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Abstract

We present a neural network learning architecture com-
posed of a Restricted Boltzmann Machine (RBM) and
a Conditional RBM (CRBM) that performs multisen-
sory integration and prediction, motivated by the prob-
lem of learning a representation of defensive periper-
sonal space. This work follows up on our previous work
(Straka and Hoffmann 2017) where we proposed a net-
work composed of a RBM and a feedforward neural net-
work (FFNN). In this work, with a similar 2D simulated
scenario, we sought to replace the FFNN with an RBM-
like module and opted for the CRBM which is respon-
sible for making a temporal prediction. We demonstrate
that the new architecture is capable of learning to map
from visual and tactile inputs at a previous time step
(without tactile activation) to future activations with the
visual stimulus at the “skin” and corresponding tactile
activation, including the confidence of the predictions.

1 Introduction

Defensive peripersonal space (PPS) (e.g., Cléry et al.
(2015) is a kind of safety margin surrounding our bod-
ies that draws on visuo-tactile interactions: approaching
stimuli are registered by vision and processed, produc-
ing anticipation or prediction of contact in the tactile
modality. The mechanisms of this representation and
its development are not understood. This work follows
up on our previous work Straka and Hoffmann (2017)
where we proposed a neural network composed of a
RBM, which learns in an unsupervised manner to rep-
resent position and velocity features of a stimulus, and
a feedforward neural network (FFNN) trained in a su-
pervised way to predict the position of touch (contact).
In this work, with a similar 2D simulated scenario, we
sought to replace the FFNN with an RBM-like module
and opted for the CRBM which is responsible for mak-
ing the temporal prediction. We demonstrate that the
new architecture is capable of learning to map from vi-
sual and tactile inputs at a previous time step (without
tactile activation) to future activations with the visual
stimulus at the “skin” and corresponding tactile activa-
tion, including the confidence of the predictions.

2 Methods

Fig. 1 provides an overview. There is a rectangular 2D
input space, completely covered by the receptive fields
(RF) of visual unimodal neurons (see left part of pan-
els B/C for illustration of RF center coordinates). The
central part of the space is also covered by RFs of tac-
tile unimodal neurons (right part of panels B/C) – the
“skin”. The architecture consists of two identical copies
of an RBM and a CRBM on top. The left RBM serves
to represent the visual and tactile inputs pertaining to
objects approaching the “skin” up to the moment of
contact; the right RBM represents the same inputs at
the moment of contact. The CRBM on top eventually
serves to predict the contact with skin and its location.
The input layers (panels B or C) encode positions of
an object perceived by visual (orange neurons) and tac-
tile (green neurons) modalities using probabilistic pop-
ulation coding which encodes also confidence of both
percepts (see Makin et al. (2013); Straka and Hoffmann
(2017)). The hidden layers of the RBMs, which inte-
grate both visual and tactile inputs, are used as inputs
of the CRBM Taylor et al. (2007). Training consists of
simulated objects crossing the visual field and eventu-
ally contacting the “skin”. Their trajectory is sampled
and stored in a buffer and then fed in the RBMs—the
left RBM with stimuli crossing the visual field before
and up to contact (hence routskin) and the right RBM
with the final time step when the stimulus reached the
tactile field (hence rinskin). Firstly, it is necessary to
train the RBM to integrate the visual and tactile inputs.
Then the CRBM is trained.

During testing, only routskin is given and rinskin
is inferred using k steps of Gibbs sampling. Then,
voutskin and rinskin were obtained averaging over 15
samples. For getting 2D position from the activated
neural population rinskin, both visual and tactile sub-
populations were combined taking confidence of each
subpopulation into account (see Makin et al. (2013)).

3 Results

After training, the network was successfully able to pre-
dict stimuli corresponding to the tactile stimulation. As



Fig. 1: Scenario, neural network architecture, and schematic illustration of training and testing.

would be expected, mean prediction error (distance be-
tween predicted and actual stimulus) was decreasing
with decreasing distance of the object from the “skin”.
From a certain distance from the border of the tac-
tile modality, the prediction error was nearly constant
and small. For example, for 200 hidden neurons of
the CRBM, the distance was approximately 0.2 and the
mean error was about 0.02. The confidence (see Straka
and Hoffmann (2017)) of the predictions was increas-
ing with the decreasing distance—negatively correlated
with the error.

However, the scenario is still highly simplified and
the stimulus velocity not explicitly accounted for—this
will be one of our directions for future work.
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