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Abstract

Research in neuroscience over the past few decades has shed new light on glial cells
which were originally considered as purely passive supportive cells. New data provide
convincing evidence that astrocytes, a group of glial cells, possess important physiological
functions distinguishing them from passive cells. Currently, it is known that astrocytes are
involved in the neuronal activity regulation and the synaptic transmission. Similar to neu-
rons, astrocytes form large networks (glial syncytium) allowing them to communicate with
one another over the long distances using Ca2+ signals, however on a longer temporal scale
compared to neurons. Since this is a relatively new area of research in neuroscience, little
attention has been paid to the computational modeling using connectionist approaches.
In this thesis, we investigate the potential role of artificial astrocytes in both feedforward
and recurrent neural networks. The role of the astrocytes is to listen to and to modulate
neurons based on their past activity. By systematic analysis we evaluate the performance
of all proposed models on various tasks including data classification and memory capacity.
In almost all cases we found hyperparameters allowing the models with astrocyte units
to outperform traditional neural networks. Our results suggest that the field is worthy of
investigation and deserves further research.

KEYWORDS: glial cells, astrocytes, computational models, artificial neural networks



Abstrakt

Neurovedný výskum za posledné dekády vniesol nové svetlo v nazeraní na gliové
bunky, ktoré boli odjakživa považované výlučne za pasívne, podporné bunky. Nové štúdie
prinášajú presvedčivé dôkazy, že astrocyty, skupina gliových buniek, disponujú dôležitými
fyziologickými funkciami, ktoré ich odlišujú od pasívnych buniek. Aktuálne údaje naz-
načujú, že astrocyty sú aktívne zapojené v neurálnej regulácii a synaptickej transmisii.
Podobne ako neuróny, astrocyty formujú siete (gliové syncytium) pomocou ktorých na-
vzájom komunikujú na veľké vzdialenosti použitím Ca2+ signálov, avšak na dlhšej časovej
škále v porovnaní s neurónmi. Pretože ide o relatívne novú oblasť výskumu v neurovede,
málo pozornosti sa doteraz venovalo výpočtovému modelovaniu použitím konekcionistick-
ých prístupov. V tejto dizertačnej práci skúmame potenciálnu úlohu umelých astrocytov
ako v dopredných, tak v rekurentných neurónových sieťach. Úlohou astrocytov je počúvať
a modulovať neuróny na základe ich predchádzajúcej aktivity. Systematickou analýzou
vyhodnocujeme úspešnosť všetkých navrhovaných modelov na rôznych úlohách ako sú
klasifikácia dát, či pamäťová kapacita. Takmer vo všetkých prípadoch sme našli hyper-
parametre, ktoré umožňujú modelom s astrocytmi prekonať tradičné neurónové siete. Naše
výsledky naznačujú, že oblasť je hodná pozornosti a zaslúži si ďalší výskum.

KĽÚČOVÉ SLOVÁ: gliové bunky, astrocyty, výpočtové modely, umelé neurónové siete
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Introduction

According to current knowledge of neuroscience, brain tissue consists of two cell popu-
lations: neurons and glia. The population of neurons is characterized by the ability to
generate action potentials, whereas glia have been regarded as non-functional and sup-
porting cells for several decades. Neurophysiological findings in the 1990s began to shift
this view dramatically in a new direction, conveying evidence that glial cells are actively
involved in modulation of neuronal excitability and synaptic plasticity, making them no
longer merely passive cells.

Firstly identified in the 19th century, glial cells significantly contribute to the total
brain mass with around 50% and the glia:neuron ratio in mammalian brains about 1:1
(Azevedo et al., 2009). The population of glia is commonly subdivided into four major
groups: oligodendrocytes, microglia, ependymal cells and astrocytes. According
to recent evidence, the first three types are closely specialized and account for myelination,
immunity and cerebrospinal fluid production, respectively. Astrocytes, the most abundant
and probably the most complex group, play a significant role in cognitive functions, tra-
ditionally attributed solely to neurons, such as learning and memory, information transfer
and processing. Although not being able to be excited electrically and to generate action
potentials as neurons do, they are incorporated in network glial syncytium where upon
being excited chemically they propagate Ca2+ signals through the gap junctions.

In order to better understand these low-level mechanisms, computational modelling is
often employed which recently has become an essential part of neuroscience. Such models
may provide testable predictions for processes that are built upon these mechanisms such
as neuronal regulation, or synaptic plasticity. Better knowledge about astrocyte–neuron
cooperation may also provide building blocks for studying the regulatory capability of glial
syncytium on a larger scale. Computational models of ANNs extended with astrocytes
may not only be used as an interesting novel concept, but can mainly provide space
for hypotheses to explain the potential roles of glia in biological neuronal circuits and
networks.

1



Introduction 2

The primary goal of our dissertation thesis is to study neuron–astrocyte coupling in
connectionist systems. Inspired by contemporary evidence from neuroscientific research of
astrocyte physiology and their interactions with surrounding neurons, and work by Ikuta
et al. (2010), we propose several models of feedforward and recurrent artificial neural
networks and evaluate their performance in classification tasks and memory capacity.

The dissertation thesis is organized as follows. In Chapter 1 we present a brief intro-
duction to the history of glial cell discovery and recognition. In Chapter 2 we provide
a morphological description of various types of glia. In Chapter 3 we summarize related
work related to connectionist systems and artificial astrocytes. In Chapter 4 and Chap-
ter 5 we propose feedforward and recurrent neural network extended by astrocyte units,
respectively and analyze their performance on various tasks. We conclude our thesis and
present the future work in Conclusion.



Chapter 1

Introduction to Glia

1.1 Origin of the glial cell research

Glial cells, also known as neuroglia, or simply glia1, were first named by Rudolf Virchow
(Virchow, 1856) and in later work (Virchow, 1858) defined and described as a substance
filling the space between neuronal cells that holds them together and gives the brain
structure its own shape. Virchow was not the first to study glia because only a few years
ago Müller (1851) had recognized and described the so-called Müller glia in the retina
where they play a supportive role for local neurons.

Deiters (1865) later showed that glia are separate cells that are not part of the neu-
rons by claiming that cells that do not have axons cannot be neurons. Next significant
advancement was made by Golgi (1871) who identified a separate class of star-shaped glia;
however the name astrocytes was given to them by Lenhossék (1895). In the meantime,
Golgi (1885) also developed a morphological description of glial cells and showed that
there was a great diversity and differentiation of glia. He identified glia that make contact
with blood vessels and glia that fill the space between the neuronal fibers. Later, Golgi
together with Ramón y Cajal developed imaging techniques to create detailed images of
neurons and glia. Their illustration of astrocytes can be seen in Fig. 1.1.

Since the role of glial cells was not yet known, there were several speculations and
hypotheses about their function in the nervous system. Golgi (1885) assumed that glia
played a single role of nourishing the neurons by forming intermediate links between vessels
and neurons. Ramón y Cajal (1897) disagreed with this theory and, according to him, the
role of glia was merely to provide electrical insulation, which was originally a hypothesis
1the name comes from the Greek language, in which glia = glue

3



Chapter 1. Introduction to Glia 4

Figure 1.1: Original Cajal histological images of protoplasmic astrocytes using a) Golgi-
Cox method, b) Golgi-Kenyon method, c) formol-uranium nitrate method, d) gold chlo-
ride sublimated method, e) ammoniacal silver oxide method and f) silver carbonated
method. Taken from García-Marín et al. (2007).
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developed by his brother (Ramón y Cajal, 1891). The German physician Weigert (1895)
had a different view of the matter and stated that neuroglia play a structural role in filling
and occupying the space between the neurons. Cajal’s student, Pio del Río Hortega, later
identified and described other important glia types: microglia that play a immunity
role in the central nervous system (Del Río Hortega, 1920) and oligodendrocytes that
provide insulation of neuronal axons (Del Río Hortega, 1921).

At the beginning of the 20th century, scientific interest in glia became silent and re-
oriented to neurons due the acceptance of the neuron doctrine (Waldeyer, 1891), which
reports that only neurons are the basic anatomical and physiological units of nervous sys-
tems worth studying. The idea that there was an active interaction between neurons and
glia came from Schleich (1894), who insisted that glia and neurons are equally important
cells in terms of the information transfer and processing in the brain and demanded their
integration into the neuron doctrine. However, this endeavour ended unsuccessfully.

Consequently, glia research stagnated for more than half a century and only in the
1960s the second wave of research started. The first evidence that glia respond to neuronal
activity came from Hydén and Egyhazi (1963), where the authors discovered biochemi-
cal changes in glia that occur during learning. The work had several shortcomings and
faced extensive criticism, but it was the first to propose the existence of the concept of
the tripartite synapse (more in Section 1.5), which later served as an inspiration for
others. Next evidence came from Orkand et al. (1966), who discovered a negative resting
membrane potential in glia, permeability to K+ ions, the existence of gap junctions
between glia, and the fact that neurons can depolarize nearby glia membranes (shown in
Fig. 1.2). In addition, the authors fiddled with an idea that K+ accumulation is a form of
cell signaling, which was later indeed confirmed. Another significant advance was made by
Brightman and Reese (1969), who observed and described that glia form networks and are
integrated in one large structure called glial syncytium. It should be noted, however,
that the general view of glia was not changed at that time and they were still perceived
exclusively as passive supportive and nutritional cells.

During the following two decades neuroglial research declined and was revived at the
turn of the 1980s as a result of appearance of modern physiological techniques such as the
patch-clamp method and the use of fluorescent dyes. Before that, glia were still considered
passive, since they were assumed that they lack receptors for neurotransmitters and that
depolarization occurs because of the increased extracellular level of K+. Kettenmann et al.
(1984) found, using these techniques, that this notion is not accurate and showed that
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Figure 1.2: Glial cell membrane depolarization by neuronal impulses. The upper signal
represents a change in a membrane potential over a single neuronal stimulus, whereas the
lower signal represents a change by three neuronal stimuli. Taken from Orkand et al.
(1966).

cultured astrocytes can undoubtedly respond to the presence of glutamate, GABA and
aspartate (more in Fig. 1.3). The idea that astrocytes are not merely supportive cells, but
“listen” to and respond to synapses by inducing biochemical changes was slowly coming
to the surface. Last but not least, next important advance was made by Cornell-Bell
et al. (1990), who demonstrated that activation of glutamate receptors on the astrocyte
membrane induces an increase in the level of free intracellular Ca2+ that is propagated to
adjacent astrocytes (more in Section 1.3).

1.2 Biophysical properties

Mature macroglia (astrocytes and oligodendrocytes) have a resting membrane potential
of −80 to −90mV due to the high K+ permeability that holds membrane potential near
potassium equilibrium. Electrical depolarization of cell membranes induces electrotonic
changes in membrane potential and ion distribution (at the membrane level) is similar to
other cells: K+∼120mM2, Na+<10mM, Ca2+<0.1µM. The difference is in Cl− ions whose
concentration in astrocytes and oligodendrocytes is significantly higher (∼30–40mM).

Thus, it is clear that glia express all basic ion channels including K+ (most common),
Na+, Ca2+, Cl− and as well, the same receptors (ionotropic and metabotropic) as neurons
do. Astrocytes mainly express glutamate receptors (GluRs), purine receptors, GABA re-
2mM = millimolar
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Figure 1.3: Depolarization of cultured astrocyte membrane by application of various neu-
rotransmitters in the absence of neurons. The membrane potential changes with the
presence of GABA, aspartate, glutamate, but not glycine. Taken from Kettenmann et al.
(1984).

ceptors, and other various neuropeptides, cytokines and chemokines. Oligodendrocytes
express fewer types and include mostly metabotropic P2Y purine receptors, adenosine
receptors (A1), ionotropic GluRs (iGluRs). In microglia the most common are purine re-
ceptors, iGluRs, metabotropic GluRs (mGluRs), GABA receptors, choline receptors. Fi-
nally, Schwann cells express purine receptors and, sporadically, endothelin and tachykinin
receptors (Teichberg, 1991; Gallo and Russell, 1995).

1.3 Glial syncytium

Similarly to neurons in the nervous system interconnecting and forming neuronal circuits
and networks, macroglia are also linked together and integrated in network called glial
syncytium. The main difference is in the modality of the cellular connections. Neurons
communicate with each other by synapses in which the electrical signal in the presy-
naptic neuron is converted into a chemical signal mediated by neurotransmitters that are
bound to postsynaptic neurons, which in turn trigger an electrical response or activation
of secondary messengers. Glia, on the other hand, are not linked by synapses, but by gap
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junctions, which are specialized intercellular connections, where the cellular membranes
are significantly close to one another (2–2.5 nm) and the molecular transfer is mediated by
intercellular channels, the so-called connexons, which are essentially large pores formed
by six connexin proteins, as shown below in Fig. 1.4.

Figure 1.4: Illustration of gap junction between two glia membranes which consists of var-
ious connexons. Each connexon can be of either homotypic (between the same cell type,
e.g. astrocyte–astrocyte), or heterotypic (between different cell types, e.g. astrocyte–
oligodendrocyte). In addition, each connexon may be made from the same type of protein
(homomeric), or different types (heteromeric). Taken from Kumar and Gilula (1996).

The biophysical behavior of connexons is very similar to the standard ion channels,
which operate in two states (open and closed) and can switch rapidly between them.
Ion permeability is modulated by several factors such as cytoplasmic Ca2+ concentration,
acidification, or secondary messenger activation (cAMP, PKC).

Concentration of gap junctions is highest in astrocytes and in the grey matter. Two
astrocytes are linked by approximately 230 junctions and one astrocyte connects with
50–100 adjacent astrocytes. Charles et al. (1991), in their work using fluorescent tech-
niques, illustrated the activation of astrocyte syncytium in time as shown in Fig. 1.5.
Glial syncytium is not ubiquitous in the brain and the degree of interconnection varies
across regions. For example, all cortical astrocytes are integrated in syncytium, whereas
only 80% are integrated from the visual center and 50% from the hippocampus. Oligoden-
drocytes form connections with other oligodendrocytes and astrocytes, but the degree of
connectiveness is substantially lower and one oligodendrocyte has only 2 to 4 neighbors.
Microglia in syncytium are not integrated and do not create connections with one another
(Verkhratsky and Butt, 2007).
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Figure 1.5: Imaging of astrocyte activation within syncytium in time using fluorescence
microscopy. Mechanical stress of single astrocyte induces an increase in the Ca2+ concen-
tration by influx from extra- and intra-cellular storage, which is subsequently spread into
the entire syncytium. Taken from Charles et al. (1991).

1.4 Calcium signaling

The role of calcium ions is ubiquitous in cellular systems and well described. They oper-
ate as intercellular messengers important in regulating nearly all known cellular processes.
There are, however, exceptions such as the action potential propagation, which depend
exclusively on Na+ and K+ ions and does not require Ca2+. Physiological responses in
the detection of these ions are mediated by multiple cellular sensors, such as various en-
zymes with different affinities for the Ca2+ ions. These enzymes are distributed differently
amongst different regions of the cell, thus forming local Ca2+ gradients that regulate Ca2+

dependent processes. The actual molecular systems responsible for controlling intercel-
lular Ca2+ homeostasis and generating calcium signaling are limited to different protein
families represented by Ca2+ channels and transporters.

Free intracellular calcium is only a small fraction of total calcium in the cell. Because
the Ca2+ concentrations are unevenly distributed, a potential electrochemical force is
generated that imposes Ca2+ from high-concentrated to low-concentrated regions, which
are separated by biological membranes. The primary ways in which Ca2+ moves from one
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region to another are mediated by using voltage-dependent or ligand-dependent channels
that have different activation mechanisms and different calcium permeability. Glia respond
to various electrical, mechanical and chemical stimulation (such as neurotransmitters,
neuromodulators and hormones) by increasing the intracellular Ca2+ level. These Ca2+

signals can then pass through gap junctions to neighboring glia without any decrease in the
concentration. In addition, Ca2+ responses are consistent with changes in the extracellular
environment, indicating Ca2+ mediated form of glial excitability. The Ca2+ elevations
propagate throught syncytium as a wave with the velocity of 10-20 µms−1, which travels
approximately 100 µm (Finkbeiner, 1995). Blocking gap junctions completely stops Ca2+

wave propagation (Enkvist and McCarthy, 1992).
In the grey matter of the central nervous system, astrocytes are able to sense synaptic

activity. By expressing the same set of receptors as postsynaptic neurons do and because
their membranes are closely associated with the synapses, astrocytes can be co-excited by
synaptic transmission. Evidence suggests that the electrical stimulation of neurons in the
hippocampus can initiate action potentials in postsynaptic neurons and also Ca2+ con-
centration increase in neighboring astrocytes (Dani et al., 1992). Alvarez-Maubecin et al.
(2000) showed using glial cell measurements of Locus Coeruleus in mice, that changes in
membrane potential are synchronized with the frequency of neuronal oscillations (Fig. 1.6).

1.5 Tripartite synapse

In the grey matter, astrocytes are intimately associated with neuronal membranes and
synapses in a way that the astrocytes encircle completely or partially presynaptic and
postsynaptic terminals. It is known that about 60% of all synapses in the hippocampus
are surrounded by astrocyte membranes (Bushong et al., 2002). The percentage is even
higher in the cerebellum where almost all synapses of Purkinje cells are matched with
membranes of Bergmann’s glia, a type of astroglial cell in the cerebellum, where each
individual Bergmann glia encircles 2000 to 6000 synaptic connections (Reichenbach et al.,
1994). These glia–neuron connections are relatively intimate as the average spacing of
two neighboring membranes is as close as 1µm suggesting that the glial cells are able
to capture the neurotransmitters secreted at the synapse and provide a corresponding
response. This process is initiated by receptors located on the glial membrane, which are
expressed according to the dominant neurotransmitters at the synapse. In this sense, the
glial cell resembles a postsynaptic neuron to some extent.
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Figure 1.6: Rhythmic oscillations of membrane potential of neurons and glia in Locus
Coeruleus. The neuronal activity frequency was 0.51 Hz, whereas the glial response fre-
quency was 0.58 Hz matching the former very well. Taken from Alvarez-Maubecin et al.
(2000).

Realizing such a close morphological connection between glia and neurons gave birth
to a concept of the tripartite synapse (Fig. 1.7). According to the concept, a synapse
consists of three equally important components: i) a presynaptic neuron, ii) a postsynaptic
neuron, and iii) a glial cell. The neurotransmitter released from the presynaptic neuron
activates receptors in the postsynaptic neuron and simultaneously in the glial cell. While
in the former the well-known postsynaptic potential is initiated, in the latter, on the other
hand, the Ca2+ signal arises and begins to propagate to adjacent glial cells through the
glial syncytium. This concept is extensively supported by experimental evidence that
demonstrates the existence of neuron-to-glia and glia-to-neuron connections.

Neuronal stimulation initiates Ca2+ astrocyte signaling in vitro and in situ. Remark-
ably, astrocytes can differentiate between intensities of neuronal activity and the frequency
of Ca2+ oscillation is induced by synaptic activity caused by neuronal stimulation. Low-
frequency stimulation of Schaffer collateral in the CA1 region of the hippocampus reveals
no changes in astrocytes, but the high frequency forces astrocytes to resonate with neurons
(Honsek et al., 2012). Similarly to neurons, astrocytes possess cellular memory in which
prolonged potentiation is stored after intense synaptic stimulation, which persists even
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Figure 1.7: The tripartite synapse made of i) a presynaptic neuron, ii) a postsynaptic
neuron, and iii) a glial cell. Left: electron micrograph illustrating presynaptic (Pre) and
postsynaptic (Post) terminal encircled by an astrocyte. Right: illustration showing the
role of astrocyte on a synapse. Astrocyte buffers K+ ions released by the presynaptic
neuron using K+ channels on the membrane, cleans the extracellular space, captures and
recycles excess glutamate with glutamate transporters, initiates Ca2+ signaling by acti-
vating mGluRs and modulates postsynaptic neuron by glutamate release. Taken from
Halassa et al. (2007).

after the stimulus ends. This process indeed resembles long-term potentiation in neurons
where intense synaptic stimulation induces an amplitude increase in postsynaptic poten-
tial. The difference in astrocytes is that the response amplitude does not increase, but the
frequency of Ca2+ signaling does (Verkhratsky and Butt, 2013).

Ca2+ waves are commonly initiated in two ways: 1) as a response to neuronal ac-
tivity, or 2) spontaneously. Glial activity has the potential to release neurotransmitters
from intracellular stores (called gliotransmitters), which directly affect close neurons
(Malarkey and Parpura, 2008). Such glia–neuron signaling is mediated by ionotropic and
metabotropic receptors present on the neuronal membrane. The release of glutamate by
an astrocyte can therefore directly depolarize and thereby modulate neuronal excitability
(Köles et al., 2016). Jourdain et al. (2007) clarified the way in which synaptic modulation
is accompanied by the release of glutamate into the presynaptic terminal space where
NMDA receptors are activated to enhance the synaptic transmission.
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As already stated, release of glutamate by astrocytes is regulated by the frequency of
Ca2+ oscillations, where each increase in Ca2+ induces pulse release of glutamate. Since
the frequency of Ca2+ oscillations is controlled by the intensity of synaptic activity, its
increase causes significant release of glutamate by astrocytes, which ultimately enhances
and increases the original synaptic signal. In addition, release of glutamate is also present
outside synaptic connections, therefore activating GluRs and regulating neuronal mem-
brane potential. It is important to note that Ca2+ oscillations are present throughout
the full glial network, suggesting that glutamate is released intermittently by individual
astrocytes, as Ca2+ waves progress deeper within syncytium. Therefore, distant neurons
that were not originally part of the synaptic activity controlled by Ca2+ signaling, are also
modulated. Moreover, glutamate release by single astrocyte is not limited to modulation
of one, but multiple neurons.
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Morphology of glial cells

2.1 Astrocytes

Astrocytes (or generally astroglial cells) represent heterogeneous cell populations in the
nervous system and are considered to be the most abundant and functionally richest
cells. According to Privat et al. (1995), they are morphologically divided into several
basic classes due to their star shape (Fig. 1.1): protoplasmic astrocytes found in grey
matter and spinal cord, radial astrocytes, which are pluripotent neuronal precursors
during development, fibrous astrocytes in white matter, radial Müller glia found in
the vertebrate retina and Bergmann glia cooperating with the Purkinje neurons in the
cerebellum.

Since astrocytes in the nervous system participate in range of processes, the functions
themselves can be conceptually divided into the following categories: developmental func-
tion, structural function, vascular function, metabolic function and homeostatic function.

2.1.1 Developmental function

Neurogenesis is present in vertebrates throughout their lives, but it only occurs in cer-
tain areas of the brain. Fish (Zupanc, 2006) and reptiles (Font et al., 2002) have multi-
ple proliferative zones believed to be capable of providing neurons to any region of the
brain, whereas in mammals, neurogenesis is, according to current knowledge, limited to
hippocampus and olfactory cortex (Eriksson et al., 1998). Immature astrocytes are pre-
cursor cells that, during their existence, differentiate into neurons or mature astrocytes.
The neurons formed in the subventricular zone travel to the olfactory cortex, but the
hippocampus-born neurons remain in the place and integrate into neuronal networks.

14
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Gliogenesis, as opposed to neurogenesis, occurs in all brain areas. The type of glia cell is
predominantly governed by the region where the glia is born – oligodendrocytes dominate
in the subcortical white matter, but in the spinal cord the astrocytes and oligodendrocytes
are equivalent.

While being alive, the brain constantly creates new synapses, eliminates old ones and
strengthens or weakens some of them. These processes take place when interacting with
the outside world and are essential for learning and memory. Neurons themselves produce
a large number of synaptic proteins important for synaptogenesis (Scheiffele, 2003). In-
terestingly, before triggering synaptogenesis in the CNS, neurons supply the target region
at least a week in advance, while it takes the very same time to produce new astrocytes in
the region (Pfrieger and Barres, 1997). This interval, common to neurons and astrocytes,
suggests the possibility that astrocytes are necessary to control the formation of a new
synapse.

Pfrieger and Barres (1997) showed, in purified neuronal cultures, that although synap-
togenesis occurs in the absence of astrocytes, it does so at a slow pace. However, the
addition of astrocytes can accelerate this process up to 100 times. There are several possi-
ble explanations and it is assumed that synaptogenesis is thought to be almost impossible
without the presence of the cholesterol, which is important in the formation of membranes
and is produced and supplied by astrocytes. In addition, astrocytes also produce specific
proteins essential for synaptogenesis.

2.1.2 Structural function

Each astrocyte in the grey matter controls its own anatomical domains with the min-
imal overlap with neighboring astrocytes (Fig. 2.1). Within their territory, astrocytes
wrap around adjacent blood vessels, neurons, synapses, and other nearby glia, which are
integrated into astrocytic processes (Verkhratsky and Butt, 2007).

2.1.3 Vascular function

Astrocytes play several vascular functions, including the maintenance of the blood–brain
barrier, and the regulation of vascular tone. In the formation and maintenance of the
blood–brain barrier they express the necessary endothelial proteins, transporters and en-
zymes (Abbott et al., 2006). With an increased neuronal activity, astrocytes accelerate
blood flow in a given area so that neurons can get the energy they need to function –
the process called hyperaemia. The Ca2+ signaling within the syncytium is triggered
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Figure 2.1: Anatomical domains of astrocytes. Taken from Verkhratsky and Butt (2007).

which leads to the release of several important vasoactive substances such as arachidonic
acid, prostaglandin E2, or K+ ions that ultimately regulates the tone of vascular smooth
muscles (Attwell et al., 2010).

2.1.4 Metabolic function

The idea that the role of astroglial cells is to provide nutrients to the neurons is more
than a century old with Golgi (1885) being the first to propose it. A few decades later,
several studies confirmed this concept and showed by imaging techniques that astroglia
produce several important nutrients for neurons. The main ones are glucose and oxygen,
without whom the life of neurons would not be possible. Rouach et al. (2008) showed that
in hippocampus samples, the fluorescent glucose is spread to the entire astrocyte network
20 minutes after injection into a single astrocyte. They further demonstrated that in
a metabolic demand, where neurons were glucose deprived, synaptic transmission was
inhibited and glucose delivery to a single distant astrocyte revived synaptic transmission.
Similar research was done by MacVicar and Newman (2015), who showed in samples
of rat hippocampus that neuron stimulation at high/low oxygen levels causes arterial
constriction/dilation, respectively. Since astrocytes have limited capabilities for a long-
term storage of glucose in the form of glycogen, they instead convert it into a more easily
metabolized lactate and pass it to the neuronal mitochondria (Hertz, 2004).
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2.1.5 Homeostatic function

Proper levels of extracellular ions are critical to the overall functioning of the brain, since
each fluctuation affects the membrane potential that determines neuronal excitability.
The extracellular space is occupied predominantly by Na+, Cl− ions and in a smaller
concentration by K+ and Ca2+ ions. During neuronal activity, ion levels fluctuate and
it is the astrocytes themselves that govern the homeostasis and maintain the proper
concentrations. Throughout action potential propagation, they primarily regulate K+ ions
that are released by neurons into the extracellular space. If K+ ions will accumulate in the
extracellular space, it would cause long lasting membrane depolarization and refractory
period, since high levels of K+ inactivate Na+ channels. By absorbing K+ and preventing
accumulation in the extracellular space, astrocytes allow neurons to generate next action
potentials. Moreover, astrocytes are not limited to regulation of only K+ ions, but regulate
all types present in the CNS (Gee and Keller, 2005).

Not only do astrocytes regulate extracellular ion concentrations, but they also main-
tain pH level using bicarbonate and proton transporters, and by withdrawing HCO−3 .
Correct pH concentration is physiologically important because even small fluctuations can
significantly affect synaptic transmission and neuronal excitability. For example, when
consuming glucose by neurons during neuronal activity or synaptic transmission, the CO2

and H+ are produced as a metabolic waste leading to pH fluctuation (Chesler, 2003). Chen
et al. (1998) demonstrated that lowering pH below 7.0 can completely inhibit NMDA re-
ceptors.

Glutamate, an anion of glutamic acid, is the major excitatory neurotransmitter ex-
ocytotically released by presynaptic terminals. In glutamatergic neurotransmission, the
glutamate is secreted to the synaptic cleft where approximately only 20% activate the
receptors of the postsynaptic neuron and the remaining 80% are collected by astrocytes.
Since redundant glutamate is neurotoxic, it is necessary to remove it from extracellular
space. Collected glutamate is metabolized by astrocytes to glutamine and forwarded back
to neurons whom recycle it back to the glutamate. Neurons per se are dependent on
astrocytes for glutamine, since they are unable to recycle it and the necessary enzyme,
glutamine synthetase, is astrocyte specific (Rosenberg, 1991).

2.2 Oligodendrocytes

Del Río Hortega (1921) identified two new cell types in the CNS: oligodendrocytes
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Figure 2.2: Del Río Hortega’s illustration of oligodendrocytes in white matter. Taken from
Somjen (1988).

and microglia. A characteristic feature of oligodendrocytes (Fig. 2.2) is the small soma
containing large amounts of chromatin and the relatively low number of dendrites.

Del Río Hortega distinguished four types of oligodendrocytes: type I producing mul-
tiple different myelin segments for small, variable axons, type II similar to type I, but for
parallel axons, type III myelinating axons of larger dimensions and type IV that has a
soma shape similar to Schwann’s cells.

The primary role of oligodendrocytes is to produce myelin for neuronal axons, which
serves as an insulator of axonal segments and which is necessary for neuronal transmission
at high speeds, up to 200 ms−1. Since the axon may be unmyelinated or myelinated,
the action potential may be propagated in two ways: by continuous or by saltatory1

conduction, respectively. Each oligodendrocyte produces several myelin segments that are
interrupted on the axon by nodes of Ranvier, which densely populate Na+ channels on
the membrane allowing saltatory conduction. Action potentials arise only in these nodes
(not within a myelin), where the depolarization occurs, which rapidly hops to subsequent
nodes and restores the action potential there. This is a quicker way compared to the
unmyelinated axon and, moreover, it saves energy because Na+ ions only accumulate at
1from Latin language, saltare = to hop
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these nodes. After the action potential has been propagated, Na+ ions must be released
into the extracellular environment, governed by Na+/K+-ATPase. In unmyelinated axons,
there are more Na+ channels which are randomly distributed along the axon.

Myelination is a complex process driven by axons consisting of (1) oligodendrocyte pro-
genitor cell (OPC) proliferation and migration in white matter, (2) target axon recognition
and localization, (3) OPC differentiation to myelinating oligodendrocytes, (4) surrounding
the target axon, (5) transferring important biochemical molecules to axons, (6) production
of the myelin and (7) formation of a myelin node (Barres and Raff, 1999).

Oligodendrocytes are predominantly located in white matter, but are also present in
grey matter. Like astrocytes, they are integrated in glial syncytium using gap junctions. In
addition to providing myelin, oligodendrocytes play a supportive trophic role for neurons
by producing brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1
(IGF-1) (Bradl and Lassmann, 2010).

2.3 Schwann cells

The myelin sheath was first observed in the peripheral nervous system (PNS) by Remak
(1838), who described and illustrated the cells bound to the axon membrane, but it was
actually Schwann (1839) who studied them at roughly the same time and gave them a
name. Schwann cells play a similar role as olidendrocytes in the formation of myelin,
except that they work in the PNS (oligodendrocytes in the CNS) and they form only
one full segment of axon isolation. Three types of Schwann cells are distinguished: (1)
unmyelinating Schwann cells that play similar roles as astrocytes in the CNS – struc-
ture formation, metabolic support, regulatory function, (2) myelinating Schwann cells,
which are about as much as non-myelinated, but are responsible for myelin production and
(3) perisynaptic Schwann cells maintaining axon terminals which they encapsulate and
hence maintain proper synaptic functionality. More than that, they regulate the develop-
ment of axon terminals and efficacy of synaptic transmission by controlling perisynaptic
ion levels (Mirsky and Jessen, 1999).

In addition, Schwann cells are involved in the growth of neurons and various neuronal
structures in the PNS by providing trophic support (Riethmacher et al., 1997). Lin et al.
(2000) showed that in mice, deficient in the gene erbB2, development disorders of Schwann
cells occur, which are accompanied by misformation of neuromuscular synaptic connections
and motor axons. Other authors, e.g. Reddy et al. (2003), confirmed that by removing
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perisynaptic Schwann cells the formation of new synapses is dramatically reduced and the
existing synapses retract.

2.4 Microglia

Last but not least, important group of glial cells are microglia (in the CNS), which rep-
resent about 10% of all glial cells. Microglia are a class of macrophages and play an
important role in the development of CNS, homeostasis and almost all pathological con-
ditions of the CNS. They protect immature neurons and glia from glutamate-induced
apoptosis, but also contribute to the opposite: initiating programmed cell death in defec-
tive neurons. Microglia modulate synaptic activity by regulating density of synapses and
glutamate receptors (Ji et al., 2013). They are distributed throughout all brain structures
and are most concentrated in the hippocampus, olfactory telencephalon, basal ganglia and
substantia nigra. The morphological difference of the microglia in grey and white matters
is well described. While in grey matter they are distributed in all directions, in white
matter they actually concentrate only within the axon bundles.

In the resting state, microglia remain stationary, but their internal processes con-
stantly monitor the extracellular environment and directly interact with neurons, astro-

Figure 2.3: Del Río Hortega’s illustration of microglia. Taken from Somjen (1988).
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cytes and blood vessels. This continuous state of motion allows them to respond promptly
to any CNS threat, such as damage or infection. If that happens, they immediately
transform into the active form, which is accompanied by morphological changes that
allow them to quickly deal with the current problem. This conversion is observed in
almost all neuropathological conditions, such as degenerative disorders (Alzheimer’s dis-
ease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis), infections
(bacterial, viral and parasitic), stroke, tumors, or injuries. Remarkably, microglia have
a pattern detection algorithm that allows them to detect foreign and potentially harmful
substances. Upon detecting something potentially toxic, they respond by producing pro-
and anti-inflammatory cytokines, chemokines, free radicals, various tropical factors, and
other substances. In addition, they proliferate and migrate to areas where inflammation
occurs (Nayak et al., 2014).
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Related work

Computational neuroscience distinguishes two modeling paradigms: biophysical and
connectionist. While the former focuses on physical and chemical properties of a biologi-
cal system using various mathematical methods, the latter makes a significant reduction in
the complexity of low-level mechanisms which in turn may lead to better comprehension of
the system at a higher level. Despite the plethora of biophysical models of astrocytes per
se and neuron–astrocyte coupling, connectionist modeling has so far been out of scientific
interest. For an overview of biophysical models, we recommend Oschmann et al. (2018),
Volman et al. (2012) and Wade et al. (2014).

It should be noted that there is also a another way of modeling the neuronal systems
using digital circuits. We refer to articles Joshi et al. (2011), Irizarry-Valle et al. (2013)
and Irizarry-Valle and Parker (2015), where instead of computer modeling, the authors
chose the neuromorphic engineering and designed CMOS circuits with a small neural
network extended with “digital” astrocytes to modulate neuronal excitatory postsynaptic
potentials. However, since this is not related to our thesis in terms of modeling modality,
we do not delve into this topic.

3.1 Modeling of neuronal regulation

Ikuta et al. (2009) first came up with the concept of artificial glia in ANNs, and in the
course of a few years they proposed several models taking into consideration cooperation
between neurons and glia. The common architectural layout present in their published
papers is the traditional MLP with the extension of the hidden layer by artificial glia,
as illustrated in Fig. 3.1. The net function for hidden neurons is calculated as the linear

22
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Figure 3.1: An MLP with the second hidden layer extended with a chain of artificial glial
units. Taken from Ikuta et al. (2009).

combination of weights and neurons from the previous layer together with the activation
of glia weighted by α (eq. 3.1). The glial activation Ψi(t) is the sum of m transient glial
outputs, ψi+k(t), each weighted by the factor β|k| where k ∈ {−m, (−m+ 1), . . . ,m}. The
exact formula is stated in eq. 3.2.

h
(2)
i (t+ 1) = f(

N∑
j=0

wij(t)h(1)
j (t) + αΨi(t)) (3.1)

Ψi(t) =
m∑

k=−m
β|k|ψi+k(t) (3.2)

The use of specific function ψi(t) is the subject of the particular article, however an
overall architecture remains the same. In Table 3.1 we summarize the meaning of each
parameter and hyperparameter common for all networks that we further describe in the
following sections. Although the authors published multiple papers (up to 20), we review
only the papers we found to have the greatest contribution.

3.1.1 Chaos glial network

In their very first model, Ikuta et al. (2009) attempted to solve the problem of two spirals
interleaved together (highly nonlinear problem), as shown in Fig. 3.2. The architecture
of the network had 2 input neurons (x and y coordinate), 20 neurons on the first hidden
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Ψi(t) final activation of i-th glia
ψi(t) transient activation of i-th glia
α shared glial weight
β attenuation factor
m propagating range of transient glia activation

Table 3.1: Parameters and hyperparameters used across various papers by Ikuta et al.

layer, 40 in the second hidden layer (extended with artificial glia, one for each neuron)
and a single output neuron.
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Figure 3.2: Two spirals problem. The input is a two-dimensional point (x, y) and the task
is to classify it to either red (o) or blue (x) spiral.

In ANNs it is well known, that adding white noise to either input data or to error gra-
dients improves performance and increases generalization (Murray and Edwards, 1994).
Taking that into account and the fact that astrocytes in the CNS spontaneously gen-
erate Ca2+ waves that propagate to neighboring units (as stated in previous chapters),
the authors combined both ideas and proposed artificial glia connected in a single chain
generating chaotic oscillations defined as

ψi(t+ 1) =


2ψ(t)+1−A

1+A , −1 ≤ ψ(t) ≤ A

−2ψ(t)+1+A
1−A , A < ψ(t) ≤ 1

(3.3)

The achieved performance was better compared to traditional MLP and authors claim
that chaotic noise generated by glia allows the network to avoid getting stuck in local
minima. At the same time, the model worked better than the model with simple white
noise instead of glia (Fig. 3.3).
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Figure 3.3: Error rate for three models on two spirals problem. The traditional MLP with
no glial units (orange line) achieved comparable results as the MLP with random noise
(green line), although with faster rate of convergence. The proposed model yielded the
best performance (blue line). Taken from Ikuta et al. (2009).

3.1.2 Impulse glial network

The model proposed in the following work (Ikuta et al., 2010) is largely based on the
previous one, but the authors included bidirectional interaction between glia and neurons
instead of unidirectional chaotic noise. The computation of the transient glial output is
given as

ψi(t) =


1, θn < hi(t− 1) and θg > ψi(t− 1)

γψi(t− 1), otherwise
(3.4)

and the final glial output is computed as

Ψi(t) =
m∑

k=−m
β|k|ψi+k(t− |k|) (3.5)

Three new hyperparameters are introduced and the activation of the glial unit itself is
determined directly by the neural activity. The glia is excited when the neuron exceeds
the threshold θn and at the same time the glia is not within the interval of the refractory
period given by θg. When excited, its activity spreads to neighboring glia and at the same
time exponentially decays by γ.

The problem the authors used for the assessment of the performance was the classi-
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fication of two chaotic time series given by four adjacent points (Fig. 3.4). Hence, the
network had 4 input neurons, a single hidden layer of 10 neurons and glia and one output
neuron to distinguish between the two time series.

Figure 3.4: Two chaotic time series dataset used by the authors for the evaluation of their
models. By presenting four neighboring time points, the task is to identify the first or the
second time series.

In the experiments, four different models were compared: 1) traditional MLP, 2) MLP
with random noise, 3) MLP with chaotic glial noise (explained in Section 3.1.1) and 4)
MLP with impulse glial network. Results in Fig. 3.5 reveal that the basic MLP apparently
got stuck in the local minima and yielded the highest MSE, while the proposed network
performed the best.

3.1.3 Network with local glial connections

In the next work, Ikuta et al. (2013a) included the concept of neural inhibition controlled
by glial units and local glial connections. Instead of connecting one neuron with one glia,
the glia now sums neural activity over the range of neurons amongst both hidden layers,
although the specific formula for the computation is not present in the paper. Architecture
of the network is illustrated in Fig. 3.6 and the activation function for transient glia
activation is defined in eq. 3.61.
1Authors actually used different symbols for θg and θn, but we have used the symbols as stated to stay
consistent with the previous notation.
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Figure 3.5: Comparison of four different models on the task of two series classification.
The worst was the basic MLP, whereas the best was the proposed model with the impulse
glial network. Taken from Ikuta et al. (2010).

Figure 3.6: MLP with two hidden layers where each glia sums activity from specific range
of neurons amongst both layers. Taken from Ikuta et al. (2013a).

ψi(t+ 1) =


1, Ii = 0, if hi(t) > θn and Ii > θg

−1, Ii = 0, else if hi(t) < −θn and Ii > θg

γψi(t), Ii = Ii + 1, otherwise

(3.6)

In case of high neural activity, when θn is exceeded, the glia is excited by outputting
value 1. On the contrary, when a neuron produces a value lower than −θn, the glia returns
−1. In both cases, the refractory period interval must be satisfied, which is defined by a
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discrete number of steps determined by θg.
The authors tested performance of the proposed network (with 10 neurons in both

hidden layers) again on two spirals problem and obtained better results as compared to
traditional MLP. However, they did not compare the model with previous networks with
artificial glial units (chaotic or impulse).

3.1.4 Pulse glial network with a dynamic period of inactivity

Ikuta et al. (2013b) proposed the MLP with a pulse glial network having a dynamic
period of inactivity. The architecture is the same as in previous models, with a hidden
layer extended by artificial glia that is excited by hidden neurons. Upon being excited, the
glial activation (pulse) propagates back to neurons and to neighboring glia. Whereas in
the previous networks, the period of inactivity was fixed and given by θg, in the proposed
model the period varies dynamically according to the activity of neighboring glia. This
behaviour is formalized as

ψi(t+1) =


1, [θn < hi(t) or ψi+1(t− iD) ≡ 1 or ψi−1(t− iD) ≡ 1]

and τi ≥ θgi

γψi(t), otherwise

(3.7)

The new hyperparameter D is a delay time of a glial effect and parameter τi is local
time present in each glia during a period of inactivity. The dynamic period of inactivity,
θgi is described as

θgi(t+ 1) =


θgi(t)− 1, ψi(t) = 1 and ψi(t− θgi(t)) = 1

θgi(0), otherwise
(3.8)

The dataset for evaluating the performance was once again two spirals problem and
the architecture consisted of a single hidden layer with 40 neurons. In the experiments,
the proposed model yielded better results than all the models described so far (Fig. 3.7).

3.1.5 MLP with a pulse glial network and neurogenesis

The slightly different approach is presented in Ikuta et al. (2014) where the authors came
up with a concept of neurogenesis driven by glial units (illustrated in Fig. 3.8). The
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Figure 3.7: MSE for five models on the problem of two spirals: (1) traditional MLP,
(2) MLP with random noise (3) MLP with a static period of inactivity, (4) MLP with a
random period of inactivity, (5) proposed MLP with a variable period of inactivity. Taken
from Ikuta et al. (2013b).

computation for activation output of neural and glial units stays the same as in previous
model from Section 3.1.4. If, at a given time, the amount of glial activation does not exceed
a preselected threshold (meaning that the corresponding neuron is not sufficiently active),
the neuron is canceled and replaced with a new one with random pre- and post-synaptic
weights. Thus, the total number of neurons is always constant and less important neurons
are given a new chance.

Figure 3.8: Glia-controlled neurogenesis in an MLP. If activation of glial units is not
sufficient, meaning that the associated neuron give only little contribution, the pre- and
post-synaptic weights of the neuron are randomized to give the neuron a new chance.
Taken from Ikuta et al. (2014).
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Ikuta et al. showed that a proposed network performed better on a problem of two
spirals compared to the model with pulse glial network without neurogenesis as described
in previous sections.

3.1.6 Learning controlled by glial units

A very similar idea was presented in Ikuta et al. (2013c), where a hidden layer was divided
into multiple groups of neurons and each group was assigned with a single glial unit
to control whether the associated group will be allowed to learn or not. The decision for
learning is based on the glial activity and a higher activity switches neurons to the learning
mode, whereas the lower activity stops it (illustration of the concept is in Fig. 3.9). The
authors did not provide exact equations for glial activation, but it may be assumed that
they used some of them mentioned in previous sections. Weights of the neurons could only
be updated if glial activation are within a certain range, but the authors did not provide
a specific interval in the article. Simulations on two spirals problem (shown in Fig. 3.10)
confirmed that the proposed model is more successful than traditional MLP and MLP
with random glial noise.

Figure 3.9: The concept of learning controlled by glial units. The hidden layer is divided
into groups of learning and non-learning neurons. The learning is decided by the assigned
glia based on their activity. Taken from Ikuta et al. (2013c).

3.1.7 Hopfield neural network with glial units

The last paper we present from the same authors is Ikuta et al. (2012) where the Hopfield
network is proposed with the addition of artificial glial units. The neurons are placed in
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Figure 3.10: Learning curves on the problem of two spirals. Comparison of basic MLP
(green line), MLP with random glial noise (red line) and the proposed model (blue line).
Taken from Ikuta et al. (2013c).

a two-dimensional grid and each neuron is paired with a single glia that listens to and
regulates its activity (Fig. 3.11).

Figure 3.11: Architecture of the Hopfield neuro-glial network. Neurons are arranged in a
grid, and each neuron is associated with exactly one glia. Taken from Ikuta et al. (2012).

Neural activity update is determined as

u(t+ 1) = f(Wx(t)− h+ φ(t)) (3.9)

where x is the vector determining neural state, W is the weight matrix of neural connec-
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tions, h is the vector of neural thresholds and φ(t) is the vector of glial activations.
The exact formula for glial activation is not stated in the paper, however the authors

mention that glia is excited when neurons exceed a preselected threshold, then it stays
inactive (not excitable) for some given period, while the output exponentially decays,
suggesting the use of eq. 3.4.

During the simulation, the authors evaluated the performance on the traveling salesman
problem. In each step they selected 8 neurons with the highest output that activated glia
(Fig. 3.12), while the rest of glia decays and activates their neighbors. The proposed model
provided better results than the basic Hopfield model, but actually worse than the model
with random noise.

Figure 3.12: Glial activation in each time step in the Hopfield network with glial units.
Taken from Ikuta et al. (2012).

3.1.8 Model SONG-Net

Finally, the last model we found in the literature dealing with neuronal regulation by glial
cells comes from Marzouki (2015) where the author combined MLP with the Kohonen’s
self-organizing map (SOM) (Kohonen, 1982). Instead of using traditional fully-connected
hidden layer, the author decided for Kohonen’s layer which computes the distance between
an input pattern and the weights of hidden neurons using the Euclidean metric, which
is finally used for the computation of output layer activation. The architecture layout is
illustrated in Fig. 3.13.

By evaluating the performance on four tasks, the author showed that the proposed
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Figure 3.13: Architectural layout of proposed SONG-Net network. Instead of having
fully-connected hidden layer, the SOM is used instead. Taken from Marzouki (2015).

model achieved faster convergence rate up to twelve times, while having lower MSE. How-
ever, the author did not present glia as individual functional units, but instead he used
them only as an inspiration for the concept of neuronal regulation. No glial units (in the
traditional sense of the term) were actually used in the model.

3.2 Modeling of synaptic plasticity modulation

The second role of artificial glia in ANNs is a synaptic plasticity modulation, firstly in-
troduced by Porto-Pazos et al. (2011) and further extended in Alvarellos-González et al.
(2012). The authors use more precise term artificial astrocytes instead of artificial glia,
since glia represent the vast majority of non-neuronal cells in the nervous system with
multiple functions, whereas only astrocytes are currently considered to play a vital role
in information processing tasks. Their model was also based on MLP in which every sin-
gle neuron is accompanied by a single astrocyte that monitors its activity and updates
postsynaptic weights accordingly. The scheme of the network is illustrated in Fig. 3.14.

Every astrocyte registers the activity of the neuron, by applying function u(x) : R→ Z
over the output of the neuron as

u(xj(t)) =


−1, xj(t) ≤ 0

1, xj(t) > 0
(3.10)
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Figure 3.14: Architecture of neuro–glial network with artificial astrocytes. Astrocytes are
paired with each neuron within all layers, controlling the synaptic plasticity of output
synapses depending on the neural activity. Taken from Alvarellos-González et al. (2012).

while the history of past k activities is summed and stored in rj as

rj(t) =
k−1∑
i=0

u(xj(t− i)) (3.11)

The change in synaptic weights is then defined by equations eq. 3.12 to eq. 3.14:

z(t) =


a, rj(t) ≡ µ

b, rj(t) ≡ −µ
(3.12)

∆wi(t) = |wi(t)|z(t) (3.13)

wi(t+ ∆t) = wi(t) + ∆wi(t) (3.14)

where the hyperparameters a, b, and µ are chosen manually for each dataset. The authors
proposed several rules of synaptic plasticity that we do not mention, but all of them are
based upon this simple idea.

The authors evaluated the performance of such a trained model on four different prob-
lems (Fig. 3.15) and confirmed that the model was able to learn the problems better than
the equivalent model without astrocytes in most cases, but its efficacy depended on the
complexity of the given problem. It should be noted that an equivalent model without
astrocytes (traditional MLP) was not trained by the gradient-descent method, but by the
genetic algorithm.
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Figure 3.15: Performance comparison of traditional neural network (NN) with the pro-
posed neuro-glial network (NGN). As can be seen, the NGN model worked better for most
problems. The first problem, Heart, was to determine the presence of heart disease from
13 input parameters. The second problem, Iris, was the classification of plants into 3 dif-
ferent classes according to 4 input parameters. In the third problem, Cancer, the presence
of the tumor from 9 parameters was determined. Finally, in the last problem, Ionosphere,
the authors tried to determine the state of the ionosphere (good / bad) from the 34 input
features. Taken from Porto-Pazos et al. (2011).

As mentioned above, the algorithms require the glial parameters a, b, and µ to be
set manually for each individual problem and cannot be transferred between each other.
As a consequence, before evaluating the performance of the model itself, an adequate
hyperparameter subset must be found for each problem using some exhaustive search
method such as grid search, which tends to be time-consuming and error-prone. Therefore
Mesejo et al. (2015) designed and implemented a method based on evolutionary algorithms
that automatically search for the desired optimal parameters.

Last but not least, Sajedinia (2014) extended the model by introducing random net-
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works of artificial astrocytes. The model consists of several astrocyte networks, where
each network involves a random subset of all astrocytes (Fig. 3.16). When being acti-
vated, astrocyte results in the activation of all other astrocytes within the same network
where each of them will increase its value rj(t). Although the authors did not compare
their model with model by Porto-Pazos et al. (2011), they claim that the network with
random astrocyte networks outperforms traditional MLP without astrocyte units.

Figure 3.16: Architecture of the model with random astrocyte networks. Taken from
Sajedinia (2014).



Chapter 4

Astrocytes in feedforward neural
networks

Before we delve into the study of artificial astrocytes in feedforward neural networks, we
start by providing a brief introduction into feedforward neural networks.

4.1 Feedforward neural networks

4.1.1 Single-layer perceptron

The very first model of an artificial neuron was introduced by McCulloch and Pitts (1943)
mimicking the functionality of a biological neuron. It is the simplest model possible with
boolean inputs (fire or no fire) and boolean weights (excitatory or inhibitory). Inputs are
simply aggregated resulting into the final binary output. All weights are manually selected
and remain hard-coded, therefore the model does not change with the time.

Major advance was the introduction of the perceptron by Rosenblatt (1958). The
model is extended with real number inputs and weights, and training procedure to adapt
the weights. Architecture of the model, as depicted in Fig. 4.1, consists of a single neuron
whose parameters (input weights and threshold) are learned in a supervised manner with
the teacher providing desired outputs. If the patterns belong to two linearly separable
classes, Rosenblatt proved that his model converges and finds the decision boundary in
finite number of steps. Computation of the final class is calculated as a linear combination
of the input vector x with the corresponding weight vector w subtracted the threshold θ
and passed to the signum activation function as shown in eq. 4.1.

37



Chapter 4. Astrocytes in feedforward neural networks 38

θ

1

2

xN

Σ

w1

w2

wN

y

Figure 4.1: Architecture of Rosenblatt’s perceptron. Input vector x is linearly combined
with weights w and subtracted the threshold θ. The resulting sum is then passed to the
signum activation function which returns 0 or 1 deciding the corresponding class y. Having
other activation functions (i.e. continuous) than (discrete) signum is also possible.

y = sgn(
∑
i

xiwi − θ) (4.1)

where the signum function is defined as

sgn(net) =


1, net ≥ 0

0, net < 0
(4.2)

Training of the model consists of a few steps starting with (1) the initialization of
parameters (the weights and the threshold) with random values, (2) selecting an input x,
(3) computing the output class y and finally (4) the adaptation of the weights w using
error-correction learning rule given the desired class d

∆w = η(d− y)x (4.3)

Hyperparameter η is the learning rate which is manually selected from a range 0 <

η ≤ 1. Since the threshold θ can be considered as a special case of the synaptic weight
with the input fixed to −1, the same learning rule can be applied to its adaption.

By combining several perceptrons into single model with shared inputs, but unique
parameters, it is possible to train the model to distinguish more than two classes. In
order to perform relatively well, all classes have to be linearly separable. Instead of having
one output neuron, the model has several neurons in a single layer and is therefore called
Single-layer perceptron (SLP).
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Figure 4.2: Architecture of MLP which distinguishes from SLP by addition of hidden
layers and weight matrices. While this figure illustrates only one hidden layer, the model
can have multiple hidden layers.

4.1.2 Multi-layer perceptron

Since SLP is suited for the classification of linearly separable classes only, extending the
model with the nonlinear activation function and hidden layers allows to overcome
this limitation and significantly broadens the domain applicability. Instead of having
an input and output layers only, the new layer of intermediate neurons, called hidden
layer, is provided which computes nonlinear transformation of input space into feature
space which is hence used in the output layer computation. Architecture of the model is
presented in Fig. 4.2.

Regarding the activation functions, several variants are considered such as logistic
sigmoid, hyperbolic tangent, rectified linear unit. In our work we consider logistic sigmoid
with the following definition:

f(net) = 1
1 + exp (−net) (4.4)

It has been proven that MLP with a single hidden layer is capable of approximating
any continuous function to any desired degree of accuracy (Hornik et al., 1989). The
tradeoff for having superior representational power and efficiency is more complex and a
time consuming training of the model, which includes, but is not limited to finding suitable
input data encoding, selection of model parameters such as number of neurons, or type of
activation functions. The most common approach for the training of MLPs are first-order
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iterative gradient based methods that require the definition of loss function to measure
model’s error in approximating the desired output. Usually the sum of squared errors is
considered with the following definition

E(t) = 1
2

P∑
p=1

(d(p) − y(p)(t))2 (4.5)

Training per se consists of two phases. In forward pass the signal computation flows
from the input layer through the hidden layers to the output layer and the decision of the
output layer yi is measured against the desired label di. Upon computing the error for
all P patterns, the backward pass is performed in which the error signal is propagated
backwards from the output layer towards the input layer and successive adjustments are
made to the synaptic weights of the network. Regarding the learning equations, both
weight matrices (input–hidden and hidden–output) are updated by moving in the direction
of the negative gradient (hence the name gradient descent):

W (t+ 1) = W (t)− η ∂E(t)
∂W (t) (4.6)

4.2 Artificial astrocytes in FFNN

4.2.1 Fixed-weights astrocytes in A-MLP

As stated in chapter 3, two major roles of astrocytes in ANNs are considered in general,
either as neuronal regulators or as synaptic plasticity modulators. In this work we study
solely the former function: the neuronal regulation. We start with a simplest model of a
feedforward neural network and astrocyte per se, and we gradually move toward adding
more complex mechanisms.

Inspired by Ikuta et al. (2010), we work with MLPs as described in the previous part
with one hidden layer that is augmented with artificial astrocytes. Each neuron is paired
with a single astrocyte and each astrocyte regulates only one neuron. The architecture of
the proposed model is depicted in Fig. 4.3.

The output of i-th hidden neuron is given by the following formula

hi(t+ 1) = f(
M∑
j=0

wijxj(t) + αψi(t)) (4.7)

with the logistic sigmoid as the activation function f(net). The astrocyte activity is
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Figure 4.3: Architecture of A-MLP. The hidden layer of NN is augmented with astrocytes
that listen to and regulate neurons.

modified according to

ψi(t) =


1, if θ < hi(t− 1)

γψi(t− 1), otherwise
(4.8)

Each astrocyte contributes, with a weight α, to the activity of the hidden neuron
(eq. 4.7). When the neuron output exceeds the given threshold θ, the astrocyte activation
is set to 1 and then it starts to decay by a factor γ, where 0 < γ < 1. We call this model
in our work A-MLP.

Note that the model consists of three free hyperparameters (α, γ, θ) whose optimal val-
ues have to be found experimentally. Since each problem requires a different set of optimal
parameters, finding them requires time-intensive computations. As we explain later, we
try to solve these issues by replacing constant parameters with modifiable versions.

4.2.2 Dynamic weights in A-MLP(α)

The astrocytes regulate neurons in the hidden layer by the factor α being shared for
all astrocytes, which is, nevertheless, not biologically plausible. Plethora of regulatory
mechanisms are well described from the current research in biochemistry that includes
neuronal excitation or inhibition by astrocytes (Fellin et al., 2006). For that reason we
consider an individual weight αi for each astrocyte which may be either excitatory or
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inhibitory. The activation rule for the hidden unit then becomes

hi(t+ 1) = f(
M∑
j=0

wijxj(t) + αiψi(t)) (4.9)

As explained in Section 4.1.2, the neuronal synaptic weights are updated using the
gradient descent method. Since the astrocytic weight in eq. 4.7 can be treated as any
other weight, we can apply the same optimization method for its update. The goal is to
minimize the loss function stated in eq. 4.5, by moving the astrocytic weights along the
negative gradient, i.e. ∆αi = −∂E(w)/∂αi. Since E is differentiable with respect to αi,
we can write using the chain rule:

∆αi = −∂E
∂y

∂y

∂nety

∂nety
∂hi

∂hi
∂nethi

∂nethi
∂αi

(4.10)

∆αi = −
δy︷ ︸︸ ︷

(d− y(x))y(x)(1− y(x))wyhi
hi(1− hi)ψi (4.11)

∆αi = −
δi︷ ︸︸ ︷

δywyhi
hi(1− hi)ψi (4.12)

which yields the final formula:

∆αi = −δiψi (4.13)

Note that this derivation is valid for the model with a single output neuron which is
the case for our experiments. However it is trivial to derive the rule for the model with
multiple output neurons.

4.2.3 Dynamic threshold in A-MLP(θ)

In the case of other two free hyperparameters, γ and θ, since it is not straightforward to
compute the derivation for the activation function written in eq. 4.8 with respect to γ and
θ, we consider an alternative unsupervised rule.

Generally during training of NNs it happens quite often that some neurons get trapped
in one of the two extremes, by becoming either silent or permanently active. The gradient
update of such neuronal weights is then problematic, because either the gradient is close
to zero and therefore no errors would propagate through a silent neuron leading to no
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update of neuronal weight. On the other hand in permanently active neuron the weights
might grow into large values, even infinite, leading to numerical problems, thus making
the model unstable.

The same issue may happen in our model with artificial astrocytes when the threshold
θ is set too low, making the astrocytes fire all the time. On the contrary, too high a value
may prevent the neurons from exceeding the required threshold. This would however
not advance into numerical problems, but the regulatory function of astrocytes would be
lacking. Moreover, since each neuron in the neural network develops its own role in the
classification task and for the same reason we explained in the previous section, we employ
each astrocyte with a custom weight θi.

To incorporate unsupervised dynamic change of θs during training to accommodate
for the change in neuronal behaviour, we propose an update rule with two variations. In
order to stabilize the astrocytic regime, we can set the threshold θ either directly to the
mean value 〈.〉t of an astrocyte unit (eq. 4.14) or only shift the threshold slightly closer to
the mean value (eq. 4.15) using the learning speed ηθ. This forces the astrocyte to move
only within its mean values avoiding the critical values of 0 and 1. With a higher θ it
becomes harder for the neuron to overpass, thus the activity decays and vice versa. Hence,
the update rules are

θi(t+ 1) = 〈ψi(t)〉t (4.14)

and
θi(t+ 1) = θi(t) + ηθ(〈ψi(t)〉t − θi(t)) (4.15)

where we introduced another hyperparameter, namely an averaging window of present
length.

4.2.4 Dynamic activity decay in A-MLP(γ)

Hyperparameter γ can be updated based on the same principle as explained before. Now
instead we update γ to achieve inverse correlation with the mean value of the astrocytic
activity as (also two variations)

γi(t+ 1) = 1− 〈ψi(t)〉t (4.16)

γi(t+ 1) = γi(t) + ηγ(1− 〈ψi(t)〉t − γi(t)) (4.17)

Higher values of γ are achieved during a lower activity, thus a hypo-excited astrocyte
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holds its activation value for a longer period. Contrarily, the lower γ triggers faster activity
decay forcing the astrocyte to avoid excessive simulation.

4.2.5 Combination of previous models

The last two models are simple combinations of key ideas described in previous parts.
Model A-MLP (γ, θ) combines dynamic thresholds, θs, and activity decays, γs. Model
A-MLP(α, γ, θ) includes dynamic regulatory weights, αs, as well.

4.3 Experiments

To assess the performance of proposed networks with artificial astrocytes, we have chosen
four classification tasks: 1) two spirals, 2) nested circles, 3) chessboard, and 4) N-parity.
First three datasets (illustrated in Fig. 4.4) consist of two sets of two-dimensional points
interleaved together with a high level of inseparability. This is considered difficult for a
standard ANN due to a high number of potential local minima, which are generally rather
problematic for gradient-based models.
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Figure 4.4: Three datasets from the same domain of the two dimensional plane that we use
in evaluating the performance of our models. The two spirals are rotated three times, the
circles are nested together seven times and the chessboard has size 12× 12. The problem
is, given a point (x, y), to decide whether it belongs to the first or the second class.

We compare all results with the traditional MLP without astrocyte units which is
used as a baseline. To eliminate the possibility that astrocyte units act as a random
noise generator which is well described as a mean of regularization to avoid overfitting
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(Holmstrom and Koistinen, 1992; Bishop, 1995), we include in our comparison the model
N-MLP, which simply extends the hidden layer activation with noise from the uniform
distribution Uni(−1, 1) – the very same interval that astrocytes produce (after weight
multiplication).

In the first place for each dataset we found optimal hyperparameters using a grid
search for MLP (number of hidden neurons, learning rate, weight initialization and num-
ber of epochs) that yielded the lowest MSE. Then we transferred the very same set of
hyperparameters to all A-MLP models and searched for remaining hyperparameter values
(individually for each model). Each dataset was randomly split to train/test set in the
ratio 80:20.

4.3.1 Two spirals

The optimal number of hidden neurons was selected as N = 30, since more units did not
produce better results. The learning rate was η = 0.1 and all weight matrices were initial-
ized from the uniform distribution Uni(−0.1, 0.1). Regarding the models with astrocyte
units, the outcome of the grid search is presented in Fig. 4.5 where it can be seen that the
best values tend to cluster around α = −0.1, γ = 0.5, θ = 0.1, which are the very same
values we also used. The length of an averaging window in models with dynamic θ and γ
was set to 50.

α= −1.00 α= −0.78 α= −0.56 α= −0.33 α= −0.11 α=0.11 α=0.33 α=0.56 α=0.78 α=1.00

γ=0.01 γ=0.12 γ=0.23 γ=0.34 γ=0.45 γ=0.55 γ=0.66 γ=0.77 γ=0.88 γ=0.99

θ=0.10 θ=0.19 θ=0.28 θ=0.37 θ=0.46 θ=0.54 θ=0.63 θ=0.72 θ=0.81 θ=0.90

Figure 4.5: Grid search for optimal values of hyperparameters. Each heatmap uses a
fixed single parameter (shown in the title) and displays all combinations for the other
two parameters. Each cell in every heatmap is averaged over 5 simulations. Lighter color
denotes better performance.

Table 4.1 shows results of all models (training lasted for 5000 epochs), averaged over
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100 runs. Learning curves can be seen in Fig. 4.6. The best model, A-MLP(θ), yields 50%
lower error rate compared to the standard MLP.

Model train set test set
MLP 0.075± 0.067 0.094± 0.066

N-MLP 0.056± 0.046 0.072± 0.049
A-MLP 0.073± 0.067 0.088± 0.068

A-MLP(α) 0.050± 0.049 0.078± 0.050
A-MLP(θ) 0.035± 0.038 0.053± 0.042
A-MLP(γ) 0.072± 0.063 0.088± 0.061
A-MLP(γ, θ) 0.039± 0.048 0.055± 0.049

A-MLP(α, γ, θ) 0.060± 0.043 0.098± 0.044

Table 4.1: MSE (mean ± standard deviation) over 100 instances on the two spirals task
trained for 5000 epochs. The best model, A-MLP(θ), yields more than 50% lower error
rate compared to the MLP with statistical significance (p < 0.001).
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Figure 4.6: Learning curves for all models on the two spirals problem. Although the
rate of convergence matches all other models, the final MSE is lower for each model with
astrocyte units.

Next, in order to get insight into learned parameters, we displayed the distributions of
final θ at the end of training, accumulated over 100 simulations (see Fig. 4.7). It is clear
that the values advance into positively skewed distribution with 〈θ〉 ∼ 0.34. Although the
figure presents the best model, A-MLP(θ), similar distribution arises on all models with
dynamic γ or θ.
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Figure 4.7: Positively skewed distribution of θ values (N = 30) for the best performing
model A-MLP(θ) at the end of training, accumulated over 100 simulations for the two
spirals dataset. The length of average windows was set to 50, hence the slow update pace
of the vector θ that adapts to overall activity of astrocytes.

4.3.2 Nested circles

We found optimal number of hidden neurons N = 50, the learning rate η = 0.1 and the
initialization of weight matrices from the uniform distribution Uni(−1, 1). Using the same
settings of grid search for the models with astrocyte units we obtained values α = −0.7,
γ = 0.99, θ = 0.6 and the length of the averaging window = 2, which were shared among
all models that required the specific hyperparameter. Table 4.2 shows results of all models,
averaged over 100 instances. Learning curves can be seen in Fig. 4.8.

Model train set test set
MLP 0.119± 0.035 0.145± 0.033

N-MLP 0.123± 0.016 0.146± 0.018
A-MLP 0.112± 0.032 0.136± 0.030

A-MLP(α) 0.098± 0.020 0.136± 0.024
A-MLP(θ) 0.086± 0.020 0.116± 0.024
A-MLP(γ) 0.125± 0.033 0.151± 0.030
A-MLP(γ, θ) 0.091± 0.016 0.121± 0.018

A-MLP(α, γ, θ) 0.140± 0.015 0.239± 0.029

Table 4.2: MSE (mean ± standard deviation) over 100 instances on the nested circles
problem trained for 5000 epochs. The best model, A-MLP(θ), is the same as in case
of two spirals. However, the worst model, A-MLP(α, γ, θ), has significantly higher MSE
(especially on the test set) compared to MLP which is quite a surprise given the fact that
on the previous task it performed quite well.

Concerning the results, it can be seen that use of white noise in model N-MLP did not
help at all and the performance was very similar to the standard MLP. All networks behave
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Figure 4.8: Learning curves for all models on the nested circles problem.

more or less the same as on previous task with the same winning model A-MLP(θ). For
reasons unknown to us, the performance of A-MLP(α, γ, θ) appears to be overly atypical
with the severe overfitting of the train set leading to poor generalization. Out of curiosity
we plotted (shown in Fig. 4.9) output space for the models MLP, A-MLP(θ) and A-
MLP(α, γ, θ) to grasp an idea on how the networks perform. At first glance it may appear
convincing that the output space for the MLP matches original dataset probably the most,
however the network was able to learn only six levels of nested circles. The best model,
A-MLP(θ), managed to learn even the last level (the red circle in the middle) with the
lower MSE and higher classification accuracy despite the fact that the final figure does
not look that plausible. Regarding the last model, A-MLP(α, γ, θ), it can be clearly seen
that the model did not generalize at all.

Last but not least, we look at the final distribution of θ values as presented in Fig. 4.10.
Since the optimal length of average window was found with the grid search to be only
two, suggesting that the astrocytes “prefer” to chase immediate neural activity instead of
focusing on the overall behaviour. It can be seen that θ values tend to cluster around the
maximum which is due to astrocytic activation of two consecutive times.

4.3.3 Chessboard

The hyperparameters values we used were N = 400 hidden neurons, weights initialization
from the uniform distribution Uni(−1, 1) and 5000 training epochs. Concerning the hy-
perparameters for astrocyte units, using the grid search we found: α = 0.42, γ = 0.29,
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Figure 4.9: Comparison of models MLP, A-MLP(θ) (the best) and A-MLP(α, γ, θ) (the
worst). The output space for MLP matches the original dataset very well, however it
learned only six levels of nested circles. A-MLP(θ) managed to learn even the most inner
circle and performed the best, although the separation of the classes appears imperfect.
The last network A-MLP(α, γ, θ) did not generalize at all.
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Figure 4.10: Distribution of θ values for the best performing model A-MLP(θ) at the end
of training, accumulated over 100 simulations for the nested circles dataset. The length
of averaging windows was set to two implying the almost immediate change of the vector
θ based upon the mean of two last astrocytic activations.

θ = 0.44 and average window length = 10. The results are presented in Table 4.3 and
Fig. 4.11. This time, the network with the best performance was A-MLP(α, γ, θ) yield-
ing almost perfect generalization on the testing set, however the error rate did not differ
much compared with the other models with astrocyte units. On the other hand, MLP and
N-MLP performed significantly worse.
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Model train set test set
MLP 0.042± 0.070 0.049± 0.077

N-MLP 0.115± 0.094 0.124± 0.097
A-MLP 0.012± 0.066 0.015± 0.065

A-MLP(α) 0.005± 0.009 0.009± 0.015
A-MLP(θ) 0.007± 0.031 0.014± 0.041
A-MLP(γ) 0.005± 0.024 0.011± 0.026
A-MLP(γ, θ) 0.002± 0.009 0.006± 0.011

A-MLP(α, γ, θ) 0.001± 0.003 0.005± 0.007

Table 4.3: MSE (mean± standard deviation) over 100 instances on the chessboard problem
trained for 5000 epochs. To our surprise, the model A-MLP(α, γ, θ) achieved the lowest
error rate on both training and testing sets. On the other hand, the worst performing
model was N-MLP with rather low performance compared to other models.
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Figure 4.11: Learning curves for all models on the chessboard dataset.

4.3.4 N-parity problem

Our last dataset that we tested is quite different, yet belonging to a binary classification
domain. The task is to determine whether a binary input vector has even or odd number
of ones. More formally, an input vector has the form x = [x1, . . . , xN ], xi = {0, 1} and the
target y = (1 + ∑N

i=1 xi) mod 2. Since the problem is notoriously difficult to generalize to
unseen patterns for machine learning algorithms, we train the models on full dataset (no
train/test split) whose total size is 2N .

Starting with an MLP, we chose the hidden layer with N neurons (a higher number
did not yield better results), the output layer with a single neuron (0 = odd input vector,
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1 = even input vector) and 10 000 training epochs. Proposed models with astrocyte units
had the following values for fixed hyperparameters: α = −0.5, γ = 0.5, θ = 0.5 (previously
found using the grid search). In Table 4.4 we present performance of all models and
although we see models with astrocyte units lead on average to better performance, the
differences are not statistically significant (p > 0.1).

Finally we looked at distribution of θ at the end of the training (shown in Fig. 4.12). It
can be seen that astrocytes develop various regimes depending on the problem complexity.
With lower N it is possible to clearly detect N peaks, but with higher N the profiles
gradually lose their multimodality, albeit remaining non uniformly distributed.

Model 4-parity 6-parity 8-parity
MLP 0.081± 0.060 0.065± 0.035 0.046± 0.070

N-MLP 0.104± 0.062 0.049± 0.031 0.021± 0.015
A-MLP 0.083± 0.086 0.059± 0.034 0.039± 0.023

A-MLP(α) 0.080± 0.065 0.072± 0.054 0.073± 0.069
A-MLP(γ) 0.087± 0.065 0.062± 0.034 0.042± 0.026
A-MLP(θ) 0.083± 0.075 0.065± 0.036 0.037± 0.021

A-MLP(γ, θ) 0.074± 0.051 0.063± 0.055 0.042± 0.027
A-MLP(α, γ, θ) 0.092± 0.072 0.078± 0.056 0.056± 0.028

Table 4.4: Mean squared error (MSE) ± standard deviation of 100 instances on three
parity problems trained for 10 000 epochs. Models with astrocyte units yielded lower
error rate although no statistical significance was found.
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Figure 4.12: Distribution of θ values (across 100 simulations) after being fully trained on
a parity problem for the model A-MLP(θ). With lower N it is possible to detect N peaks
assuming that each astrocyte handles a single bit from an input vector. On the other
hand, with higher N , the peaks become less visible.



Chapter 5

Astrocytes in recurrent neural
networks

Whereas in a feedforward neural network the information flows only in one direction, from
the input layer directly to the output layer, in a recurrent neural network, the feedback
connections are present allowing to pass and process the information typically in a loop.
These feedback connections can take a variety of forms including feedback from the hidden
layer to the input layer, feedback from the outer layer to the hidden layer, or alternatively
feedback from the output layer directly to the input layer. A combination of multiple
feedback types is also feasible.

RNNs are generally built upon (as an extension of) MLPs in terms of the architectural
layout. However incorporation of feedback connections allows them to process inputs and
outputs of a variable length which is a major limitation of MLPs. The nature of RNNs
implies the existence of their intrinsic state space (hidden unit representations) emerging
from the fact that the computation of neural activation for the hidden layer depends not
only on an input layer, but also on the activation of the hidden layer in the previous time
steps allowing the model to retain and change the state in the hidden units. This makes
RNNs suitable for modeling temporal dynamic behavior, such as sequence recognition,
generation or temporal association, prediction.

Although architectural layout of RNNs takes many different forms, here we present
only the layout related to our study: the simple recurrent network.
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5.1 Simple recurrent network

The adjective simple in the name of SRN connotes the fact that computation of the
hidden layer activity and the error derivative “simply” depends on the activity and the
error derivative attained from the unit-time delay. This simplification, however, does not
imply that the model does not store information from the distant past. The model was
originally conceived and used by Elman (1990) and the term Elman’s network is often
used interchangeably.

An SRN typically consists of three standard neural layers (input, hidden, output)
where the hidden layer is copied and used as an input together with the input pattern to
the computation of hidden layer activation in the next time step (Fig. 5.1). The copy of
hidden layer outputs is retained in the context layer which is fully connected with the
hidden layer using the feedback connections.

input pattern context layer

hidden layer

output layer

copy

Win

Whid

Wcxt

Figure 5.1: SRN architecture consisting of input, hidden and output layers. Input pattern
is extended with the context layer where the output of hidden layer from previous time
step is stored. The backward arrow, from the hidden layer to the context layer, denotes a
copy operation.

Training of SRNs is similar to traditional training of FFNNs using gradient descent
methods. There is, however, significant difference related to the error propagation. Whereas
in FFNNs the errors are propagated layer by layer until they reach the input layer, in RNNs
it is important to take into account the feedback connections. Use of the BP algorithm
directly results in taking into account only the last input signal from the input pattern,
leading to a rather short memory of the network. However, unfolding the hidden layer in
time a number of steps back through time, therefore changing the RNN into FFNN, allows
the BP algorithm to be applied for calculating and accumulating errors across each input
signal resulting in greater memory of the network. Afterwards, the update of the weights
is the same as in FFNN, using eq. 4.6. The algorithm described here (unfolding the model
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and using traditional BP) is called Back-propagation through time (Werbos, 1988).

5.2 Echo state networks

Training traditional RNNs is considered to be difficult because of limitations of gradient
descent methods which tend to be computationally expensive, to have slow convergence
and to generally lead to poor local minima. Hence, the full adaption of all network weights
is often omitted, yet still yielding excellent performance. This approach serves as a founda-
tion for ESNs which were introduced by Jaeger (2001) for nonlinear system identification
and time series modeling. ESNs are characterized by having randomly generated input
weights and reservoirs with the training only the readout weights.

However, in order to work well, ESNs require delicate tuning of several hyperparameters
including the reservoir, the spectral radius ρ, and input weight scaling τ . ESN must have
the Echo State Property which says that regardless of initial conditions, the hidden
layer must converge to the same state given the same input signal. If this is met, only
readout weights adaption is sufficient to obtain the ESN with high performance.

The model has indeed the same architectural layout as SRNs (Fig. 5.2) and is usually
equipped with a large amount of sparse feedback connections that remain untrained. The
hidden neurons are driven by an input signal and are widely referred as the reservoir (in
the context of ESNs).

Figure 5.2: Architecture of ESN containing single input, N hidden units and O outputs
units. Only the readout (W out) connections are adapted during training. Feedback con-
nections from output layer to the reservoir are also possible, however they are not shown
here.

Reservoir activation vectors x(t) = [x1(t), ..., xN(t)] and output activations y = [y1, ..., yC ]
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for given input pattern u = [u(1), ..., u(T )] are updated according to ESN dynamics given
by the formulas

x(t) = fres(winu(t) +W resx(t− 1)) (5.1)

y(t) = fout(W outx(T )) (5.2)

where fres, fout are suitable activation functions, win is the input weight vector, W res

and W out are recurrent and output weight matrices, respectively. In our study we use
fres(net) = 1/(1 + exp(−net)) and fout = id.

5.3 Fixed-weights astrocytes in A-ESN

Here we propose a model of ESN augmented with the same model of astrocytes as described
in Section 4.2.1. Similarly, we omit the concept of glial syncytium in which astrocytes are
connected using gap junctions and communicate sharing slow Ca2+ signals (as opposed to
neuronal firing), but we start studying the simplest possible model instead. We consider
merely the role of neuronal regulation by astrocytes themselves and equip each reservoir
neuron with one astrocyte as shown in Fig. 5.3. We call this model A-ESN.

Figure 5.3: The architecture of the proposed model, A-ESN, with a reservoir of neurons
and astrocytes. Each neuron is paired with an astrocyte that listens to it and regulates
neuron’s behaviour based on its past.

Reservoir activation x′i(t) takes into account input pattern u(t), previous time step
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activation vector x′(t − 1) and astrocyte activation ψi(t) weighted by a single shared
weight wα, which is expressed in the vector form as

x′(t) = f(winu(t) +W resx′(t− 1) + wαψ(t)) (5.3)

Astrocytes ψi(t) listen to their associated neurons and when some of the neurons exceed
the threshold θ, astrocytes produce the activation value of 1. The rest of them decay by
factor γ as

ψi(t) =


1, if θ < x′i(t− 1)

γψi(t− 1), otherwise
(5.4)

This ESN dynamics is graphically depicted in Fig. 5.4.

Figure 5.4: Neuron–astrocyte coupling. The astrocyte, weighted by wα, regulates the
associated neuron by contributing to its input. When the neuron surpasses the threshold
θ, the astrocyte outputs 1 and slowly decays by factor γ in the next time steps. Blue
arrows depict the reservoir weights, the green arrow an input weight and orange arrows
the astrocyte parameters.

5.4 Hebbian-weights astrocytes in A-HL-ESN

Since using a single shared weight wα for all astrocytes may be too constraining, we con-
sider an individual weight for each astrocyte. Although astrocytes are not considered to
be able to trigger neuronal action potential, they still modulate their membrane potential
by the release of gliotransmitters including glutamate (exciting the neuron) or ATP (in-
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hibiting the neuron) (Fellin et al., 2006). For that reason we consider randomly generated
weights from a uniform distribution Uni(−1, 1).

The exact relationship of neuronal regulation by astrocytes is still not well understood
and we can only guess to which extent is this process plastic and what are the specific
mechanisms of plasticity. For that matter we speculate using Hebbian learning which is in
great detail described in Hebb (1949). The basic principle is that the change of a synaptic
weight wji between neurons xi and yj, with the learning rate η, is expressed as

∆wji(t) = ηxi(t)yj(t) (5.5)

In our case we apply this rule for the change of the weight wα between a neuron x′i and
an astrocyte ψi. Repeated application, however, may lead to an exponential change of the
weight which is not biologically plausible and this is solved by incorporating some form
of stabilization. This is in many cases the normalization of the final weights. We consider
Oja (1982)’s rule which introduces a nonlinear, forgetting factor for the weight change

∆wαi (t+ 1) = ηx′i(t)[ψi(t)− x′i(t)wαi (t)] (5.6)

To take into account this new dynamics, we split our training algorithm into two
phases: 1) once the unsupervised learning of the weights wα (eq. 5.6) in the reservoir is
complete, 2) a supervised learning algorithm is applied to the readout weights. Instead of
using eq. 5.3 for the reservoir update, we consider

x′(t) = f(winu(t) +W resx′(t− 1) +wα ∗ψ(t)) (5.7)

with operator ’∗’ denoting the element-wise product of vectors. We call the model with
Hebbian learning as A-HL-ESN.

5.5 Experiments

For both classification tasks and memory capacity we consider the following training pro-
cedure:

1. Generate random input weights win and reservoir weights W res scaled by ρ/|λmax|,
where λmax denotes the largest absolute eigenvalue of W res and ρ is manually se-
lected.
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2. Run ESN using the training inputs utrain and collect the required reservoir activation
state x(t) (more precisely explained in the specific section for each task).

3. Compute the linear readout weights using formula

W out = Y tgtX+ (5.8)

where Y tgt is a matrix of concatenated target vectors (in columns) and X+ is the
pseudoinverse matrix of concatenated reservoir activation states from step 2.

4. Use the trained network on new input data utest and evaluate the performance.

5.5.1 Classification experiments

For the classification tasks we have decided for the UCR Time Series Classification Archive
(Chen et al., 2015) which consists of 85 real world problems and is often used for bench-
marking of Machine Learning models. In our study we selected 8 random datasets upon
which we assess the performance of the proposed methods. We use a standard ESN (with-
out astrocytes) as a baseline and compare it with models A-ESN and A-HL-ESN.

For the training of readout weights we use only the last activation state vector x(T )
obtained by processing each training pattern utrain = [u(1), ..., u(T )]. Target vectors are
represented using one-hot encoding and have shape ytgt = [y(1), ..., y(C)] where C is the
number of output classes. After training the model, the class of a new input utest is decided
by selecting output neuron with maximum activation

class(utest) = arg max
k

yk (5.9)

Using the grid search we systematically investigated each hyperparameter (averaged
over five instances) and selected the values with the lowest error rate on the testing dataset.
Regarding the ranges for each hyperparameter we chose the values presented in Table 5.1.

The UCR archive already provides train/test split of the datasets, but we found this
rather problematic because of the high risk of overfitting the hyperparameters to a par-
ticular test dataset. In order to avoid this, we merged both train and test datasets into a
single set and used 5-fold cross-validation instead. To eliminate the random fluctuation in
performance, we executed training procedures with random weights, random permutations
of datasets and averaged error rates over 100 instances.
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Parameter Tested values
N 20 to 500 with step=20
τ 10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001
ρ 0.8 to 1.4 with step=0.05
wα -1.0 to 1.0 with step=0.1
γ 0.0 to 1.0 with step=0.1
θ 0.0 to 1.0 with step=0.1

Table 5.1: Hyperparameter value ranges used in the grid search for each dataset.

Allowing for possibility of imbalanced datasets in which one class is over-represented
with the respect to the others, we use Matthews correlation coefficient (MCC) (Matthews,
1975) as a metrics for performance evaluation score rather than the mean-squared error,
accuracy or F1-score which does not work well on imbalanced datasets. The value MCC
= 1 corresponds to a perfect match between model predictions and observations, whereas
−1 indicates total disagreement between the two.

In all experiments, we used hyperparameters summarized in Table 5.2 resulting in the
largest MCC on testing datasets.

Dataset ESN A-ESN A-HL-ESN
N ρ τ wα γ θ γ θ

Earthquakes 20 1.40 0.01 -0.6 0.9 0.7 0.7 0.1
FaceFour 20 0.95 0.05 -0.4 0.1 0.2 0.2 0.2
MoteStrain 120 1.30 0.001 -0.3 0.9 0.5 0.3 0.3
OSULeaf 60 0.95 0.01 0.6 0.6 0.8 0.2 0.1

PhalOutlCorr 80 0.95 5.0 1.0 1.0 0.8 1.0 0.3
ProxPhalOutlCorr 40 0.90 1.0 -0.4 0.9 0.7 0.0 0.1

SwedishLeaf 160 1.40 0.001 -0.4 0.2 0.9 0.2 0.2
ToeSegmentation1 60 1.30 1.0 -0.5 1.0 0.9 0.3 0.1

Table 5.2: Optimal hyperparameters selected using the grid search for each dataset. Non-
astrocytic hyperparameters (N , ρ, τ) were shared in all models on a given dataset.

Results in terms of MCC averaged over 100 simulations are presented in Table 5.3. It is
clear that model with Hebbian connections, A-HL-ESN, significantly outperforms models
ESN and A-ESN. Despite having more complex training procedure and thus higher time
complexity, gain in terms of performance is clearly notable. Model with fixed connections,
A-ESN, have yielded results equivalent to standard ESN (assuming correct settings of
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hyperparameters), although it is speculative why on the last dataset (ToeSegmentation1),
the error rate is significantly better (MCC of 0.5± 0.1 vs 0.32± 0.11).

Dataset ESN A-ESN A-HL-ESN
Earthquakes 0.20± 0.12 0.21± 0.12 0.24± 0.11
FaceFour 0.44± 0.12 0.43± 0.13 0.56± 0.14
MoteStrain 0.65± 0.04 0.67± 0.06 0.85± 0.03
OSULeaf 0.41± 0.06 0.42± 0.06 0.57± 0.06

PhalOutlCorr 0.37± 0.04 0.38± 0.04 0.43± 0.03
ProxPhalOutlCorr 0.48± 0.06 0.52± 0.07 0.53± 0.06

SwedishLeaf 0.64± 0.03 0.63± 0.03 0.84± 0.03
ToeSegmentation1 0.32± 0.11 0.50± 0.10 0.59± 0.11

Table 5.3: MCC (mean±standard deviation) averaged over 100 simulations on each
dataset. In each case, the model A-HL-ESN is superior regarding the performance.

In order to better understand the role of astrocytes with Hebbian connections, we were
interested to know how the astrocyte weights develop during learning. For the fully trained
models (all 100 instances), we plotted final distributions of the weights wαi as depicted in
Fig. 5.5. We can observe that the weight distributions are skewed in the interval (1,2),
roughly independent of the dataset, with an exception being MoteStrain, where some of
the weights are also between 0 and 1. This can be explained by the use of Oja’s rule
(eq. 5.6) which shifts the weights towards the interval (0,1) when the neural activity is
higher than astrocytic activity and towards the interval (1,2) when the opposite happens.
Since we use unipolar activation functions for both neurons and astrocytes with an output
(0,1), the weights will always be forced to stay within positive region. We may conclude
this implies excitatory nature of the astrocytes in terms of neural regulation and that
astrocytic activity remains higher the activity of neurons.

5.5.2 Memory capacity experiments

Memory capacity (MC) is defined by Jaeger (2002) as a measure of network’s ability to
reconstruct the past information from the reservoir on the network output by computing
correlations. In our work (Farkaš et al., 2016; Farkaš and Gergel’, 2017) we systematically
investigated the effect of proper reservoir initialization on MC and proposed two gradient
descent iterative methods that approach a maximum of theoretical limit of ESN’s MC
that drive the reservoir dynamics towards the critical regime (the transition zone between
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Figure 5.5: Distribution of the weights wαi in the trained models A-HL-ESN reveals exci-
tatory role of the astrocytes.

a stable and an unstable dynamics regime).
Jaeger defined the MC as

MC =
kmax∑
k=1

MCk =
kmax∑
k=1

cov2(u(t− k), yk(t))
var(u(t)) · var(yk(t))

(5.10)

where functions cov and var denote covariance and variance, respectively. u(t− k) is the
input presented k-steps before the current input, kmax =∞, and yk(t) is the reconstruction
at the network output. The computation of MC is approximated using kmax = O output
neurons. The computation of MC takes into account the network ability to retrieve the
past input signal (for various delays k) from the reservoir using the linear combinations of
reservoir unit activations observed at the output (quantified by MCk). Jaeger proved that
the MC for recalling an indepdendent, identically distributed (i.i.d) input by an ESN of
N -units with identity activation function is bounded by N .

For assessing the performance of all models, we measure the total MC using randomly
generated sequences u ∈ RT of length T = 1100, drawn from a uniform distribution,
hence ui ∈ Uni(−1, 1). Such sequence has no underlying structure and is random: up
and ur are independent for p 6= r. We fed the first 100 inputs to the network to remove
the initial transient which is normally not present once the network has “warmed up” to
the task. Next 500 inputs to the network are utilized for the training, while collecting the
reservoir activations x and target output vectors ytgt and storing them into the matricesX
and Y tgt, respectively. The optimal output weight matrix W out is computed analytically
according to eq. 5.8 and final 500 input patterns are used for assessing the MC.

Regarding the initialization, we use N = 100 neurons within a reservoir, initialize the
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input weights win from uniform distribution Uni(−τ, τ) (τ = 1e−6), and the reservoir
weight matrix W res from normal distribution N (0, 1) scaled by ρ/|λmax| (ρ = 5.5) as
stated in step 1 of Section 5.5.

Similarly as in case of the classification experiments, we used a grid search for ob-
taining the best hyperparameters for models with astrocyte units. The values γ = 1.0
and θ = 0.6 turned up to be optimal in both models. Regarding the A-ESN, we used
α = −1.9, implying extensive inhibitory role of some astrocytes as a result of relatively
high threshold θ, which activates only few astrocytes. Upon being activated, their activity
remains constant for the rest of input sequence.

A-HL-ESN, on the other hand, did not perform very well. By taking into account the
fact that the weight vector wα remains within positive range, which contradicts weight
value for the previous model, out of curiosity we simply swapped the term +wα∗ψ(t) with
the −wα ∗ψ(t) in eq. 5.7, which turned out to perform better, however, it did not exceed
MC of the simpler model, A-ESN. We call these models with excitatory and inhibitory
contribution as A-HL-ESN+ and A-HL-ESN−. The results are summarized in Table 5.4.

ESN A-ESN A-HL-ESN+ A-HL-ESN−
Memory capacity 32.14± 3.13 40.03± 2.24 25.59± 2.32 39.94± 4.86

Table 5.4: Measure of MC on randomly generated sequences from uniform distribution on
three models. The higher value signifies better performance, hence the best performing
model is A-ESN with the static astrocytic weights.



Conclusion

The neuroscientific research for the last decades has highlighted the importance of glial
cells in information processing context. Astrocytes regulate neuronal functionality in a va-
riety of ways, particularly by maintaining the concentration of ions and neurotransmitters,
by releasing gliotransmitters, and modulating both neuronal excitability and synaptic plas-
ticity. However, limited amount of research has been done in the field of ANNs equipped
with artificial astrocytes.

Inspired by Ikuta et al. (2010) and the subsequent work, as well as by recent findings
from biological research of astrocyte physiology and their interactions with surrounding
neurons, in our thesis we have proposed artificial astrocyte units to be integrated in feed-
forward and recurrent neural networks. The role of astrocytes in both models is reduced
to the regulation of neuronal excitability. The interaction is bidirectional and by listening
to neural activity, astrocytes provide positive or negative feedback helping the neurons to
stabilize.

In case of the FFNN, the original model with astrocyte units consists of several hy-
perparameters including glial weight, threshold, attenuation factor, propagating range of
astrocyte activation, refractory period and an activation decay that needs to be selected
manually for each problem, which is a time-consuming and error-prone process. Since we
found the model to be too complex to start with and it turned out to be challenging to
obtain the very same results as Ikuta et al. did in their paper, we have simplified the
model by omitting the concept of syncytium and kept astrocytes as individual units, not
connected with each other within a single network, which in the end turned out to perform
significantly better.

Instead of using a single constant glial weight for all astrocytes, we have proposed a
gradient-descent method that updates the parameters along the negative gradient of the
loss function for each astrocyte individually. For the threshold and the activation decay,
we have introduced two unsupervised rules (eq. 4.14 and 4.15 for the threshold and eq. 4.16
and 4.17 for the decay) which sets the specific value according to the history of astrocytic
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activity. Since both rules turned out to perform practically the same, we used the first
variation that updates the value directly to the averaging window of the astrocytic activity.

We have evaluated the performance of the proposed modifications on four classification
problems: 1) two-spirals, 2) nested circles, 3) chessboard and 4) N-parity. For all problems
we first selected an MLP with optimal hyperparameters found using an exhaustive grid
search (the number of hidden neurons, the learning rate, initial weight distribution) and
then used them in models with astrocyte units. The results obtained for N-parity did not
outperform MLP, however all models already converged to the global minimum with zero
classification error. In case of the first three tasks, all our models performed better in terms
of the lower errors with statistical significance (p < 0.001). In nested circles problem, the
simulations turned up to be relatively time-consuming, thus we trained all models only
for 5000 epochs which was not enough (Fig. 4.8), albeit the models with astrocyte units
had better convergence rate. Also, it is a mystery to us why the model A-MLP(α, γ, θ)
was not able to generalize at all, since in other tasks it performed relatively well and in
case of the chessboard problem it was even the best.

Inspired by positive results from the FFNNs, we transferred the same model of astro-
cytes to RNNs and explored their influence. Such models are closer to biological realism
than FFNNs, because recurrent connections are critical and ubiquitous in the CNS. Since
training recurrent neural networks is difficult for various problems, we considered ESNs
instead. In addition, we incorporated Hebbian learning for weights between astrocytes and
their associated neurons. By systematic analysis of this new dynamics on eight classifica-
tion tasks we found very little contribution of astrocytes with fixed weights, but in case of
Hebbian learning the performance yielded significantly positive outcome. We also exam-
ined the dynamic change of the threshold and the activation decay as in FFNNs, bipolar
activation functions for neurons and astrocytes (with their output activation within the
interval (-1, 1)), various options for training the readout weights. However, these modi-
fications did not perform that well. By swapping astrocytes with neurons in eq. 5.6 the
network performed more or less the same.

Future research in this area may follow several directions. The activation function for
the astrocyte, as formulated in eq. 4.8, is definitely not the only one and there are several
varieties to be considered. Since Ca2+ signalling within glial syncytium operates on a
much slower pace as opposed to neuronal firing, it may be beneficiary to incorporate this
slow, temporal dynamics into astrocytic behaviour. Although our model of an artificial
astrocyte includes slow decay, “firing”, however, remained still instant. Despite focusing on
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the astrocytes as single separate units, it is possible to model glial syncytium and design
an astrocytic network of astrocytes connected together, hence fulfilling the biologically
plausible spatiotemporal dynamics. Last but not least, instead of modeling the regulation
of neuronal excitability, it is possible to design models that also incorporate the rules for
synaptic plasticity.
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