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Abstrakt  

Cieľom práce bolo spojiť techniky strojového učenia a fMRI a tak dekódovať obsah 

priestorovej pracovnej pamäte z aktivity mozgu. Vedľajšie ciele boli lokalizovať oblasti 

mozgu, ktorých vzorec zaznamenanej mozgovej aktivity obsahuje informáciu o pozícií 

stimulu, a tiež zhodnotiť podstatu tej informácie a porovnať vzorce mozgovej aktivity v 

rôznych časových úsekoch. Participanti vykonávali jednoduchú pracovno-pamäťovú úlohu, 

a to zapamätať si pozíciu stimulu. Počas vykonávania tejto úlohy, ich mozgová aktivita 

bola zaznamenávaná funkčnou magnetickou rezonanciou. Natrénovali sme “support vector 

machine“ klasifikátor tak, aby klasifikoval zaznamenanú mozgovú aktivitu podľa pozície 

zobrazeného stimulu. Boli sme schopní predpovedať v ktorom zo štyroch kvadrantov sa 

zobrazil stimulus, so štatisticky signifikantnou pravdepodobnosťou v troch zo štyroch 

zaznamenaných časových úsekoch medzi zobrazením stimulu a odpoveďou. Presnosť 

klasifikátora bola štatisticky signifikantne vyššia, ak bol klasifikátor trénovaný a testovaný 

na dátach z toho istého časového úseku. To naznačuje prítomnosť mätúceho signálu v 

dátach. Lokalizovali sme informatívny vzorec mozgovej aktivity v záhlavnom laloku, čo je 

kompatibilné s takzvanými “sensorimotor-recruitment“ modelmi pracovnej pamäti, ktoré 

predpokladajú uchovávanie pamäťovej informácie v tých istých oblastiach, v ktorých je 

spracovávaná senzorická informácia. Nenašli sme informatívne vzory aktivity v iných 

oblastiach, ktoré sú v literatúre tiež spájané s pracovnou pamäťou, ako je prefrontálna kôra 

a záhlavný lalok. Dizajn experimentu nám nedovolil rozlíšiť medzi signálom vzťahujúcim 

sa k pracovnej pamäti a signálmi, ktoré sa vzťahujú k iným kognitívnym procesom, ako je 

vnímanie alebo pozornosť. 

 

Kľúčové slová: fMRI, MVPA, strojové učenie, pracovná pamäť, priestorová pracovná 

pamäť 

 

 

 

 

 

  



 

 

 

Abstract  

The goal of the thesis was to combine machine learning techniques and fMRI to decode the 

content of the spatial working memory from the recorded brain activity. Secondary goals 

were to localize brain areas in which pattern of activity carry information about the 

stimulus and evaluate nature of that representation and compare informative patterns of 

activities over time. Participants performed simple working memory task of remembering 

the position of a stimulus during which their brain activity was recorded by fMRI. We 

trained a support vector machine classifier to classify brain activities in respect to the 

position of the showed stimulus. We were able to decode in which of the 4 quadrants 

stimulus appeared with statistically significantly higher than chance level accuracy for 3 

out of 4 recorded time points between stimulus presentation and response. Accuracy rate 

was statistically significantly higher if the classifier was tested on the data at the same time 

point as it was trained on. This suggests confounding signal in the data. We localized 

informative pattern of brain activity in the occipital lobe. This is compatible with the 

sensorimotor-recruitment models of working memory, which hypothesize that the working 

memory information is stored in the same areas that process the sensory information. We 

did not find informative patterns of activities in other areas that are often connected to the 

storage of working memory content in the literature – namely prefrontal and parietal 

cortex. Experimental design did not allow us to distinguish between the signal that is 

related to working memory processes and the signal that is related to different cognitive 

processes such as perception or attention.  

Keywords: fMRI, MVPA, machine learning, working memory, spatial working memory 
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1 Introduction 

In this thesis, we used powerful imaging technique of fMRI and machine learning to 

extract the contents of working memory from participant‟s brain activity. Our primary goal 

was to see if solely on the basis of recorded brain activity, we can decode what is stored in 

participant‟s working memory, without them telling us. However we were able to use this 

method also for examining scientific questions: such as localization of brain regions where 

pattern of activity contains information about the stimulus and comparing memory 

representations over time. 

Working memory is an important set of cognitive processes for our everyday lives. Its use 

is not only in short term retention of sensory information, but its correct functioning is 

important for other processes, such as language comprehension, reasoning and planning. 

It‟s also tightly connected with other important processes as attention, control or even 

consciousness.  Its importance is underlined by observed connection of impairments in 

working memory and psychiatric disorders. (Constantinidis & Wang, 2004; Baddeley A. , 

2012)  

1.1 Interdisciplinarity of the study 

The goal of the study was to investigate neural processes during WM activity with 

utilization of machine learning techniques. It combines disciplines of psychology, 

neuroscience and computer science. 

Cognitive neuroscience as part of broader discipline of cognitive science, lies as a separate 

field between of psychology and neuroscience. Cognitive neuroscientists investigate 

questions such as how the cognition is produced by the brain. For this goal, this field 

borrows behavioral tests and cognitive theories from psychology and neuroimaging 

methods from neuroscience and computational modeling from more theoretically oriented 

areas of cognitive science. (Gazzaniga, 2009) 

In order to understand a cognitive phenomenon, it is necessary to know how it is 

accomplished at the neuronal level. Subsequently, we need to be able to build a 

computational model with satisfactory biological plausibility, which would be able to 
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emulate observed behavior. Building a functioning computational model is a crucial part of 

testing our theory of cognition. (O‟Reilly, Munakata, Frank, Hazy, & Contributors, 2012) 

Our study provides additional information about neural processes related to working 

memory and additional constrains for the computational models.  

WM is widely studied phenomenon from the point of view of psychology. The most 

prominent model – Baddeley Hitch model of working memory, is now more than 40 years 

old. It was established by observing patients with various neurological disorders and by 

analyzing the performance of healthy people on double task studies (Baddeley A. , 2012). 

By behavioral testing of interference of various cognitive tasks, psychologists were able to 

build a stable, well tested psychological model of WM, with high predictive power, even 

before the cognitive neuroscience got its modern form. 

Neuroscientists use imaging techniques, such as fMRI, EEG and PET to find brain areas 

and neural mechanisms that would represent components of the WM model. 

Computational models are used by psychologist and neuroscientist as well. They are used 

as a way of formalizing theories and of coming up with more rigorous descriptions and 

predictions.  

With strong formalization of our understanding of neurocognitive processes goes along 

another benefit of cognitive models: the possibility of simulating lesions, or other 

problems. This would allow us to see the effect of such problems that would not be 

possible by experimental methods for practical and ethical reasons. Because of that, 

computational models can have also a clinical impact. (O‟Reilly, Munakata, Frank, Hazy, 

& Contributors, 2012) 

Neuroscience can also have impact on computer science by inspiring novel and useful 

algorithms. Biology already inspired various approaches to computation in wide ranges of 

areas. For example state of the art computer vision programs that use neural networks with 

convolutions imitate some aspects of the structure of the cortex. (Russakovsky, et al., 

2014) 

Human brain is still performing some tasks better than current computers do. Therefore, by 

uncovering mechanisms that drives those processes, we can develop better, biology 

inspired systems. 
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WM concept is extensively studied in psychology and this study uses psychological theory 

that describes it and the methods of behavioral/cognitive experiments. Knowing how WM 

is embodied in the brain can have implications for the psychological theories as well. For 

example, finding distinct neural mechanisms for the tasks that were considered to be 

processed by the same module, or reversely, finding two supposedly distinct tasks are 

using same neural circuits would require additional explanations for psychological models. 

Since this study goes beyond classical notion of activity of the area and to the notion of 

information content in the area, it can provide additional constrains and information for the 

biologically inspired computational models.  

From the neuroscience, our study borrows powerful imaging technique of fMRI. Results 

can have an implication for our understanding of information processing in the brain and 

for involvement of various brain areas in the WM. Studies of this type can have 

implications for psychiatry as well. It was shown that WM impairment is also observed in 

some psychiatric disorders (e.g. for schizophrenia see Quee, Eling, M., & Hildebrandt, 

2011). This might suggest that mechanisms that are responsible for WM are also important 

for mental health. Understanding of those mechanisms can help us develop new diagnostic 

techniques or treatments. This study, therefore, is highly interdisciplinary in the methods it 

uses and in the areas that a research of this type can potentially influence. 

1.2 Functional MRI  

Functional MRI doesn‟t measure neuronal activity directly, but it measures changes in the 

the blood flow related to it. During the neural activity, neurons consume oxygen and 

energy. This causes blood vessels to dilate to provide support of the oxygen that is 

required. FMRI usually uses so called BOLD (blood oxygen level dependent) contrast. It is 

based on the well-researched phenomenon, that oxygenated hemoglobin has different 

magnetic properties than deoxygenated (deoxyhemoglobin is paramagnedic and 

oxihemoglobin is diamagnetic). Because of that difference, they behave differently in the 

magnetic field of MR scanner. Increase of concentration of oxygenated hemoglobin leads 

to higher intensity of the signal in MR. (Faro & Mohamed, 2010) 

BOLD response is temporaly delayed after the neuronal activity. The signal follows so 

called haemodynamic response function.  
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Figure 1: Haemodynamic response function 

 

Signal peaks around 5 seconds after the neuronal activity and then it slowly goes back to 

normal. This slow effect with relatively sparse temporal acquisition of the scans (usually 2-

3 seconds) is the reason for the low temporal resolution of the fMRI in comparison to some 

of the other method. Signal change is caused by the difference between increased blood 

flow to the area and actual oxygen consumption in the said area. The oxygen flowing to the 

area is more than the amount that is consumed. (Faro & Mohamed, 2010)  

1.2.1 Comparison to other methods 

EEG has an advantage over fMRI in the sense that it has much higher temporal resolution 

(milliseconds in comparison to seconds). Also EEG measures neural activity directly – it 

measures electrical fields produced by active neurons. FMRI, in contrast, measures related 

metabolic changes. However, electrical fields are easily distorted on the way from neurons 

to the electrodes on the scalp. Therefore spatial resolution is much lower and is limited to 

the upper layers of cortex. (Bunge & Kahn, 2009) 

MEG measures magnetic fields related to the active neurons. Because of the relative 

stability of the magnetic fields, it‟s possible to measure neural activity with higher spatial 

resolution then EEG with the same temporal resolution and it is also easier to localize the 
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source of the signal. However MEG‟s spatial resolution is still not as good as resolution 

from fMRI and its high price does not allow wider use of the method. (Bunge & Kahn, 2009)  

FMRI is much less invasive than PET/SPECT that requires participants to drink 

radioactive substance. Because of the potential danger, PET/SPECT is not widely used for 

research. (Bunge & Kahn, 2009) 

1.3 Multi-variate pattern analysis 

1.3.1 Introduction 

Multi-variate pattern analysis (or multi-voxel pattern analysis, MVPA, decoding, brain 

reading) is using pattern recognition/machine learning techniques on the fMRI data. This 

way of analyzing data became more and more popular in the recent years. Traditional 

univariate methods are looking at the differences of activity of each voxel separately in 

respect to the experimental condition. Signal for each individual voxel is modeled and later 

spatially smoothed to increase signal-to-noise ratio. Then the average amplitude of the 

signal is compared either between the conditions or against the baseline signal. This is 

done with the intention of averaging out the noise so that the signal of interest would 

remain. However this approach destroys the fine scale information that is obtained in the 

area and it makes differentiating between some types of conditions impossible. (Raizada & 

Kriegeskorte, 2010; Norman, Polyn, Detre, & Haxby, 2006; Haynes & Rees, 2006)  

1.3.2 Loss of information using univariate methods 

MVPA, on the other hand, considers the fine scale pattern of activity in the ROI. Spatial 

smoothing is usually not applied, or applied only in minimal way, and therefore the fine 

scale information is not averaged out and diluted in the bigger region. Spatial pattern of 

activations of the individual voxels is taken as an input for a pattern recognition algorithm. 

The pattern related to one experimental condition is compared to the pattern related to 

another stimulus condition in the same area.  

This cannot be done using univariate methods, because univariate methods analyze voxels 

individually, one at the time, without considering their interactions. However, differences 

between conditions can be represented in the combined activities of voxels instead of the 

average of the activity of individual voxels. Therefore only multivariate methods would be 
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able to distinguish between them. (Raizada & Kriegeskorte, 2010; Norman, Polyn, Detre, 

& Haxby, 2006; Haynes & Rees, 2006) 

 

 

Figure 2: effect of spatial smoothing on the resolution of the images. We can see how the 

fine details are blurred and noise decrease with higher radius of smoothing. Image 

obtained from http://www.brainvoyager.com/ 

 

 

Figure 3: Illustration of higher discriminatory power of multivariate methods. In case A, 

classes have different voxel means and are distinguishable by univariate methods. In case 

B, activity of individual voxels doesn’t provide necessary information about class of the 

stimulus. For successful classification it’s necessary to consider interaction between 

voxels. Image from Haynes & Rees (2006) 
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1.3.3 Possibilities of MVPA 

Although, there were usages of multivariate methods in the past, a truly seminal study for 

the MVPA is considered to be Haxby et al. (2001) study. In this study, Haxby and 

colleagues used nearest neighbor classifier to identify category of the presented object 

from the pattern of activity in the ventral cortex. After this paper, research with 

multivariate methods started to grow rapidly following the developments in machine 

learning, and cheaper and more accessible computational power.  

Since then, a lot of research has been done with interesting implications for cognitive 

science. For example Haynes & and Rees (2005) were able to successfully predict the 

orientation of a line from early visual cortex, even in situations when the subjects weren't 

consciously aware of the line. 

Stimulus relevant cortical pattern of activity is unique for every subject. Therefore the 

MVP analysis is usually done within subject. So classifiers are tested on the same subject 

as they are trained on. To do between subject classifications is a challenging task; however 

work has been done also in this area. Raizada and Connolly (2012) were able to classify 

identity of the items between subjects by classifying not voxel patterns of activities but the 

representational similarity structure of individual classes. Their algorithm utilizes 

similarity of neural responses. For example: woman face is similar to the man‟s face, little 

bit less similar to the monkey‟s face and very dissimilar with a chair, regardless of 

subject‟s own pattern of activity. Haxby et. al. (2011) performed between subject 

classification of movie scenes with accuracy of within subject classification. They did it by 

first transforming data to common higher dimensional space of common response 

functions.  

Very impressive results were provided by Miyawaki, et al. (2008) who didn‟t just classify 

the stimuli to the categories based on the neural activity, but they were able to reconstruct 

the presented visual image from the previously unseen images. They did it by training 

multiple classifiers for set small locations in the visual field and combining their 

predictions into one image. 
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Figure 4: Reconstruction of the visual experience from the fMRI data (Miyawaki, et al., 

2008) 

 

 

Figure 5: reconstruction of dynamic movie clips (Nishimoto, Vu, Naselaris, Benjamini, Yu, 

& Gallant, 2011) 

Another interesting visual reconstruction was done by Nishimoto (2011) where they were 

able to reconstruct dynamic visual experience from watching movie clips. This is a 
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remarkable result due to the slow nature of BOLD response. They did it by modeling the 

BOLD signal that is acquired from watching hours of video clips and combining 100 most 

probable predictions from 5000 hours of YouTube video clips. 

MVPA is also used for medical applications as a means of finding wide range of markers 

for neural and psychiatric diseases and their prognosis. For example, Schmaal et. al. (2014) 

were able to predict the prognosis of the depressive patients from the fMRI data related to 

processing of emotional faces. In another study, Hart et al. (2014) were able to 

discriminate ADHD patients from healthy controls. Those applications are promising, 

however at the moment doesn‟t have accuracy high enough for clinical purposes.  

Another possible application for MVPA is brain-computer interface (BCI). Spatial 

resolution of fMRI is superior to EEG and more parts of the brain are accessible by fMRI. 

Therefore there are different methods possible for making a BCI. However, size of MR and 

its immobility is making classical applications of BCI, like moving a cursor, impractical. 

On the other hand, fMRI based BCI can provide on-line feedback of brain activity to the 

subject and therefore help patients to control some aspects of emotions, behavior, pain 

perception etc. (Raizada & Kriegeskorte, 2010) 

1.3.4 Classifier selection 

Choosing a correct classifier is often an important task. For fMRI classification, usually the linear 

classifiers work best. FMRI data have low signal to noise ratio therefore more complicated 

classifiers would just overfit noise in the data. Selection of a classifier is therefore not that crucial 

for MVPA or classification accuracy. Better results can be obtained by carefully modeling BOLD 

response signal and thoughtful feature selection. Furthermore, to get the best accuracy is often not 

the goal of an MVPA study. The goal is simply to show that a certain part of the brain represents 

the relevant information; and for that, it is sufficient to show that accuracy is higher than chance 

level.  

1.4 Working memory 

Working memory (WM) is a cognitive system that manipulates and stores information to 

be used in different cognitive tasks.  

The concept of working memory had developed from short term memory (STM); however 

they are related to two distinct phenomena. STM was considered to be a unitary system 

that is related only to storing of information. On the other hand, WM refers to a set of 
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processes for storing and actively manipulating information and is divided into several sub-

components with different properties and goals. Several different models were proposed to 

explain the long range of experimental findings in regards to WM. (Baddeley, 2012; 

Repovs & Baddeley, 2006) In this work, we will focus on Baddeley Hitch model of WM 

because it is currently the most prominent in literature.  

WM developed as an extension of the Atkinson and Shifrin (1968) model of memory. This 

model has three components: sensory memory, short term memory and long term memory. 

Baddeley Hitch model extends the STM component by dividing it into additional 

subcomponents and connecting it with higher attention and control processes. (Baddeley 

A. , 2012)  

 

 

Figure 6: Atkinson and Shifrin (1968) 3 components model of memory. WM concept 

extends the short term memory component of the model. 

1.4.1 Baddeley Hitch model of working memory 

Baddeley Hitch model of WM divides WM into several subsystems based on different 

properties of individual components and how the information stored in them interferes with 

each other. If the different contents shared the same capacity limitations, then it‟s assumed 

that those contents are stored in the same subcomponent and on the other hand, if we can 

observe relative independence of contents of different modalities, then it‟s assumed that 

they are stored in different subsystems of WM. Research in the area is still going, and 

structure of the model can change (as it happened before), but currently Baddeley Hitch 

model distinguishes between 4 independent subsystems: phonological loop, visuo-spatial 

sketch-pad, episodic buffer and central executive. First three components serve as storage 

for information of different modalities and central executive provides higher attention and 

control function without its own storage capacity. (Baddeley A. , 2012; Repovs & 
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Baddeley, 2006) Here, we will briefly explain individual subcomponents based on their 

apparent behavior and function. 

 

Figure 7: Schema of Baddeley Hitch model of WM from Baddeley (2012). This model 

distinguish between ‘Fluid systems’ that use only short term activations and ‘Crystallised 

systems’ that represents long term skills and knowledge. 

1.4.1.1 Phonological loop 

Phonological loop (PL) mainly stores auditory information, but by verbalizing the 

stimulus, information of different modalities can be stored in here as well. PL is further 

divided to two components: the phonological store and the articulatory control process. 

The phonological store can store acoustic or speech-based information for up to 2 seconds. 

Articulatory control process can maintain information in the phonological store for a 

longer period of time by constantly subvocally repeating it. It can also transform non-

acoustic information to acoustic information in PL by verbalizing it. (Baddeley, 2012; 

Baddeley, 2000) This description of PL accounts for the observed effects. For example: 

Phonological similarity effect: the sequences of similar sounding letters (B, P, G, T, C, V) 

are harder to remember than sequences of acoustically dissimilar letters (X, W, K, R, W, 

Q). (Baddeley, 2012; Baddeley, 2000) 
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Word length effect: a series of short words is easier to remember than a series of the same 

length of longer words. This is because the longer words take more time to rehearse in the 

loop; therefore words have more time to be forgotten. (Baddeley, 2012; Baddeley, 2000) 

 Articulatory suppression effect: When the participants are asked to repeat a single word, 

such as „the,‟ they performance will drop and phonological similarity effect will disappear. 

This is hypothesized to be because repeating words is preventing the subvocalization. 

(Baddeley, 2012; Baddeley, 2000) 

There are other observed effects that are not well understood. However they do not 

contradict the model. (Baddeley, 2012; Baddeley, 2000) 

1.4.1.2 Visuo-spatial sketchpad 

Visuo-spatial sketchpad (VSS) is the component of working memory that is supposed to 

maintain and manipulate visual and spatial information. VSS is divided into independent 

visual and spatial subcomponents with separate stores and separate rehearsal mechanisms 

with same resources of central executive. Experiments showed disruptive effects of spatial 

tasks on spatial WM, but not on visual WM, and visual interference tasks disrupt visual 

WM performance but not spatial WM. This observation with additional findings is 

evidence for the division of visuo-spatial WM systems. However they both share resources 

of CE. (Repovs & Baddeley, 2006) 

Visual WM 

Capacity of visual WM for objects is connected to the complexity of those objects. It drops 

with the number of distinguishing features for the objects (Alvarez & Cavanagh, 2004). It 

is therefore assumed that information is stored as conjunction of features and not in the 

form of integrated objects. Features are stored in independent feature specific stores, and 

combined and maintained in the form of an object by attentional processes. Encoding to 

the visual WM is strongly affected by previous experience (top down) and perceptual 

features (bottom up). (Repovs & Baddeley, 2006) 

Spatial WM 

Spatial WM is a system responsible for storing spatial information – information about 

positions and paths.  It was showed that active eye movement, but also other body part 



19 

 

movements and even imagining or planning of the movement disrupts or interferes with 

the spatial WM (Repovs & Baddeley, 2006).  

Logie (1995) in Repovs & Baddeley (2006) proposed that this is due to the interference of 

rehearsal from spatial WM and extraction of information required for planning and 

execution of movements. It is thought that spatial WM shares resources with spatial 

attention and oculomotor control. (Repovs & Baddeley, 2006)  

1.4.1.3 Central Executive 

Central Executive (CE) is a cognitive system that is responsible for focusing, dividing and 

switching attention. It was shown that tasks that are not disrupted by articulatory 

suppression (e.g chess) can be effectively disrupted by tasks that put high load on CE. For 

Alzheimer‟s disease patients, performance on WM tasks significantly drops if they are 

doing more than one task at the time, as opposed to healthy controls. This was showed in 

the case when the difficulty of the single task was matched to each individual. AD patients 

also have problem with switching between tasks, but not with individual WM tasks. 

(Baddeley, 2012; Repovs & Baddeley, 2006) CE contains number of separable executive 

functions. Those functions are important not only for WM but also for more general 

cognitive systems.  

1.4.1.4 Episodic buffer 

Episodic buffer (EB) is the newest component that was added to the WM model. It was 

added to the model to explain problematic parts that the original model didn‟t account for; 

namely connection to LTM and connection between individual subsystems. EB is the 

limited capacity system, which combines information in PL and VSS into complex, 

multimodal information (episodes, scenes), stores them and integrates them with 

information in LTM.  It integrates information into unitary episodic representation. It also 

serves as a temporary store for the CE, which by itself doesn‟t store any information. 

(Baddeley, 2000; Repovs & Baddeley, 2006) 

Combining multimodal information into episodes and integrating with LTM can explain 

chunking effect of WM; a very important and visible effect that couldn‟t be explained by 

original model. EB can also explain serial recall for the visual information, which would 

otherwise highly exceed VSS capacity. Also the original model has no way of explaining 
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higher performance on phonological task, when words to remember were supported by 

visual stimuli because original model didn‟t have a way to connect the two subsystems. It 

is assumed that EB is controlled by CE. (Baddeley A. , 2012) 

 

Figure 8: Speculative model of the working memory from Baddeley (2012). This picture 

shows possible additional components and possible structure of the WM. It’s speculative, 

because much of its components are not confirmed by experiments. 

1.5 Neuroscience of working memory 

1.5.1 Sensorimotor recruitment models of working memory 

There are several models developed based on neuroscientific data. Sensorimotor 

recruitment models of WM are based on the premise that systems related to perception of 

the stimulus are also systems responsible for short-term retention of the stimulus. For 

example, in case of a visual stimulus, visual area of the brain will be responsible for 

sensory processing of the stimulus as well as for remembering it. There is not a part of the 

brain that is specifically dedicated to memory storage. Instead, information is stored in 

highly stimulus specific areas by persistent activation of the sensory representation 

themselves. (D‟Esposito & Postle, 2015) 

Challenges for these models arise from explaining the limitations of the VSWM based on 

number of objects and also number of features. (D‟Esposito & Postle, 2015) Many 

evidence for these models came from MVPA research. Levis, Peacock and Postle (2008) in 

(D‟Esposito & Postle, 2015) showed that it is possible to decode information from short 
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term memory based on neural activity related to the access to the LTM. This idea suggests 

common representation of information on LTM and STM level. It was also showed that 

classifier trained only on attention to location can correctly discriminate for motor 

preparation and STM recognition and vice versa. Therefore attention, motor intention and 

memory retention are provided by the same neural mechanisms. What we treat like 

different processes can be identical processes from the point of view of the brain. (Jerde et. 

Al., 2012 in (D‟Esposito & Postle, 2015)) 

1.5.2 Neural mechanisms of WM 

It was repeatedly shown that prefrontal cortex (PFC) exhibits persistent activity during 

delayed response tasks. This can suggest that at some WM related information is stored in 

the PFC by consistent firing of related populations of neurons. However, MVPA has not 

yet been able to decode stimulus specific information from the PFC as it did from sensory 

areas. For example, if a person is maintaining the image of a line of particular orientation 

in their STM, PFC shows activity during the whole delay period but classifier cannot be 

successfully trained to recognize the orientation of the stimulus based on PFC activity. It 

is, however, possible to train classifier to recognize to orientation based on activity of the 

related visual areas, but those areas are not active during the whole delay period. There are 

suggestions that changes in synaptic weights are responsible for the WM, however more 

research is needed in this area. (D‟Esposito & Postle, 2015)  

D‟Esposito & Postle (2015) argues that PFC does not encode stimulus related information, 

but more abstract, hierarchical, task relevant information such as goals, rules and necessary 

control for doing the task. PFC in that case provides top down modulation of posterior 

areas. PFC doesn‟t serve as a buffer to WM subsystems, but it performs the CE function. 

This can be summarized by citation of D‟Esposito & Postle (2015): “The operation of 

holding information “in” working memory occurs within the same circuits that process that 

information in non-mnemonic contexts. For symbolic information, this has been captured 

by models of activated semantic LTM. For sensorimotor information, by sensorimotor 

recruitment models.”  

1.6 Previous WM decoding studies 

Harrison and Tong (2009) showed that sustained activity does not predict the stimulus 

orientation. However, they were able to decode the orientation of the stimulus from the 
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early visual areas even when the average activity of the region was at the norm. Sensory 

areas maintain information even when there is no overall increase in neuronal activity. 

Early visual areas can maintain information about the stimulus, even when there is no 

stimulus presented. They decoded orientation of one of the two possible stimulus 

orientations (25 and 125 degrees). The stimuli were presented consequently; and after the 

presentation, one of the stimuli was cued to be remembered. This was done to isolate WM 

specific signal from other possible neural processes such as attention or perception.  

Christophel, Hebart, & Haynes (2012) did a similar study (with the same experimental 

design), but with complex visual stimuli, which cannot be represented semantically or 

verbally (circle containing complex mix of colors), instead of line orientations. The goal of 

the study was to show the role of the visual, parietal and PFC regions on VWM: whether 

the visual content is re-represented in PFC or the visual memory information is represented 

in visual areas and PFC just has the role of control or information is stored in higher order 

areas of PFC. They used searchlight approach (proposed by Kriegeskorte (2006), is a way 

of using MVPA to map stimulus related information in the cortex, by repeatedly doing 

MVP analysis on every sphere of given radius in the brain) to localize regions that contain 

the stimulus information. They found information in early visual areas and in posterior 

parietal cortex (PPC), an area that was not found in Harrison and Tong (2009) study. 

However, only visual areas were considered in Harrison and Tong study. There was no 

stimulus relevant information in other areas that have higher activity (e.g PFC). Since PPC 

is not a primary visual area, this study showed that WM content can be decoded also from 

areas that are not directly responsible for sensory processing.  

Riggall and Postle (2013), in their study, examined the relationship between information 

content and sustained period of activity. They tried to predict direction of the observed 

movement. As in previously mentioned studies, they didn‟t find stimulus related 

information in the areas with constant higher activity during delay period. They were able 

to accurately decode the stimulus identity based on the voxels that reacted to the stimulus, 

however without constant delay period activity. Stimulus information was decodable from 

the visual areas, however not from PFC or parietal cortex. 

Serences, Ester, Vogel, & Awh (2009) showed that memory related pattern of activation 

was in the same area that encoded the information. As in previous studies, they showed 

that the information can be decoded from the multi-voxel patterns, in the area that doesn‟t 



23 

 

show elevated activity. Participants were asked to remember just one feature from multi-

feature object (color or orientation). Early visual areas only represented the remembered 

feature during the delay period and not the other one.  

Lee, Kravitz and Baker (2013) examined the function of PFC and extrastriate cortex (V3-

V5) in WM. Goal of the study was to examine closely the function of the lateral PFC. 

There were suggestions that the lateral PFC doesn‟t store sensory WM information but 

rather stores verbal or conceptual WM information. Same visual stimulus was presented, 

but the nature of the to-be-remembered information differed: Either visual feature (object 

fragment) or category of the object had to be remembered. They showed that there is 

information stored in lateral PFC for nonvisual information. Therefore, this study, contrary 

to other studies, showed that there is evidence that PFC is capable of control as well as 

storage of information. Authors interpret this such that ability to maintain information is a 

property of the whole cortex and that the function of brain regions in WM processes is 

flexible and depends on the nature of the maintained information.  

On the other hand, in another study Sreenivasan, Curtis, & D‟Esposito  (2014) showed that 

sensory cortex maintains accurate WM information, lateral PFC maintains goal related 

variables that modulate information in sensory cortex, however not the sensory 

information.  

1.7 Conclusion  

WM is still a highly researched area with several open questions and seemingly 

contradictory results. It is reasonable to say that the sensory areas are relevant also for the 

WM retention. However, the role of other areas is still yet to be established. Hot areas of 

research are mainly PFC and parietal parts. In the past it was thought to store the WM 

information. However MVPA studies repeatedly failed to find the sensory information in 

the area. Right now, the function of the PFC is hypothesized to be either higher order 

sensory information storage, or attentional and control processes and modulation. It cannot 

be claimed that it is not possible to find stimulus specific information in the PFC in the 

future, even with more sensitive methods. 

Another hot topic of WM research is the nature of information representation in the cortex. 

Constant sustained activity in the sensory area is a popular explanation of WM. However, 

it was shown that the stimulus related information can be extracted from the area even if 
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there is no constantly elevated activity and also from the areas other than the primary 

sensory areas (e.g. PFC, PPC).  

1.8 Research questions  

Previous studies were able to predict identity of the stimulus in working memory based on 

brain activity. There are still open questions about the brain areas that contain WM 

information. Following that, we proposed 4 research questions: 

1. Decoding the WM content from the brain activity 

Is it possible to decode the spatial information about the stimulus stored in the working 

memory, from brain activity?  Previous studies were able to successfully predict stimulus 

identity. However, we used a different type of stimuli. We therefore hypothesize that it is 

possible to predict stimulus identity also for the spatial stimulus. Classifier trained on the 

fMRI data, will be able to categorize new data, based on the presented stimulus position, 

with a statistically significantly higher accuracy than chance level accuracy.  

2. Comparison of within time-point to between time-point classifications 

Subsequent to the first hypothesis, we hypothesize that the informative pattern of activity 

in the beginning of the delay period will be the same as the informative pattern of activity 

at the end of it. Therefore it will be possible to train a classifier on the data from the 

beginning of the delay period to classify data from the end of the period and vice versa, 

without significant decrease of accuracy. 

In addition to the first 2 questions about the possibility of predicting stimulus position, we 

also investigate the localization of the informative areas in the brain. 

3. Localization of information 

Which brain areas contain information about the stimulus position? Previous studies found 

information in the early visual areas. However, involvement of PFC and parietal cortex is 

still unclear. Due to simplicity of our stimulus, we hypothesize to find informative signal in 

the visual cortex and not in PFC though parietal cortex is an open research question. 

4. Evaluating the nature of encoded information 
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Subsequent to simple localization of the informative parts of the brain, and following the 

suggestions of Coutanche (2013), we will examine the nature of the encoded information. What 

information is necessary and/or sufficient for decoding the stimulus position? Is it fine-grained 

multivariate pattern of activity or average difference of activity of bigger area?  
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2 Methods 

We used the data that were collected at University medical center Ljubljana primarily for a 

different study of working memory. Data were collected with 3.5T MR scanner. We used 

data of 20 adult subjects. 

2.1 Task 

Participants performed 8 runs of a spatial WM task (Figure 9). The runs differed in the 

response condition. There were 4 possible response conditions in total. Participants 

performed every response condition in two experimental runs. The order of the response 

conditions was A B C D D C B A. In sum, participants performed 144 trials of WM task 

during the fMRI scanning. One task trial consisted of four parts: Fixation point (2.5 

seconds), stimulus presentation (200 ms), delay period (9.8 seconds) and response (2.5 

seconds) with a varying resting period between the trials (15 to 22.5 seconds).  

Participants were asked to fixate their view on to the fixation point. After that, stimulus 

was briefly presented pseudo-randomly (stimulus was showed same number of times for 

every position in every experimental run) on one of the 36 possible locations. It was 

located on the circumference of the circle, 10 degrees apart excluding cardinal axes 

(Figure 10).  

After stimulus presentation, there was a delay period without any stimulation. Depending 

on the experimental run, participants responded by one of the 4 possible ways:  

Center: after the delay period, a cursor appeared in the center of the screen and participant 

moved it to the location of the presented stimulus. 

Non-center: the task was the same as center task, but cursor appeared in a random location. 

Therefore participant could not anticipate the movement required for making a response, 

since random initial location of the cursor makes required response motion direction also 

random, therefore unpredictable. 

Match: after delay period, two cues appeared. One cue appeared in the position of 

previously showed stimulus and other cue appeared on the different position from the 

possible stimulus positions. Participant moved cursor to the correct position. Therefore 

they didn‟t perform a free recall memory task, but a recognition task.  
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Non-match: It was the same as the match condition, but participant moved the cursor to the 

cue at the incorrect location. This condition had the same effect as non-center task: the 

required response movement could not be anticipated by the participant. 

 

 

 

Figure 9: schema of the experiment design. Sample appeared on the random position. 

After delay period participants responded by one of the 4 possible response types. 

Response type was same for all the trials in the experimental run, but differed between 

runs.  
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Figure 10: Possible positions for the stimulus presentation. Blue dots represent possible 

stimulus positions. Lines represent division to the quadrants. We tried to predict in which 

quadrant stimulus appeared. 

 

2.2 Analysis 

2.2.1 Preprocessing 

The following standard preprocessing steps were used on the collected fMRI data: slice-

timing correction, slice intensity normalization, motion correction, normalization to mode 

1000 and one step transform from native space to the atlas space using in-house software 

developed at Washington University in Saint Louis.  

Within experimental runs, voxels were stripped of linear trends and their activity 

normalized by z-scoring. These preprocessing steps were done by PyMVPA (Hanke, 

Halchenko, Sederberg, Hanson, Haxby, & Pollmann, 2009).   

2.2.2 Predicting stimulus position 

We divided the possible positions into 4 quadrants (Figure 10) and tried to classify brain 

images in respect to in which of the 4 quadrants the position of the stimulus fell. We 

performed separate analysis for every time point. Training and testing of the classifier was 

done within subject. 
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2.2.3 Feature selection and classification 

From the whole brain, we selected only small subset of most informative voxels that we 

chose according to ANOVA scoring in respect to target classes. To prevent circularity in 

analysis, choosing voxels was done based on the data from the training set, independently 

of the testing data so that testing data would not influence the voxel selection. 

Additionally, the number of the chosen voxels was selected within its own cross-validation 

loop from the following possible numbers: 10, 20, 50, 100, 200, and 400.  

On the selected data, we trained a linear support vector machine classifier from the 

PyMVPA library with default parameters (C=1 automatically scaled to the norm of the 

data, nu=0.5). 

2.2.4 Cross-validation 

Dataset was naturally divided into 8 experimental runs. Data that are from different 

experimental runs are thought to be more independent than the data from the same run. 

Therefore we performed leave one run out cross-validation (8-fold cross-validation). 

We chose data from 7 experimental runs as training set and remaining 8
th

 run as a testing 

set. We repeated this procedure 8 times, so that data from every run was in the testing set 

exactly once. In addition, we also performed another 7-fold cross-validation within every 

training set to choose the number of voxels to be selected for the classification. This was 

done to avoid a model-selection bias and circularity in the analysis. Obtained mean 

classifier accuracy for 8 runs was computed and used for further statistical analysis.  

2.2.5 Statistical evaluation 

We used one-sample student‟s t-test to evaluated statistical significance of the classifier 

accuracy rate by testing mean accuracy rate from every subject against the null hypothesis, 

which is the subject will be at chance level, namely 25%.  

Comparing beginning to the end of the delay period 

Next, to find out if the pattern of activity of the beginning of the delay period is the same 

as the pattern from the end of the period and vice versa, we did the similar cross-validation 

setup as above, with the difference that the testing set was from a different time point as 

the training set. We used 7 experimental runs for training and data from the remaining run 

for testing, however from a different time point.  
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We used paired two-sample t-test to test the null hypothesis of equal accuracy means for 

the cases when the classifier was tested on the same time-point or a different time-point. 

Localizing informative parts of the brain 

For localizing information in the brain, we used a different method than the above 

described feature selection with classification. Although the aforementioned method has 

predictive power, it is not suitable for brain mapping. Small number of selected voxels is 

neither visually stimulating nor informative. Since only small number of voxels is selected 

before the classification, most of the brain is neglected from further MVP analysis even if 

there is encoded information in those areas that are not selected. In addition to this, voxels 

are selected with a univariate measure. Hence, they are blind to multivariate information or 

small information spread through a bigger area.  

For the reasons above, we used a different method for mapping purposes. We used 

searchlight (SL) method as proposed by Kriegeskorte, Goebel, & Bandettini (2006). This 

method maps the whole brain for information encoded in the spatial pattern of activities. 

Searchlight method works as followed: A small sphere of a given radius is chosen. Voxels 

that are in the sphere are the inputs to the classifier; and on them, the classical cross-

validational procedure is performed and mean accuracy rate is computed. Mean accuracy 

rate is assigned to the voxel at the center of the sphere and this is repeated for every sphere 

in the brain, so every voxel is in the center exactly once. By this procedure, whole brain is 

mapped for the information content. Brain areas that obtain information would have 

significantly higher than chance level accuracy and areas that do not obtain information 

would have accuracy around the chance level. 

Statistical significance map 

For transforming the raw accuracy maps to the statistical significance map, we used a 

similar approach as (Lee, Turkeltaub, Granger, & Raizada, 2012). After computing 

individual accuracy maps, we first normalized the activity within every map by subtracting 

the chance level accuracy (0.25) from every voxel of the map. After this step, we 

subtracted mean of the voxel values from every voxel. We did this to normalize accuracy 

rates between subjects in respect to every subject‟s own variation.  

After normalization, we performed single sample t-test for every voxel. Resulting map is 

thresholded by p=0.001 uncorrected and by minimal cluster size of 20 connected voxels. 
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This approach is more conservative than the approach without normalizing. Therefore it 

has less probability for false discovery rate (false positive findings). For creating statistical 

significance map, we used SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/). 

Multivariate patterns versus mean activity 

We decided to follow the suggestions of Coutanche (2013) in comparing different types of 

representations in the cortex. We performed 3 types of SL and compared the results. First 

we performed the normal SL analysis as described above. We then performed the same SL 

analysis; but for every SL sphere, we first subtracted the mean activity of the sphere from 

all voxels in the sphere.  Third we did SL classification only on sphere means. This was 

done to examine whether information is encoded in the multivariate pattern of activity, or 

in the difference between average activities between the classes.  
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3 Results 

3.1.1 Decoding the WM content from the brain activity 

We investigated if the working memory content can be decoded from the brain activity. 

We trained and tested a classifier for data from every time point of the experimental trial. 

We report average accuracy of mean CV accuracy rates of all subjects for every time point 

separately.  

Accuracy is close to chance level for time points 0, 2.5, 5 and 22.5 seconds from the 

beginning of the trial. We find significantly above the chance classification accuracy on the 

time points during the delay period. 7.5s (mean=0.55, SD=0.18, p-val<10
-5

), 

10s(mean=0.49, SD=0.17, p-val=<10
-4

), 12.5s(mean=0.42, SD=0.16, p-val<10
-3

), 

15(mean=0.5, SD=0.14, p-val<10
-4

), and significantly above the chance for the response 

period: 17.5(mean=0.5, SD=0.14, p-val<10
-4

), 20.5(mean=0.43, SD=0.16, p-val<10
-3

). 

Stimulus is decodable only after 5 seconds of its presentation. This is an expected 

byproduct of the haemodynamic response function, which drives BOLD signal and 

therefore classification accuracy. BOLD signal slowly grows and is strongest after 5 

seconds of the neuronal activity. Therefore it would be surprising to see higher than chance 

accuracy on the time point when the stimulus was presented, simply because the HRF 

driven BOLD signal didn‟t have enough time to manifest itself in form of higher accuracy 

rate. It‟s obvious why the classification accuracy is on the chance level for the time points 

before the stimulus presentation. Since the same analysis setup was performed for every 

time point, this can also serve as a control for a potential bias. Classification accuracy is on 

the chance level for the time points where it is physically impossible to have information. 

Therefore, we can assume that accuracy at other points is not caused by some form of 

circularity or model selection bias. 
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Figure 11: Figure of classification accuracy rate dependent of trial time. We can see 

higher than chance level accuracy for the whole delay period and response period; and 

accuracy on the chance level before and right after stimulus presentation. Error bars +/- 1 

SD. 

 

3.1.2 Comparison of within time-point to between time-point classifications 

We tested if there is a statistically significant difference between classification accuracy 

where training and testing was done on the data from the same time-point versus 

classification accuracy where testing was done on data from a different time point. We 

tested time points 7.5 (time-point A) and 12.5 seconds (time-point B) after the beginning of 

the trial. Accuracy rate within time-point A was 0.56 (0.18 SD). Accuracy rate within time-

point B was 0.43 (0.14 SD). Accuracy when classifier was trained on time point A but 

tested on time point B was 0.43 (0.15 SD). Vice-versa (trained on B tested on A) accuracy 

rate was 0.36 (0.14 SD). In both cases, when the classifier was tested on the same time 

point as it was trained, accuracy was higher. To train and test the classifier on the same 

time point has higher accuracy then the other option. Training on time point A and testing 

on time point A was significantly higher than testing on time point B (paired sample t-test; 

p < 0.005). Similarly, training on time point B has higher accuracy when testing on time 
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point B than testing on time point A (paired sample t-test; p < 0.0005). However, the test 

results were still above the chance in any case.  

Therefore it can be claimed that there is shared stimulus related pattern of activities though 

they are probably contaminated by some additional confounds. Difference is not produced 

just by lower signal intensity in the later time point (time point B), because then we would 

see no difference of accuracies for between-time-point classification for this instance. 

Accuracy is higher for within time point classification. It means that the classifier learns a 

pattern of activity, which is not present in the other time point. Possible confound can be 

difference between sensory activity and WM related activity, or a different shape of BOLD 

response for different voxels. This would result in different spatial pattern of activity 

between time points without additional neurocognitive confounding process.  

 

 

Figure 12: Figure of classification accuracy for classifier tested on the same time point or 

a different time point than it was trained on. Time-point A was 7.5 seconds and time point 

B was 12.5 seconds after the beginning of the trial. For both cases, testing on the same 

time point as the classifier is trained has a higher accuracy then the other option. This 

means that informative pattern of activity differs between time points. Error bars +/- 1S. 
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3.1.3 Localization of information 

The approach we used above is not feasible for the mapping of information content to the 

brain. Small number of features is selected by univariate measure (ANOVA). Thus 

multivariate information of the majority of the cortex is neglected. 

In order to find the brain areas that contain stimulus specific information, we used 

searchlight approach (Kriegeskorte, Goebel, & Bandettini, 2006). We normalized accuracy 

maps within subject by subtracting chance level and mean from every voxel in the 

individual subject accuracy map. We then performed one sample t-test for every voxel and 

thresholded voxels that exceeds p=0.001 uncorrected and at least clusters of 20 connected 

super-threshold voxels. 

Clusters of super-threshold voxels were found bilaterally in the occipital cortex.  

 

Figure 13: Results of searchlight analysis for the time point 10 seconds after stimulus 

presentation. Clusters of at least 20 connected statistically significant voxels with p < 

0.001. Stimulus information can be decoded from visual areas in occipital cortex, but not 

from other usually hypothesized areas such as PFC or parietal lobe. 

 

3.1.4 Evaluating nature of encoded information 

We evaluated if the information stored in the area is stored in the multivariate pattern of 

voxel activities or in the average increase in the activity of the wider area. We did this by 

comparing normal searchlight maps against searchlight maps created by subtracting the 

mean of the searchlight sphere from the sphere voxels before training and by classifying 

only means of the SL spheres.  

Accuracy map of the normal SL (Figure 14) and searchlight with mean subtraction (Figure 

15) is almost identical, with the same areas with high accuracy rate. This can also be seen 

in the Figure 17, where we plotted individual voxel activities and we can see that activities 

from normal SL are almost equal to those from the SL with subtracted means. On the other 
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hand, classification of means-only did not produce any bigger informative areas. This 

means that information is represented in the multivariate pattern of activity and not in the 

difference of mean activity of the bigger area.  

 

Figure 14: the results of the searchlight analysis for the time point 10 seconds after 

stimulus presentation. Accuracy map thresholded by 2.5 SD, which was the accuracy rate 

of 28.58 percent. We can see that information about the stimulus position is decodable 

from the occipital lobe/visual areas of the cortex.  

 

 

Figure 15: searchlight accuracy map obtained by subtracting mean from the SL sphere 

before classification. Thresholded by same accuracy rate as in previous figure, 28.58 

percent. We can see that the accuracy map is almost identical with that from Figure 10 

where there was no subtraction performed before the classification. Therefore mean 

activity of the area does not affect classification of activity, but multivariate pattern of 

activity does. 
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Figure 16: accuracy map obtained by classification of only means of the SL sphere. 

Thresholded by the accuracy rate of 28.58 as in previous figures. Almost no informative 

areas are visible in this case. Multivoxel pattern of activity is therefore necessary for the 

classification of stimulus position.  

 

 

Figure 17: scatterplot of the accuracy values of the normal searchlight spheres versus 

accuracy values of the searchlight with mean removal. We can see a perfect correlation 

between the two. Accuracy rate is therefore almost the same with and without mean 

activity of the area. If one of the cases would have lower accuracies, we would see that the 

points in the scatterplot are skewed towards the one axis.  
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Figure 18: scatterplot of accuracy values of the normal searchlight versus accuracy values 

of classification of means only, therefore classification of differences of mean activity in 

the area. Accuracy rate of mean classification is lower in magnitude and multitude. 
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4 Discussion 

4.1.1 Decoding the WM content from the brain activity 

The aim of this part of the study was to predict the position of the presented stimulus from 

the activity of the brain recorded by fMRI during the period between stimulus presentation 

and participant‟s response. To do this, we selected n (specific number was decided within 

additional cross-validation loop) most informative features by ANOVA and trained linear 

SVM classifier to discriminate in which of the four quadrants was the stimulus presented. 

We tested classification accuracy by 8-fold cross-validation. 

We evaluated classification accuracy for every recorded time point of the trial. We were 

able to predict the position of the stimulus with statistically significantly higher than 

chance accuracy for every time point of the delay period, except the first one, which was 

2.5 seconds after stimulus presentation. This observation is in line with the HRF, which 

slowly builds up and peaks around 5 seconds after the neural activity. Hence BOLD signal 

is just too slow to affect information content in the cortex at the beginning of the delay 

period.  

Position of the stimulus was decodable from the delay period. Therefore we can say that 

the BOLD signal in the cortex contains information about the position of stimulus, either in 

spatial or visual form.  

This result is in line with previous studies of visual-working memory (e.g. Christophel, 

Hebart, & Haynes (2012); Harrison & Tong (2009); Riggal & Postle (2013)), which were 

also able to predict the identity of visuo-spatial stimulus from delay period of brain 

activity. Our study differs from aforementioned studies in several aspects: we use simple 

stimulus - black circle appearing pseudo-randomly appearing on the circumference of the 

circle. Previous studies used orientation of the line, complex abstract visual stimulus and 

real life objects. For our case what was being remembered is position of the stimulus. 

Therefore we aimed to decode spatial information from WM instead of visual. However, it 

is impossible to completely disentangle the spatial from visual information. Our spatial 

stimulus has a visual property and can also be stored in visual WM. On the other hand 

visual stimuli have spatial properties that can be stored in spatial WM as well. Another 

difference was that aforementioned studies controlled for the possible confounds related to 

the perception. We could not control for this aspect, because the data were primarily 
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collected for a different study and therefore the experimental design was not optimized for 

the multivariate decoding of the WM contents.  

Therefore we conclude that we are able to predict the position of the stimulus from brain 

activity during the delay period. However, additional research is needed to be able to claim 

that the decoded information is related to WM and not to other processes. 

4.1.2 Comparison of within time-point to between time-point classifications 

In the first part of the discussion, we showed that it is possible to predict position of the 

presented stimulus from the brain activity during the delay period of a trial, between 

stimulus presentation and participant‟s response. Subsequently, we examined if the 

patterns of activity during the beginning of the delay period differ from the pattern of 

activity in the end of the period.  We used similar analysis design as in the first part, but we 

tested the training classifier on the data from a different time-point than it was trained on.  

We trained linear SVM classifier on the n most informative voxels selected by ANOVA 

(number of voxels were determined within additional cross-validation loop) for the time 

point of 5 seconds after stimulus presentation and tested the classifier on the time point of 

15 seconds after the stimulus presentation. Classifier was always tested on different data 

than the data it was trained on. However, in some cases it was tested on the data from a 

different time-point than it was trained on.  

Classification accuracy was significantly lower, but still higher than chance level accuracy, 

when tested on the data from a different time-point than it was trained. We were able to 

show that a classifier trained on the data from the beginning of delay period, can predict 

position of the stimulus also for the data from the end of the delay period and vice versa. If 

trained on the end of the delay period, classifier can also successfully predict stimulus 

position from the data at the beginning of the delay period, however with the significantly 

lower accuracy.  

One possible explanation for this is that the signal is just slowly degrading through the 

time course. That would explain the lower accuracy when the classifier is trained in the 

first time point and tested on the second. However we observed the degradation of the 

accuracy rate also when the classifier was trained on the second time point and was tested 

on the first. Because of that, we cannot just assign the observed accuracy rate degradation 

to the decay of signal intensity. There needs to be at least one confounding neural process, 
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which needs to also carry the stimulus information. One possibility is that there is a signal 

that is related to stimulus perception and another signal that is related to working memory. 

They would both carry stimulus information, however with different time course, resulting 

in the smaller between-time point accuracy rate. This explanation would challenge the 

sensorimotor recruitment models of WM. These models say that the same regions that are 

responsible for the perception are also responsible for the WM retention. However this 

explanation for the results would assume different circuits processing WM information and 

perception.  

Another possible explanation would be a change of the WM representation during the time 

course of the delay period. For example, from stimulus grounded visual representation in 

the beginning to the more abstract, higher-level, spatial representation, at the end of the 

delay period. In this scenario, WM would be still produced in the same areas as perception. 

However memory consolidation processes would be able to change memory representation 

on the voxel level, but still carry stimulus information to explain higher accuracy rate. 

One more possibility is that the signal stays about the same level during the whole time 

period, but with small, nonrandom fluctuation dependent on different shapes of HRF for 

different voxels. This would result in different pattern of activities between time points and 

hence higher within time point accuracy rate than between time point accuracy rate. This 

explanation is compatible with the sensorimotor recruitment models, because it does not 

require different circuits for perception and WM.  

In summary, we compared the patterns of activity between different time points of delay 

period. Accuracy is higher when classifier is tested on the same time-point as it is trained 

on. This can be produced by additional confounding, cognitive or neural phenomena or by 

changing of WM representation over time. Experimental design that would control for 

additional confounds and modeling of the BOLD signal would be required to answer the 

nature of the difference of activity patterns. 

4.1.3 Localization of information 

We used searchlight approach (Kriegeskorte, Goebel, & Bandettini, 2006) to localize areas 

of brain that contain multivariate information about the stimulus position. Searchlight 

trains and tests the classifier on every sphere of a given radius in the brain. Resulting 

accuracy rate is then assigned for the voxel at the center of the sphere. With this approach, 
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a whole brain is mapped in respect to multivariate information content. We used this 

approach to localize the information in the brain, because the method used in the previous 

parts of the study is not suitable for brain mapping. In the earlier method voxels were 

selected by univariate measures. Therefore in that case, we cannot talk about multivariate 

information that is stored in the cortex. In addition to this, a small number of voxels is 

selected, most of the brain is neglected for further analysis and thus the resulting 

information map would not be informative.  

We found statistically significantly above the chance accuracy in the occipital lobe. These 

areas are responsible for early visual processing and visual working memory. Stimulus 

related information decodable form the visual areas is compatible with previous studies of 

visuo-spatial working memory. Christophel, Hebart, & Haynes (2012); Harrison & Tong 

(2009); Riggal & Postle (2013) were all able to decode stimulus identity from early visual 

areas.  However, there are differences to those studies. Christophel, Hebart, & Haynes 

(2012), who also used searchlight, found a big cluster of informative voxels on the right 

side of the occipital cortex and small cluster on the left side. In our case, whole occipital 

lobe was informative without an apparent difference between sides. This can be caused by 

a different type of the stimulus – complex abstract visual stimulus versus position of 

simple black circle in our case. Our stimulus, in principle was represented in both sides of 

the cortex, because it was presented on all sides of the visual field. 

As hypothesized, we were not able to decode stimulus position neither from PFC nor from 

parietal regions. Lee, Kravitz and Baker (2013) were able to decode information also from 

PFC but only for more abstract, nonvisual stimuli. Christophel, Hebart, & Haynes (2012) 

found stimulus related information also in parietal cortex. This difference can be explained 

by the different stimulus set used in our study. 

4.1.4 Evaluating nature of encoded information 

Subsequent to the 3
rd

 research question, we examined the nature of predictive information 

stored in the cortex. Specifically, we used different a type of the searchlight classification 

to find out if the information is represented in the multivariate pattern of activity, or in the 

overall different average of activity of a whole search light sphere.  

We found that most of the information was decodable from the multivariate pattern of 

activity and not from the mean activity itself. Accuracy rates for the normal searchlight and 
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a searchlight with subtracted mean of the sphere were almost the same. However, the 

accuracy rate of classifying only means of sphere activity was significantly lower in terms 

of magnitude and size of the informative area. This means that for most part of the found 

information, multivariate pattern is necessary and sufficient for decoding the stimulus 

position, and mean activity is neither necessary nor sufficient for decoding the stimulus 

position. Stimulus position is therefore not represented in the overall higher activity in the 

area of the respective part of the cortex, but it‟s represented in more complex spatial 

pattern of activity.  

4.2 Limitations of the study and possible improvements 

We showed that the stimulus position is decodable from the fMRI images from delay 

period. However, due to the experimental design, we cannot be certain that the decoded 

information is related to the WM processes or to some different confounds, such as 

perception, attention or planning. To distinguish between perception and WM related 

processes, we would need to adopt a different experimental design. One possibility would 

be to use the setup of the previous studies (Christophel, Hebart, & Haynes, 2012; Riggal & 

Postle, 2013). In those experiments, two stimuli were presented briefly one after another; 

and after their presentation, one of them was cued to be remembered. Because of that, 

perception related brain activity should be visible for both stimuli, but WM just only for 

the cued one. It is possible to see if a classifier has been learning WM or perception related 

information, by comparing classification accuracy of cued stimulus versus not cued one. 

Signal that can predict the cued stimulus but not the other should be related to WM 

processes. Another possibility would be to show more stimuli at the same time and also 

cue just one after the presentation. This would assure that both stimuli will elicit the 

perception related neural process, but only one would trigger also WM memory processes.  

This setup would also make our second research question - comparison of the beginning of 

the delay period to the end of the delay period- more relevant.  We showed that the 

classification accuracy significantly dropped when the classifier is tested on a different 

time point that what it is trained on. However, it was still way above the chance. Therefore 

there should be a confounding signal in the data that still carries the stimulus information. 

By controlling for the perception related activity, we would get the clearer picture of the 

nature of that confound. Another possibility would be to model the signal based on HRF in 

order to see what signal trajectories the informative voxels take. We would be able to see if 
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some voxels got active later in the delay period, or if there is only a different path of signal 

decay for some of them.  There are also different ways of comparing relevant pattern of 

activities. One of them is representation similarity analysis (RSA) (Kriegeskorte, Mur, & 

Bandettini, 2008), which directly compares similarity of different patterns of activity by 

measuring Euclidean distance between patterns of activities of different classes of stimuli.  
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5 Conclusion 

In this thesis, we combined functional brain imaging - fMRI and machine learning to 

predict the content of spatial working memory and to localize brain areas which carry such 

information. We trained a classifier on the fMRI data for the period between stimulus 

presentation and a response to classify the position of the stimulus to the one of 4 

quadrants. We showed that the classifier could correctly predict the position of the stimulus 

on previously unseen data with statistically significantly higher than chance level accuracy. 

However, because of the design of the study, we could not distinguish the signal that is 

related to the WM processes from the signal that is related to perception or other possible 

confounds. Because of that, we concluded that position of the stimulus was decodable from 

the fMRI data from the delay period, but we could not certainly tell if we were decoding 

WM content, or some other process.  

Subsequent to that, we also showed that the pattern of activity that carries information 

about stimulus position differs between the beginning and the end of the delay period; and 

that the difference cannot be related just to signal decay. We showed this by training and 

testing the classifier on the different time point from the delay period and comparing the 

accuracy to the accuracy where the testing set was from the same time point. Accuracy was 

always higher when tested on the same time point as it was trained on (classifier was 

always tested on different set of data. We compared how the accuracy changed if the data 

were form the same or different time point). This difference can be produced by additional 

confounding effect related to perception of the stimulus. However that would contradict 

sensorimotor recruitment models of WM, which assumes same neural circuits involved in 

perception to be involved also in WM. According to those models, there should not be a 

perception related confounding factor, because signal corresponding to perception should 

be in the same voxels that reacts to WM. Possible explanations that are compatible with 

sensori-motor recruitment models are: transforming the memory representation during the 

delay period, and different BOLD response for different voxels.  

We used the searchlight method, to localize brain areas that contain information content 

about the stimulus position. Searchlight assesses classification accuracy for every possible 

sphere of a given radius in the brain; and by that, maps information content in the cortex. 

We found areas of the occipital cortex to be predictable for the stimulus position. This is 

compatible with other studies of visuo-spatial working memory. As predicted by sensory-
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motor recruitment models, we did not find information in other areas usually related to 

WM such as PFC and parietal cortex.  

Additional analysis with searchlight showed that multivariate pattern of voxels activities, 

but not difference in mean activity, is needed for the successful classification of the 

stimulus position for the most part of occipital cortex. However, for some small areas, 

average activity was also sufficient for higher than chance accuracy, but multivariate 

pattern was still more informative.  

In summary, we showed that combination of machine learning, neuroscience and 

psychology methods could be beneficial for studying the cognitive processes. We used 

machine learning techniques to predict the position of the presented stimulus from the 

fMRI data, to map the cortex in respect to the information content related to stimulus 

position, and to examine the nature of the informative pattern. However, to conclude that 

the signal we were able to decode was of the content of WM, we would need to have 

different, more controlled experimental design.   
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