957). Discrete-time MDP can be defined as a tuple

MDP: (S, A, T, R,7), (1.8)

where § and A denote discrete or continuous state and action spaces, respectively.
Then, in a discrete timestep ¢, an action a(t) € A transitions the state s(t) to s(t+ 1),
with s(t),s(t +1) € S, with probability

Pris(t+1)|s(t),a(t) =T][s(t),alt),s(t+1)], (1.9)

where T denotes a state transition function. Transitioning from the state s(t) to s(t+1)
with the action a(t) is evaluated by reward function r(t) = R[s(t), a(t), s(t + 1)].

The process of taking action in a particular state produces a trajectory
7 = [5(0), a(0), 7(0), s(1), a(1), 7(1),.. ] (1.10)

which can be evaluated by computing its discounted cumulative return

G=> '), (1.11)

where 0 < 7 < 1 is a discount factor. The goal of RL algorithms is to learn optimal
policy 7* such that
7" = argmax V" [s(0)], (1.12)

™

where V7™ [s(0)] denotes a state-value function defined as
V7 [s(0)] =E[G | 5(0), 7] (1.13)

providing the expected cumulative return of a trajectory produced by an agent start-
ing in state s(0) and taking action a(t) ~ m[s(t)] with stochastic policy 7 [s(t)] =
Prla(t) | s(t)].

The generation of the whole or partial future trajectory based on a model or policy
prior to the trajectory’s execution (i.e., offline) can be, in this context, understood as
planning. While the offline planning problem is commonly solved using RL methods,
recent advances demonstrate that such a problem can also be solved using supervised

learning methods (Section 2.2).
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1.5 Sequence Modelling

Sequence modelling in its autoregressive form (Goodfellow et al., 2016; Jurafsky &

Martin, 2024) is a problem considering modelling

T
Pr(zy,2z9,...,27) = Pr(x;) HPr (x4 | Tp—1, 42y ..., 1) (1.14)

=2
An autoregressive model performing such modelling can be a neural network classifier
or regressor, depending on whether the modelled variables are discrete or continuous.
Most of the modern architectures used in the solving of this problem include either
gated recurrent neural networks (RNN) or more recent Transformers (Vaswani et al.,

2017). In this thesis, however, we use only RNNs.

RNNs are sequential models generally using hidden state h*~1 from the previous

timestep to condition the prediction in the current timestep:
Pr(zy | ¢4—1,24-2,...,21) = Pr (act \ h(tfl)) (1.15)

Due to their sequential nature, RNNs are commonly optimized using backpropagation
through time (BPTT) (Werbos, 1988). BPTT algorithm unfolds an RNN through T
timesteps into separate pseudo-networks retaining identical copies of parameters. Each
pseudo-network is then optimized using a standard backpropagation algorithm (Rumel-
hart et al., 1986), and weight updates across all timesteps are summed together. A
more efficient and contemporary version of the BPTT algorithm is known as Truncated
BPTT (Williams & Peng, 1990). Truncated BPTT runs BPTT in intervals on small
segments of the input sequence and thus only estimates the gradient used to update the
model’s parameters. This approach contrasts with the classical BPTT, which performs
a backward pass through the whole sequence and fully computes the gradient. Such
operation is very time-expensive, especially for longer sequences.

Gated RNNs, in contrast with early simple recurrent models, support gating of the
hidden state, meaning they employ dedicated mechanisms for updating and resetting
it. Gated RNNs involve mainly long short-term memories (LSTM) (Hochreiter &
Schmidhuber, 1997) proposed initially for making the long-term dependency learning
(Bengio et al., 1994; Hochreiter et al., 2001) feasible, or gated recurrent units (GRU)
(Cho et al., 2014) providing more simple LSTM-inspired memory cell architecture
consequently providing computation time reduction while maintaining performance
comparable with LSTMs (Chung et al., 2014).



Chapter 2

Related Work

In this chapter, we provide an overview of existing full or partial solutions al-
ternative to the main contribution points of this thesis: learning causal relations in
robotics (Section 2.1) and planning using sequence modelling aided by causal models
(Section 2.2).

2.1 Causal Learning in Robotic Applications

Albeit causal learning (for an overview, see Section 1.1) and causality-based ap-
proaches in the context of robotics are presently deemed under-explored (Stocking et
al., 2022; Lee et al., 2023), it has been demonstrated that they can be helpful for mul-
tiple applications. In many robotics and RL applications, studying and learning causal
relations can reveal relationships between state and action variables regarding a given
environment or task. This information is often used to reduce the complexity of either
space or identify relevant or important variables.

Our work, especially the knowledge extraction part (Section 4.3), was inspired by
CREST (Lee et al., 2021), where authors used causal reasoning in simulation to learn
the relevant state space variables for a robot manipulation policy. In their approach,
they conduct causal interventions? to elicit the relationships between action and state
variables. This allows them to reduce the complexity of neural network policies using
only state variables relevant to the task being solved.

Leveraging the research on CREST, SCALE approach (Lee et al., 2023) for discov-
ering and learning diverse robot skills has been proposed. SCALE uses CREST in a
pipeline to identify sets of relevant variables related to individual skills.

A method proposed by Diehl and Ramirez-Amaro (2023) concerns a causal Bayesian
network (Pearl, 1985) learning causal relationships between task executions and their

consequences. They then utilize this model to allow a robot to “conjecture” whether

2This scheme is similar to the randomized controlled trials (Fisher, 1925).

11
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and why the action executed in its current state will succeed or fail.

Furthermore, Sontakke et al. (2021) introduce causal curiosity, an intrinsic reward
allowing the agent to discover latent causal factors in the dynamics of the environment
it operates in. Wang et al. (2022) use the causal dynamics model to remove unnecessary
dependencies between the state and action variables and subsequently use the dynamics
model to yield state abstractions. Sonar et al. (2021) utilize causality to learn invariant

policies.

2.2 Planning as a Sequence Modelling Problem

Planning is predominantly a reinforcement learning problem. However, as recently
demonstrated by Chen et al. (2021) and Janner et al. (2021), planning can also be
achieved beyond the RL paradigm. The mentioned approaches use sequence modelling
(for an overview, see Section 1.5) in combination with imitation learning to generate
trajectories needed to complete a given task. Such recent developments demonstrate,
that the problem of online RL is being shifted to the domain of supervised learning.
Specifically, RL components are often entirely replaced with offline behavioural cloning
(Furuta et al., 2021).

Inspired by the prior research, Wen et al. (2022) propose their own Transformer
architecture for solving cooperative multi-agent RL problems. Furuta et al. (2021)
further demonstrate that these approaches perform hindsight information matching
(HIM). They define HIM as a method concerning “training policies that can output the
rest of trajectory that matches some statistics of future state information” and propose
a Generalized Decision Transformer capable of solving any HIM problem.

The paradigm covering these approaches has been coined as return-conditioned
supervised learning (RCSL), whose central idea “is to learn the return-conditional dis-
tribution of actions in each state, and then define a policy by sampling from the dis-
tribution of actions that receive high return” (Brandfonbrener et al., 2022). A related
broader concept has been referred to as reinforcement learning via supervised learning
(RvS) (Emmons et al., 2021).

Planning leveraging the trajectory modelling in a supervised learning scheme inher-
ently requires a training dataset. For this reason, most approaches mentioned above
employ imitation learning (Zare et al., 2023; Mandlekar et al., 2021), a process in which
an expert demonstrates a desired behaviour and an agent learns by imitation from the
collected observations of expert demonstrations.

As an alternative to imitation learning, Oh et al. (2018) propose self-imitation
learning during which the agent imitates its own past good experiences. In a similar

fashion, Ghosh et al. (2019) propose a hybrid algorithm combining reinforcement and
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supervised learning in which “an agent continually relabels and imitates the trajectories
it generates to progressively learn goal-reaching behaviors from scratch”. In contrast
with self-imitation learning by Oh et al. (2018), this approach reuses and imitates
every generated trajectory, not only a small subset. This approach is also one of the

applications of the RvS paradigm mentioned above.
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Chapter 3
Aims and Task Formulation

In this chapter, we formulate the aims of our work, introduce and define concepts
and nomenclature we use throughout the thesis, and state simplifying assumptions and
delimitations applied in this work.

The central concept of this thesis is learning causal relationships. In the context
of this thesis, we operate with a concept of low-level, mechanistic causal relationships,

which we understand as a discrete-time transition function
Te: [s(t),a(t)] — s(t+1) (3.1)

where s(t),s(t+1) € S denote the initial (pre-action) and the next (post-action) state
of the environment, respectively, from a state space S; a(t) € A denotes an action
from an action space A executed at time ¢ in the state s(¢). Hence, we regard the state
s(t+1) as a consequence of the action a(t) and we refer to As,(t+1) = s(t+1) — s(¢)
as an effect of action a reflected in changes of some features of the environment state.
It should be noted that relationships characterized by 7¢ are entirely dependent on the
discrete-time environment £ = (S, .A) in which they were observed.

By this definition, we are concerned only with short-term relationships since 7T¢
satisfies Markov property as opposed to naturally perceived causal relationships that
can commonly depend on event episodes spanning for a longer duration. Addition-
ally, we study only causal relations produced by egocentric learning (Woodward, 2011;
Gérdenfors, 2006; Gardenfors & Lombard, 2018) — i.e., this concerns only relationships
observed as a product of agent’s actions, not as a product of actions performed by other
agents or different environmental entities. This delimitation also corresponds with our
focus on two most elementary categories (C1 and C2) of robot causal learning accord-
ing to Hellstrom (2021) stated in Section 1.1: sensorimotor self-learning and learning
the consequences of an agent’s own actions on objects in the environment.

Causal relationships following definitions above and exhibiting the presented prop-
erties can be deemed as sensorimotor contingencies (O’Regan & Noé, 2001; No&, 2004)

(for a brief overview of SMCs, see Section 1.1). Furthermore, from the conceptual point
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of view, we understand T¢ as a low-level intuitive theory (Gerstenberg & Tenenbaum,
2017) encapsulating the accumulated knowledge of causal relationships observed in the
environment £.

Our research has three components. As stated in Introduction, in this thesis, we aim
to explore possibilities of implementation of learning such defined causal relationships
observed in a simulated robotic environment using forward and inverse models in a
supervised learning scheme. We test and study these models in a few experiments
considering a robotic arm involved in two sensorimotor tasks corresponding with C1
and C2 causal learning categories.

Moreover, we aim to investigate the possibility of extracting relationships between
state and action features in a given environment £ using SHAP methods applied to
the trained forward model. Using this approach, we intend to provide the basis for
the dimensional reduction of the state representations and the higher-level intuitive
explainability of the environment’s behaviour.

Our last goal is to combine information about the environment’s behaviour from the
forward and inverse models with imitation learning. In this part, we explore the usage
of supervised sequence modelling using RNNs for trajectory generation and attempt
to integrate learned causal relationship knowledge into it. Here, we also propose a
semi-supervised training scheme leveraging the forward and inverse models for loss
computation. This proposition, however, is not experimentally tested in this thesis.

For all presented experiments and analyses, we only use data obtained by observa-
tions and interactions with the simulated robotic environment. As such, we assume that
robot perception is reliable and errorless and use it as ground truth for model learning
and other applications. It should be acknowledged, however, that this assumption may
not hold well in real-world conditions when the perception may be inaccurate or fail.

Such cases are beyond the scope of this research.



Chapter 4

Methods

In this chapter, we introduce the main contribution points of our research in the
form of general methods to be applied and tested in the specific experiments. For the

exact implementation details regarding these methods, refer to Chapter 5.

4.1 Synthetic Data Generation

To facilitate causal learning from observations, we collected sensorimotor data in
an automated manner using a simulated robotic environment using myGym toolkit
(Vavrecka et al., 2021). For this purpose, for each experiment, we design a simple
routine executed by an agent during the simulation, which forces the agent to explore
the state-action space to the fullest extent and thus substitutes a more complex system
providing artificial motivation, which could, however, be used instead as well. A routine
is randomized to diversify generated observations efficiently and can be formally defined
as a policy 7.

Routines can have multiple forms depending on the difficulty of causal learning we
try to facilitate. In the case of sensorimotor learning (C1), the robotic arm performs
motor babbling and records its joint configuration 8 C s and Cartesian effector position
ef C s before and after a random joint action. We hypothesize that from this data,
the forward and inverse models should be able to learn the relationship between joint
action and change in the effector position. The specific implementation of this approach
can be seen in the experiment in Section 5.1.

In the case of C2 causal learning focused on learning how the agent can affect
entities in the environment, we add an object into the environment and introduce a
routine allowing the arm to interact with it and observe how its joint actions affect
various attributes of the object. Related experiment is described in Section 5.2.

The general procedure for the synthetic data generation can be seen in Algo-
rithm 4.1.

17
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Algorithm 4.1: Synthetic observation data generation.

Input: Environment £ = (S, .A), routine policy 7, and start state s(0)
Output: Dataset of observed relations O

1 fori=1,...,N do

2 Read the current state s(t)

3 Perform action a(t) ~ 7 [s(?)]
4 | Read the state s(t + 1)

5 O; + [s(t),a(t),s(t+1)]

4.2 Forward and Inverse Models

We use the generated data to learn the forward and inverse models offline.

Forward Model
The FM is implemented by a feed-forward MLP (Fig. 4.1)3 that learns the mapping
FM: [s(t),a(t)] — 8(t+ 1) (4.1)

and thus directly models causal relations defined in Eq. 3.1. Hence, as stated in Chap-
ter 3, trained FM as well as state feature vectors s(t), §(t + 1) € S and action vector
a(t) € A are completely dependent on an environment € in which the relations where
observed and a task during which they were observed.

Specifically, in our experiments, 0(t), ef (t) C s(t), where 8(t) denotes the joint
configuration of the robotic arm (agent) and ef(¢) is its end-effector position in 3D
Cartesian space. We also represent the action vector as a(t) = 6(t) — 6(t — 1), making
our approach biologically plausible since the action is relative to a current state. This
approach contrasts with common alternative action representation as an absolute target
joint vector.

As state features can be diverse, the architecture of the FM contains separate output
heads for different state subvectors g; C §(t+1). For each output head, the loss during
the training is computed separately, and the model is optimized according to the overall
loss

£FM[§(t+1),s(t+1)]é% S MSE (@), (4.2)

9:C3(t+1)
y;Cs(t+1)

where N is a total number of output heads or defined state subvectors, MSE denotes the

mean squared error and y; is a ground-truth subvector corresponding to its prediction

A~

Y.

3Tt should be noted that the dimensionalities of hidden layers are task-specific based on the dimen-

sionalities of input and output layers. Thus, we do not list them in this general description.
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Figure 4.1: General forward model architecture.

Inverse Model

Similarly, the inverse model is implemented by a feed-forward MLP that learns the
mapping
IM: [s(t),s(t+ 1)] — a(t). (4.3)

Albeit we can assume the availability of joint configuration subvector 8(t + 1) C
s(t + 1) during the offline training from the generated dataset, we cannot during the
inference as @(t + 1) and output a(t) to be estimated are circular dependent.

For this reason, we propose two approaches to the inverse model construction. The
monolithic architecture (Fig. 4.2) consists of an MLP taking s(¢) and s'(t + 1) =
s(t+1)\0(t+1) (i.e., the original state vector without € subvector) as input during
both training and inference and thus completely ignores 6(¢ + 1) information.

However, since learning the IM mapping yields better results with @(¢ 4 1) avail-
able, we were looking for approaches that would leverage this component during the
training from the dataset but leave it free to vary unrestricted and conform to other
variables during the inference. This requirement may weakly resemble the uncontrolled
manifold (UCM) hypothesis (Scholz & Schoner, 1999), which we took inspiration from.
According to the UCM hypothesis, a controller (central nervous system) controls only
certain variables relevant to the motor task being executed and includes others in UCM
to leave them uncontrolled while trying to preserve the stability of the motor action
execution.

Hence, the second approach (Fig. 4.3) relies on the composition of the base model
learning the original IM mapping (Eq. 4.3) and the pre-network learning the mapping
[s(t),s'(t+1)] = (¢t + 1) on the generated data and pre-computing the approximate

value of @(t+ 1) during the inference. This output is concatenated with the rest of the
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4.3 Knowledge Extraction

We mentioned in Chapter 3 that one of our aims is to explore the possibility of
extracting relationships between state and action features in a given environment and
a learning session. We can obtain such information by analyzing trained FM. Our
primary focus is on analyzing feature importance for the model, which allows us to
highlight state features that the agent’s actions cannot manipulate. Such features
could be then removed, hence reducing the dimensionality of the state space for the
specific task and environment.

Contrasted with the similar approach by Lee et al. (2021) (for its brief overview,
see Section 2.1), which we take inspiration from, we do not study causal relationships
by direct systematic interaction with an environment but by using trained FM as a
proxy preserving this information.

Using the learned FM, we can determine the relevance of state features in relation
to action features by analyzing their importance. For this purpose, we use SHAP
methods (Lundberg & Lee, 2017) (for an overview, see Section 1.3) — specifically, in
the experiments, we use the DeepSHAP method only as, in our case, it is significantly
faster than the model-agnostic KernelSHAP method while yielding the same results.

When analyzing the FM using the DeepSHAP method, the method measures the
contribution of every input feature x € s(t) U a(t) to the prediction of every output
feature g € §(t + 1). We can discard results for input features x € s(t), leaving only
contributions of action features to the state features § € §(¢ + 1).

Provided contributions are local, meaning they pertain to a single data instance and
the output of the FM computed from it. However, these local results can be aggregated
across a sample of NV instances, forming a distribution of action feature contributions
to the state features. Such distribution is visualizable using partial dependence plots
(PDP) (Friedman, 2001) (e.g., Fig. 5.5).

From PDPs, we can determine whether there is any relationship between the se-
lected action and the state features and properties of this relationship. A high correla-
tion between the action feature value and its contribution to the state feature indicates
a strong impact of the action feature on the state feature. However, such a relationship
should not always be regarded as causal (Dillon et al., 2021).

Alternatively, compressed visualization in the form of a heat map can be created

using mean absolute contribution values from the distribution (e.g., Figs. 5.2 and 5.4).
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4.4 Planning

Our last contribution focuses on leveraging trained FM and IM for planning. Plan-
ning concerns the generation of a trajectory prior to its execution, and it is necessary
when an agent needs to perform more complex actions consisting of multiple steps.

Hence, it is required to solve more complex motor tasks.

Mental Simulation

As per the definitions of the forward and inverse models (Egs. 4.1 and 4.3), they
operate only with time-adjacent states and thus cannot be directly used for generating
long-term trajectories. However, considering an initial state s(0) and a sequence of

actions
7, = [a(0),a(l),...,a(T —1),a(T)], (4.4)

it is possible to perform a chained inference on the FM by recurrently generating a

successor state from the previous state:
3(t) = FM[3(t — 1), a(t — 1)], (4.5)

where §(t — 1) is a predicted state from the previous timestep and a(t — 1) € 7,. This
approach allows us to generate trajectory 7T steps ahead as long as the action sequence
T, is provided. The approach is analogous to a mental simulation humans perform

when planning and problem solving (Klein & Crandall, 1995; Jug et al., 2018).

s(0)

FM— . ..

a(1)

Figure 4.4: Relation between inputs and outputs of the forward (FM) and inverse
(IM) model during the mental simulation. The FM processes s(t) and a(t) (solid line)
and outputs a new state §(t + 1). The IM processes two time-adjacent states §(¢)
and §(t + 1) (dashed line) and outputs an action a(t). Note the circular dependency
between a(t) and §(t + 1).
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Trajectory Model

As seen above, 7, is crucial for the trajectory generation and cannot be computed
using the IM since the FM and IM outputs are circular dependent (Fig. 4.4). Hence,
T, must be generated externally, but once it is available, it can be optimized using the
FM and IM.

Our proposed approach to this problem is to generate trajectories using sequence
modelling (for overview and related research, see Sections 1.5 and 2.2, respectively).
Here, the agent would learn from the expert demonstrating more complex motor ac-
tions. In our case, the expert is the agent itself performing a programmed routine
(similar to the approach in Section 4.1) to reduce the technical difficulty of this solu-
tion. Thus, the agent performs self-imitation learning (Oh et al., 2018) by observing

itself being “guided” by the routine towards completing a task.* Trajectories
T(Z) = [8(0)7 a,(O), S<1)7 a(1)7 ceey S(T - 1)7 a’(T - 1)7 S(T)] ) (46)

where s(T') is the goal state in which the task is completed, generated this way are
collected in the dataset.
The dataset of trajectories is further used for the training of the trajectory model

(TM) defined as
TM: [s(0),s(T)] — 7s, (4.7)

where s(0) is the initial state and s(7') denotes the goal state in which the task is

complete. The TM outputs trajectory of intermediate states
7o =[8(1),8(2),...,8(T —1)] (4.8)

that are required to transition from s(0) to s(T"). Such trajectory can be subsequently

converted to an action sequence using the IM:
7o=[IM[3(t),8(t+1)]|0<t<T—1], (4.9)

where §(t), 8(t + 1) € 75, and 8(0) = s(0), §(T') = s(T).

As the TM performs sequence modelling, we implemented it as a recurrent decoder
architecture (Cho et al., 2014) (Fig. 4.5) using a single or stacked RNNs — specifically,
in our case, we used LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Cho et al.,
2014) layers. RNN layers feed the time-distributed FM generating output state §(t)
for each timestep t.

The ground-truth and generated trajectories can have variable lengths; however, as

the TM outputs constant-length trajectories, we had to ensure the same length for all

4However, conventional imitation learning using a secondary agent as an expert is possible as well.
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Time-distributed FM
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Figure 4.5: General trajectory model architecture. n, denotes the number of recurrent

layers.

trajectories. For this purpose, we edge-pad® the training ground-truth trajectories 7,
to a fixed length. Edge padding secures that all trajectories have the same length, and
the last element of every padded trajectory 75 is the last state of the original trajectory.
Consequently, the TM will output 7, with |7s| = |7s]. The generated trajectory 75 can
then be fully converted to action sequence 7, using the process from Eq. 4.9. For
an action 74(7) inferred by the optimal TM that extends the necessary length of the
successful trajectory (i.e., the action transition states of 7, that the TM output as
padding values), it should hold that

17a(i)]l, = 0, (4.10)

with ||74(7)||, denoting magnitude of the action vector.

Due to its sequential nature, the TM is trained by Truncated BPTT (Williams &
Peng, 1990). The basic TM is optimized according to the element-wise error of the
generated trajectory against the ground-truth trajectory using the loss function of the
FM (Eq. 4.2):

|7s]

L8, (o) 2 5 Lont [74(), 7). (4.11)

7] i=1
where |7,| is the length of the generated trajectory 7, (identical to |7s| thanks to the
padding, as mentioned above) and Ly [T5(7), T5(7)] denotes the error of the i-th pre-

dicted state in the trajectory 74(¢) against the i-th ground-truth state 74(¢) according
to the FM loss function.

5Edge padding consists of repeatedly appending the last element of a sequence until the sequence

has a desired length.
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FM /IM-aided Training

Although the TM can be optimized based on the element-wise error (Eq. 4.11), this
approach does not evaluate possible trajectories based on their capacity to reach goal
states. For this reason, we propose a semi-supervised training scheme leveraging the
FM and IM. The idea is that we can let the TM infer the preliminary trajectory 7
and using ground-truth s(0) and the optimal FM and IM as reference points, we can
compute the error of each generated state §(t) € 7 and the error expected goal state
of such trajectory.

Note that the approach present in this subsection, as stated in Chapter 3, is a mere
proposition, and as such, it has not been experimentally tested. However, we present it
here as a potential point of continuation of this research, and it should be subjected to
testing as part of future work. The analysis of this approach is provided in Discussion
of Section 5.3.

During the first epoch of the TM training, we propose employing the element-
wise loss function ‘C%)\/I (Eq. 4.11) facilitating the supervised learning. The purpose of
calculating the loss this way only in the first epoch is to initialize the TM to output
trajectories of states from the similar distribution as was the IM training distribution.%
Since, in the next step of the scheme, the IM consumes pairs of states to output actions,
states produced by TM with randomly initialized parameters would cause the IM to
perform out-of-distribution predictions resulting in inaccuracies.

From the second epoch onward, the error of each generated trajectory is computed
by traversing the trajectory in the time direction and evaluating each predicted state
3(t) € 7, in multiple steps (Fig. 4.6). Here, we no longer use provided ground-truth
trajectories 7,, and instead, the correcting signal is computed by the scheme itself;
thus, the learning is self-supervised (or, in a sense, unsupervised).

First, the first intermediate state §(1) is paired with the ground-truth initial state
s(0). The state pair is input to the IM inferring action @(0) responsible for the tran-
sition between s(0) and §(1). Using the FM, we then predict the consequence of the
execution of @(0) in s(0). This step has the purpose of producing a rectified state §(1)
with respect to the ground-truth initial state s(0). Assuming optimal IM and FM,
the FM in this step essentially verifies whether the predicted §(1) is achievable by the
action @(0) estimated on the basis of s(0). If §(1) is predicted accurately, discrepancy
of 5(1) against it should be minimal. Thus, we can measure the prediction error of
5(1) using the FM loss function (Eq. 4.2) as Ly [8(1), 8(1)].

For the next state §(t) € 7, the process is similar; however, instead of using s(0) as

the IM and FM input, we propose using the previous rectified state §(t — 1). This way,

6This should hold as the training dataset for the TM is generated under the same conditions as
the dataset for the IM (and FM).
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we can propagate the “correcting signal” in the form of more accurate rectified states
originating in the ground-truth s(0) throughout the whole 7;. The last generated state
3(T) should then correspond to the ground-truth goal state s(7"). The rectified state
trajectory generation procedure is formally described in Algorithm 4.2.

With the generated rectified trajectory 7,, we can now compute the prediction error
of 7, as

|75

|
L‘(Tlﬂ(%s,%s)é‘mi S Lo [0 R0 + Lo ST),5(T)] | (412

L(TIII\ZI measures the average magnitude of discrepancy of predicted trajectory state 7(7)
against the hypothetically more accurate corresponding rectified state 75(7) and also the
magnitude of discrepancy between the last rectified state $(7") and the corresponding
ground-truth goal state s(7').

We suppose the discrepancy measured here is conceptually analogous to the one
humans experience when their observation of reality is not aligned with the expecta-
tion produced by their predictive model (Clark, 2013). As den Ouden et al. (2012)
remark, such error, among other purposes, is vital to improving humans’ internal rep-
resentations as “the brain’s primary objective is to infer the causes of its sensory input
by reducing surprise, in order to allow it to successfully predict and interact with the

world”.

Algorithm 4.2: Generation of the rectified state trajectory 7. §'(t) denotes
3(t) without its joint configuration subvector 6(t) as per the implementation
of the IM described in Section 4.2.

Input: Ground-truth initial state s(0) and goal state s(7")

Output: Trajectory of rectified intermediate states 75, and the last rectified

state §(7T)

1 T < TM[s(0), s(T)]
2 5(0) < s(0)

sfort=1,...,T do

ft<T then
o | | Alt) <5

8 1
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Figure 4.6: TM /IM-aided generation of the rectified intermediate state trajectory.

Dashed lines designate the flow of the “correcting signal” from the previous timesteps.
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Chapter 5
Experiments and Results

We applied the methods described in Chapter 4 in three experiments. The first
two (Sections 5.1 and 5.2) are related to categories C1 and C2 of learning causal
relationships (Hellstrom, 2021). The structure of these experiments is similar. The
first step consists of data generation in a simulated robotic environment (Section 4.1)
provided by myGym toolkit (Vavrecka et al., 2021). The generated data is subsequently
used for training the FM and IM (Section 4.2). These models are further analyzed in
the second experiment to reveal causal relations. In Experiment 3 (Section 5.3), we
experiment with the planning methods applied to a pick-and-place task with multiple
objects in an environment.

Each experiment has a discussion section that analyzes the obtained results and
proposes related future work. The discussion of Experiment 3 also analyzes the pro-
posed FM /IM-aided training scheme for the TM that could not be experimentally

tested in this research.

5.1 Learning Kinematics

This experiment is focused on sensorimotor learning (C1). Here, we used the Franka
Emika Panda robotic arm with a gripper and 7 degrees of freedom (DoF) that per-
formed motor babbling to observe relationships between joint actions and changes in

the position of the arm’s end-effector.

Environment

The simulation ran in 500,000 steps. In each step ¢, a joint configuration 0(t) € R®
is sampled from the normal distribution with limits according to Table 5.1. The gripper
(67)7 is fixed open during the simulation as it is not a part of the experiment. A motor

command is executed in 10 substeps before proceeding to the next simulation step,

"The joints are numbered from zero.

29
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allowing a longer execution time, which results in the actual action being more similar
to the planned one. After the action execution, only the resulting configuration and
3D Cartesian effector position ef (t) = [ef,, efys ef .| are recorded, both composing the
state vector s(t) = [0(t), ef (t)].

Table 5.1: Joint motion range in Panda arm used for Experiment 1. ¢ui, and ¢uax

denote minimal and maximal angle for each joint, respectively.

0o 01 02 03 04 05 O 07

gmin [rad] -2.967 -1.833 -2.967 -3.142 -2.967 -0.087 -2.967 0.0
gmax [rad]  2.967 1.833  2.967 0.0 2967 3.822 2967 0.0

Models

The FM for this experiment uses two separate output heads — one for joint con-
figuration é(t + 1) prediction and the other for the prediction of the effector position
e}" (t+1). Each head computes a separate mean squared error used as a loss. The FM
is trained according to the overall loss Lg\ as per Eq. 4.2. For training the FM, we
used Adam optimizer (Kingma & Ba, 2014) with an initial learning rate n = 1073 for
60 epochs. The model was evaluated using 5-fold cross-validation with average mean
absolute error (MAE) for the effector position and joint configuration outputs of 2 mm
and 1.2 x 1073 rad, respectively.

For the IM, we tried both architectural approaches proposed in Section 4.2. All
model variants of both approaches use MSE as a loss function per the IM’s description.
For the monolithic approach, we trained a base IM using AdamW optimizer (Loshchilov
& Hutter, 2017). We experiment with two variants of this model, differing in the unit’s
activation function at the hidden layer: hyperbolic tangent (tanh) or ReLU. However,
the differences in resulting performance were negligible.

We also tested the base IM by inputting @(t+ 1) = 0 or sampling 6;(¢+ 1) from the
dataset as an alternative to approximating @(¢ + 1) by the pre-network. The sampling
method and inputting zero vector resulted in an MAE of 0.208 rad and 0.457 rad,
respectively.

Finally, we experimented with the pre-computation approach, which uses a base
IM trained first using Adam optimizer and the feature-generating pre-network trained
separately. After the training, the pre-network was put in front of the base model,
forming the assembly used for inference. Both approaches’ training hyperparameters

and final results can be seen in Table 5.2.
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Table 5.2: Hyperparameters and resulting MAE of approaches to inverse model con-
struction for kinematics data. Results were obtained using 5-fold cross-validation. 7
and A denote the initial learning rate and initial weight decay of Adam and AdamW

optimizers, respectively.

Approach Model Epochs  Optimizer MAE [rad]
Monolithic Base 1,000 AdamW(n = 1073, A = 0.004) 0.0120
Base 100 Adam(n = 1073) 9.594 x 1074
Pre-computation Pre-network 4,000 AdamW (n = 1073, A = 0.004) 0.0126
Assembly N/A N/A 0.0139

Mental Simulation

We subjected the trained FM to chained inference (mental simulation) as described
in Section 4.4. First, we generated 30,000 ground-truth trajectories by motor babbling

in the simulation. In each such trajectory
70 = [5(0),a(0), (1), a(1),. .., 5(9), a(10), s(10)] (5.1)

there is an initial state s(0) and ten actions, each applied on the respective previous
state. We let the FM generate a trajectory 7 by repeatedly querying the model on
the previously generated state and the respective action a(t) from the ground-truth
trajectory 7 without the model being given ground-truth state reference. The first
prediction uses ground-truth state s(0).

For k-th step ahead with 1 < k£ < 10, its error in the mental simulation is computed

as

B(R) £ 5 ST MAE [§0(1), 49 ()] (5.2)

with N = 30,000 being the number of testing samples, and either §@ (k) = 80 (k) C
+@ (k) or g9 (k) = e}(l)(k) C #9(k) as we measure the error for joint configuration
and effector position predictions separately. The same goes for the ground-truth output

component y@ (k). For the results, see Fig. 5.1.

Discussion

The results show that the FM and IM can learn the relation between the joint
configuration and the effector position with a high degree of accuracy. Using this
method, the agent is able to learn its embodiment in a more organic and flexible way,

as opposed to the classical methods of modelling kinematics. Additionally, we suppose
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that this method could be applied to a range of different robots with more DoF and
even beyond robotic arms; however, to support this claim, additional study on the

scalability of this method may be needed.
Regarding the IM, both the monolithic and pre-computation approaches demon-

strate similar performance, with the monolithic IM having a slightly lower error. Thus,
it is not evidenced that the pre-computation approach provides significant improve-
ment. However, this may not be the case for other experiments with more complex
action and state spaces where simple monolithic architecture may not be sufficient.
As shown in the results of the mental simulation experiment (Fig. 5.1), the joint
configuration prediction error exhibits linear growth while the effector position error
grows in an approximate semi-logarithmic log-linear trend. This result is an improve-

ment over our expectation of both errors growing exponentially.

Joint configuration error Effector position error

01 2 3 45 6 78 910 0 1

23 45 6 7 8 910
Number of steps ahead Number of steps ahead

Figure 5.1: Average mean absolute error and its standard deviation of joint configu-
ration and effector position prediction by the forward model during mental simulation

10 steps ahead.

5.2 Simple Intuitive Physics

This experiment aims to evaluate the proposed methods on the C2 causal learning
task proposed by Hellstrom (2021), described as “Learning about how the robot affects
the world”. In this experiment, we test how well the FM and IM can learn relationships
in the environment with an object the robot interacts with and what information can
be extracted from the trained FM using the knowledge extraction method proposed in
Section 4.3.
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Environment

The experiment utilizes the KUKA LBR iiwa robotic arm with 7 DoF and a tog-
glable magnetic endpoint as an agent. The task consisted of the arm randomly switch-
ing the magnet on and off. If it was not holding anything, the arm navigated to the
magnetized cube lying on the table, picked it up, and randomly manoeuvred with it in
the space for a random duration. After that, the magnet was turned off, the cube was
released, and the arm performed motor babbling empty-handed for a random duration.
The setting of this experiment can be seen in Fig. 5.3.

The aim of this experiment was to let the agent learn the simple physics of the
cube in the environment as well as the agent’s own kinematics. Knowledge gained by
the agent in this experiment can be thus understood as a superset of knowledge from
the previous kinematics experiment (Section 5.1). Furthermore, we wanted to verify
whether the model architectures specified in Section 4.2 can efficiently work with state
spaces of higher dimensionality.

The data-generating simulation ran in 4,000 episodes, lasting 500 iterations each.
After each iteration ¢, we recorded the final joint configuration 8(t) € R”, the end-
effector position and rotation as a 6D pose ef () = [efx, ef ys €f 25 €f iy €f 1y efm,}, ob-
ject information (its position, rotation and RGB colour) o(t) = [04, 0y, 02, Orz, Ory, Or,
OR, 0, 0p), and the magnet state mgt(t) € {0,1}. As we do not use the seventh joint
of the arm, 65 = 0.0 throughout the experiment. Object colour features were added as
control variables, randomized at the start of each episode and not manipulated during
it.

Models

As in the previous experiment, we trained an FM and a monolithic IM on the
generated data. The FM uses separate output heads to predict object position, object
rotation, colour, joint configuration, and effector position and rotation. Each head
computes a separate MSE, which is used as loss Lry (Eq. 4.2). The FM was trained
for 100 epochs using Adam optimizer (Kingma & Ba, 2014) with the initial learning
rate n = 1073, For the final results of the FM obtained by the evaluation using 5-fold
cross-validation, see Table 5.3.

We applied only a monolithic approach to the inverse model construction in this
experiment. The model is optimized according to the average of separate MSEs for joint
a; and magnet action g € {—1,+1} prediction. The optimization was facilitated by
AdamW optimizer (Loshchilov & Hutter, 2017) with the initial learning rate n = 1073
and initial weight decay A\ = 0.004 for 1,000 epochs with the final MAE of joint action
prediction 0.0077 rad and of magnet action prediction 4.56 x 1074
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Table 5.3: Errors of respective output heads of the forward model for intuitive physics

data. Results were obtained using 5-fold cross-validation.

Output head MAE Output head MAE
Object position  0.0089 m Effector position 0.008 m
Object rotation 0.0721 rad Effector rotation 0.0625 rad
Object colour 0.004 Joint configuration 0.0084 rad
Magnet state 1.3 x 1074

Knowledge Extraction

The trained FM is further analyzed using methods proposed in Section 4.3. Here, we
experimented primarily with the DeepSHAP method (Lundberg & Lee, 2017); however,
we tried to compare it with the slower model-agnostic KernelSHAP method. Both
methods analyzed the trained FM on a sample of 200 observations from the generated
dataset. The analysis with KernelSHAP took approximately 40 minutes on an AMD
Ryzen 9 5900X CPU with Nvidia RTX 3060 GPU performing the FM inference. The
analysis by DeepSHAP method with the same setup took ca. 22 seconds. Both methods
yielded the same result, so we continued further with DeepSHAP only.

The resulting full global contribution heat map output by the DeepSHAP method
for this experiment is shown in Fig. 5.4. The y-axis denotes state and action features
in time ¢ (input of the FM), and the x-axis contains state features in time ¢+ 1 (output
of the FM). The colour of each square corresponds to the magnitude of contributions
of the input features to the output features averaged across the selected sample of 200
observations.

Since our focus is mainly on determining how action features affect the state features
in the next timestep, we cropped the full contribution heat map to the action portion
and rescaled the colour map to correspond with values in the segment. This heat map
can be seen in Fig. 5.2.

Feature importance and dependencies can also be studied using feature contribution
distributions visualized as partial dependence plots. Fig. 5.5 shows a selected sample
of PDPs generated from feature contribution data. Averaged absolute contributions

across the distributions correspond to the respective values in Fig. 5.2.

Discussion

Overall, the FM and IM were able to learn the kinematics of the agent with the
same-order error as in Experiment 1. Comparing the results of the FM, the prediction
error is four times higher for the effector position and seven times higher for the joint

configuration. Apart from differences in the training distributions for this experiment
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Figure 5.2: Action portion of the contribution heat map generated by DeepSHAP
method on the forward model showing magnitude of contribution of specific actions to
output features. This heat map is a cropped version of Fig. 5.4 with a rescaled color

map.

and Experiment 1, the higher prediction error might also be caused by the optimizer’s
inability to further optimize the more complex architecture of the FM in this experi-
ment. The general solution for this problem might be performing an exhaustive grid
search to find the best combination of hyperparameters suitable for the specific task the
FM tries to learn. For the IM, the overall joint error is smaller than in Experiment 1
(0.0077 rad against 0.012 rad). In summary, we verified that the FM and IM can learn
environment-related relations beyond those body-related (i.e., kinematics of the agent)
with a relatively small error (Table 5.3).

Regarding knowledge extraction, several observations can be made from the analysis
results. The Fig. 5.2 shows, for instance, that joint 6 is not used in the sampled
observation data as no action feature correlates with the feature 6¢. In addition, the
object’s colour is irrelevant in this experiment as no action can affect it and thus could
be removed (or ignored) from the state space. On the other hand, all action features
(except ag) affect most object features. This low-level knowledge could be useful for
causal analysis at higher levels.

Furthermore, in the presented sample® of PDPs in Fig. 5.5, it can be observed that
action feature ay (movement of joint 0) has a substantial impact on state features 6y
(state of joint 0) and o, (object position on the global x-axis). These observations
intuitively correspond with the fact that the change of the state of joint 0 occurs in the
observations always when there is a movement of that joint, and as joint 0 is a base

joint rotating the arm around its vertical axis, the object’s x-axis position commonly

8 All the generated PDPs can be found in Appendix A
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changes if the cube is attached to the magnetic endpoint. The second relationship is
illustrated in Fig. 5.3.

Moreover, from the bottom-left PDP, we can see that action feature as does not sig-
nificantly correlate with the contribution to state feature og (a blue colour component
of the object) with contribution centred around 0.0 indicating as does not profoundly
impact op. Finally, the action of the magnetic endpoint a,,g is prevalently null as
the state of the magnet does not often change between iterations. However, when it
does, it significantly contributes to o, (object position on the z-axis) since turning the
magnet on (@, = +1) or off (a;,,: = —1) in this experiment is followed by lifting the
object in the air or dropping it on the table.

It should be acknowledged that these results stem from the correlations between
the features observed in the data, and although they may capture causal relationships,
they should not always be treated as such.

These findings are obviously trivial as the experiment is relatively simple. However,
as the FM and IM are scalable to larger state spaces, this method should be capable of
revealing relationships even in more complex cases where the relations are not easily
detectable.

In relation to this experiment, it could be interesting to implement the FM and IM
using Kolmogorov-Arnold networks (Liu et al., 2024) instead of conventional MLPs. As
mentioned in Section 1.2, the authors of KANs claim they possess several interesting
properties, including interpretability. This property could thus simplify knowledge
extraction as we could remove the currently used SHAP method from the pipeline, and

we would be able to perform the analysis using the FM alone.

Figure 5.3: Setting of Experiment 2 with illustrated relationship between the change

of the rotation of the joint 0 (6y) and movement of the object along the global x-axis

(02)
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5.3 Planning

This experiment aims to test approaches for trajectory generation presented in
Section 4.4. Specifically, we evaluate the trajectory model optimized using supervised
learning on trajectories generated by self-imitation learning. As already mentioned,
we do not evaluate the proposed FM /IM-aided training scheme, but we analyze it in

Discussion.

Environment

For this experiment, we use a similar setup as in Experiment 2 (Section 5.2). We
used the same KUKA LBR iiwa robotic arm with a magnetic endpoint. The environ-
ment contained two cubes lying on the table, and the arm was performing a pick-and-
place task consisting of picking one cube and either placing it in a random position on
the table or on top of the other cube. The purpose of this was to generate trajectories
of picking and placing an object (as part of the self-imitation learning) for training the
TM and to generate observations of causal relationships as was done in the previous
experiments. Apart from kinematics and the behaviour of an object in the environ-
ment, these observations also captured interactions between the cubes, such as the top
cube falling over when placed improperly.

The simulation generating data ran in 12,000 episodes of at least 13 and at most
30 iterations. Each episode began with the empty-handed arm approaching a cube
and ended when the cube was placed at its designated position. After the end of
each episode, a new environment was constructed with randomly placed objects and a
randomly selected target position.

After each iteration ¢, same as in Experiment 2, we recorded the final joint config-
uration 6(t), the end-effector 6D pose ef (t) and the magnet state mgt(t). The object
information vector was recorded for each cube and, in this experiment, consisted only of
the object’s 6D pose 0;(t) = [0y, 0y, 0, Orz, Ory, 0] The state vector was assembled per
each timestep as s(t) = [01(t), 02(t), (), ef (t), mgt(t)] and each episode’s trajectory

was constructed as a sequence of such states and action vectors in between.

Models

First, the FM and the monolithic IM were trained, the same as in Experiment 2.
While we do not directly use these models in this experiment, they could be used
for additional post-processing of the generated trajectory (e.g., to generate an action
sequence from the state trajectory). Thus, we wanted to test how well these models
perform for a task such as this.

The FM used separate output heads to compute both objects’ positions, rotations,
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the arm’s joint configuration, and effector position and rotation. The FM was trained
for 60 epochs using Adam optimizer (Kingma & Ba, 2014) with the initial learning
rate n = 1073 according to the standard FM error Lry (Eq. 4.2). The final results of
the FM training for this experiment evaluated using 5-fold cross-validation are listed
in Table 5.4.

The monolithic IM was trained for 100 epochs using AdamW optimizer (Loshchilov
& Hutter, 2017) with the initial learning rate n = 10~ and the initial weight decay A =
0.004. The IM was optimized according to separate MSE for joint and magnet action
prediction as in the previous experiment. The final MAE of joint action prediction was

0.0018 rad and of magnet action prediction 3.15 x 107°.

Table 5.4: Errors of respective output heads of the forward model for planning ex-

periment. Results were obtained using 5-fold cross-validation.

Output head MAE Output head MAE
Object 1 position 0.0035 m Effector position 0.0023 m
Object 1 rotation 0.0111 rad Effector rotation 0.0089 rad
Object 2 position 0.0036 m Joint configuration 0.0037 rad
Object 2 rotation 0.0138 rad Magnet state 0.0045

Next, the TM was trained on the ground-truth trajectories generated in the simu-
lation. The dataset of 12,000 trajectories was split into training and testing subsets of

9,600 and 2,400 trajectories, respectively (80:20 size ratio).

Considering the TM’s general architecture (Fig. 4.5), as part of a small comparative
study, we experimented with the number of recurrent layers of the decoder n, € {1,2},
number of units in each recurrent layer and the immediately connected fully-connected
layer d, € {100,200}, and the type of the recurrent units (LSTM (Hochreiter & Schmid-
huber, 1997) or GRU (Cho et al., 2014)). Each variant was trained on the training
subset for 1,000 epochs using Adam optimizer with n = 1072 according to the £(TII)\/I
loss (Eq. 4.11) based on the errors of separate output heads of the appended time-
distributed FM. The output heads are the same as in the case of the FM for this

experiment.

All the TM variants were tested on the testing subset. Table 5.5 lists the variants
with their respective hyperparameters and the resulting error according to E(TI%\/I The
mean absolute error per output head of each tested variant measured during the same

testing procedure can be seen in Table 5.6.



5.3. PLANNING 41

Table 5.5: Comparison of the trajectory model variants. n, denotes the number
of recurrent layers in the decoder, and d, is the number of units in them. Overall
L(TI1)\/1 denotes the error of the respective variant on the testing subset computed using
Eq. 4.11.

Variant Recurrent layer n, d, Overall E(TI%\/[

#1 LSTM 1 100 0.0135
#2 LSTM 1 200 0.0112
#3 LSTM 2 100 0.013

#4 LSTM 2 200 0.0118
#5 GRU 1 100 0.017

#6 GRU 1 200 0.0204
#7 GRU 2 100 0.0137
#8 GRU 2 200 0.0118

Table 5.6: Comparison of the errors of respective output heads for the trajectory

model variants listed in Table 5.5.

MAE per variant
Output head #1 #2 #3 #4 #5 #6 H#HT #8

Obj. 1 position [m|  0.0077 0.0071 0.0082 0.0085 0.0086 0.0095 0.0074 0.0072
Obj. 1 rotation [rad] 0.0151 0.013 0.0137 0.0117 0.0161 0.0255 0.0143 0.013

Obj. 2 position [m|  0.0079 0.0076 0.0083 0.0083 0.0083 0.0131 0.0083 0.0073
Obj. 2 rotation [rad] 0.0152 0.0112 0.0148 0.0121 0.0149 0.0116 0.0155 0.0105
Eff. position [m] 0.0072 0.0068 0.008 0.0089 0.0078 0.0082 0.0072 0.0063
Eff. rotation [rad| 0.0106 0.0094 0.0108 0.0089 0.0118 0.012 0.0102 0.0082
Joint config. [rad] 0.0097 0.008 0.01 0.0089 0.0101 0.0099 0.0096 0.0075
Magnet state 0.0156 0.0156 0.016 0.0131 0.0215 0.0181 0.0194 0.0155

Discussion

The FM and IM achieved significantly better performance (Table 5.4) than in Ex-
periment 2 and comparable performance as in Experiment 1. This result is probably
caused by using differently structured data for the training of the FM and IM. While
in the previous two experiments, training data were fully or partially generated by the
motor babbling, in this case, the observations originated only from the arm performing
the pick-and-place task without any action perturbations. Hence, the observations in
the dataset are limited, and the data contains simpler and straightforward patterns,

whose learning is generally easier. As both models were evaluated by cross-validation,
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the testing data is from the same distribution and thus does not pose such a challenge.
We hypothesize that evaluating these models on a broader, more general dataset would
produce inferior results.

This is an example of the differences between specialized and general FM and IM.
Specialized models trained on a dataset with a more limited domain may perform
better for a dedicated task than general, more robust models. However, applying the
specialized models to more diverse tasks may naturally result in poor performance.

Regarding the TM, we can conclude that the model was able to learn to generate
accurate state trajectories for solving the posed pick-and-place task. As mentioned in
Section 4.4, such state trajectory can be input to the trained IM, generating an action
sequence. Considering the accuracy of the IM in this experiment and the accuracy
of generated state trajectories, we assume that the generated action sequences should
be accurate as well, especially considering the contained actions are small-scale and,
thus, there is not ample space for error. We did not, however, qualitatively test the
planning deployed in the environment and focused instead on quantitative evaluation
of the approach, so we left the qualitative study for future work. Additionally, the
planning approach could be evaluated on multiple diverse tasks with varying average
trajectory lengths, as this single experiment does not investigate this aspect.

The performed small-scale hyperparameter search for the best architectural variant
of the TM did not produce a significantly superior model. In Table 5.6, the variant #8
consisting of the 2-layer 200-unit GRU decoder dominates in performance for most of
the output heads. However, the differences in the error are relatively insignificant when
compared with other model variants. As these experiments primarily serve as a proof of
concept, we did not perform extensive hyperparameter search and optimization of the
models. Nevertheless, from the differences in performance between the present variants,
we assume further scaling of the model will not result in a notable improvement.

In Section 4.4, we proposed a training scheme for the TM consisting of the IM and
FM rectifying each state of the generated trajectory based on the previous rectified
or ground-truth state and computing the prediction error as an average magnitude
of discrepancy between the generated and rectified state. As stated in Chapter 3
and Section 4.4, we did not experimentally test this approach as part of this thesis,
and we leave it as a significant point for future work. Despite that, we are going to
provide a brief analysis of this approach’s advantages and potential problems.

The presented training scheme is semi-supervised, as only the first optimization
epoch is supervised based on the ground-truth trajectories. Thus, it could require
less data as it is only used to initialize the model. If this approach works well, as a
prospective future work, the data efficiency of this method could be investigated, as
could the possibility of a few-shot learning.

As mentioned in the description of the scheme, the primary purpose of it is to
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facilitate trajectory generation learning only with respect to a goal state a generated
trajectory should achieve. This should, hypothetically, give space to generate trajec-
tories that are out of the training data distribution and dissimilar to those observed
by the agent during the imitation learning process yet still valid as they achieve a
desired goal state. One problem that may arise is that due to the conventional super-
vised learning in the first epoch, the TM is biased in generating trajectories from the
distribution, which is similar to the training one. This is not necessarily undesired,
as generated trajectories cannot be completely random (as explained in the scheme
description). However, the introduced bias should not be profound as it would give
very little space for the optimization by this scheme in the second step. The amount of
data used during the first supervised step of the scheme needed for the balanced bias
should be studied in an empirical study.

One of the obvious problems of this approach is the disproportionality of the amount
of input data against the output. While this method aims at correcting an output tra-
jectory and providing feedback on the quality of the prediction, it heavily relies on the
ground-truth initial state s(0) used for initializing the correcting signal, which should
be then propagated throughout the whole trajectory, contributing to the rectification
of each of its states. Nonetheless, however this method may be efficient and the IM
and FM in the pipeline accurate, it is safe to assume that such signal quality would
eventually decay with a growing length of the processed trajectory. We deem this is
a similar problem as in the case of learning long-term dependencies in RNNs (Bengio
et al., 1994) or, more generally, vanishing gradient problem (Pascanu et al., 2013),
where the magnitude of a gradient forming an error signal gradually decreases as it is
backpropagated through the neural network. In future work, the performance of the
proposed method could be studied as a function of generated trajectory length to estab-
lish how feasible this method is for optimizing the TM for tasks requiring trajectories
of various lengths.

Another problem we identify is that this training scheme is relatively time-expensive
as it requires performing the inference on two neural models (FM and IM) for each state

in the generated trajectory as opposed to a simple element-wise loss (e.g., Eq. 4.11).
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Conclusion

This thesis explored learning causal relationships observed in a simulated robotic
environment using the forward and inverse models. In the methods, we proposed sev-
eral approaches to implementing the FM and IM, taking inspiration from mechanisms
observed in human cognition. Further, we explored the means of analysis of these
models to extract useful information about the environment and the task during which
the causal relations were observed. In our third contribution point, we reused some of
the introduced methods in constructing a system, performing planning to solve simple
manipulation tasks.

Most of the proposed methods were tested in a series of experiments with a sim-
ulated robotic arm acting as an agent. The first experiment concerned learning the
agent’s kinematics by observing the causal relationship between the movement of its
joints and the position of its end-effector. Here, we confirmed that the FM and IM can
learn such a relation with high accuracy, and thus, these artificial models are capable
of sensorimotor learning.

In the second experiment concerning learning simple intuitive physics by interaction
with an object, we demonstrated that these models could further learn environment-
related relationships beyond those body-related ones. Moreover, we showed that we
can visualise the learned relations using the proposed knowledge extraction methods.
We proposed that information obtained this way can be utilized to determine relevant
state features, serving as a basis for dimensional reduction of the state space. Our
method can be applied to scenarios that are much more complex and much harder for
humans to understand, and thus, it can be an important tool for extracting causal
knowledge.

In the final third experiment, we tested how well the proposed trajectory model
can learn to generate trajectories guiding the agent towards completing a pick-and-
place task. Here, we quantitatively evaluated different configurations of the TM and
showed that the proposed approach can accurately generate trajectories based on only
the initial and goal states. Related to this, in the methods, we propose an alternative
semi-supervised training scheme for the TM, which could be, hypothetically, able to
optimize the model based on the initial and goal state alone without a large set of

ground-truth trajectories provided. However, the verification of the viability of this
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method is a subject of future work.

Overall, in the future, apart from testing the training scheme mentioned, we would
like to evaluate the proposed methods using a more complex and diverse set of experi-
ments to confirm that these methods are applicable in general. Furthermore, we would
like to modify these approaches for learning higher-level causal relationships beyond
category 2 of the classification by Hellstrom (2021). For more detailed future work
propositions, refer to the discussion sections of each experiment in Chapter 5.

To conclude, we believe we provided a relatively large set of methods primarily
leveraging learning causal relationships applicable to different tasks in robotics and
that, in the future, these methods could contribute to the development of common-

sense understanding in artificial intelligence and robotics.
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Appendix A

Contents of the Electronic Attachment

The electronic attachment of this thesis contains the source codes of the imple-
mentations of the proposed methods and their evaluation in the experiments. It also
contains additional plots generated from the experiments and other results. For a

detailed overview of the structure of this attachment, refer to README.md.
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