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Abstract 

Functional brain network is a network extracted from 

the brain  fMRI signal at certain  correlation thresholds 

of the voxel activity. Such network shows, how small 

brain chunks (voxels) cooperate, even if they are not 

directly interconnected by axons. These networks are 

then analysed with a help of standard and also less 

standard graph theoretical methods, for example 

graphlet based measures, which are able to compare the 

graphlet network structures.  In agreement with previous 

studies, our study also shows that the functional brain 

network degree distribution changes with the correlation 

threshold. These changes are modelled by a difference 

equation capturing the processes of node and edge 

addition. Hill climbing algorithm is then used to 

optimize model parameters with respect to the data.  

1 Introduction 

Functional Magnetic Resonance Imaging (fMRI) is a 

technique for capturing high-resolution images of neural 

activity in the brain, based on the blood-oxygen-level-

dependent (BOLD) signal (Buxton, 2009). FMRI 

images are captured in a series of three-dimensional 

slices, with each slice representing a cross section of the 

brain less than 10 mm thick. A single slice is comprised 

of a rectangular grid of discrete 3D regions known as 

voxels (volumetric pixels). Functional brain network 

captures correlations of voxel signals. Voxel represents 

a node in the functional brain network. If the absolute 

value of the correlation coefficient between the two 

voxel signals crosses certain selected threshold, then 

there is an edge between these network nodes. Such 

functional brain network expresses functional 

cooperation of the brain parts in solving certain 

cognitive task.  If different correlation thresholds are 

used, one can study, how structural features such as 

degree distribution and other  characteristics evolve due 

to the changing threshold. Networks investigated in this 

study are simple and binary undirected graphs. They 

were  extracted  by McCarthy (McCarthy et al. 2013, 

2014) from the measurements of Buckner et al. (Buckner 

et al.  2005). In the Buckner’s experiment,  fMRI brain 

scans of the three groups of participants - healthy young 

(HY), healthy elderly (HE), and elderly with Alzheimer 

(AE), were measured.   

 

Functional brain networks were then analyzed by means 

of standard statistical and graph theoretical methods 

(McCarthy et al. 2014).  

 

Here, we  also compared pairwise the structure of the 

functional brain networks using graphlet-based 

statistical measures (Przulji 2006). This is  not common 

in the functional brain network studies. Graphlet 

decomposition extends the concept of the node degree 

distribution. Node degree k is a number of edges incident 

with the node in question and the distribution measures 

how many network nodes have the degree k. From the 

graphlet point of view, it gives for each k a number of 

nodes touching k edges, where an edge is understood as 

a graphlet 𝐺0. So the degree distribution measures how 

many nodes touches one 𝐺0, how many nodes touches  

two 𝐺0 –s…., how many nodes touches k 𝐺0 –s. The 

same notion can be applied for another 29 (𝐺1,.., 𝐺29) 

graphlets  defined by Przulji (Przulji 2006). However, in 

the graphlets it is topologically meaningful to 

distinguish at which automorphism orbit the node 

touches them. 30 graphlets have 73 different 

automorfizm orbits, so the correct analogue to the degree 

distribution is to measure the number of nodes touching 

particular graphlet at a node belonging to a particular 

orbit. For example, graphlet 𝐺1 is a chain of three nodes 

which belong to the two different automorphism orbits 

(middle node to the one, end nodes to the other). So we 

ask how many nodes touches one 𝐺1 at the middle node, 

and how many at the end nodes, how many nodes 

touches two 𝐺1 –s at the middle and how many at the end 

nodes, how many nodes touches three  𝐺1-s at the middle 

and how many at the end nodes …etc.  Therefore, we get 

73 graphlet degree distributions (GDD). Then one can 

compare two networks G and H calculating a measure 

called network GDD agreement either arithmetic 

𝐴𝑎𝑟𝑖𝑡ℎ(𝐺, 𝐻) or geometric 𝐴𝑔𝑒𝑜𝑚(𝐺, 𝐻) .  Both of these 

measures does not depend on the network parameters, 

such as number of nodes and edges. 

 

Let  𝑑𝐺
𝑗 (𝑘) is a GDD for an orbit j and 𝑆𝐺

𝑗(𝑘) =

𝑑𝐺
𝑗 (𝑘) /𝑘. The sum of 𝑆𝐺

𝑗(𝑘)-s is a norm 𝑇𝑔
𝑗

=

∑ 𝑆𝐺
𝑗(𝑘) ∞

𝑘=1 . The normalized distribution is calculated 
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as 𝑁𝐺
𝑗(𝑘) = 𝑆𝐺

𝑗(𝑘) /𝑇𝐺
𝑗
 .  Then the distance of the two 

networks G and H is given as  

 

𝐷𝐺
𝑗 (𝐺, 𝐻) = (∑ |𝑁𝐺

𝑗(𝑘) − 𝑁𝐻
𝑗 (𝑘) |

2
∞
𝑘=1 )

1/2

            (1) 

 

Now the agreement of the two networks is defined as 

𝐴𝑗(𝐺, 𝐻) = 1 − 𝐷𝐺
𝑗 (𝐺, 𝐻).  Then the arithmetic and 

geometric agreements are given as arithmetic and 

geometric averages of particular agreements; 

 

𝐴𝑎𝑟𝑖𝑡ℎ(𝐺, 𝐻) =
1

73
∑ 𝐴

𝑗 (𝐺, 𝐻)72
𝑗=0                           (2) 

 

𝐴𝑔𝑒𝑜𝑚(𝐺, 𝐻) = (∏ 𝐴
𝑗 (𝐺, 𝐻)72

𝑗=0 )
1/73

                    (3) 

 

The closer these measures are to 1, the more similar is 

the graphlet structure of G and H network.  

 

Another type of measures we have calculated for the 

functional brain network are based on the relative 

graphlet frequency distance (RGFD). We denote 

𝑁𝐺𝑖(𝐺) as a number of graphlets of the type 𝑖 ∈
{1, … ,29} in the network 𝐺. Then 𝑇𝐺(𝐺) =
∑ 𝑁𝐺𝑖(𝐺)29

𝑖=1  is the total number of graphlets in the 

network G.   RGFD is then given as  

 

 𝑅(𝐺, 𝐻) = ∑ |𝐹𝑖(𝐺) − 𝐹𝑖(𝐻)|29
𝑖=1                             (4) 

 

where 𝐹𝑖(𝐺)=−𝑙𝑜𝑔 (
𝑁𝐺𝑖(𝐺)

𝑇𝐺(𝐺)
). RGFD is independent of 

the number of network nodes and edges.  Because this 

measure is from the interval ⟨0, ∞) we used two 

different yet similar measures proposed by Nehez 

(Nehez et al 2018), which are both from the interval 
〈0,1〉.   
 

To define these measures we define a new 𝑇𝐺′(𝐺) =
 ∑ 𝑁𝐺𝑖(𝐺)29

𝑖=0  in which the zero-th graphlet is added. 

This will allow to calculate the total variation distance 

(TVD) 

 

𝛿(𝐺, 𝐻) =
1

2
∑ |

𝑁𝐺𝑖(𝐺)

𝑇𝐺′(𝐺)
−

𝑁𝐺𝑖(𝐻)

𝑇𝐺′(𝐻)
|29

𝑖=0             (5) 

 

The second measure proposed by Nehez (Nehez 2018) 

is called Hellinger distance, which can be calculated as: 

 

𝐻𝐷(𝐺, 𝐻) = [
1

2
∑ (√𝑁𝐺𝑖(𝐺) 𝑇𝐺′(𝐺)⁄ −29

𝑖=0

√𝑁𝐺𝑖(𝐻) 𝑇𝐺′(𝐻)⁄ )
2

]
1 3⁄

                                       (6) 

 

In both of these measures holds, the close they  are to 0 

the more similar is the graphlet structure of G, and H 

networks. 

2 Modelling functional brain networks.  

One of our goals  is to model by means of difference 

equations how the functional brain network degree 

distribution changes with the correlation threshold.  The 

studied networks were acquired at three different 

correlation thresholds (𝜃1 = 0.818398, 𝜃2 =
0.899876, 𝜃3 =0.962249) and further pre-processed by 

McCarthy and others (McCarthy et al 2014). The 

threshold choice and other details of data pre-processing 

are described in (McCarthy et al 2014).  

 

On Fig. 1, the degree distributions derived from the 

functional brain networks of healthy young participants 

are depicted. In agreement with other studies (Eguiluz et 

al. 2005), we found that if the correlation threshold is 

high, the network has scale-free structure and the power 

law degree distribution. However, with the decreasing 

threshold the power law degree distribution is destroyed. 

 

 
Fig. 1:  Degree distributions of the functional brain 

networks of young healthy participants (HY) from the 

lowest to the highest correlation threshold. The lowest 

threshold is 0.818398, the middle one is 0.899876 and 

the highest is 0.962249. There were 14 participants in 

this group. 

 

The data for the other groups of participants, namely HE 

and AE, show the same qualitative picture, although 

they are less coherent. To imagine, what happen when 

the threshold decreases, we hypothesise, that the real 

correlations exhibiting real cooperation of the brain parts 

create the power law structure. They are more and more 

disturbed by random correlations as the threshold 

decreases. In addition, the number of nodes and edges 

increases, because the lower the correlation threshold is, 

the more voxel pairs are able to cross it.  

 

In the following analysis, a scenario described in (Scholz 

et al. 2005) for the noisy scale-free networks inspires us. 

The authors started from a network with pure scale-free 

degree distribution. Then, after fixing the number of 

nodes to 𝑁0 and the initial number of edges to 𝐿0, the 

network is disturbed by some type of noise: i.e. random 

link removal, random link exchange and random link 

addition. The authors have studied how the degree 



distribution drifts from the power law character with 

increasing the noise (randomness) in the network. 

 

We observed the same pattern, namely, that the lowering 

of the correlation threshold is analogical to increasing 

the probability of addition of random links in the 

functional networks, which in turn causes that the degree 

distribution is not power law any more.   In addition, we 

allow the network to grow, i.e. unlike the original model 

of Scholz et al. (Scholz et al. 2005), we assume an 

increase in the number of nodes as the threshold of 

correlation decreases. We suppose, it is possible to lower 

the threshold by such a slow way, that at each threshold 

jump one new node comes to the system. Thus, each step 

or iteration is marked by addition of a new node. In other 

words, n denotes a number of network growth steps. The 

rate equation describing the above mentioned dynamic 

processes in our model is: 

 

𝑃(𝑘, 𝑛 + 1) = 𝑝𝑘,𝑘−1(𝑛)𝑃(𝑘 − 1, 𝑛) + (1 −

𝑝𝑘+1,𝑘)𝑃(𝑘, 𝑛)                                                         (7) 

 

Here  

  𝑝𝑘,𝑘−1(𝑛) =
𝑎+2𝑏

𝑁0+𝑛
+

(𝑎+2𝑏1)(𝑘−1)

2𝐿0+𝐴(𝑛)
 ,            (8) 

 
where 𝐴(𝑛) = 2(𝑎 + 𝑏 + 𝑎1 + 𝑏1)𝑛, P(k,n+1) is the 

normalized number of nodes having the degree k at the 

iteration n+1. At each iteration, this number changes, 

due to the fact, that some nodes having at the  previous 

iteration n the degree k-1, gain a new edge. This is 

expressed in the first term of the equation (7). The 

second term expresses, that some nodes have the degree 

k already at iteration n and with the probability 1 −
𝑝𝑘,𝑘−1(𝑛)  no new edges are added. In equation (8), 

𝑁0,  𝐿0 denote initial number of nodes and edges, a, b are 

the number of randomly added edges per iteration, 

where a is the number of edges fetched by a newcoming 

node and b is the number of edges added between older 

network nodes. Similarly, 𝑎1 denotes the number of 

edges by which a new node links preferentially to the 

network and 𝑏1  is the number of edges linking older 

nodes preferentially. Factor two at some coefficients 

denotes, that these edges are linked by both of their ends, 

unlike to those edges, which have one edge end linked 

to the newcoming node.  

 

To fit the model to the data we used the hill climbing 

algorithm. Numerical results are presented in the next 

chapter.  

. 

4.    Results of the numerical simulations 

 
In this section we present results of the numerical 

simulations. The section is divided into two subsections. 

In the first one we present the results of the graphlet 

decomposition of the functional brain networks. The     

second subsection is devoted to the model (7) numerical 

simulations and model parameter fitting.  

 

4.1   Graphlet decomposition of the functional brain 

networks. 

 

We have used ORCA (Hocevar and Demsar 2014) 

software to compute GDD distribution for functional 

brain networks of elderly healthy (HE) and elderly 

Alzheimeric (AE) participants. From these distributions, 

numbers of particulare  graphlet types were derived. 

Then GDD agreements, together with Hellinger distance 

and total variation distance have been calculated. Our 

ambition was to distinguish between the networks of 

healthy and Alzheimer affected brain networks by 

means of the graphlet-based statistics.  All of these 

measures compare pairs of networks from the graphlet 

structure point of view. In our study, we compared each 

network from the HE group to each network from the 

AE group.  

 

On Fig. 2, the GDD agreements between functional 

brain networks of  the HE and  AE participants are 

depicted. The minimal agreement is 0.920 and the 

maximal one is 0.973, which shows a great similarity of 

the networks between the two groups. This measure is 

thus not able to distinguish between these two different 

groups.  

 

Similarly, Fig. 3 shows the total variation and Hellinger 

distances  between functional brain networks of  the HE 

and AE participants. The minimal total variation 

distance is 0.012 and the maximal one is 0.255.  The 

Hellinger distances are inside the above mentioned 

interval of the total variation distance. This also shows 

great similarity of networks from the graphlet structure 

point of view. 

 

All of these measures have been also calculated between  

pairs of networks in the same group.  The results are 

similar. That means that the graphlet decomposition 

methods are in general not too suitable  to distinguish 

between the functional brain networks of healthy and 

diseased brain. Nevertheless, if we compare the 

networks of different families, such as random networks 

and scale free networks all measures show significantly 

that there is a difference between the graphlet structures 

of these types of networks.  

 

For example, we compared 9 random graphs with 11 

scale-free networks. These data were generated with 500 

nodes, having edge probability for random networks 

between 0.1 to 0.9. Scale-free networks were generated 

using configuration model for scaling exponent between 

2.5 to 3.5. The results of similar comparison as 

mentioned above have the minimal GDD agreement is 

0.569 and the maximal one is 0.617. The minimal total 

variation distance is 0.141 while the maximal one is 

0.983. The minimal Hellinger distance is 0.226 and the 



maximal is 0.964. The maximal value of both of these 

measures is one, so they clearly recognize the different 

structure of the scale free networks and random graphs. 

 

 
Fig. 2 :  Histogram of GDD agreements between 

functional brain networks of  the HE and AE 

participants.  On the x axis there is a GDD agreement, 

on the y axis the number of network pairs having 

similar agreements are depicted. 

 

 
Fig. 3 :  Histogram of the total variation and Hellinger 

distances  between functional brain networks of  the 

HE and AE participants.  On the x axis there are the 

distances, on y axis the number of network pairs having 

similar distances are depicted. 

4.2    Numerical simulation of the model 

 

Numerical simulation of the model (7) is done for all 

functional brain networks from the HY group of 

participants   and   compared  to  the  data at  the middle    

correlation threshold 𝜃2 and the lowest correlation 

threshold 𝜃1. Here we present the best fit for the 

threshold 𝜃2 together with the best fit for the 

threshold 𝜃1 (Fig. 4, Fig. 5).  

 

The simulation is performed as follows. First we used 

the experimental data to find the parameters in the power 

law degree distributions at the highest threshold 𝜃3. This 

threshold corresponds to the initial number of 

iterations 𝑛0 = 0. As stated before, the initial degree 

distribution is power-law, i.e.: 

 

       𝑃(𝑘) = 𝑐𝑘−𝛾                                                   (9) 

 
 Both parameters c and the scaling exponent  𝛾 are 

derived from the data. 

 

 In our simulations we first applied the model (7)  to 

model the transition between the two highest correlation 

thresholds, namely 𝜃3 and 𝜃2 of the functional brain 

networks. The model has been iterated 𝑁2 − 𝑁0 times 

(because at each iteration only one node appears) for the 

defined set of parameters a, 𝑎1, b, 𝑏1 . 𝑁0, 𝑁2 denote the 

number of nodes at the initial network state (highest 

threshold) and at the network state corresponding to the 

middle  correlation threshold, respectively. In each 

network growth step (a discrete small threshold change) 

a fixed number of edges is added, namely (𝐿2−𝐿0)/
(𝑁2 − 𝑁0) where 𝐿2 is the number of network edges 

gained from the measured data at the threshold 𝜃2 and 

𝐿0 is the initial number of edges. To find the best set of 

parameters a, 𝑎1, b, 𝑏1 we used the hill climbing 

algorithm, in which the mean square error between the 

measured and simulated data has been calculated. Each 

hill climbing simulation have started from seven 

different initial conditions. From the best fit parameters 

in the current simulation fifteen new sets of parameters 

were derived by slight perturbations of the currently best 

fit parameter set. The hill climbing algorithm has been 

iterated 800 times.  We did the same job as before to 

model the data at the threshold 𝜃1. The  difference is, 

that the hill climbing algorithm has been iterated  𝑁1 −
𝑁0  times, where 𝑁1 is the number of nodes at the lowest 

correlation threshold. Also the number of edges added in 

each threshold (network growth) step is different, 

namely (𝐿1−𝐿0)/(𝑁1 − 𝑁0) where 𝐿1 is the number of 

edges in the functional brain network created at the 

threshold  𝜃1. Some results are depicted at Fig.4  and  

Fig. 5.  

 



 
 

Fig. 4 : The best numerical  fit of the model + to the 

data x at the middle correlation threshold 𝜃2. Number 

of iterations is 800. The best fit parameters of the 

model are 𝑎 = 1.3958, 𝑏 = 3,7479, 𝑎1 = 0.0013,
𝑏1 = 243.1351, 𝑀𝑆𝐸 = 0.2941 

 

 
Fig. 5 : The best numerical fit of the model to the data 

at the lowest correlation threshold 𝜃1. Number of 

iterations is 800. The best fit parameters of the model 

are 𝑎 = 4.4472, 𝑏 = 21. 0980, 𝑎1 = 0.0000, 𝑏1 =
515.9147, 𝑀𝑆𝐸 = 0.6877 

 

We made a similar model fits to all of the networks 

acquired from the HY group of participants. The MSE 

of these fits was higher.  For the worst fit it was 0.4554 

at the threshold 𝜃2 and 1.184 for the threshold 𝜃1. 
 

5.    Discussion 

 
In this paper, we have shown our studies of the 

functional brain networks gained from the Buckner et al. 

(Buckner et al. 2005) experimental measurement of the 

three groups of participants, namely HY (young 

healthy), HE (elderly healthy) and AE (elderly with 

Alzheimer disease) by Paul McCarthy et al. (McCarthy 

et al. 2013, 2014).  McCarthy et al. have studied all of 

the functional brain networks from the point of view of 

standard statistical measures, such as clustering 

coefficient, average shortest path, average degree, etc. 

Our goal is to apply more sophisticated and not 

standardly used measures, which compare the 

topological structure of the pairs of networks, based on 

the graphlet network decomposition.  The other goal is 

to study the networks degree distributions and their 

changes with the correlation threshold. Based on these 

studies, we created a model (7), difference dynamic 

equation, which includes various processes of node and 

edge addition. We suppose that these processes occur in 

the real networks as well.  

 

All three graphlet-based measures, namely the GDD 

agreement, total variation distance and Hellinger 

distance show, that they are not able to distinguish 

between the functional brain networks of Alzheimer 

affected and healthy brain. We therefore suppose that the 

graphlet structure is not highly influenced by the 

Alzheimer brain changes affecting the number of neural 

connections in the brain.  However, from our study it is 

clear, that the GDD agreement method results have 

lower variability then the results of the RGFD based 

methods. 

 

On the other hand, we were able to model qualitatively 

and quantitatively well the degree distribution changes 

with the changing correlation threshold in the HY group. 

We therefore suppose, that the processes captured by our 

model reflect the real processes. The discrepancies 

between the model and the real data are because the 

number of added edges per iteration depends on the 

threshold. This dependence is more significant the lower 

the threshold  and thus is not a constant as we supposed 

in the model numerical simulations. How to improve the 

model and include this fact into it is left for the future 

studies.    
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