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Abstract 

Synaptic plasticity is the basic mechanism of 

learning and memory. It is the ability of neurons 

to change efficacies of synaptic weights in 

response to stimuli. There is no general agreement 

on which synaptic plasticity rule(s) hold in the 

brain, although some general principles have been 

agreed upon. Thus, we implemented the Spike-

Timing Dependent Plasticity rule with 

metaplasticity (meta-STDP) in a biophysically 

realistic computational model of hippocampal 

CA1 pyramidal cell in order to model synaptic 

plasticity in alive hippocampus. Characteristic 

feature of the brain in vivo is an ongoing 

spontaneous or background activity in neural 

circuits. Neurons should not change their weights 

as a result of this background activity, only when 

a statistically different pattern of input activity 

appears. As a first step in our research, we 

subjected our CA1 model to realistically 

simulated input activity and we have achieved 

realistic output spontaneous activity and 

stabilization of synaptic weights after a short time. 

1 Introduction 

Synaptic plasticity is ability of synapses to change 

their strength or efficacy of the synaptic 

transmission according to input/output activity 

(Hughes, 1958). It is considered as a critical 

neural mechanism for learning and memory. In 

the field of hippocampus, the research is focused 

primarily on long-term synaptic changes lasting 

minutes, hours, or months. They are called long-

term potentiation (LTP) and long-term depression 

(LTD) of synaptic efficacy. 

Several models of synaptic plasticity 

have been proposed (Mayr and Partzsch, 2010). 

Meta-STDP rule (Benuskova and Abraham, 

2007) is a synaptic rule that combines classical 

STDP (spike-timing dependent plasticity; 

Markram et al., 1997) and metaplasticity 

(Abraham, 2008). The main idea of metaplasticity 

is that previous presynaptic and postsynaptic 

activity affects the sign and size of synaptic 

plasticity at the stimulated synapses (Abraham, 

2008). Benuskova and Abraham (2007) used 

this approach to modify classical STDP rule. 

Magnitudes of LTP / LTD in the meta-STDP are 

dynamically changed as a function of a previous 

average postsynaptic activity (Benuskova and 

Abraham, 2007). Computational models of the 

granule cell endowed with this rule were able to 

reproduce experimental results of synaptic 

plasticity occurring in the dentate gyrus, 

provided the model exhibited ongoing 

spontaneous activity (Benuskova and Abraham, 

2007; Jedlička et al., 2015). Based on computer 

simulations, the authors concluded that ongoing 

spontaneous activity is the key factor that 

determines the degree of long-term potentiation 

and long-term depression. The role of 

spontaneous activity in the induction of 

heterosynaptic LTD has been experimentally 

confirmed by Abraham et al. (2007). As 

predicted by the model, procaine infusion into 

the lateral path fibers, sufficient to transiently 

block neural activity in this pathway, prevented 

the induction of LTD in the lateral path 

following medial path high-frequency 

stimulation. Similar conclusions have been 

reached by Dong et al. (2008) who concluded 

that coincident activity of afferent pathways in 

the CA1 region can induce either LTP only or 

LTP/LTD depending on the experimental 

stimulation protocol and the state of 

hippocampal activity. The hippocampal EEG 

power was higher in urethane-anaesthetized rats 

and much higher in awake rats, which was 

correlated to the magnitude of LTD in following 

commissural pathway but not to that of LTP in 

preceding Schaffer pathway (Dong et al., 2008). 

CA1 pyramidal cells are principal 

excitatory cells in the hippocampal CA1 region. 

Ovoid cell bodies are located in the stratum 

pyramidale. A surface area of the pyramidal 

cells body is 465 ± 50 μm2 and a diameter is ∼15 

μm. CA1 pyramidal cell dendrites are classified 

into nine categories according to location, 



 

diameter, length and spine density. Basal 

dendritic tree is formed of primary dendrites (3 − 

5) located in the stratum oriens. Proximal 

dendrites (close to the soma) are thick with few or 

no dendritic spines. Thin distal dendrites are 

densely covered with spines. CA1 pyramidal cells 

express typically one thick apical trunk. In the 

stratum radiatum, the apical dendrite giving off 

from 9 to 30 oblique side thin branches. After 

reaching the stratum lacunosum-moleculare they 

end with the bifurcation and form the dendritic 

tuft in this layer. Dendrite spines increase the 

dendritic surface area. They are the main target of 

excitatory synaptic connection. The total number 

of excitatory synapses was estimated on over 

30 000. Their relative representation on individual 

parts of the dendritic tree is as follows: 38.3% on 

the stratum oriens distal dendrites, 0.8% on the 

stratum oriens proximal dendrites, 0.9% on the 

stratum radiatum thick medial dendrites, 7.1% on 

the stratum radiatum thick distal dendrites, 47.1% 

on the stratum radiatum thin dendrites, 1.6% on 

the stratum lacunosum-moleculare thick 

dendrites, 1.4% on the stratum lacunosum-

moleculare medial dendrites, and 2.8% on the 

stratum lacunosum-moleculare thin dendrites 

(Megiás et al., 2001). 

The entorhinal-hippocampal system is 

characterized by occurrence of different types of 

oscillations. Dominant are theta (~6–10 Hz) and 

gamma (~30–150 Hz) oscillations that are often 

correlated with spatial navigation and memory. 

Timing and strength of inputs from EC and CA3 

have significant role on the activity of the CA1 

pyramidal cells (Buzsáki, 2002; Schomburg et al., 

2014). The mean firing rates of individual CA1 

pyramidal cells are in range from 0.001 Hz to 10 

Hz in different brain states. Distribution of firing 

rates is strongly skewed and the most of CA1 

neurons fires at frequency ~1–2 Hz (Mizuseki and 

Buzsáki, 2013). 

In this work we apply the meta-STDP 

synaptic plasticity rule to the compartmental 

model of CA1 and subject the model to the 

simulated ongoing spontaneous activity. The goal 

is to optimize the values of parameters in order to 

achieve dynamically stable synaptic weights. 

2 Methods 

2.1 Compartmental model of the CA1 cell 

NEURON simulation environment (Hines and 

Carnevale, 1997), version 7.6.5, and Python, 

version 3.6, running on PC under Windows 7 or 

Windows 10 were used to create and simulate the 

model. The model was previously published by 

Cutsuridis et al. (2009). Source code of the model 

is available from the ModelDB database at 

https://senselab.med.yale.edu/modeldb/, 

accession No. 123815. The CA1 pyramidal cell 

compartmental model is comprised 15 distinct 

sections, i.e. soma, axon, 4 stratum oriens (SO) 

dendritic sections, 3 stratum radiatum (SR) 

dendritic sections, and 6 stratum lacunosum-

moleculare (SLM) dendritic sections (Cutsuridis 

et al., 2009). 

Each section contains a calcium pump 

and buffering mechanism, a calcium activated 

slow afterhyperpolarization (AHP) potassium 

current, a medium AHP potassium current, a 

high voltage activated (HVA) L-type calcium 

current, an HVA R-type calcium current, a low 

voltage activated (LVA) T-type calcium current, 

an h current, a fast sodium current, a delayed 

rectifier potassium current, a slowly inactivating 

M-type potassium current and a fast inactivating 

A-type potassium current. Active and passive 

properties were taken from Poirazzi et al. 

(2003a, 2003b). 

2.2 Model inputs 

The NEURON built-in class Exp2Syn is used to 

model all excitatory synapses. This class models 

synaptic conductivity g as a two-state kinetic 

scheme described by two exponential functions: 

𝑔(𝑡) = 𝑤 (𝑒
−

𝑡

𝜏2 − 𝑒
−

𝑡

𝜏1) (1) 

where w is synaptic weight, τ1 = 0.5 ms is the rise 

time constant, and τ2 = 3 ms is the decay time 

constant. The peak conductance represents 

synaptic weight and is modified according to the 

plasticity rule (see below). 

A total number of excitatory synapses 

was set at 98 (see Fig. 1). The distribution of 

synapses on the dendritic tree was determined 

according to experimental data (Megiás et al., 

2001). The number of synapses in the stratum 

oriens distal sections was 40, representing 

40.81% of all model synapses. Apical branches 

in the stratum radiatum were modelled by tree 

connected sections with total number of 52 

excitatory synapses, representing 53.06% of all 

model synapses. The total number of excitatory 

synapses in the stratum lacunosum-moleculare 

sections was 6, representing 6.12% of all model 

synapses. 



 

 

Fig. 1: Compartmental model of CA1 pyramidal 

cell with position and number of synapses 

(schematic). 

There are two main excitatory synaptic inputs into 

the CA1 cell, i.e. Schaffer and commissural 

pathways, which make synapses in all layers 

except soma and stratum lacunosum-moleculare. 

In the latter, synapses originate from the perforant 

path. Based on experimental data from Shinohara 

et al. (2012), we divided synapses as follows: for 

stratum oriens 2 x 20 synapses (12 commissural 

and 8 Schaffer) and for stratum radiatum 17 

commissural and 35 Schaffer synapses. 

Each synapse received a train of 

presynaptic spikes that were generated by 

independent spikes generators. In NEURON it is 

taken care of by the built-in process NetStim. 

Presynaptic spikes sequence delivered to one 

synapse consisted of a combination of random and 

periodic spike trains. We have chosen this 

strategy because we can thus simulate the theta 

activity that is a prominent state of the 

hippocampal network (Buzsáki, 2002), plus the 

background random spikes. 

 

 

Fig. 2: Ongoing input spontaneous activity over 

the period of 5s. In this graph the x-axis is the 

time in ms, and y-axis is the order number of a 

synapse. 

2.3 Synaptic plasticity 

Meta-STDP rule was employed to model synaptic 

plasticity. Implementation of the rule was the 

same as for the granule cell model in Jedlička et 

al. (2015). We too have used the presynaptic 

centered pairing scheme because it is biologically 

relevant and compatible with the Bienenstock-

Cooper-Munro (BCM) theory. In this scheme, for 

each presynaptic spike, only one last and one next 

postsynaptic spike is considered. The weight 

change is calculated as: 

 

w(t + ∆t) = w(t)(1 + ∆wp − ∆wd)   (2) 

 

where ∆𝑤𝑝 is positive weight change and ∆𝑤𝑑  is 

negative weight change. 

On the one hand, the positive weight 

change (potentiation) occurs when presynaptic 

spike precedes postsynaptic spike. On the other 

hand, weakening of the weight (depression) 

occurs when postsynaptic spike precedes 

postsynaptic spike. It is formulated as: 

 

∆𝑤𝑝(∆𝑡) = 𝐴𝑝𝑒𝑥𝑝 (−
∆𝑡

𝜏𝑝
) ∆𝑡 > 0 (3) 

∆𝑤𝑑(∆𝑡) = 𝐴𝑑𝑒𝑥𝑝 (
∆𝑡

𝜏𝑑
)  𝑖𝑓 ∆𝑡 < 0 (4) 

 
where ∆𝑡 = 𝑡𝑝𝑜𝑠𝑡 − 𝑡𝑝𝑟𝑒, 𝐴𝑝 and 𝐴𝑑 are 

amplitudes, τp and τd are decay constants for the 

time windows over which synaptic change can 

occur. Parameter 𝑡𝑝𝑜𝑠𝑡 represents the instant of 

time at which the voltage on the postsynaptic 

dendrite, where a synapse is located, exceeds the 

threshold of −37 mV. It is experimentally 

estimated threshold for induction of LTD/LTP 

(Lisman and Spruston, 2005). 

Amplitudes of LTP / LTD in the meta-

STDP are dynamically changed as a function of 

a previous temporal average of soma spiking θS: 

 

Ap(t) = Ap(0)(
1

θS(t)
) (5) 

𝐴𝑑(𝑡) = 𝐴𝑑(0)𝜃𝑆(𝑡) (6) 

𝜃𝑆(𝑡) = 𝛼⟨𝑐⟩𝜏 =
𝛼

𝜏
∫ 𝑐(𝑡´)𝑒𝑥𝑝 (

−(𝑡−𝑡´)

𝜏
)

𝑡

−∞
𝑑𝑡´

 (07) 
 

where 𝐴𝑝(𝑡) and 𝐴𝑑(𝑡) are amplitudes for 

potentiation and depression at time 𝑡, and 𝛼 is a 

scaling constant. 𝐴𝑝(0) and 𝐴𝑑(0) are initial 

values at time 0. The term 〈𝑐〉𝜏 expresses the 

weighted temporal average of the postsynaptic 

spike count, with the most recent spikes entering 

the sum with bigger weight than the previous 

ones (Benuskova and Abraham, 2007). 

In our simulations, we used already 

existing .mod files developed by Jedlička et al. 

(2015) 

(https://senselab.med.yale.edu/modeldb/Show

Model.cshtml?model=185350) to model plastic 

synapses according to the meta-STDP synaptic 

plasticity rule. We joined these files with the 

files of the compartmental CA1 model into a one 

synaptically plastic CA1 model. 

https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=185350
https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=185350


 

3 Results 

The first step was to optimize our model 

parameters to mimic firing as in in vivo 

conditions. We performed it in two phases: the 

model with fixed weights (without synaptic 

plasticity rule) and the model with plastic weights 

(with the synaptic plasticity rule described above). 

In experiments with the model with fixed 

weights we manipulated the values of initial 

weights and parameter 𝑠𝑡𝑎𝑟𝑡 start of Netstim. The 

model output firing frequency corresponded to in 

vivo CA1 pyramidal cell behavior when the 

weights were randomly initiated to values from 

interval [0.0002, 0.0003) and parameter start of 

Netstim to random values from interval [0, 46). 

Average input frequency from 10 runs was 7.27 

(standard deviation 0.03) and average output 

frequency was 2.56 (standard deviation 0.76), see 

Fig. 3. 

 

 

Fig. 3: The CA1 pyramidal cell model firing at 

frequency 2.56 Hz without synaptic plasticity 

over 10s. The x-axis is the time in ms, and y-axis 

is the somatic voltage in mV. 

The model with plastic synapses had 

more parameters that were optimized. Each 

simulation run covered about 5 minutes of real 

time. Parameters were considered as optimal 

when the model output firing frequency was about 

2.0 Hz, and weights, average weights and 

amplitudes Ap and Ad were dynamically stable. 

This has been accomplished using the following 

parameter values: NetStim parameter start from 

interval [0, 40), initial random weights from 

interval [0.0002, 0.0006)[0.0002,0.0006). Initial 

amplitudes were set to Ap(0) = 0.004 for 

potentiation and Ad(0) = 0.002 for depression. 

Scaling constant α was set to 3000. Decay time 

constant for potentiation and depression was τp = 

τd =15 ms, and averaging time constant τ for 

postsynaptic spike count was 50000 ms. 

The following figures show the results of 

individual weights (Fig. 4), average weights (Fig. 

5), potentiation and depression amplitudes (Fig. 

6) and integrated spike count θS (Fig. 7) for one 

typical simulation. The next figure shows the 

evolution of individual synaptic weights in all 

the layers i.e. oriens distal, radiatum proximal, 

radiatum medial, radiatum distal and 

lacunosum-moleculare, over the first 5 minutes 

of time. 

 

Fig. 4: The CA1 pyramidal cell model weights 

were stabilized with employed meta-STDP rule 

after a short transitory period. The x-axis 

denotes time in ms and the y-axis denotes 

values of synaptic weights. Output firing 

frequency 1.78 Hz.  

 

Fig. 5: The CA1 pyramidal cell model average 

weights in all the layers were stabilized with 

employed meta-STDP rule. Output firing 

frequency 1.78 Hz. 

 

Fig. 6: The CA1 pyramidal cell model 

depression and potentiation amplitudes were 

stabilized with employed meta-STDP rule. 

Output firing frequency 1.78 Hz. 



 

 

Fig. 7: The CA1 pyramidal cell model integrated 

spike count was stabilized with employed meta-

STDP rule. Output firing frequency 1.78 Hz. 

4 Discussion 

A detailed biophysically realistic compartmental 

model of the CA1 pyramidal cell endowed with 

the meta-STDP synaptic plasticity rule has been 

introduced. In this study we optimized the model 

parameters to mimic in vivo firing under 

realistically simulated ongoing spontaneous 

activity as recorded in neuronal circuits (Buzsáki, 

2002). Each synapse received an independent 

spike train input consisting of periodic spikes 

corresponding to theta activity and random spikes 

corresponding to random background activity. 

Average frequency of spikes in the one spike train 

was ~8 Hz. We also found that only random 

spikes are not sufficient to generate action 

potential at the soma. On the other side, fully 

synchronized inputs have caused a very high 

output firing frequency. 

In our model we used the same synaptic 

plasticity mechanism as in the granule cell model 

in which ongoing spontaneous activity was a key 

determinant of degree of LTP and LTD (Jedlička 

et al., 2015). The meta-STDP rule consists two 

components. Each synapse has implemented 

paired-centered voltage-based STDP. For each 

presynaptic event are considered two postsynaptic 

events, one occurred before and one occurred 

after presynaptic event. The presynaptic event is a 

delivery of spike at the synapse. The postsynaptic 

event is registered when voltage at the synapse 

reaches threshold −37 mV (Lisman and Spruston, 

2005). This is due to propagation of excitatory 

postsynaptic potentials from other synapses, and 

to back-propagation of action potentials from the 

soma. The second component of the meta-STDP 

rule is the BCM-like metaplasticity. It calculates 

current depression and potentiation amplitudes 

based on average soma output firing activity θS. 

Higher average output activity decreases 

potentiation amplitude and increases depression 

amplitude, lower output activity decreases 

depression amplitude and increases potentiation 

amplitude to maintain homeostasis. STDP at the 

synapses uses these amplitudes for weights 

modification.   This synaptic plasticity rule is in 

accord with other recent implementations of 

metaplastic synaptic plasticity rules like in 

Clopath et al. (2010) and Zenke et al. (2013). 

5 Conclusion 

We have modified existing compartmental 

model of the CA1 pyramidal cell by adding 

synapses and by implementing synaptic 

plasticity rule, namely meta-STDP rule. Our 

model exhibits realistic input-output 

spontaneous activity as neurons in vivo. During 

ongoing spontaneous activity, synapses should 

not change their weights. This has been achieved 

after manual optimization of model parameters. 

Next, we will implement in vivo synaptic 

plasticity protocols as described in Dong et al. 

(2008). 
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