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Abstract

Graph theory is a novel approach to the analysis of func-
tional connectivity in the brain. We have performed
graph theoretical analysis of an fMRI data set from a
study conducted in 2000 by Buckner et. al. Buckner
et al. (2000), in an attempt to find differences between
healthy participants, both young and aged, and aged
participants with mild Alzheimer’s Disease. We apply
our techniques to the data, and also give a preliminary
statistical comparison across these groups. Our results
show that there are statistically significant differences
between the groups in several global network charac-
teristics, including density, number of nodes and maxi-
mum degree. We hypothesise that these differences re-
flect a general change in how the aging brain copes with
everyday tasks, meaning an increased effort required by
aged brains to perform, which is further accentuated by
the onset of Alzheimer’s disease.

1 Introduction

The human brain is an incredibly complex system, con-
sisting of billions of neurons, interacting over trillions
of synaptic connections. These interactions give us con-
sciousness and intelligence, control our core functions,
and allow us to manipulate our environment. Func-
tional magnetic resonance imaging, or fMRI, allows
us to measure neural activity throughout the brain over
time. From these measurements, we may gain insights
into the functional connectivity of the brain, i.e. how
different parts interact with each other when the brain is
solving a particular task or just when it is idle. How can
we analyse these interactions, and how do they change
with age and onset of Alzheimer’s disease? This pa-
per attempts to address these questions by using graph
theory techniques to analyse functional connectivity de-
rived from fMRI data.

Alzheimer’s disease (AD) is the most common
form of dementia, causing progressive cognitive de-
cline, with age the primary risk factor (Gauthier (2007)).
The pathology of AD is characterised by extracellu-
lar deposits of senile, or amyloid plaques, mainly in
the cerebral, cortical and hippocampal regions, and
neurofibrillary tangles that occupy much of the cyto-

plasm of neurons. In addition, brains from AD pa-
tients demonstrate degenerative changes, inflammation
as well as neuronal cell loss and synaptic dysfunction,
which have been assumed to be consequences of the ac-
cumulation of pathological protein components (Gau-
thier (2007)). Aging by itself causes changes in the
brains of healthy people. Global volume of grey matter,
i.e. number of neurons, decreases with age, although the
effect is not uniformly distributed throughout the brain.
It is interesting that global white matter, i.e. number of
myelinated axons, does not decline with age, but local
areas of relative loss and relative preservation exist.

Functional Magnetic Resonance Imaging, or
fMRI, is a technique for capturing high resolution 3D
images of oxygenated blood levels in the brain. fMRI
measures the ratio of oxygenated to de-oxygenated
blood throughout the brain; this ratio is referred to as
the Blood Oxygen Level Dependent (BOLD) contrast
Ogawa et al. (1992). Evidence suggests that, as neu-
ral activity in a brain region increases, a correspond-
ing increase in blood flow to that region occurs, bring-
ing in oxygen to fuel the increased rate of metabolism.
Thus, neural activity throughout the brain may be in-
ferred from the subsequent change in the BOLD con-
trast Ulmer & Jansen (2010); Buxton (2009). A typi-
cal fMRI image consists of 3D pixels, known as voxels,
each representing an area as small as ∼ 1mm3.

Graph theory has become a popular approach for
the analysis of fMRI data (see e.g. Sporns et al. (2004);
Bullmore & Sporns (2009); Rubinov & Sporns (2010)).
Graph theoretical analysis can provide insights into neu-
ral behaviour not readily achievable using more tradi-
tional approaches, such as principal component analy-
sis (PCA) Friston et al. (1993), and statistical paramet-
ric mapping (SPM) Friston et al. (1990). Friston et. al.
Friston et al. (1993) formalised definitions for the three
forms of connectivity most commonly of interest: func-
tional connectivity, temporal correlation between neu-
ral events occurring in spatially distinct brain regions;
effective connectivity, the influence that one brain re-
gion exerts upon another; and anatomical connectivity,
the physical connections which exist between brain re-
gions. fMRI is an ideal technique for deriving func-
tional and effective connectivity; while anatomical con-
nectivity may be measured using more advanced tech-



Obr. 1: The process of creating a graph from an fMRI data set proceeds as follows: 1. Temporal correlation values
are calculated between the time series data for every pair of voxels, creating a square symmetric correlation matrix. 2.
This matrix is thresholded to remove low correlation values. 3. The matrix is then converted into a simple undirected,
unweighted graph, where nodes represent voxels, and edges represent strong temporal correlation between pairs of
voxels.

nologies such as diffusion spectrum or tensor imaging
(e.g. Hagmann et al. (2007)), or using statistical meth-
ods on MRI data (e.g. He et al. (2007)).

Graphs are an intuitively appealing structure for
use in the analysis of functional connectivity: regions
of the brain are represented in a graph as nodes, and
interaction between regions as edges. A directed graph
may be used to model effective connectivity (i.e. causal,
or influential relationships between brain regions), and
edge weights may be used to represent the strength of
inter-regional relationships. In this study however, we
have worked only with undirected, unweighted graphs,
and are thus assuming that relationships between nodes
are symmetrical. The procedure followed in this study
is described in Figure 1.

Interpreting the results provided by graph theoret-
ical analysis is a non-trivial task. Rubinov and Sporns
Rubinov & Sporns (2010) give an excellent overview
of current trends in the interpretation of the various
measures that may be calculated upon graphs generated
from brain imaging data. These range from simple mea-
sures, such as node degree, to more complex high level
measures, such as modularity Newman & Girvan (2004)
and betweenness centrality Freeman (1979). In this
short paper, we will limit our discussion to those mea-
sures that are easily interpretable and useful for making
inferences about aged related changes in the functional
connectivity of the brain; we focus on global differences
between the graphs under analysis.

2 Data and Methods

2.1 The data

Structural and functional MRI data, from a study con-
ducted by Buckner et. al. in 2000, were used
as a basis for our analysis (Buckner et al. (2000);
http://www.fmridc.org). Data were acquired from 41
participants: fourteen participants were categorised as
‘young’ (mean age 21.1, S.D. 2.0), fifteen as ‘aged’
(mean age 75.1, S.D. 6.9), and the remaining twelve

(mean age 77.1, S.D. 5.3) as ‘aged with Alzheimer’s
Disease (AD)’, having very mild to mild Dementia of
the Alzheimer Type according to the Clinical Demen-
tia Rating (CDR) Morris (1997). Seven participants in
the aged with AD group had CDR scores of 0.5 (very
mild), and the remaining five had CDR scores of 1.0
(mild). There was no statistically significant difference
in age between the means of the aged and aged with AD
group, as assessed by a two-tailed independent sample
t-test (p = 0.58).

The study involved participants completing a sim-
ple visual-motor task, in an event based experimental
paradigm Friston et al. (1998). Each participant under-
went four fMRI recording sessions, referred to as runs.
Each run consisted of 128 fMRI images, with a TR (im-
age acquisition) time of 2.68 seconds. During a single
run, 15 trials were executed, each having a duration of 8
images (21.44 seconds), making a total recording time
of approximately 5.5 minutes per run (the first trial in
each run began at image #5, and the last trial ended at
image #125). A trial consisted of either one or two vi-
sual stimuli, presented as a flickering checkerboard pat-
tern; the participants were instructed to push a button
with their right index finger upon onset of each stimu-
lus. During a ‘one-stimulus’ trial, the stimulus was trig-
gered at the start of the trial. During a ‘two-stimulus’
trial, the first stimulus was triggered at the start of the
trial, and the second stimulus was triggered 5.36 sec-
onds after the first. One- and two-stimulus trials were
pseudorandomly inter-mixed.

2.2 Data preprocessing

Data preprocessing consisted of the steps described be-
low. Before any preprocessing, the first four and last
four images from every run were discarded, as they were
not part of any trial.

1. Visual inspection: Every run in the raw data was
visually inspected to check for obvious anomalies.
This step uncovered three suspect data sets; the
data for participant #3 were discarded, due to the



presence of significant noise throughout every run.
The data for participants #15 and #19 contained
aliasing effects, which were manually corrected.
These three data sets were from the aged group;
a two-tailed independent sample t-test revealed no
age difference between means of the aged and aged
with AD group after the removal of participant #3.

2. Slice-timing correction: The fMRI slices were cap-
tured in an interleaved manner, thus every run
was corrected for slice timing differences using
Fourier interpolation; this was accomplished with
the 3dTshift tool, provided with AFNI1 (Cox
(2011)).

3. High-pass temporal filtering: To correct for scan-
ner drift, and to remove long term trends, a high-
pass temporal filter was applied to every run, with
a pass frequency of 1/42.88 ∼ 0.02Hertz (the du-
ration of two trials). This was achieved using the
fslmaths utility, provided with FSL2 (Smith et
al. (2004)).

4. Motion correction: Motion correction was per-
formed using a 6-parameter rigid body transforma-
tion. For each run, a mean image was created; ev-
ery image within the run was then aligned to this
mean image. AIR3 was used for motion correc-
tion, and for all subsequent image alignment steps
Woods et al. (1992).

5. Brain segmentation: Non-brain matter was re-
moved from each participant’s structural MRI im-
age, using the bse utility provided with Brain-
Suite4 Shattuck & Leahy (2002); Shattuck et al.
(2001).

6. Intra-participant registration: For every run, a
mean fMRI image was created, and aligned to the
corresponding structural MRI image using a 12-
parameter affine transformation. The alignment
parameters were then applied to each image in the
run, to bring them into alignment.

7. Spatial normalisation: Every image was then
aligned to the ICBM452 atlas (Mazziotta et al.
(2001)). This was accomplished in two steps:
first, the participant’s structural MRI image was
aligned to the atlas using a non-linear 60 parameter
transformation; then, the same alignment parame-
ters were applied to the participant’s fMRI images.
This two step method is considered to achieve bet-
ter results than aligning fMRI images directly to
the atlas (Filippi (2009); Strother (2006)). Finally,

1http://afni.nimh.nih.gov/afni
2http://www.fmrib.ox.ac.uk/fsl/
3http://bishopw.loni.ucla.edu/air5/
4http://users.loni.ucla.edu/˜shattuck/

brainsuite/

the fMRI images were resampled back to the orig-
inal resolution of 64×64×16 voxels.

For each participant, all 60 trial periods were av-
eraged to create one fMRI volume, 21.44 seconds (8
images) in duration; all trials were included in these av-
erages, as it was considered unnecessary to distinguish
between ‘one-stimulus’ and ‘two-stimulus’ trials Dale
& Buckner (1997). Graph theoretical analysis was then
applied to these volumes.

2.3 Graph creation

Undirected and unweighted graphs were created from
the fMRI data for every participant (see Figure 1). All
voxels that exceeded a BOLD level of 200 at any point
in time were included as nodes in each graph. The
threshold value of 200 was selected after an analysis
of the BOLD intensity distribution for each group, as
shown in Figure 2. The values below 200 represent
non-neural artifacts. Pearson’s Correlation Coefficient
r (Rodgers & Nicewander (1988)) was calculated be-
tween the time series data for all pairs of nodes x and y
(Eguiluz et al. (2005)):

r(x, y) =

∑
(xi − x) (yi − y)√∑

(xi − x)2
∑

(yi − y)2
(1)

where xi and yi is the activity in voxels x and y at time
i, respectively, and x and y are the means of the time
series data for voxels x and y respectively.

Three graphs for each participant were created
from the correlation matrices, using correlation thresh-
olds rc of 0.8, 0.9 and 0.95. Edges were added between
nodes with an absolute correlation value greater than or
equal to the threshold; both positive and negative cor-
relations were included to account for excitatory and
inhibitory relationships between nodes. Disconnected
nodes (nodes which exceeded the BOLD threshold, but
were not strongly correlated with any other nodes in the
graph), and small components (components less than 20
nodes in size) were removed before further analysis, to
prevent skewing of global graph measures. For every
graph generated, the remaining nodes formed a single
connected component.

2.4 Graph analysis

Standard measures of these undirected, unweighted
graphs were calculated, including number of nodes, de-
gree k, density d, degree distribution P (k), maximum
degree, characteristic path length L, clustering coeffi-
cient C, small-world index, assortativity and global ef-
ficiency. The degree k of a node is simply the number of
neighbours of that node (Diestel (2005)). The clustering
coefficient C is the ratio of the number of edges which
are present between a node’s neighbours to the number
of possible edges (Watts & Strogatz (1998)). In other
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Obr. 2: fMRI BOLD intensity distribution for the
young, aged, and aged with AD data sets. A BOLD
value of 200 was chosen as the threshold for inclusion
of voxels as nodes in the graphs.

words, the clustering coefficient of a node is the density
of the subgraph formed by the node’s immediate neigh-
bours, and the edges which exist between them. The
density is the average ratio of true edges to the maxi-
mum possible number of edges from each node in the
graph. The characteristic path length L is the average
shortest path length between all pairs of nodes in a graph
(Watts & Strogatz (1998)).

The degree distribution P (k) of a graph is the
probability distribution of a node in the graph having
degree k. A random graph5 (P. Erdős (1960)) has a
Gaussian degree distribution, with the peak equal to
the average node degree. A scale-free network, on the
other hand, has a power law degree distribution, i.e.
P (k) ∼ k−γ , where γ is the power law scaling ex-
ponent (Barabasi & Albert (1999)). Scale-free sim-
ply means that degrees are not grouped around a single
value (peak), or scale, but instead are spread over a wide
range of values that can span several orders of magni-
tude. This implies a potentially rich internal structure,
and suggests the presence of highly connected hubs in
the graph. The maximum degree of a graph therefore
gives us the size of the largest hub.

Small-world networks are characterised by a high
level of clustering, i.e. C � Crandom, combined with a
low characteristic path length, i.e. L ≈ Lrandom (Watts
& Strogatz (1998)). A small-world network is typically
portrayed as consisting of densely connected clusters
of nodes, with long range connections between clus-
ters. The small-world index (Humphries et al. (2006))
is therefore a combination of two ratios, γλ , where γ =

C
Crandom

, and λ = L
Lrandom

. The clustering coefficient
of a random graph with number of nodes n and den-
sity d is equal to d, and the characteristic path length
may be approximated by lnn−0.5772

ln d(n−1) + 1
2 (Agata Fron-

czak (2004)). This ratio is used as a measure of ’small-
worldness‘: a graph with a small-world index greater
than 1 is considered to have small-world characteristics.

5More specifically, an Erdős-Rényi random graph.
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Obr. 3: Maximum node degree for the three groups and
three correlation thresholds. The mean of aged with
AD graphs is significantly lower than young and aged
graphs at rc = 0.95 (p < 0.05).

Assortativity (Newman (2002)) is a measure of
the probability that nodes in a graph are connected to
other nodes of similar degree. A graph with a high as-
sortativity indicates that nodes will tend to connect to
other nodes which have a similar degree, whereas nodes
in a graph with a low (negative) assortativity tend to
be connected to nodes with a different degree. Effi-
ciency (Vito Latora (2001)) is a measure of informa-
tion flow through a graph; the global efficiency of a
graph is calculated as the average inverse of shortest
path lengths between all pairs of nodes. Latora and Mar-
chiori Vito Latora (2001) suggest the use of efficiency
as an alternative to the small-world index, to measure
the small-world nature of a graph.

3 Results

Group averaged graph measures are provided in Table
1. A two-sample statistical analysis was performed be-
tween each pair of groups; Levene’s test was used to
test for equality of variance, and two-tailed independent
sample t-tests (for equal or unequal variances, depend-
ing upon the outcome of the Levene’s test) were used to
test for differences in means, between the three groups.
Some interesting results emerge from the figures in Ta-
ble 1. The main differences which are statistically sig-
nificant:

• Young graphs have less nodes than both aged and
aged with AD graphs (less voxels with a BOLD
intensity ≥ 200), significant at p < 0.001 for all
correlation thresholds. The BOLD intensity dis-
tributions in Figure 2 support this: aged and aged
with AD participants seem to have more voxels at
high intensities than young participants.

• Young graphs have less disconnected nodes (nodes
which have no correlation with other nodes) than
both aged and aged with AD graphs at rc = 0.9.
However, for rc = 0.95 the relationship is reversed:



Tab. 1: Mean (standard deviation in brackets) graph measures for the three groups, at each correlation threshold.

Young Aged Aged with AD
Correlation threshold 0.8

Disconnected nodesa 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
Nodes 22888.6***§§§(996.1) 24750.1*** (1287.9) 24298.8§§§ (864.0)

Density 0.0937 (0.0302)** 0.1064 (0.0604)** 0.0813 (0.0406)
Degree 2132.65 (662.65)** 2618.53 (1502.60)** 1972.83 (987.07)

Maximum degree 6806.43 (1328.60)** 7337.86 (3157.08)** 6114.42 (2306.98)
Path length 2.3620 (0.0853)** 2.3336 (0.1606)** 2.3824 (0.1108)

Clustering coefficient 0.5012 (0.0435)** 0.5135 (0.0826)** 0.4823 (0.0608)
Small-world index 4.2068 (0.9202)** 4.5307 (1.8788)** 5.0475 (1.5562)

Assortativity 0.5371 (0.0749) 0.5273 (0.1215) 0.5440 (0.0690)
Global efficiency 0.4709 (0.0242)** 0.4799 (0.0469)** 0.4634 (0.0318)

Correlation threshold 0.9
Disconnected nodesa 1.50**§ (3.37)**§ 5.57** (4.65)** 5.67§ (6.02)§

Nodes 22887.1***§§§(995.9) 24744.6*** (1289.4) 24293.1§§§ (867.4)
Density 0.0263 (0.0109)* 0.0316 (0.0225)* 0.0206 (0.0157)
Degree 597.45 (241.11)** 775.40 (561.58)** 499.64 (383.06)

Maximum degree 3294.36 (745.07)**§ 3720.36 (1931.91)** 2588.33 (1379.51)§

Path length 3.4689 (0.1582)**§ 3.3869 (0.2913)** 3.4713 (0.2090)§

Clustering coefficient 0.4253 (0.0332)** 0.4355 (0.0629)** 0.4119 (0.0448)
Small-world index 10.50§ (3.47)*** 12.99 (8.45)*** 16.08§ (7.67)

Assortativity 0.5969 (0.0657)* 0.5901 (0.1120)*† 0.6275 (0.0692)†

Global efficiency 0.3279 (0.0207)** 0.3404 (0.0414)** 0.3252 (0.0292)
Correlation threshold 0.95

Disconnected nodesa 764.79*§§ (126.62) 647.86* (118.03) 629.83§§ (133.20)
Nodes 22123.8***§§§(1084.8) 24102.3*** (1333.3) 23668.9§§§ (836.6)

Density 0.0069 (0.0032)* 0.0081 (0.0064)* 0.0047 (0.0046)
Degree 151.20 (67.58)** 194.34 (155.53)** 110.15 (109.57)

Maximum degree 1425.79§§ (336.23)** 1575.58† (879.49)** 916.75§§† (606.22)
Path length 5.7920 (0.4651)** 5.5162 (0.7766)** 5.6872 (0.5816)

Clustering coefficient 0.3933 (0.0220)** 0.3917 (0.0425)** 0.3787 (0.0327)
Small-world index 28.12§ (11.87)***§ 43.27 (37.10)*** 60.18§ (38.09)§

Assortativity 0.6555§ (0.0495)* 0.6504 (0.0849)* 0.7035§ (0.0654)
Global efficiency 0.2100 (0.0221)** 0.2196 (0.0399)** 0.2064 (0.0284)

a These values include both disconnected nodes and components less than 20 nodes in size. These nodes were
removed before any further processing.

* Significantly different between young and aged (* p < 0.05, ** p < 0.015, *** p < 0.001).
§ Significantly different between young and aged with AD (§ p < 0.05, §§ p < 0.015, §§§ p < 0.001).
† Significantly different between aged and aged with AD († p < 0.05, †† p < 0.015, ††† p < 0.001).
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Obr. 4: Accumulated degree distribution for the three groups at each correlation threshold.



young graphs have more disconnected nodes than
both aged and aged with AD graphs at the higher
threshold.

• Aged with AD graphs have a greater small-world
index than young graphs, significant at p < 0.05
for rc ≥ 0.9.

• The only difference between the aged and aged
with AD groups is the maximum degree at corre-
lation threshold rc = 0.95: aged with AD graphs
have a lower maximum degree than both young
and aged graphs. By looking at the boxplot (Fig-
ure 3), we can see that this trend exists at the other
thresholds, but is only statistically significant at rc
= 0.95.

• Assortativity of the aged with AD graphs is higher
than in the young graphs (p < 0.05), at rc = 0.95.

• Variances of almost all topological characteris-
tics are significantly higher for aged graphs, when
compared to young graphs. There are less differ-
ences in variance between the young and aged with
AD graphs.

4 Discussion

4.1 AD, but not age, leads to reduced functional
connectivity

Despite no significant difference in average degree or
density between any of the three groups, aged with AD
graphs have a lower maximum degree than both young
and aged graphs at correlation threshold rc = 0.95. This
seems to contradict the trend portrayed by the accumu-
lated degree distributions, shown in Figure 4. How-
ever, further exploration reveals that the aged with AD
data are heavily skewed by a single graph with a much
greater density - denser than any other graph in the
group by a factor of at least 1.6 at rc = 0.8, and at least
2.2 at rc ≥ 0.9. This same outlier is evident in Figure
3, for rc ≥ 0.9. Figure 5 displays the accumulated de-
gree distribution for rc = 0.95, with this outlier graph
removed. In fact, by removing this graph from the data
set, and repeating the two-tailed independent sample t-
tests, we find that the aged with AD group has signifi-
cantly lower density, degree and maximum degree than
both the young and aged groups, for rc ≥ 0.9, as shown
in Table 2. The removed subject had a CDR score of
0.5, it is plausible that this was a case of misdiagnosis.

Pathologically, these results make more sense: the
neuronal and synaptic atrophy which is known to oc-
cur in AD should have a marked impact on the func-
tional connectivity of the brain. These findings are also
consistent with other studies on the effects of AD on
functional connectivity: Leuchter et. al. Leuchter et
al. (1992) found consistently reduced coherence at all

frequency bands, in AD subjects, using EEG; Greicius
et. al. Greicius et al. (2004), working with the data set
from Buckner et. al.’s study Buckner et al. (2000) (the
same data set that was used in this study), found dis-
rupted connectivity around the posterior cingulate and
hippocamupus in the aged with AD group, using inde-
pendent component analysis (ICA) (Beckmann & Smith
(2004); Sorg et. al. Sorg et al. (2007)) found reduced
functional connectivity between the hippocampus and
temporal lobe, in subjects at risk of developing AD, us-
ing ICA on resting-state fMRI data; Wang et. al. Wang
et al. (2007) found reduced inter-lobe connectivity pat-
terns, but increased intra-lobe connectivity, in early AD
patients, by calculating and comparing correlation co-
efficients between all pairs of regions; Supekar et. al.
(Supekar et al. (2008)) reported reduced regional con-
nectivity in resting-state fMRI data acquired from AD
patients, using wavelet analysis and graph theory.

The increased connectivity present in the aged
group relative to the young group, clearly visible in the
degree distribution plots (Figures 4 and 5) is a matter
of some interest; this difference is still present when
the degree values are normalised by graph size, to de-
gree centrality (Freeman (1979)). It is known that
the distribution of neural metabolism throughout the
brain changes with age, giving credence to the idea that
we develop compensatory and adaptive mechanisms to
overcome the pathological changes associated with ag-
ing. However, studies to date on the functional con-
nectivity of aging (e.g. Greicius et al. (2004); Stam et
al. (2007, 2009); de Haan et al. (2009); Buckner et al.
(2009)) have found reduced, or non-uniform changes
in the functional connectivity of aged subjects, when
compared with young subjects. This discrepancy may
be caused by the reduced signal-to-noise ratio in fMRI
BOLD signals from aged brains (van den Heuvel et al.
(2009)); an effect which could also explain the higher
variances exhibited in the aged group for many of the
network measures. Comparison between these stud-
ies is somewhat difficult, due to methodological dif-
ferences, however, the increased functional connectiv-
ity and neural metabolism in the aged group, observed
in this study, supports our hypothesis that aged brains
have to work harder to perform; this is discussed further
in the next section.

4.2 Aged brains work harder

Young graphs have less nodes than both aged and aged
with AD graphs (i.e. less voxels with a BOLD intensity
≥ 200), significant at p < 0.001. An increased BOLD
signal means an increase in oxygenated blood flow,
which implies increased neural metabolism. Therefore
this finding may mean that the aged and aged with AD
participants had to work harder than the young partici-
pants to perform the task. This finding is in agreement
with findings of increased frontal activation in aged
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Obr. 5: Accumulated degree distribution for the three
groups, at correlation threshold rc = 0.95. A single
outlier graph has been removed from the aged with AD
group, dramatically affecting the distribution.

brains (He et al. (2008); de Haan et al. (2009); Buckner
et al. (2009)). An alternate or additional explanation is
skewing of the BOLD distribution by increased ventric-
ular, and hence cerebrospinal fluid volume, in the aged
and aged with AD groups (Buckner et al. (2009)).

We found opposing trends for disconnected nodes
at correlation thresholds 0.9 and 0.95. For rc = 0.9,
young graphs had less disconnected nodes than both
aged and aged with AD graphs. That is, less nodes in the
aged and aged with AD graphs than in the young graphs
were functionally connected with any other nodes at a
correlation of 0.9. The total number of disconnected
nodes in each group, however, was less than 0.001%
of the total number of nodes. For rc = 0.95, young
graphs had more disconnected nodes than both aged and
aged with AD graphs. The total number of disconnected
nodes in each group at rc = 0.95 was again quite small,
at around 5%, so this could be considered to be nothing
more than noise.

4.3 Strong small-world characteristics

An interesting finding was that aged with AD graphs
have a larger small-world index than young graphs for
thresholds rc ≥ 0.9 (this difference was still significant
at p < 0.05 after removal of the outlier from the aged
with AD group at both correlation thresholds6). There
was no significant difference between the aged and aged
with AD groups, possibly due to the large variances in
these two groups. All three groups exhibit extremely
high clustering when compared to random graphs of the
same density. In particular, despite having lower den-
sities, the aged with AD graphs maintain their level of
clustering at the high correlation threshold of 0.95. The
high clustering in each group is enough to overwhelm
the fact that, at all correlation thresholds, the charac-
teristic path length is higher than that of an equivalent

6This outlier is not the same subject as the dense outlier previously
discussed.

random graph.
This finding is in contrast to a number of studies

(e.g. Stam et al. (2007, 2009); Supekar et al. (2008);
de Haan et al. (2009)), which all found decreased clus-
tering and increased path length in AD subjects, and
a corresponding reduction in the small-world index.
However, these studies are not directly comparable due
to methodological differences. A common approach in
graph theoretical analysis is to vary the correlation (or
analagous measure) threshold for each graph, ensuring
that all graphs to be compared are of similar densities.
Our approach is different, in that by using the same
threshold for each group, we are comparing graphs of
varying densities, but at the same level of functional
connectivity; we feel this is an important characteristic
to retain, when comparing across groups. Furthermore,
as no differences were found between the three groups
in clustering or path length, we argue that the difference
in magnitude of the small-world index (which is wholly
derived from these parameters and graph density) pri-
marily reflects the difference in densities between the
graphs. This does not discount the fact that all graphs
in the study show a strong small-world structure and in-
ternal clustering, which implies the presence of a very
strong modular structure, and alone warrants further re-
gional analysis of the data.

The accumulated degree distributions shown in
Figures 4 and 5 closely resemble that of a decaying,
or truncated power-law, as described by Amaral et.
al. Amaral et al. (2000), and reported in a number of
other studies on functional connectivity (e.g. Eguiluz
et al. (2005); Bassett & Bullmore (2006); Achard et al.
(2006)). This lends weight to the idea that the ‘pref-
erential attachment’ model Barabasi & Albert (1999)
is not suitable for modelling real world biological net-
works; once a node reaches a certain connectivity, there
is a physical cost associated with acquiring more links
Achard et al. (2006); Bullmore & Sporns (2009). Buck-
ner et. al. Buckner et al. (2009) found that high-degree
hubs in the cerebral cortex are more likely to be affected
by amyloid deposition than their low-degree counter-
parts, giving a plausible explanation for the lower con-
nectivity exhibited by the aged with AD group (after
removal of the dense outlier graph).

5 Conclusion

A potentially revealing finding is the fewer nodes found
in the young controls compared to the older groups.
This points to age as a mediating factor in the work
required to perform the task, a possibility that is cor-
roborated by our findings on the increased functional
connectivity in aged brains. There was strong evidence
of small-worldness in all groups, and particularly high
clustering even in the aged with AD group, suggest-
ing the presence of a highly modular structure. Re-



Tab. 2: Mean (standard deviation in brackets) graph mea-
sures, after removal of the outlier graph from the aged with
AD group.

Aged with AD
Correlation threshold 0.9

Density 0.0165§† (0.0072)††

Degree 398.90§† (165.72)††

Maximum degree 2253.27§§† (781.96)††

Correlation threshold 0.95
Density 0.0034§§† (0.0017)††

Degree 80.29§§† (37.98)††

Maximum degree 755.18§§§†† (244.29)††

§ Significantly different between young and aged with AD
(§ p < 0.05, §§ p < 0.015, §§§ p < 0.001).
† Significantly different between aged and aged with AD

(† p < 0.05, †† p < 0.015, ††† p < 0.001).

duced density in the aged with AD group is suggestive
of reduced functional connectivity, related specifically
to disease and not age alone, and closer analysis of one
rather extreme case in the aged with AD group confirms
the volatility of the disease on measures of functional
connectivity.
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