
COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

LEARNING OF OBJECT GRASPING
IN A ROBOTIC SYSTEM

Master’s thesis

Bratislava, 2017 Bc. Peter Kovács

COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

LEARNING OF OBJECT GRASPING
IN A ROBOTIC SYSTEM

Master’s thesis

Study programme: Applied Computer Science

Field of study: 2511 Applied Informatics

Department: Department of Applied Informatics

Supervisor: prof. Ing. Igor Farkaš, Dr.

Bratislava, 2017 Bc. Peter Kovács

iv

67286493

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Peter Kovács
Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)
Študijný odbor: aplikovaná informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Learning of object grasping in a robotic system
Učenie robotického systému uchopovať objekty

Cieľ: 1. Preštudujte literatúru o učení posilňovaním v robotike so zameraním
na siahanie a uchopovanie objektov.
2. Vyberte a otestujte nedávno navrhnutý RL algoritmus a pokúste sa ho
vylepšiť.
3. Aplikujte a vyhodnoťte zvolený algorithm v úlohe siahania a uchopovania
objektov s využitím simulátora robotického ramena.

Literatúra: Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural
Computation, 10(2), 251–276.
Kakade, S. (2001). A natural policy gradient. In T. G. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural Information Processing Systems
14 (NIPS), pages 1531–1538. MIT Press.
Schulman, J., Moritz, P., et al. (2015). Trust region policy optimization. In
International Conference on Machine Learning (ICML).

Anotácia: Učenie posilňovaním (RL) je oblasť strojového učenia zaoberajúca sa
optimalizáciou správania agenta, ktorý koná v prostredí, súc vedený získavanou
odmenou. RL je aplikovateľné aj v úlohách s väčším počtom stupňov voľnosti,
kde analytické prístupy, napr. v úlohách siahania a uchopovania objektov, nie sú
použiteľné. Avšak efektívne RL algoritmy sú stále výzvou, obzvlášť v úlohách
s väčším počtom stupňov voľnosti.

Vedúci: prof. Ing. Igor Farkaš, Dr.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 13.12.2015

Dátum schválenia: 14.12.2015 prof. RNDr. Roman Ďurikovič, PhD.
garant študijného programu

študent vedúci práce

v

I hereby declare that this thesis is a presentation of my

original research work and that I have not used any

sources and aids other than those stated in the thesis.

. .

Bratislava, 2017 Bc. Peter Kovács

Acknowledgement

I would like to express gratitude to my supervisor prof. Ing. Igor Farkaš,

Dr. for the useful comments, remarks and engagement through the learning

process of this master thesis.

vi

Abstract

In this thesis we apply trust region policy optimization (TRPO) algorithm

to the field of robotic reaching and grasping in a simulated environment.

We show that the algorithm is suitable for learning good policies for 3D

reaching and grasping and also for 3D reaching with obstacle. Reaching

and grasping model is represented as a feed-forward neural network which

controls force applied to each degree of freedom. We show that TRPO is

highly parallelizable and we introduce two improvements for its convergence

properties. They are based on reusing information from previous trajectories

and from previous gradient direction, respectively.

Keywords: reinforcement learning, reaching, grasping, parallelism, TRPO

vii

Abstrakt

V práci sa zaoberáme aplikovaním algoritmu ”trust region policy optimiza-

tion” (TRPO) na simulované robotické siahanie a uchopovanie v priestore.

Ukazujeme, že pomocou algoritmu TRPO sa dokáže robotické rameno naučiť

nielen siahať a uchopovať predmet v trojrozmernom priestore, ale siahať naň

aj po pridaní prekážky. Model siahania a uchopovania je reprezentovaný

doprednou neurónovou sietou, ktorá kontroluje silu aplikovanú na jednotlivé

stupne voľnosti. V práci ukazujeme, že algoritmus TRPO je ľahko paraleli-

zovatelný a navrhujeme dve zlepšenia jeho konvergencie založené na využití

informácie z jeho predchádzajúcich trajektorií, resp. predchádzajúcich gra-

dientov.

Kľúčové slová: učenie posilňovaním, siahanie, uchopovanie, paralelizmus,

TRPO

viii

Contents

1 Introduction 1

2 Theory 3

2.1 Artificial Neural Networks . 3

2.1.1 Multilayer perceptron 4

2.1.2 Training neural networks 5

2.2 Reinforcement learning . 6

2.2.1 Formal definition . 7

2.2.2 Bellman equation and value functions 8

2.2.3 Optimal value function 9

2.2.4 Finding an optimal policy 10

2.2.5 Monte Carlo methods 10

2.3 Value function approximation 12

2.3.1 Learning objective . 12

2.3.2 Linear methods . 13

2.3.3 Nonlinear methods . 13

2.4 Policy gradient methods . 14

2.4.1 Score function gradient estimator 14

2.4.2 Policy gradient . 15

ix

CONTENTS x

3 Policy gradient upgrades 17

3.1 Natural gradient . 17

3.2 Natural policy gradient . 20

3.3 Trust region policy optimization 21

3.4 Optimization problem . 21

3.4.1 Sampling scheme . 22

3.4.2 Trust region and search direction 23

4 Related approaches 25

4.1 Modern RL approaches . 26

4.1.1 Deterministic policy gradient (DPG) 26

4.1.2 Deep Q learning . 26

4.2 Other approaches for grasping 30

4.2.1 Demonstration . 30

4.2.2 Cognitive approaches 30

4.2.3 Vision . 31

5 Experiments 32

5.1 Model specifications . 32

5.1.1 State representation 32

5.1.2 Policy . 33

5.1.3 Value function . 33

5.1.4 TRPO parameters . 34

5.2 Environments . 35

5.2.1 2D Reacher . 35

5.2.2 3D Reacher . 36

5.2.3 3D Grasping . 38

5.2.4 Reaching behind the wall 39

CONTENTS xi

5.3 Improvements of TRPO algorithm 41

5.3.1 Replay memory . 41

5.3.2 Using previous direction in CG 44

5.3.3 Combining information from previous iterations 46

5.3.4 Parallelism . 48

5.3.5 Summary . 50

6 Implementation 52

6.1 Simulator . 52

6.2 Mathematical computation library 54

6.3 Parallel TRPO . 55

6.3.1 Architecture . 55

7 Conclusion 57

Chapter 1

Introduction

Finding a suitable grasp among infinite set of candidates is a challenging task

that has been addressed frequently in the robotics community resulting in

different approaches such as in Kraft et al. (2010), Castellini et al. (2007),

Kalakrishnan et al. (2011) and Zdechovan (2012). The methodologies can

be divided into two categories analytic solutions using methods of inverse

kinematics/dynamics and data driven approaches (Bohg et al., 2014). Un-

til recently the field of robotic grasping was clearly dominated by analytic

approaches. However, with development of fast physics simulators and new

advances in the field of machine learning and neural networks research lead

to new data driven approaches.

Data driven approaches can be divided into three categories. The first cate-

gory covers methods that assume knowledge of 3D mesh and the challenge is

then to sample a set of good grasp hypotheses and rank them according to

some quality measure. The second approach would be learning from humans

1

CHAPTER 1. INTRODUCTION 2

when robot can learn successful grasps by observing them. This method is

often referred to as demonstration or imitation learning. The last category

is learning through trial and error. Instead of computing possible grasps we

just try multiple of them and learn some generalized knowledge from such

experience. Reinforcement learning is a good representative of this category.

Kalakrishnan et al. (2011) showed successful application of RL to door open-

ing and pen grasping task. Zdechovan (2012) showed how to use CACLA (van

Hasselt & Wiering, 2009) to learn successfully grasp object of random shapes

with an actor–critic algorithm. Lillicrap et al. (2015) showed that its also

possible to employ a deep learning with actor–critic methods to learn good

models for various robotic tasks. Recently Schulman et al. (2015) proposed

TRPO algorithm which showed promising results on robotic locomotion mo-

tivated us to test this algorithm on robotic reaching and grasping task.

In this work we will first go through the necessary theory to understand

policy gradient algorithm which will include ideas such as function approxi-

mations and reinforcement learning terminology and definitions (Chapter 2).

Then we follow with improvements of the policy gradient such as natural pol-

icy gradient and trust region policy optimization (TRPO) in Chapter 3. We

briefly describe current trends in reinforcement learning applied to not only

reaching and grasping but also to domains with visual input (Chapter 4). In

Chapter 5 we will present different reaching and grasping environments we

designed and solved, followed by experiments with ideas which are supposed

to improve TRPO convergence properties. Finally, in Chapter 6 we will show

that its possible to scale TRPO over multiple cores and also how to do it.

Chapter 2

Theory

In this chapter we will start by defining neural networks model, with fo-

cus only on feed forward architectures. Then we will describe how to train

them and then we will dive into the theory and framework of reinforcement

learning.

2.1 Artificial Neural Networks

Artificial neural networks are mathematical models inspired by the function

of the human brain. There exists a wide variety of different architectures

suitable for different tasks (Haykin, 2009). In this section we will only focus

on feedforward neural networks, concretely multilayer perceptron, that we

use in our work.

3

CHAPTER 2. THEORY 4

Figure 2.1: Multilayer perceptron

2.1.1 Multilayer perceptron

Multilayer perceptron (MLP) is a fully connected feedforward neural network

consisting of several layers of neurons where each neuron in the current layer

is connected with all neurons in lower and higher layers. Figure 2.1 illustrates

a multilayer perceptron with input layer x = [x1, x2, · · · , xn], one hidden

layer h = [h1, h2, · · · , hq] and one output layer y = [y1, y2, · · · , yn].

Each layer in MLP consists of several neurons. To compute the output of

hidden layer we first need to have results of previous layers. Formula for

computing output for MLP with input x one hidden layer h and one output

layer y is:

y =W

h︷ ︸︸ ︷
ϕ(xV)

to write it in a summation

hk =
n∑
i=1

vkixi

CHAPTER 2. THEORY 5

yi =

q∑
k=l

wikϕ(hk)

Selecting the number of neurons, layers and activation function ϕ depends

on a problem. The general strategy for selecting the number of neurons

and layers is that one starts with a small model and enlarge if the previous

configuration was not successful, however take care that your model does not

overfit.

2.1.2 Training neural networks

Finding parameter matrices V and W , lets call them θ, for our MLP such

that some loss function L is minimized is not easy at all due ϕ being a

nonlinear function. In supervised learning the most common methods for

optimizing neural network are some sort of gradient descent algorithm (GD).

Due to increasing number of data, classical GD is rarely used. Instead the

newer stochastic GD (SGD) is used. The difference between them is that GD

use all of the data to compute gradient of the loss function L with respect to

θ, while SGD selects only a subset of datapoints and estimate actual gradient.

To compute the gradient of any model with SGD we first need to know

what loss function to choose. Loss function tells us how well we perform

on our optimization problem. For regression (estimating real value based on

observation) one possible loss function L can be the squared error

L =
n∑
i=0

(di − yi)2

CHAPTER 2. THEORY 6

where yi is the predicted value and di is the desired(target) value. For classi-

fication task (estimating category based on observation) the most often used

L is the cross-entropy loss.

L = −
n∑
i=0

K∑
k=1

d
(i)
k log(y

(i)
k)

where d(i)
k says what is the probability of sample i to be in the class k. Note

that y and d ∈ RK , where K is the number of classes and n is the number of

samples in minibatch. Now that we have function to optimize SGD we just

need to compute gradient with respect to θ and update our parameters in

the negative direction to minimize L

θt+1 = θt − α∇θL

2.2 Reinforcement learning

Reinforcement learning (RL) is an area of machine learning concerned with

how software agents ought to take actions in the environment so as to max-

imize cumulative reward. In operations research it is also known as approx-

imate dynamic programming. At the first part of this section we will state

the formal definition of RL, then we will take a look at how to solve RL

problem.

CHAPTER 2. THEORY 7

2.2.1 Formal definition

Formal definition of reinforcement learning comes from Markov decision pro-

cess (MDP) theory defined by the tuple (S,A, P, r, ρ0, γ).

• S is a set of states (e.g., in robotic arm grasping, S might be positions

and angles of joints and joint torques),

• A is a set of actions (e.g. all possible changes in torque joints),

• P : S × A× S → R is the transition probability distribution (model),

• r : S × A× S → R is the reward function,

• ρ0 : S → R is the distribution of the initial state s0,

• γ ∈ (0, 1] is the discount factor.

Let π denote a stochastic policy

π : S × A→ [0, 1]

and η(π) denote its expected discounted reward:

η(π) = Es0,a0,...

[∞∑
t=0

γtr(st)

]

where s0 ∼ ρ0(s0), at ∼ π(at|st), st+1 ∼ P (st+1|st,at). The goal of RL is

to find a policy π : S → A mapping from states to actions that maximizes

η(π).

MDP dynamics is shown in Figure 2.2. The agent observes the current world

state st, and performs action at, while receiving a reward rt and transforming

CHAPTER 2. THEORY 8

Figure 2.2: RL dynamics

the world into new state st+1.

2.2.2 Bellman equation and value functions

In order to determine which action to take in which state we need some

estimate of how good it is for the agent to be in a given state. The notion

of ”how good” here is defined in the terms of expected discounted reward

function

Vπ(st) = Eat,st+1,...

[
∞∑
k=0

γlr(st+k)

]
according to which, the value of a state st under policy π is the expected

return when starting in state st and following policy π thereafter. This func-

tion is called state value function for policy π.

Similarly we can define state–action value function for policy π or sometimes

referred to as Q function.

Qπ(st,at) = Est+1,at+1,...

[
∞∑
k=0

γlr(st+k)

]

CHAPTER 2. THEORY 9

A fundamental property of value functions is their recursive relationship, that

for any policy π and any state s

Vπ(s) =
∑
a

π(s|a)
∑
s′

P (s′|s,a) [r(s) + γVπ(s
′)]

This relationship is called Bellman equation and expresses the relationship

between the value of a state and the values of its successor states. The

derivation of Bellman equation can be found in Sutton & Barto (1998).

2.2.3 Optimal value function

Solving MDP task means finding a policy which maximizes reward over time.

Value functions can be used to define a partial ordering of policies such that

a policy π is better or equal than a policy π′ if its expected return is greater

than or equal to π′ for each state. Similarly, we can define ordering for Q

functions. The policy π∗ that is better or equal to than every other policy is

called the optimal policy. Although there may be more than one such policy,

they share the same state value function V∗(s) = maxπ Vπ(s).

Even though we have defined what is an optimal value function and shown

Bellman equation, it is rarely possible to compute its exact values. A critical

aspect of the RL problem is its computational feasibility. In the tasks with

small and finite state space it is possible to compute optimal value function

using arrays or tables with one entry per state. However in many cases of

practical interest, tasks are inherently continuous (with continuous states and

sometimes also actions, e.g. robotic tasks). In these cases the function must

be approximated by some compact parametrized function representation.

CHAPTER 2. THEORY 10

2.2.4 Finding an optimal policy

One way to find an optimal policy is the algorithm called policy iteration.

The idea behind this algorithm is that we iteratively evaluate current Vπ

which gives us expected returns for each state. After having all value func-

tions computed we can argue (the proof is provided in Sutton & Barto 1998),

that taking actions greedily with respect to Vπ leads to a better policy and

therefore to a new value function. These two processes depicted in Figure

2.3 are called policy evaluation and policy improvement, or also referred to

as prediction and control, respectively.

Figure 2.3: Policy iteration consisting of two steps, policy evaluation and
policy improvement.

2.2.5 Monte Carlo methods

In previous method we silently assumed that we know the transition distri-

bution. In many RL problems we do not have such information available,

however, it is often possible to generate sample transitions from which we

can learn. Monte Carlo methods allow to estimate the value function based

on averaging sample returns.

CHAPTER 2. THEORY 11

Exploration versus exploitation

If the model of the environment is not available, then it is useful to esti-

mate the Q function instead of the value function V . Deterministic policy

would cause the algorithm to follow only one way, which is currently the best

performing one. To make policy evaluation work, we must assure continual

exploration in order not to miss possible better actions. Introducing action

exploration will help mitigate this issue, e.g. with a probability ε we would

choose a random action and with probability 1− ε we would pick an action

according to policy π. This is called ε-greedy policy which ensures that in

infinity each action–state pair is selected infinitely many times.

Monte Carlo prediction and control

Algorithm 2.1 Monte Carlo Prediction
1: π ← policy to be evaluated
2: V ← an arbitrary state-value function
3: rewards(s)← an empty list, for all s ∈ S
4: while TRUE do
5: Generate an episode using π
6: for all s in episode do
7: G← reward following the first occurrence of s
8: append G to rewards(s)
9: V (s)← average(rewards(s))

10: end for
11: end while

Algorithm 2.1 will learn a state–value function for a given policy π. By the

law of large numbers, the sequence of averages of these estimates converges

to its expected value. The same algorithm will work for problem without

a model. Instead of V we will estimate the Q function and policy will be

CHAPTER 2. THEORY 12

ε-greedy. To update the policy we would again change it such that it follows

the best actions greedily according to the Q function.

2.3 Value function approximation

Working with large state-action spaces can be memory demanding. So in-

stead of remembering all the states we will try to approximate V function or

action–state Q function. This is not as easy as it may seems because not all

function approximation methods are well suited for reinforcement learning.

In RL it is important for a method to learn on-line while interacting with the

environment. To efficiently learn in this setting we require methods which

are able to learn in such way. In addition we will also require from the

learning algorithm to be able to handle non-stationary target function. For

example in policy iteration we often seek to learn Qπ while π is changing.

Methods that can not handle these requirements well enough are less suited

for reinforcement learning.

2.3.1 Learning objective

Most function approximators are based on gradient descent optimization. In

order to train one we need some learning objective which measures how well

we approximate function. One possibility for such a measure would be mean

squared error (MSE):

MSE =
∑
s∈S

d(s)
[
Vπ(s)− V (s|θ)

]2

CHAPTER 2. THEORY 13

The square root of this function gives a rough estimate how much the pre-

dicted and real values differ. As part of the equation there is a term d(s)

which says of how much we care about errors in different states. The most

common choice of d(s) is a fraction of time spent in s under the policy π.

2.3.2 Linear methods

One way to optimize such function is to use a linear model V̂ (·,θ) where

θ is a vector of parameters. Corresponding to every state s, there exists a

real valued vector of features φ(s) = [φ1(s), φ2(s), ...]
>. These features can

be constructed in many ways such as with polynomial basis, Fourier basis

or use various types of encoding (tile or coarse), or its generalization radial

basis functions. Computing the state–value function is as easy as doing the

dot product of two vectors:

V̂ (s,θ) = θ>φ(s) =
n∑
i=1

θiφi(s)

To find optimal weights θ we use standard methods such as GD or SGD.

2.3.3 Nonlinear methods

As nonlinear models, neural networks are the most common choice. They

were successfully used for creating meaningful representations from raw im-

ages or other different sensor signals. Compared to linear models they are

much harder to train due to the introduced nonlinear functions in hidden

layers and we can not guarantee finding an optimal solution.

CHAPTER 2. THEORY 14

2.4 Policy gradient methods

In contrast to previous method where we learned the state value or action–

state value function and acted greedily with respect to this function, now we

will learn parametrized policy. We will control parameters of parametrized

policy πθ which affects probability distribution over actions and according to

this distribution we will choose our next action. Note that in policy gradient

method we do not need to consult value function prior to selecting the next

action, but the value function may still be used to learn the policy weights.

2.4.1 Score function gradient estimator

Let us introduce how to compute the gradient ∇θEx
[
f(x)

]
of expectation

of function f :

∇θEx
[
f(x)

]
= ∇θ

∫
p(x|θ)f(x)dx

=

∫
∇θp(x|θ)f(x)dx

=

∫
p(x|θ)
p(x|θ)

∇θp(x|θ)f(x)dx

=

∫
p(x|θ)

∇θ log p(x|θ)︷ ︸︸ ︷
1

p(x|θ)
∇θp(x|θ) f(x)dx

=

∫
p(x|θ)∇θ log p(x|θ)f(x)dx

= Ex
[
f(x)∇θ log p(x|θ)

]
In order to use this estimator, we need to be able to differentiate density

p(x|θ) with respect to θ. This is an unbiased gradient estimator. We can

CHAPTER 2. THEORY 15

just sample from xi ∼ p(x|θ), and compute ĝ = f(xi)∇θ log p(xi|θ).

2.4.2 Policy gradient

To update parameters of our policy, we first need its gradient and to acquire

the gradient we need some loss function. So to formulate our problem we

want to

maximize
θ

Eτ
[
R(τ)|πθ

]
where R(τ) is the cumulative reward across the whole trajectory (episode).

Intuitively, we want to make good trajectories more probable, therefore mak-

ing good actions more probable in specific states. Note that here we want to

maximize the cumulative reward, so instead of the gradient descent we will

be doing gradient ascend.

Sampling the trajectory τ = (s0,a0, r0, s1,a1, r1, ..., sT−1,aT−1, rT−1, sT) and

using it as x (Section 2.4.1) we can compute gradient of our loss function

∇θEτ
[
R(τ)

]
= Eτ

[
R(τ)∇θ log p(τ |θ)

]
= Eτ

[
R(τ)∇θ

T−1∑
t=0

log π(at|st,θ)
]

Sampling just one trajectory and computing the gradient will not be a really

good estimate of expected value and therefore of the gradient. To reduce the

variance we can sample more such trajectories and compute the gradient with

respect to all of them. To summarize this, we have the following algorithm:

CHAPTER 2. THEORY 16

Algorithm 2.2 Policy gradient
1: Initialize policy parameter θ
2: while TRUE do
3: Collect a set of trajectories by executing current policy
4: For each trajectory compute return R(τ) =

∑T−1
t=0 γ

trt
5: Update the policy using policy gradient estimate
6: end while

Please note that this is just a brief summary of theory of RL. We have only

covered parts required for understanding a policy gradient and there exists

much more methods and approaches. For further material refer to Sutton &

Barto (1998).

Chapter 3

Policy gradient upgrades

In this chapter we describe two quite recent methods which build on pol-

icy gradient by exploiting ideas from information geometry. The first such

method is the natural policy gradient (NPG) which applies the idea of natural

gradient proposed by Amari (1998). The second method is called the trust

region policy optimization (TRPO) which improves the NPG by introducing

trust region constraint to policy optimization (Schulman et al., 2015).

3.1 Natural gradient

Natural gradient can be followed back to Amari (1998) and his work on infor-

mation geometry. Later the algorithm was applied in reinforcement learning

community by Kakade (2001). To understand the difference between PG

and NPG, we first need to reconsider the notion of distance. The folk axiom

that ”the shortest distance between two points is straight line” represented

by Euclidean distance often does not hold in the real world, e.g. in geograph-

17

CHAPTER 3. POLICY GRADIENT UPGRADES 18

ical maps the shortest distance is often some curve due to the shape of our

planet.

(a) (b)

Figure 3.1: Notion of distance in the realm of Gaussian distribution. (a)
Large Euclidean distance and small KL divergence. (b) Small Euclidean
distance and large KL divergence.

It is similar also in the case of probability distributions. In Figure 3.1a

we can see that Euclidean distance between the parameters of two normal

distributions is 10 while they are much more similar than distributions in

Figure 3.1b where Euclidean distance is only 4. The better distance measure

is KL divergence which basically tells us how similar two distributions are.

The formula for continuous distributions is

DKL(P ‖ Q) =
∫ ∞
−∞

p(x) log
p(x)

q(x)

Natural policy gradient uses exactly this idea, i.e. instead of using Euclidean

distance it applies the KL divergence to measure distance between distribu-

tions. In mathematical form the Euclidean distance in N - dimensional space

between two points v and v + δv is

CHAPTER 3. POLICY GRADIENT UPGRADES 19

dE(v,v + δv) =

√√√√ N∑
i=1

δv2i =
√
(δv)>δv

In Riemannian geometry upon which natural gradient adaptation is built,

we generalize the distance metric dw(·, ·) at point w as

dw(w,w + δw) =

√√√√ N∑
i=1

N∑
j=1

δwiδwjgij(w) =
√
δw>G(w)δw

where the Riemmanian metric tensor G(w) is the positive definite matrix of

dimensions N ×N where(i, j)-th entry is gij(w). The matrix G(w) charac-

terizes the curvature of particular manifold in N -dimensional space. In case

of Euclidean distance G(w) = I so the dw(·, ·) reduces to dE(·, ·). Another

similar example would be in polar coordinates where Riemmanian metric

tensor is

G(w) =

1 0

0 r2

 ·
As we already pictured, using Euclidean distance in parametrized distribu-

tions is not the best idea. The standard gradient of loss function does not

represent the steepest direction in the parameter space and thus using the

standard gradient update is not appropriate. Therefore, Amari (1998) pro-

posed natural gradient adaptation as

θt+1 = θt + αG−1(θt)
∂L

∂θ

The main advantage of natural gradient adaptation over standard gradient

descent is that we are also estimating the curvature of underlying parameter

space which allows as to converge much faster. One such example where

CHAPTER 3. POLICY GRADIENT UPGRADES 20

standard SGD fails is when it is trapped in a plateau. It might take a long

time for SGD to escape while for natural gradient it is easy due to having

curvature information available.

3.2 Natural policy gradient

When Kakade (2001) applied natural gradient to policy gradient he named

it natural policy gradient. With a slightly abused notation we will write ex-

pected reward as η(θ) instead of η(πθ).

The average reward is technically a function on the set of distributions

{πθ : θ ∈ RN}. For each state s there corresponds a probability manifold,

where the distribution πθ(a|s) is a point on this manifold with coordinates

θ and the Fisher Information Matrix (FIM) of this distribution is

Fs(θ) = πθ(a|s)
[
∂ log πθ(a|s)

∂θi

∂ log πθ(a|s)
∂θj

]
As shown by Amari (1998), FIM is an invariant metric on the space of the

parameters of probability distributions up to some scale. Invariant in the

sense of how we choose the coordinates θ. Since the expected reward is

defined on the set of these distributions, Kakade’s (2001) choice of the metric

was

F(θ) = Eρπ(s)[Fs(θ)]

where the expectation is taken with respect to stationary distribution πθ.

Intuitively, FIM measures the distance on a manifold in state s and Fs is an

CHAPTER 3. POLICY GRADIENT UPGRADES 21

average distance. Hence our policy update will be

θt+1 = θt + αF−1(θt)∇η(θ)

.

3.3 Trust region policy optimization

Trust region policy optimization (TRPO) algorithm is quite similar to NPG

method. It builds on Kakade & Langford (2002) work where they introduced

policy updating scheme called conservative policy iteration, for which they

could provide explicit lower bounds on improvement of η when used with

mixture policies. Schulman et al. (2015) showed that it is possible to ex-

tend this result by applying it to general stochastic policies. Since mixture

policies are rarely used in practice, this result was crucial for extending the

improvement guarantee to practical problems. Using local approximation on

such algorithm led to TRPO.

3.4 Optimization problem

After few approximations to theoretical results shown in Kakade (2001) and

Schulman et al. (2015), we end up with the optimization problem formulated

in the following way:

maximize
θ

Es∼ρθold ,a∼q

[
πθ(a|s)
q(a|s)

Qθold(s,a)

]
subject to Es∼ρθold

[DKL(πθold(·|s) ‖ πθ(·|s))] ≤ δ

CHAPTER 3. POLICY GRADIENT UPGRADES 22

where πθ(a|s)
q(a|s) Qθold(s,a) is an unbiased cumulative reward of new policy πθ(a|s),

q(a|s) is our sampling scheme and πθ(a|s)
q(a|s) is an importance sampling ratio.

DKL is an KL-divergence of two probability distributions, in this case our

stochastic policies and δ is hyperparameter of the model describing how much

the two policies can differ.

Algorithm 3.1 TRPO
1: Initialize policy parameter θ
2: while TRUE do
3: Use sampling scheme to collect a set of state-action pairs with cumu-

lative rewards.
4: By averaging over samples, construct the estimated objective and con-

straint.
5: Compute search direction using linear approximation to objective and

quadratic to constraint.
6: Perform line search in that direction such that we improve L(θ) and

satisfy constraint.
7: end while

3.4.1 Sampling scheme

Schulman et al. (2015) describe two different sampling schemes - single path

and vine. In single path we sample multiple states from which we then follow

policy πθold for some number of time-steps to generate trajectories. In vine

method we additionally select multiple actions in multiple states to better

approximate cumulative reward. However, this would require simulator to

be restored to particular states. In our implementation we decided to focus

on a simple path sampling scheme due to its better computational efficiency.

Also it is results turned out to be sufficient for not implementing a much

more complicated vine procedure.

CHAPTER 3. POLICY GRADIENT UPGRADES 23

Figure 3.2: Demonstration of two sampling schemes, single path (left) and
vine sampling procedure (right). (Source: Schulman et al. 2015)

3.4.2 Trust region and search direction

In order to update our policy parameters θ we first need to compute the

direction in which it will increase η(θ). For this we will use natural gradient,

which in turn means that we need to solve the equation Fx = g where x is

a search direction which we need, g is the policy gradient and F is a Fisher

Information Matrix and Fij = ∂
∂θi

∂
∂θj
DKL(θ ‖ θold). However, computing

F directly with over-parametrized models such as neural networks can be

memory and computationally expensive. Using theory on multiplying Hes-

sian with vector (Pearlmutter, 1994) with conjugate gradient method we can

approximately solve x ≈ F−1g.

Having the search direction computed, we need to find the maximal step

length β such that θ + βx satisfies our optimization constraint. Applying

the quadratic approximation to

DKL(θ ‖ θold) ≈
1

2
(θ − θold)

>F(θ − θold)

CHAPTER 3. POLICY GRADIENT UPGRADES 24

we can derive that

δ = DKL ≈
1

2
(βx)>F(βx) =

1

2
β2x>Fx

β =

√
2δ

x>Fx

Now we computed the trust region β for our search direction we can employ

it to update policy parameters.

Chapter 4

Related approaches

In this chapter we describe other RL approaches which are currently consid-

ered state-of-the-art in various domains. A lot of them fall into the category

of action-value function estimation where we act greedily by taking the ac-

tion with the highest estimated value. At first we describe Deterministic

Policy Gradient and its update Deep Deterministic Policy Gradient which

are methods built on the policy gradient idea. Then we offer overview on

Deep-Q Learning methods based on estimation of Q values. Then we con-

tinue by its improvements called Double Deep Q learning and Dueling Deep

Q learning followed by brief report about Asynchronous Advantage Actor

Critic and Normalized Advantage Function algorithms. In the end of we

describe some other methods for robotic grasping.

25

CHAPTER 4. RELATED APPROACHES 26

4.1 Modern RL approaches

4.1.1 Deterministic policy gradient (DPG)

DPG comes from the family of actor–critic methods. In this method authors

showed that it is possible to change a stochastic policy used in the standard

policy gradient or TRPO for deterministic one (Silver et al., 2014). This

brought the slight advantage of easier estimation of gradients. Silver et al.

(2014) showed that in many multidimensional cases having deterministic pol-

icy brings advantage because we do not have to do Monte-Carlo estimations

over the action space.

Deep DPG

Closely after DPG was proposed, Lillicrap et al. (2015) showed how to employ

deep learning with DPG by using the idea of replay memory and training

network with Q value. They suggested to minimize a correlation between the

samples by utilizing the memory replay and applied deep learning with batch

normalization for easier convergence (Ioffe & Szegedy, 2015) in Q function

estimation. They also showed that this algorithm was able to learn good

policies for various motor control tasks such as locomotion, reaching and

grasping.

4.1.2 Deep Q learning

However, the most famous application of deep networks in reinforcement

learning was when Mnih et al. (2013) combined Q-learning with deep neural

CHAPTER 4. RELATED APPROACHES 27

Figure 4.1: Neural network architecture used by Deep Q-learning, (Mnih et
al. 2015).

nets on the Atari gaming domain (Mnih et al., 2015). To be more specific,

they modified Q learning by adding additional target network whose pur-

pose was to stabilize learning and they also utilized experience replay (Lin,

1992) as another stabilisation technique. What made it famous was that

they designed end-to-end system (Figure 4.1) for learning from raw image

pixels received from a game simulator. Their resulting policy was able to

outperform a human player in multiple games.

Zhang et al. (2015) successfully applied this algorithm on robotic reaching in

simulated environment. They also unsuccessfully tried to transfer the learned

policy on real world Baxter robot. The author’s belief of reason for failure

in knowledge transfer from simulation to real world was a large difference in

an input image between real and simulation scenarios.

CHAPTER 4. RELATED APPROACHES 28

Figure 4.2: Comparison of standard DQN and new Dueling DQN, (Wang et
al. 2016).

Double DQN

Closely after DQN was published, van Hasselt et al. (2015) described the

known problem of Q learning which is overestimation and also showed why it

happens. They also showed that its possible to fix this problem and proposed

Double DQN (DDQN) which reduced this overestimation bias and made

learning more stable. As they showed this led to better policies for almost

each game played in Atari simulator.

Dueling DQN

Following the great results of previous two architectures the next step for

update was development of Dueling DQN. The crucial insight was that some-

times it is not necessary to estimate each action separately but instead only

CHAPTER 4. RELATED APPROACHES 29

estimate state value and therefore they decided to decompose Q function

estimation into estimating a value function V and advantage function A,

where Q = V + A (Figure 4.2). After decomposing it and predicting each

one separately they again merge it together so they could still train the whole

network in DQN/DDQN fashion.

Following research

Many new papers followed the research of DQN, one such method was pro-

posed by Mnih et al. (2016) called asynchronous advantage actor critic (A3C)

where they showed that it is possible to use multiple parallel actor learners

for stabilizing effect on the learning process instead of experience replay.

However, they also stated that using both techniques could lead to even bet-

ter learning efficiency. They also showed that it is possible to beat current

state-of-the-art trained on modern GPU with only 16 core CPUs by using

the A3C algorithm.

However, these algorithms proved to be really good for high-dimensional

observation spaces they are hard to apply on continuous action spaces. An

obvious approach would be to discretize the action space but this have many

limitations, most notably the curse of dimensionality. In high-dimensional

action spaces policy gradient methods show much better performance.

Gu et al. (2016) proposed a way how to mitigate the need of discretizing

continuous action spaces while still estimating Q function by constructing a

network which estimate state function V and advantage function A. They

also proposed an imagination rollouts which were trying to use learned model

CHAPTER 4. RELATED APPROACHES 30

to help estimate Q values more precisely, but it was shown not to help.

We believe that these updates for faster convergence and better policies could

be applied in the same fashion as in Zhang et al. (2015). There definitely

exist more similar techniques performing really well, but the one described

we believe to be the most promising ones.

4.2 Other approaches for grasping

4.2.1 Demonstration

Castellini et al. (2007) created a dataset consisting of reach and grasp tra-

jectories collected by the CyberGlove (a glove with sensors for recording

movements of human hand) consisting of 22 sensors and then used it with

support vector machines to predict a degree value for each DoF on human

hand. This could be then used by robotic arm for generating valid reaches

and grasps.

4.2.2 Cognitive approaches

Kraft et al. (2010) studied the means of learning robotic grasp affordances

such as relative gripper-object poses that lead to stable grasps. They use

a visual model of object to autonomously search and infer stable grasps.

They also showed that it is possible to repeatedly grasps an object laying in

arbitrary pose where each pose imposed a specific reaching constraint.

CHAPTER 4. RELATED APPROACHES 31

4.2.3 Vision

Visual grasping learning is modern approach which use a big datasets of

grasps to train a classifier which can either tell if some grasp will be success-

ful or even predict where to grasp object (Saxena et al., 2008). Later, Ler-

rel Pinto (2016) introduced a large scale dataset for object grasping learning

and similar approach of large scale data collection was described by Levine

et al. (2016). Similar research was perform by Joseph Redmon (2015) where

they trained classifier for predicting grasp successfulness. These methods

were inspired by enormous success of convolutional network popularized by

Krizhevsky et al. (2012).

Chapter 5

Experiments

In this chapter we describe our experiments of reaching and grasping on

multiple environments. Firstly, we describe how we represent policy and the

value function, then we continue by describing an experiment on simple 2D

reacher, followed by 3D reaching and grasping. Finally, we experiment with

3D grasping behind the static wall with randomly placed target behind it.

In each environment degrees of freedom (DoF) are controlled by our policy

outputting torques. These torques are then applied to the robotic model

inside the simulator.

5.1 Model specifications

5.1.1 State representation

In our simulated world the state s was represented by a vector of positions

for each DoF followed by the target position and the actual forces/torques

32

CHAPTER 5. EXPERIMENTS 33

on each DoF. After observing the current state and reward for the last step,

agent provides one action for each DoF. The action was represented as a

force/torque applied to each DoF, respectively.

5.1.2 Policy

As our stochastic policy we used a fully connected artificial neural network, as

described in Section 2.1. In order to scale on each environment we have taken

a relatively big network consisting of two hidden layers with 100 neurons in

each. As a nonlinear activation function we used the hyperbolic tangent, and

as an initialization method we used Xavier initialization (Glorot & Bengio,

2010).

We experimented with activation functions such as ReLU variations and

sigmoidal nonlinearities. However, we found that TRPO is quite invariant

to these changes and converged almost in all settings with minor improve-

ments in some combinations, therefore we decided to stick to a standard tanh

activation function. Our experiments with number of layers and neurons in

each layer showed that using smaller networks improved convergence in easier

tasks such as 2D reaching, but was not sufficient in 3D grasping. Therefore,

we decided to further proceed with already mentioned architecture which

provides more than enough parameters for learning grasping policy.

5.1.3 Value function

As a value function approximator we decided to employ a simple linear re-

gression. so for training we could calculate closed form for least squares.

CHAPTER 5. EXPERIMENTS 34

However when trying to learn policy we discovered that we were unable to

learn any meaningful value function approximation due to non-linearity of an

underlying value function. We partially solved this by nonlinearizing input

to regression by giving it also squares of each input dimensions.

We also experimented with the neural value function approximator which

we believed to be better suited for the underlying value function. We tried

different feedforward architectures with different training procedures but we

were not able to beat linear regression. Computing closed form of linear re-

gresson with squared input features was fast and robust, therefore we decided

to continue with it.

5.1.4 TRPO parameters

In TRPO the most sensitive hyperparameters are maximum KL divergence

and the number of rollouts per update. This is probably intuitive since the

whole algorithm convergence properties depend on these two. In all our

experiments we used maximum KL divergence δ = 0.01. Regarding the

number of sampled trajectories we increased it in the case of more difficult

environment.

CHAPTER 5. EXPERIMENTS 35

(a) (b)

Figure 5.1: A cumulative reward during training (left). Rendered Reacher2D
environment (right).

5.2 Environments

5.2.1 2D Reacher

As the first testing environment (Figure 5.1b) we decided to use a 2D reacher.

This environment consists only of two DoF which should make it easy to

solve. Therefore we decided to use this environment as testing ground for

TRPO implementation. The goal of the environment is to reach for the red

cube(target) with the green dot(palm). The red cube and both arm angles

are given a random position at the beginning of each iteration to force the

policy to find parametrisation that generalizes well and learns the most about

relationship between the arms and the target.

As already described in Chapter 2 after each step environment provides

a state and a reward. Based on this information the agent selects an action.

CHAPTER 5. EXPERIMENTS 36

The agent’s state is given by an angles for each DoF, position of the target

in Cartesian coordinate system and the current velocity of each DoF. The

reward is given by the following formula

R = −d(palm,target)− f(actions) (5.1)

where

1. d(palm,target) is the distance from palm to target. The higher the

distance the lower the reward is. This forces algorithm to find policy

which tries to have green and red dot as near as possible.

2. f(actions) is penalty for movement. We penalize robot for applying

force on joints to ensures that robot try to find an optimal way to

reach the target and do the minimal work.

After observing the current state and the reward for last step agent performs

one action for each degree of freedom. This action is represented as force/-

torque applied to each DoF respectively.

As we can see in Figure 5.1a such a problem formulation allows our algo-

rithm to successfully converge to a good policy for reaching on randomly

placed target. Being confident that our algorithm works we moved to a more

complex environment.

5.2.2 3D Reacher

We have placed rigid ceiling into our new environment shown in Figure 5.2b

from which our arm will hang. In order to reach almost every point on our

CHAPTER 5. EXPERIMENTS 37

(a) (b)

Figure 5.2: A cumulative reward during training averaged over 10 runs with
its standard deviation(left). Rendered Reacher3D environment (right).

table which is bounded by red walls, it required to create two additional de-

grees of freedom.

State, action and rewards were almost the same as in 2D reaching only

now all computation were being done in 3D, i.e. to the state observation

we added information about the additional DoFs and one dimension for the

target position. Moreover, we needed to output two additional values in the

action space.

When we compare Figures 5.1a and 5.2a we can notice that solving new

environment is approximately as hard as solving the former one. In graph

5.2a we can also see that our reward during the early episodes starts with

much lower value. This is partly caused by the two additional DoF. Firstly

due to the reward penalizing forces applied to DoF and secondly by the fact

that we can now achieve higher distances between the palm and the target.

CHAPTER 5. EXPERIMENTS 38

(a) (b)

Figure 5.3: A cumulative reward during training 3D Grasper (left). Rendered
3D Grasper environment (right).

Policy controlling the robotic arm can also be viewed on video1 from training.

5.2.3 3D Grasping

Extending 3D reaching environment to 3D grasping we added 4 fingers (Fig-

ure 5.3b). To generate valid grasps we decided to add rotational degree of

freedom on the robotic forearm. Together this meant controlling seven de-

grees of freedom. After a several training trials we have noticed that having

2 degrees of freedom for each part of the gripper was unreasonable and there-

fore we decided to couple both sides together. The constraint property was

to insure the inverse positions of grasper part to each other. This meant if

left part of gripper is at 40 degrees than right part must be at −40.

A reward function in this environment was a bit more complicated than
1https://youtu.be/_8uSyV750tE

https://youtu.be/_8uSyV750tE

CHAPTER 5. EXPERIMENTS 39

in the reaching part. It still had same two parts as in Equation 5.1 but with

some additions which force arm to grasp the target. The first such part is

a positive reward for contact between grippers and the target. The second

part is penalty for touching ground with the gripper when there is contact

between the gripper and target. The last part of the reward was for height

of the target.

The penalty for ground contact, forced the arm not to touch the ground

when it successfully grasped the target which in turn enforces the arm to lift

the object. In the end such behaviour lead to big positive reward for target

height. In Figure 5.3a there is a big spike around 0 and then the reward starts

to have more variance. This was caused by the fact that the arm managed to

pick up the target for the first time. After this event the reward slowly goes

to the positive spectrum of values, until it reaches average reward around

900 which means that it was able to pick up the target almost in each trial.

The high variance in the end of training was caused by the successfulness of

grasping. Sometimes we were able to grasp a lot of times and other times

we picked up the cube only occasionally. Training progress is visualized in

Figure 5.3a as well as in the video2 from training.

5.2.4 Reaching behind the wall

Simple grasping as shown in previous section is really useful for various

robotic tasks, but for robots operating in the real world there are often differ-

ent obstacles on the way to target which needs to be avoided so that neither

robot nor obstacle are destroyed. Hence, we have designed another simple
2https://youtu.be/EGvkJBXAOi4

https://youtu.be/EGvkJBXAOi4

CHAPTER 5. EXPERIMENTS 40

environment (Figure 5.4b) with the wall in the middle of the reaching area.

At the beginning of the episode the target is spawned on a random posi-

tion in the reaching area but not on the wall. Then robotic arm is moved

to the opposite side of the wall as its target and its goal is to reach for that

target without touching the wall. We started with testing the reward func-

tion used in previous environment but we were unable to find policy which

avoided the wall, thus we again modified it. The modification penalized for

each contact with wall as well as for being closer to the wall then to the

target. This lead to desired behaviour of the arm going over the wall and

then reaching for the target.

(a) (b)

Figure 5.4: A cumulative reward during training (left). Reacher 3D with a
wall in the middle (right).

CHAPTER 5. EXPERIMENTS 41

5.3 Improvements of TRPO algorithm

We proposed a few TPRO improvements we have tried in order to speed up

the computation time or convergence rate. Firstly, we introduce experience

replay adaptation (Lin, 1992) and an experiment on improving sample effi-

ciency by using this idea. Secondly, we look into reusing previous gradient

direction information by using it as an initialization in conjugate gradient

algorithm. In the end, we experiment with our parallel version of TRPO

algorithm and show that it is computationally superior to standard TRPO.

5.3.1 Replay memory

After performing multiple experiments we noticed that training TRPO is

too time consuming. Hence we decided to speedup the algorithm conver-

gence properties by reusing previous information. One of the first ideas was

to use collected trajectories not only in current iteration but also in the fu-

ture. Specifically we decided to keep trajectories from past k steps. The

first idea was to use these previous trajectories for better value function ap-

proximation. However, it idea turned out to be unsuccessful because we

would estimate the value function for the current policy using rewards from

previous iterations. Since the value function is dependent on the policy, this

would introduce an error. The second idea was to simply store trajectories

from a few previous iterations and run algorithm on such data. However,

after trying this and failing, we noticed that we are no longer optimizing our

objective but instead we use value function approximations from previous

iterations instead of the value for current policy. Finally, we corrected this

flaw by using past samples with correctly computed state–action transitions

CHAPTER 5. EXPERIMENTS 42

Figure 5.5: Memory replay convergence comparison on Reacher2D.

Figure 5.6: Memory replay convergence comparison on Reacher3D.

CHAPTER 5. EXPERIMENTS 43

Figure 5.7: Memory replay convergence comparison on Grasper3D environ-
ment.

Qθold(s,a) also for trajectories form past iterations. This idea led to minor

improvement on each tested environment as can be observed in Figures 5.5,

5.6 and 5.7.

Experiment was conducted on 10 runs with a different random seed for each

alternative. The dark blue/green line indicates the average of average sum

of rewards per episode while a transparently colored surrounding indicates

the variance. In each episode there were sampled 100 trajectories and replay

memory hyperparameter was set to k = 3. For value function approximation

we have used linear regression with nonlinearized input as described in Sec-

tion 5.1.3.

As we can observe from Figures 5.5, 5.6 and 5.7 this technique reduces vari-

CHAPTER 5. EXPERIMENTS 44

ance of rewards and also slightly improves performance of original algorithm

consistently across multiple environments. It seems that the more complex

the environment the more this method helps. Such a statement would require

further investigation which we could not afford due to time/computational

power constraints.

5.3.2 Using previous direction in CG

Another possibility of reusing previous information is based on reusing pre-

vious gradient instead of reusing experience explicitly as was done in replay

memory case. Martens (2010) described that a simple enhancement to HF

algorithm which they found improves performance by the order of magnitude

was to reuse previous search direction found by conjugate gradient (CG) algo-

rithm and apply it as starting point in CG in the current iteration. However,

Martens (2010) only tried it with Gauss-Newton approximation to the Hes-

sian matrix now we decided to also employ it with Fisher information matrix.

As the first experiment we incorrectly used only search direction instead of

the whole update vector. This led to results which were either comparable

with zero initialization or even worse. Using full step direction from previous

iteration in initialization of conjugate gradient led to much better conver-

gence rate and visible variance reduction of rewards. Parameter setting of

experiments was exactly the same as in the replay memory section, only the

algorithm was changed a little.

CHAPTER 5. EXPERIMENTS 45

Figure 5.8: Previous direction reuse convergence on Reacher2D.

Figure 5.9: Previous direction reuse convergence on Reacher3D.

CHAPTER 5. EXPERIMENTS 46

Figure 5.10: Previous direction reuse convergence on Grasper3D environ-
ment.

5.3.3 Combining information from previous iterations

Assuming that both previous methods improve convergence rate, we decided

to combine them with the goal of maximizing usage of previously acquired

information. However as depicted in Figures 5.11, 5.12 and 5.13, combining

both approaches proved to be not a good idea. It seems that when we com-

bine them, they contradict each other and perform worse compared to using

either approach separately. It might be interesting to investigate why these

two approaches do not work well together and achieve better convergence

property than either of them alone.

Evaluation was again performed on all three environments, where each method

was run exactly 10 times and rewards from different runs were averaged.

CHAPTER 5. EXPERIMENTS 47

Figure 5.11: Combination of both methods on Reacher2D.

Figure 5.12: Combination of both methods on Reacher3D.

CHAPTER 5. EXPERIMENTS 48

Figure 5.13: Combination of both methods on Grasper3 environment.

5.3.4 Parallelism

Nowadays when CPU frequency is no longer increasing parallelism is be-

coming hot topic in computing. Therefore using multiple processors for our

training was of the shelve method for increasing computation speed. We have

observed that we spend more than 95% of our computational time sampling

paths and simulating rather than computing gradient and updating network.

Gathering multiple trajectories on different cores is inherently parallel task.

That means there is no computational dependency of one on an other. Know-

ing this, we expected the speedup to be almost linear.

CHAPTER 5. EXPERIMENTS 49

Figure 5.14: Parallelism speedup on Reacher2D environment with 300 roll-
outs. One vs two processors.

Using this knowledge we implemented a parallel procedure for sampling

trajectories by instantiating multiple simulation environments and multiple

copies of the policy network. In Figure 5.14 we depict the speedup of two

processors compared to a single processor. It was generated on computer

with 2 core Intel Core i5 with 2,4GHz. We have not achieved expected lin-

ear speed up which could be due to multiple reasons. In the one vs. two

processors we trained on personal laptop whose processors were used by sev-

eral other applications. This could take some of its computational power.

Another part of computational time was taken by merging trajectories from

different processes together.

CHAPTER 5. EXPERIMENTS 50

Figure 5.15: Sequential vs five processors.

Figure 5.16: Parallelism speedup on Grasper3D environment with 1000 roll-
outs per episode. One vs five processors.

In Figure 5.15 we compare one with five parallel processes. While generating

it we used 6 core AMD Phenom II X6 1090T with 3.2GHz. The experiment

with 5 cores seems much better. It is probably caused by the fact that we

have 6 core processor and the last core can be used for computations required

by other processes.

5.3.5 Summary

In this chapter we presented various environments for reaching and grasping.

In table 5.1 we show DoF configurations for each environment. We showed

that TRPO was able to converge into intended behaviour in each of them

CHAPTER 5. EXPERIMENTS 51

Table 5.1: Hinge joint DoF constraints in each environment

Reacher 2D Reacher 3D Wall Reacher Grasper 3D

Arm
axis x unlimited unlimited unlimited unlimited
axis y - unlimited unlimited unlimited
axis z - - - -

Forearm
axis x unlimited unlimited unlimited unlimited
axis y - unlimited unlimited unlimited
axis z - - - unlimited

Grasper left - - - (-40, 40)
right - - - (-40, 40)

and found good policy. We thought our simulated robotic arm how to reach

for objects and also how to grasp them.

We described multiple improvements for TRPO algorithm based on reusing

an information from previous episodes. One of the methods was based on

reusing previous search direction while the other reused previous trajectories

for better estimation of the curvature. Both approaches led to convergence

improvement over the standard TRPO algorithm in all three environments.

We showed that it is possible to implement TRPO in a parallel manner which

led to almost linear speedup with the number of cores.

Chapter 6

Implementation

In this chapter we briefly discuss how we chose the tool to work with. First

we consider a simulator choice and then we go through some numerical com-

putation frameworks. Then we present parallel implementation of TRPO

algorithm.

6.1 Simulator

The first design decision was the choice of the simulator. Our requirements

were that it have to be fast to allow quick training and development. As the

first choice we were trying the iCub simulator where we are given control of

child like robot (Tikhanoff et al., 2008). After some time playing with iCub

we found that it contains lot of bugs and it often breaks down if there is an

error in the physical simulation and therefore we decided not to use it.

The second platform we experimented with was VREP which is an acronym

52

CHAPTER 6. IMPLEMENTATION 53

Figure 6.1: 2D reacher environment in xml.

for ”virtual robotic experimentation platform”. It was quite easy to create

or import new models and test them. However the main problem with this

platform was its speed. After testing a few algorithms we have found that

training under VREP environment takes too much time and we were also

unable to start multiple sessions at once for parallelisation purposes.

To guarantee the high speed we needed to reach for implementations on

lower level and find suitable physical engine simulator. We decided to test

MuJoCo which was used in the most research papers we have mentioned in

Chapter 4 and also in Schulman et al. (2015). The MuJoCo was already

used in multiple environments in RL framework called Gym, we decided to

give apply it to our problem. We used MuJoCo and its python bindings to

extend Gym library with multiple environments for grasping and reaching.

CHAPTER 6. IMPLEMENTATION 54

Moreover, MuJoCo proved to be the fastest of all other choices and therefore

we decided to exploit it in our experiments.

Specifying environment in MuJoCo is as easy as writing a simple and human

readable XML, e.g. Code 6.1 which is specification of 2D reacher environment

which is depicted in Figure 5.1b.

6.2 Mathematical computation library

Theano, Tensorflow and Torch are currently the most used and the most

developed libraries for numerical computation. They all resemble at simi-

lar level of abstraction defining tensor (multidimensional array) structures

and operations on them. These libraries use highly optimized C/CUDA/-

Fortran code to reduce computational time as much as possible. At the start

of this work Torch only offered Lua bindings, while our language of choice

was python. Hence, we have not considered using Torch. Note that in 2017

PyTorch seems to be gaining big popularity in research community.

Both Theano and Tensorflow defined Tensor as base data structure on which

they offer numerous operations from which computational graphs are built.

Each operation have its derivation in the automatic differentiation module,

which in use with the chain rule allows computing gradients for each node

in such graphs. While Theano was older and much more developed, we de-

cided to stick with Tensorflow due to its nicer API and better documentation.

There also exist higher level libraries which abstract common operations

CHAPTER 6. IMPLEMENTATION 55

such as creation of neural networks layers or whole networks such as Keras,

TFLearn or TFSlim with Tensorflow backend or Lasagne, Blocks and Keras

with Theano backend. We decided to use only lower level API since we were

already familiar with it.

6.3 Parallel TRPO

A GIL (global interpreter lock) is an interpreter level lock which prevents

multiple threads from running at the same time within the same interpreter.

Each thread that wants to execute an action must first wait for GIL to

be released by other threads. Hence, using python multithreading module

would not really help our algorithm to run any faster. However, python

still offers a way to make our algorithm parallel by using quite expressive

multiprocessing API for creating new processes and communicating between

them using pipes and queues. In our implementations we extended Process

class and used Queues for sending jobs to processes and another queue for

receiving results from workers.

6.3.1 Architecture

To speed up the most time consuming part of our algorithm, computing tra-

jectories, we decided to create multiple workers where each worker reads from

job queue where the main process put requests to receive new trajectory. Af-

ter workers asynchronously sample rollouts, they write them to result queue

where the main process collects them and performs the whole policy update.

After having computed the new parameters θ for the policy, the main pro-

CHAPTER 6. IMPLEMENTATION 56

Figure 6.2: Parallel architecture design.

cess distributes them to each worker, so sampling can continue under the

new policy. We repeat the process until we are satisfied with a policy and

terminate the program. The whole process is depicted in Figure 6.2.

Chapter 7

Conclusion

In this work we described an approach for solving robotic reaching and grasp-

ing by using state-of-the-art reinforcement learning (RL) algorithm called

trust region policy optimization (TRPO). We described basic theoretical

foundations of reinforcement learning and the necessary theory for policy

gradient algorithms. Then we explained policy gradient improvements such

as natural policy gradients and our method of choice - TRPO. We presented

several state-of-the-art RL algorithms. We showed that TRPO can be suc-

cessfully applied to a simulated robotic environments such as 2D reaching

and 3D reaching and grasping. In the 3D reacher environment we also added

wall which made the task harder. We showed that with suitable reward

TRPO is capable of finding a good policy for target reaching while avoid-

ing collisions. We proposed two improvements for TRPO algorithm. The

first one reused previous trajectories for better estimation of the parameter

space curvature while the second one reused previous gradient information.

Both of these upgrades improved convergence rate and decreased a variance

57

CHAPTER 7. CONCLUSION 58

of TRPO in 2D, 3D reaching and 3D grasping environments. Experimental

results showed that our parallel TRPO implementation was able to achieve

almost linear speedup with up to 5 cores, but we were not able to test its

limit due to hardware constraints. Last but not least, we described imple-

mentation choices related to tools, libraries and the simulator. We showed

how to build a simple environment in MuJoCo physical simulator and we

also described implementation details for TRPO parallelisation.

There definitely could be done more development in current framework by

applying TRPO to visual based reaching and grasping and further research

can be conducted on why the application of proposed methods for conver-

gence improvement did not work together.

Bibliography

Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural

Computation, 10(2), 251–276.

Bohg, J., Morales, A., Asfour, T., & Kragic, D. (2014). Data-driven grasp

synthesis - A survey. IEEE Transactions on Robotics, 30(2), 289–309.

Castellini, C., Orabona, F., Metta, G., & Sandini, G. (2007). Internal models

of reaching and grasping. Advanced Robotics, 21(13), 1545–1564.

Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the International Confer-

ence on Artificial Intelligence and Statistics.

Gu, S., Lillicrap, T. P., Sutskever, I., & Levine, S. (2016). Continuous deep

Q-learning with model-based acceleration. In M.-F. Balcan and K. Q.

Weinberger, editors, ICML, volume 48 of JMLR Workshop and Conference

Proceedings, pages 2829–2838.

Haykin, S. (2009). Neural Networks and Learning Machines. Neural networks

and learning machines. Prentice Hall, 3 edition.

Ioffe, S. & Szegedy, C. (2015). Batch normalization: Accelerating deep net-

59

BIBLIOGRAPHY 60

work training by reducing internal covariate shift. Computing Research

Repository, abs/1502.03167.

Joseph Redmon, A. A. (2015). Real-time grasp detection using convolutional

neural networks. In IEEE International Conference on Robotics and Au-

tomation, (ICRA 2015), pages 1316–1322. IEEE.

Kakade, S. (2001). A natural policy gradient. In T. G. Dietterich, S. Becker,

and Z. Ghahramani, editors, Advances in Neural Information Processing

Systems 14 (NIPS), pages 1531–1538. MIT Press.

Kakade, S. & Langford, J. (2002). Approximately optimal approximate rein-

forcement learning. In Proceedings of the Nineteenth International Confer-

ence on Machine Learning, ICML ’02, pages 267–274, San Francisco, CA,

USA. Morgan Kaufmann Publishers Inc.

Kalakrishnan, R. et al. (2011). Learning force control policies for compli-

ant manipulation. In IEEE/RSJ International Conference on Intelligent

Robots and Systems.

Kraft, D., Detry, R., Pugeault, N., Başeski, E., Guerin, F., Piater, J., &

Krüger, N. (2010). Development of object and grasping knowledge by

robot exploration. IEEE Transactions on Autonomous Mental Develop-

ment, 2(4), 368–383.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classifi-

cation with deep convolutional neural networks. In Advances in Neural

Information Processing Systems 25, pages 1106–1114.

Lerrel Pinto, A. G. (2016). Supersizing self-supervision: Learning to grasp

from 50k tries and 700 robot hours. In 2016 IEEE International Conference

on Robotics and Automation, (ICRA 2016), pages 3406–3413.

BIBLIOGRAPHY 61

Levine, S. & Koltun, V. (2013). Guided policy search. In International

Conference on Machine Learning (ICML 2013).

Levine, S., Pastor, P., Krizhevsky, A., & Quillen, D. (2016). Learning hand-

eye coordination for robotic grasping with deep learning and large-scale

data collection. Computing Research Repository, abs/1603.02199.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,

D., & Wierstra, D. (2015). Continuous control with deep reinforcement

learning. Computing Research Repository, abs/1509.02971.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement

learning, planning and teaching. Machine Learning, 8(3), 293–321.

Martens, J. (2010). Deep learning via hessian-free optimization. In Pro-

ceedings of the 27th International Conference on Machine Learning, pages

735–742.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wier-

stra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement

learning. In NIPS Deep Learning Workshop.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,

M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Pe-

tersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran,

D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control

through deep reinforcement learning. Nature, 518(7540), 529–533.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T.,

Silver, D., & Kavukcuoglu, K. (2016). Asynchronous methods for deep

reinforcement learning. Computing Research Repository, abs/1602.01783.

BIBLIOGRAPHY 62

Pascanu, R. & Bengio, Y. (2014). Revisiting natural gradient for deep net-

works. In International Conference on Learning Representations.

Pearlmutter, B. A. (1994). Fast exact multiplication by the hessian. Neural

Comput., 6(1), 147–160.

Saxena, A., Driemeyer, J., & Ng, A. Y. (2008). Robotic grasping of novel

objects using vision. The International Journal of Robotics Research, 27(2),

157–173.

Schulman, J., Moritz, P., et al. (2015). Trust region policy optimization. In

International Conference on Machine Learning (ICML).

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. A.

(2014). Deterministic policy gradient algorithms. In Proceedings of the 31th

International Conference on Machine Learning, (ICML 2014), volume 32

of JMLR Workshop and Conference Proceedings, pages 387–395.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning: An Introduc-

tion. MIT Press.

Tikhanoff, V., Cangelosi, A., Fitzpatrick, P., Metta, G., Natale, L., & Nori,

F. (2008). An open-source simulator for cognitive robotics research: The

prototype of the icub humanoid robot simulator. In Proceedings of the

8th Workshop on Performance Metrics for Intelligent Systems, (PerMIS

2008), pages 57–61.

van Hasselt, H. & Wiering, M. A. (2009). Using continuous action spaces

to solve discrete problems. International Joint Conference on Neural Net-

works, 00, 1149–1156.

BIBLIOGRAPHY 63

van Hasselt, H., Guez, A., & Silver, D. (2015). Deep reinforcement learning

with double Q-learning. Computing Research Repository, abs/1509.06461.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N.

(2016). Dueling network architectures for deep reinforcement learning. In

Proceedings of The 33rd International Conference on Machine Learning,

pages 1995–2003.

Zdechovan, L. (2012). Modelovanie uchopovania objektov pomocou

neurónových sití v robotickom simulátore iCub. Master’s thesis, Faculty of

Mathematics, Physics and Informatics, Comenius University in Bratislava.

Zhang, F., Leitner, J., Milford, M., Upcroft, B., & Corke, P. (2015). To-

wards vision-based deep reinforcement learning for robotic motion control.

In Australasian Conference on Robotics and Automation 2015, Canberra,

A.C.T.

List of Figures

2.1 Multilayer perceptron . 4

2.2 RL dynamics . 8

2.3 Policy iteration consisting of two steps, policy evaluation and

policy improvement. 10

3.1 Notion of distance in the realm of Gaussian distribution. (a)

Large Euclidean distance and small KL divergence. (b) Small

Euclidean distance and large KL divergence. 18

3.2 Demonstration of two sampling schemes, single path (left) and

vine sampling procedure (right). (Source: Schulman et al. 2015) 23

4.1 Neural network architecture used by Deep Q-learning, (Mnih

et al. 2015). 27

4.2 Comparison of standard DQN and new Dueling DQN, (Wang

et al. 2016). 28

5.1 A cumulative reward during training (left). Rendered Reacher2D

environment (right). 35

5.2 A cumulative reward during training averaged over 10 runs

with its standard deviation(left). Rendered Reacher3D envi-

ronment (right). 37

64

LIST OF FIGURES 65

5.3 A cumulative reward during training 3D Grasper (left). Ren-

dered 3D Grasper environment (right). 38

5.4 A cumulative reward during training (left). Reacher 3D with

a wall in the middle (right). 40

5.5 Memory replay convergence comparison on Reacher2D. 42

5.6 Memory replay convergence comparison on Reacher3D. 42

5.7 Memory replay convergence comparison on Grasper3D envi-

ronment. 43

5.8 Previous direction reuse convergence on Reacher2D. 45

5.9 Previous direction reuse convergence on Reacher3D. 45

5.10 Previous direction reuse convergence on Grasper3D environ-

ment. 46

5.11 Combination of both methods on Reacher2D. 47

5.12 Combination of both methods on Reacher3D. 47

5.13 Combination of both methods on Grasper3 environment. . . . 48

5.14 Parallelism speedup on Reacher2D environment with 300 roll-

outs. One vs two processors. 49

5.15 Sequential vs five processors. 50

5.16 Parallelism speedup on Grasper3D environment with 1000 roll-

outs per episode. One vs five processors. 50

6.1 2D reacher environment in xml. 53

6.2 Parallel architecture design. 56

	Introduction
	Theory
	Artificial Neural Networks
	Multilayer perceptron
	Training neural networks

	Reinforcement learning
	Formal definition
	Bellman equation and value functions
	Optimal value function
	Finding an optimal policy
	Monte Carlo methods

	Value function approximation
	Learning objective
	Linear methods
	Nonlinear methods

	Policy gradient methods
	Score function gradient estimator
	Policy gradient

	Policy gradient upgrades
	Natural gradient
	Natural policy gradient
	Trust region policy optimization
	Optimization problem
	Sampling scheme
	Trust region and search direction

	Related approaches
	Modern RL approaches
	Deterministic policy gradient (DPG)
	Deep Q learning

	Other approaches for grasping
	Demonstration
	Cognitive approaches
	Vision

	Experiments
	Model specifications
	State representation
	Policy
	Value function
	TRPO parameters

	Environments
	2D Reacher
	3D Reacher
	3D Grasping
	Reaching behind the wall

	Improvements of TRPO algorithm
	Replay memory
	Using previous direction in CG
	Combining information from previous iterations
	Parallelism
	Summary

	Implementation
	Simulator
	Mathematical computation library
	Parallel TRPO
	Architecture

	Conclusion

