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Abstract

This project explores novel approaches to assessing electrical brain activity recorded
through electroencephalography (EEG) for epilepsy diagnosis. The thesis at hand presents
a machine learning algorithm for automatic classification of EEG recordings into epileptic
and non-epileptic. In epilepsy patients, relatively short EEG recording periods without ap-
parent epileptic events like seizures usually still show patterns different from non-epileptic
EEG activity. Such interictal epileptiform discharges (IEDs) can serve as EEG biomark-
ers. However, to date no reliable and unambiguous diagnostic analysis solely based on the
known IEDs has been established. Identifying additional interictal biomarkers for diagno-
sis could contribute to faster procedures and help to prevent misdiagnoses and ineffective
or harmful treatment. Faster diagnostic procedures could furthermore save essential re-
sources and make hospital beds available in urgent situations.
The presented thesis tackles this issue by making an end-to-end machine learning algo-
rithm search for distinct patterns in EEG data and learn to use them to differentiate
epileptic from non-epileptic recordings. By exploring means of explainable AI (XAI), the
goal was to make the detected patterns explicit. Creating such explanations for algorith-
mic decisions further carries high ethical relevance in the health care field. Practitioners
will only gain trust in a system and agree to use it, if the automated decisions are logical
and the reasoning process can be explained clearly. This level of interpretability is not
inherent in the deep neural network algorithms applied. Thus, within the scope of this
work the concept of explainable AI was explored and implementation was attempted.
The presented study shows that automatic EEG analysis using deep learning is feasible.
At the same time, extensive further research will be necessary to create clinically ap-
plicable, highly accurate and transparent algorithms for epilepsy diagnosis from routine
EEG.

Keywords:
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Abstrakt

Tento projekt skúma nové prístupy k hodnoteniu elektrickej mozgovej aktivity zazname-
nanej pomocou elektroencefalografu (EEG) na diagnostiku epilepsie. Táto práca pred-
stavuje algoritmus strojového učenia pre automatickú klasifikáciu záznamov EEG na
epileptické prípady a neepileptické. U pacientov s epilepsiou relatívne krátke úseky záz-
namu EEG bez zjavných epileptických udalostí, ako sú záchvaty, stále vykazujú vzorce
odlišné od epileptickej aktivity EEG. Takéto interiktálne epileptiformné výboje (IED)
môžu jednotlivo slúžiť ako EEG biomarkery. Doteraz však nebola stanovená žiadna
spoľahlivá a jednoznačná diagnostická analýza založená iba na známych IED. Identi-
fikácia ďalších interiktálnych biomarkerov na diagnostiku by mohla prispieť k rýchlejším
postupom a pomôcť predchádzaniu nesprávnym diagnózam a neúčinnej alebo škodlivej
liečbe. Rýchlejšie diagnostické postupy by navyše mohli ušetriť základné zdroje a sprístup-
niť nemocničné lôžka v naliehavých situáciách. Predkladaná práca sa venuje tejto prob-
lematike tak, že algoritmus strojového učenia typu end-to-end hľadá odlišné vzory v dá-
tach EEG a naučí sa ich používať na rozlíšenie epileptických a neepileptických záznamov.
Cieľom prieskumu pomocou vysvetliteľnej umelej inteligencie (XAI) bolo objasniť zistené
vzorce. Vytváranie takýchto vysvetlení pre algoritmické rozhodnutia má naďalej vysoký
etický význam v oblasti zdravotnej starostlivosti. Praktizujúci lekári získajú dôveru v
systém a budú súhlasiť s jeho používaním, iba ak sú automatizované rozhodnutia logické
a proces odôvodnenia môže byť jasne vysvetlený. Vytváranie takýchto vysvetlení nie je
prirodzene možné pre algoritmy hlbokej neurónovej siete. V rámci tejto práce sme preto
skúmali koncepciu XAI a pokúsili sa o implementáciu. Predložená štúdia ukazuje, že je
možná automatická analýza EEG pomocou hlbokého učenia. Súčasne bude potrebný ďalší
rozsiahly výskum na vytvorenie klinicky použiteľných, vysoko presných a transparentných
algoritmov na diagnostiku epilepsie z rutinného EEG.

Kľúčové slová:

EEG, epilepsia, umelá inteligencia, neurónové siete, CNN, ResNet, vysvetliteľnosť
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1 Introduction

This thesis explores how machine learning algorithms can be applied to assess electroen-
cephalographic signals (EEG) for improving epilepsy diagnosis. The current state of the
art in differential epilepsy diagnosis is a tedious and time-consuming process (Baumgart-
ner & Pirker, 2019). Additionally to a faster identification of potential epilepsy patients,
an improved diagnostic procedure could rule out non-epileptics from lengthy subsequent
examination and prevent false, ineffective treatment with physical and psychological side
effects (Doss & LaFrance, 2016).
The research questions tackled by the study at hand are built up on each other in the
following manner:

• Can artificial intelligence (AI) be applied to reliably classify interictal EEG record-
ings into epileptic and non-epileptic subjects?

• Can machine learning (ML) identify epilepsy biomarkers in interictal EEG, which
are not/ hardly visible through human inspection?

• Can this AI algorithm be made explainable and transparent to ethically assist med-
ical diagnosis?

To attempt answering the first question, several machine learning algorithms are cre-
ated and compared. Hereby variations of the sub-type of convolutional neural networks
(CNNs) are employed. Those supervised learning algorithms can be very efficient and
powerful when dealing with large amounts of complex data. The key objective of this
thesis is to train such classifier networks to automatically differentiate between epileptic
and non-epileptic EEG recordings. Contrary to previous machine learning approaches
which mainly focused on quicker detection of clearly visible epileptic EEG patterns or
surgical management (Abbasi & Goldenholz, 2019), the approach here is to create an end-
to-end system to directly perform a binary classification on raw interictal routine EEG
recordings. An interictal period defines the time between two epileptic seizures, where the
patient usually is not experiencing any direct symptoms of the disease. However, routine
EEG recordings during such time periods were still found to exhibit different patterns
than non-epileptic EEG (Engel et al., 2018). If such interictal periods could serve as solid
diagnostic measurements, the current diagnostic procedure of epilepsy could potentially
be immensely accelerated.

The second research question is again motivated by the fact that interictal EEG sig-
nals of epilepsy patients can show subtle differences (interictal epileptiform discharges
(IEDs)) compared to non-epileptic EEG activity which could potentially serve as diag-
nostic biomarkers. Most IEDs that are known to date and quite clearly visible are not
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completely reliable for diagnosis. They can also be present in non-epileptic EEG and do
not necessarily occur in epileptics. Hence, the study at hand does not put too much focus
on specific, known IEDs. Instead, this project aims for an unbiased learning process to
enable the machine learning algorithm to base its decisions on any distinctive EEG pat-
terns it detects. Explainability techniques are then used to analyze the algorithms inner
workings and make its decision making processes apparent and visible. These tools can
be used to point to patterns in the data the algorithm bases its classification decision on.
The hope is, that this can offer new insights and identify novel interictal EEG biomarkers.
Integrating additional interictal biomarkers could enhance the diagnostic procedure and
make it less prone to misdiagnoses.

The evaluation of different explainability tools also targets the third research ques-
tion and aims to make the proposed algorithm transparent and understandable. This
thesis suggests that algorithms for medical and in particular diagnostic purposes should
generally be required to be explainable. Hence, this study treats explainability as a core
value when creating clinical software and therefore attempts to implement it. It can be
assumed that medical practitioners will only gain trust in a system and agree to use it,
if the automated decisions are logical and ideally the reasoning process can be explained
clearly. Unfortunately, this is not inherently the case in neural network algorithms1. As
such networks are very powerful and able to accomplish specific tasks much better than
traditional, more transparent approaches, they will continue to be used extensively, also
in the ethically complex healthcare field. Therefore, within the scope of this work the
concept of explainable AI (XAI) will be explored and the implementation of concrete
methods to improve the proposed algorithm will be attempted and evaluated.

1.1 Interdisciplinarity

The proposed topic is highly interdisciplinary, involving perspectives ranging from neu-
rological signal processing to medical ethics. The relevant disciplines included can be
broken down into the main basic fields neuroscience, psychology, artificial intelligence and
philosophy.

The neuroscience perspective is important for in-depth understanding of epilepsy as
a neurological disease and how it affects the brain and its neurons and connections. This
comprehension is necessary to be able to build a good classification algorithm, considering
the state of the art in diagnosis, treatment and neurological understanding of the disease
and potential challenges and goals. Understanding the correlations between epilepsy and
mental health and the psychological burden of the disease and its treatment is an integral
part of working with this topic. Further, some psychiatric disorders can show ambiguous

1Details on functionality of those networks and the advantages and drawbacks will be discussed in
further chapters of this thesis.
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Figure 1: Interdisciplinary positioning of the proposed research study.

symptoms similar to epileptic seizures and their differentiation is essential for reliable
diagnosis. Artificial intelligence methods are utilized in this thesis project for the main
goal of gaining more insight on how to facilitate and speed up epilepsy diagnosis. AI
hereby helps to search for patterns in large amounts of EEG data, that are opaque and
hardly visible for humans. The implemented technology therefore constitutes the major
focus of this thesis. The field of philosophy comes into play when ethical implications of
applying AI to medicine are discussed. Creating autonomous technology for healthcare
responsibly and in an unbiased manner should constitute a key value in this fast evolving
area. This results in the objective of creating AI systems that are somewhat explainable
and transparent to the developer and also to the end-user (e.g. medical professionals).
Thus, the ethical part of this thesis is closely linked to the methodological implementation
and the AI technology in use.

1.2 Positioning within cognitive science

Within the wide scope of (the) cognitive science(s), approaching a research question
through the use of artificial neural networks (ANNs) can traditionally be theoretically em-
bedded within the connectionist paradigm. However, this section quickly walks through
the historical interaction of cognitive science and AI with a focus on explainability and
relates it to the research topic at hand and the research questions posed.

Historically, the breakthrough of the theoretical interdisciplinary overlap of cognitive
science and AI can be dated back to Hilary Putnam and Jerry Fodor’s Computational
Theory of Mind (CTM) (Fodor, 1975). CTM coined the belief that the mind works in
very much similar ways like a digital computer and this theory suggests a crossover effect.
According to this theory, the failure of creating efficient and functional AI from theorized
models of the mind prompts also the model of the mind to be implausible. On the other

3



hand, being able to create AI systems capable of human cognitive capacities suggests
that those would also constitute a plausible theory of the mind (Westberg et al., 2019).
In the end, what computationalism can contribute to this thesis is that using artificial
neural networks inspired by the human brain’s neurons promises to combine the human
capability of learning concepts and patterns from data with the computer’s processing
power and its ability to detect details that are invisible for humans.

In the 1990s the interest in computationalism declined and a new paradigm called
connectionism gained popularity. Connectionism tries to use artificially built neural net-
works to explain the workings of the human mind and brain. On the other hand, computer
scientists were hoping to create better, faster and more flexible systems by creating tech-
nologies that are strongly inspired by the human brain and its neuronal connections.
Convolutional neural networks for example were inspired by visual cortical neurons of
mammals and residual networks (ResNets) got their basic concept from pyramidal cells in
the cerebral cortex. Using convolutional layers as well as ResNet structure, the network
utilized in this thesis project integrates two different neuron types. However, the diag-
nostic purpose of this research is different from the basic connectionist goals of gaining
deeper understanding of the mind and brain. This goal could be brought in line with con-
nectionism by approaching this topic through computational simulation of the epileptic
brain using neural networks. However, this will not further be explored in this thesis.

The next major cognitive paradigm emerged through the embodied cognition move-
ment. Admittedly this paradigm does not offer much to AI applied in a context like
presented here and even contradicts it in a way.

The integration of ethical considerations and explainability into this thesis broadens
its standing within cognitive science. As can be deduced from Westberg et al. (2019),
cognitive science is still unable to offer basic practical advice, even though cognitive sci-
entists show growing interest in the field of XAI. Unfortunately it seems that even though
the research fields of AI and cognitive science are strongly intertwined and share historical
context they do not speak the same language. Cognitive science is concerned with the
high-level challenges of AI, wondering if general-level artificial intelligence will one day
emerge and debating how to deal with singularity. In the meantime AI researchers on
the practical side are trying to implement explainable machine learning methods on a
very fundamental level. Here, the question is not (yet) what neural and psychological
mechanisms underlie understanding or how to generate embodied empathetic explana-
tions. The urging question currently is how any kind of relevant information on the sense
making process can be extracted from inside the hidden layers of a deep artificial neural
network. To achieve this, insights and know-how from cognitive science, neuroscience and
psychology could potentially improve the comprehension of the inner workings of artificial
neural networks. Knowledge about how explanation and understanding of complex deci-
sion processes work in the human brain could provide new ideas on how to improve ANNs.
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Collaboration between disciplines can be a very profitable approach, but the premise for
a successful exchange of ideas is to meet at the same level of debate and to first gain
understanding of each others knowledge and progress.

On a final note of this subsection I want to position the approach taken in this thesis
within the theoretical beliefs of predictive processing and connectionism. An enactive
approach seems too far-fetched for a narrow AI system as proposed here. It mainly builds
up on the connectionist idea of neural networks including the concepts of backpropagation
and predicting the given environment like suggested in predictive coding.

1.3 Thesis outline

Chapter 2 lays the foundation of this thesis by explaining all components needed for
thorough understanding of the problem statement. The essential theoretical background
can thus be split into three basic elements. In Section 2.1 a definition of epilepsy and
its symptoms is given and the current state of the art in epilepsy diagnosis is described.
As a second component Section 2.2 explains the functionality of electroencephalography
(EEG) for recording and analysing brain activity. Finally, Section 2.3 discusses artificial
intelligence as a tool for handling large amounts of (medical) data and how such tools can
be handled in a transparent and trustworthy manner.

In Chapter 3 the methods applied in the study at hand are explored in detail. First,
Section 3.1 describes the data set used for training the algorithms. In Section 3.2 the
different components utilized for building the algorithm and creating explainability are
listed and explained. Section 3.3 goes into various experiments that were conducted using
the different methodological components. Finally, Section 3.4 explains the metrics used
to evaluate the performance of the algorithms. Hereby terms such as accuracy, sensitivity,
specificity and F1 score are introduced.

The final results are presented in Chapter 4. First, an overview of the results achieved
with different model setups is given. Performance variances due to changes in various
parameters like input data, network type etc. are explored. In the end the results of
exploring XAI methods are layed out in Section 4.1.

The achieved results and their implications are discussed in Chapter 5. The impact
that different experimental changes had on the outcome are reviewed. Limitations and
potential implications of the study for the field of cognitive science are debated.

Finally, Chapter 6 points to the main contents and insight of this thesis and poses
some concluding remarks. Further, discussed limitations and ideas for improvements and
future research are summed up.
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2 Theoretical background

2.1 Epilepsy

Epilepsy is amongst the most common neurological diseases currently affecting approx-
imately 50 million people worldwide. While in high-income countries 49 out of 100 000
people are estimated to be diagnosed with epilepsy per year, in low- and middle-income
countries up to 139 per 100 000 are diagnosed. It is estimated that almost 80% of epilepsy
patients live in low- and middle-income countries. This imbalance is likely due to a higher
prevalence of infectious diseases like neurocysticercosis or malaria, increased birth compli-
cations or road accidents leading to head injury and brain damage and a lack of accessible
healthcare. Additional potential causing factors of epilepsy include genetic conditions,
stroke and brain tumors (World Health Organization, 2019).

The condition is characterized by recurrent seizures created through spontaneous syn-
chronous electric discharge of neurons in the patient’s brain. However, clearly character-
izing this disease has been tough and many definitions were proposed throughout the last
two decades. The International League Against Epilepsy (ILAE) 2005 defined epilepsy
as “a disorder of the brain characterized by an enduring predisposition to generate epilep-
tic seizures and by the neurobiologic, cognitive, psychological, and social consequences of
this condition. The definition of epilepsy requires the occurrence of at least one epileptic
seizure” (Fisher et al., 2005). In 2014, ILAE added an operational (practical) clinical
definition of epilepsy in more detail to meet the clinical needs of medical practitioners
working with epilepsy diagnosis and treatment (Fisher et al., 2014). Hereby, epilepsy is
defined as follows:

"Epilepsy is a disease of the brain defined by any of the following conditions

1. At least two unprovoked (or reflex) seizures occurring >24 h apart

2. One unprovoked (or reflex) seizure and a probability of further seizures
similar to the general recurrence risk (at least 60%) after two unprovoked
seizures, occurring over the next 10 years

3. Diagnosis of an epilepsy syndrome

Epilepsy is considered to be resolved for individuals who had an age-dependent
epilepsy syndrome but are now past the applicable age or those who have
remained seizure-free for the last 10 years, with no seizure medicines for the
last 5 years." (Fisher et al., 2014)

Seizures, also referred to as ictal events, can lead to one or more symptoms like the
impairment or loss of consciousness, clonic or tonic muscle movement or staring. Epileptic
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seizures can be classified based on their onset location into the three gross types focal,
generalized and unknown, which again each can be subdivided into motor and non-motor
seizures (Fisher et al., 2017). In 2017 the ILAE further porposed a general framework for
the classification of epilepsies, considering seizure and epilepsy types, co-morbidities and
causes, as visible in Figure 2 (Scheffer et al., 2017).

Seizure Types

Epilepsy Types

Epilepsy Syndromes

C
o-

m
or

bi
d

iti
es

Focal
Combined

Generalized
& Focal

Generalized Unknown

Focal Generalized Unknown
Structural

Genetic

Infectious

Metabolic

Immune

Unknown

Etiology

Figure 2: General framework for epilepsy classification, drawn after image from Scheffer
et al. (2017).

The presented definitions display that epilepsy is a highly diverse disease, which can
manifest itself in various ways. Anyhow, seizures often are a major cause for the patient’s
suffering. Depending on the place and time of occurrence and the type of seizure, those
events can be very dangerous and cause serious injuries. Additionally, people suffering
from epilepsy have to deal with stigma and discrimination in many regions across the
world. This often leads to reduced opportunities in education, personal freedom, insur-
ance or even prohibition of occupation or marriage. The cumulative incidence of mental
problems in drug-resistant partial epilepsy patients referred to epilepsy surgery centers is
notably high, ranging from 50% to 80% (Luders, 2008).

2.1.1 Diagnosis

The current common diagnostic procedures consist of different measures and activities.
When epilepsy is suspected, medical professionals first perform a detailed anamnesis to
find out about the medical history, symptoms and social context of the patient. Ideally,
this acquired information already suggests the most likely epilepsy syndrome. As epilepsy
is defined by abnormal neuronal activity, it is common practice to additionally record
electrophysiological activity of the patient’s brain through electroencephalography (EEG).
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This is first done via routine EEG recordings of approximately 30 minutes. The use of
EEG is often essential to assert a first clear diagnosis. If those measures are not effective
and a clear diagnosis cannot be made, mobile long-term EEG or long-term video-EEG
monitoring (VEM) is performed. Hereby the primary goal is to record ictal activities
(seizures) and diagnose the patient according to those observations. This is the most direct
and reliable means to diagnose epilepsy. However, long-term monitoring is preferably
avoided if possible due to the lengthy and tedious procedure. A schematic overview of
the use of EEG in the diagnostic procedure is depicted in Figure 3.

Routine-EEG
(if possible within 24-48 hours)

if negative

Repeat routine-EEG
(max. 4 times)

Sleep EEG or sleep-
deprived EEG

or

if negative, but
ongoing seizures

Mobile long-term EEG Video-EEG monitoringor

Figure 3: Schematic overview of EEG use in epilepsy diagnosis, adapted and translated
from Baumgartner (2001).

Furthermore, neuroimaging techniques like Magnetic Resonance Imaging (MRI) or
computed tomography (CT) scans are usually utilized to identify structural abnormalities.

Even though the occurrence of epileptiform seizures is the main characteristic of this
disease, the diagnosis cannot rely solely on the occurrence of such ictal events. Seizures
usually do not follow strict patterns. Patients can be seizure-free for weeks or even months
and still generate new ictal events at times. On the other hand only about 30% of people,
who have had a single ictal event will develop further seizures and thus indicate chronic
epilepsy. Therefore, anticipating if and when a next seizure might happen is hardly
possible and not generalizable. Nevertheless, experts often conclude that the ability to
predict the development of ictal events (ictogenesis) would provide the most valuable
advancement to create effective epilepsy treatment (Engel et al., 2018).

Besides seizures, interictal epileptiform discharges visible in EEG recordings also serve
as biomarkers for epilepsy diagnosis. Those IEDs can be spotted by medical professionals
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or specialized software. Unfortunately, such discharges are not deterministic and do not
occur reliably in all epileptics alike. Thus, neither the observance of a single ictal nor of
interictal events in the EEG can assure correct diagnosis of chronic epilepsy and certainly
is not a clear predictor of ictogenesis.

Due to the various ambiguous factors stated above, epilepsy is often misdiagnosed.
Subsequently, misdiagnosed patients are either treated for an illness they do not have
(false positive) or people who are ill are not treated (false negative). Naturally, both of
those diagnostic error types can be very harmful to the people affected and exceedingly
expensive for the healthcare system. Accordingly, finding diagnostically more conclusive
biomarkers is still a big challenge in creating more reliable diagnostic procedures and
on-point treatment. Research on EEG interpretation reliability highlights, that the task
of identifying abnormal EEG recordings shows strikingly low inter-rater agreement of
55% among qualified professionals (Grant et al., 2014). As discussed, those difficulties in
reliably evaluating EEG data for epilepsy diagnosis have several adverse effects for pa-
tients and healthcare systems. Additionally, the lengthy diagnostic procedure complicates
epilepsy research studies, which again decelerates the process of testing and bringing out
new epilepsy medication or developing other scientifically verified treatment possibilities.

Depending on the specific use case, the demands on an automatic diagnosis system
strongly vary. Generally speaking, a diagnostic measure which tends to mistakenly identify
a lot of false positives comes with a high cost. This tendency can lead to physician
not trusting the system and ignoring results. Given the present study, data set and
research question, false positives result in potential inappropriate treatment with anti-
epileptic medication and other complications. Undoubtedly though, false negatives are
also highly unwanted here. This would result in sending an epileptic person home from the
hospital, because he or she has been mistakenly claimed healthy by the diagnostic system.
Furthermore, this means epileptics classified healthy could be mistakenly included in drug
studies or unknowingly face situations that can be dangerous for them or induce more
seizures.

2.1.1.1 Monitoring and provocation

Long-term monitoring of potential epilepsy patients constitutes an essential part of state-
of-the-art epilepsy diagnosis. Inpatient long-term video-EEG monitoring (VEM) for a
final diagnosis is usually performed at dedicated epilepsy monitoring units (EMUs), while
mobile long-term EEG can be conducted at the patient’s home. Those procedures are
important to record clear epileptic activities, specifically ictal events (seizures), which are
hardly ever present in routine EEG (Baumgartner, 2001). In the case of VEM, simulta-
neous behavioural symptoms during seizures are captured on video. Further, interictal
epileptiform discharges (IEDs = spikes, spike bursts, sharp waves) are also captured with
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higher probability in long-term monitoring. Thus, these procedures offer evidence for
quite reliably differentiating between epileptic and non-epileptic seizures. Further it can
enable the classification of seizure types. For patients who do not respond to any med-
ication, surgery often remains the only hope. In the case of such treatment-resistant
epileptics, monitoring eventually becomes essential for pre-surgical evaluation. In case
no seizures occur during a few days of VEM, they often have to be purposely provoked.
Such provocation procedures commonly include sleep deprivation and reduction of regu-
lar anti-epileptic drugs (AEDs). If those traditional measures are ineffective, exercise or
specific stimuli can be applied to provoke epileptic events (Baumgartner & Pirker, 2019).

2.1.1.2 Differential diagnosis

The main challenge in differential diagnosis of epilepsy is to distinguish it from Psy-
chogenic non-epileptic seizures (PNES) and Organic non-epileptic seizures (NES). Both
diseases show symptoms that appear very similar to epileptic seizures, but have another
underlying cause. This different origin requires completely different treatment and mis-
diagnosis can be harmful.

At least 10-40% of potential epilepsy patients are diagnosed with psychogenic non-
epileptic seizures (PNES) after long term monitoring and many others instead are misdi-
agnosed with epilepsy and treated with futile, but potentially harmful medication (Doss
& LaFrance, 2016). PNES show similar symptoms as epileptic seizures with some signif-
icant differences, that can vary and are sometimes hard to identify clearly. PNES can
be a symptom of different psychiatric or psychological issues. It is assumed that stress
and several other factors interfere and escalate into provoking a seizure-like event. Cru-
cial determinants of developing PNES seem to be adverse childhood events, traumas,
problematic parent-child relationships and other early influences on later stress behaviour
and personality development. Further, unfortunate or stressful current living conditions
have a favourable effect on the development of the disease. Many patients additionally
suffer from other psychiatric illnesses, like PTSD (post-traumatic-stress disorder) or per-
sonality disorders like borderline disorder. The only known effective treatment for PNES
is psychotherapy and dealing with potential additional psychiatric issues. Symptomati-
cally PNES can be distinguished from epilepsy due to patients having closed instead of
open eyes during a seizure, a longer duration (> 5min) than commonly seen in epileptic
seizures or irregular motor activity. Nevertheless, the main and most obvious indicator
is, that PNES occur without any epileptiform electrical activity visible through EEG
recordings during those seizure-like events. Usually also significantly less or no spikes or
other epilepsy biomarker occur in PNES patients. Therefore, the most reliable diagnostic
measure currently is to apply long-term VEM and wait for a seizure to be captured (Devin-
sky et al., 2011). As this is rarely done right away for every potential epilepsy patient
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due to limited time and resources, there is a considerably high risk for patients suffering
from PNES to be misdiagnosed with epilepsy and treated falsely before the mistake is
recognized.

Part of the literature on differential epilepsy diagnosis also mentions organic non-
epileptic seizures (NES). Just like PNES, organic NES constitute seizures which are
not caused by rhythmic neuronal discharges in the brain typical to epilepsy. Unlike
psychogenic seizures, organic NES are induced by physiological conditions that can be
both neurological or non-neurological. Neurological causes can range from sleep disorders
and cerebrovascular disorders to movement disorders. Non-neurological causes include
metabolic abnormalities, cardiac arrhythmia or toxic ingestion (Hopp, 2019), potentially
sometimes even elicited through anticonvulsant drug toxicity (Weaver, 2004).

Especially for distinguishing PNES and NES from epilepsy it could be a big improve-
ment to develop a faster alternative of merely evaluating a rather short EEG recording
pieces, like aimed at with this thesis.

2.1.2 Prevention and treatment

Epileptogenesis could be prevented in approximately 25% of cases beforehand. Hereby,
the most important action is to avert head injury and brain damage. Thus appropriate
perinatal care as well as reducing car crashes should be priorities. Further, cardiovascular
risk factors as well as infections of the central nervous system should be reduced in order
to prevent the development of new cases of epilepsy (World Health Organization, 2019).
The treatment of epileptic patients mainly aims to control and prevent the development
of further seizures.

2.1.2.1 Medication

According to the WHO, given the right antiseizure medication up to 70% of epileptics
could become seizure free (World Health Organization, 2019). Finding a drug and dosage
that fits the patient can be a tough task though. There are several different antiepileptic
drugs (AEDs) currently on the market, which have all been found effective for differ-
ent people, depending on the type of epilepsy, interference with other medication in use
and probably some other partly unknown factors. Table 1 provides an overview of the
most common anti-epileptic drugs and their impact on patients with specific seizure types
(Knezevic & Marzinke, 2018). Broadly speaking there are three possible outcomes during
the anticonvulsant drug titration. Ideally, the patient can become seizure free with no
severe side effects. The second possibility is that the patient will show serious adverse
reactions to the AED in use and will not be able to continue medication. Third, even
though the patient is compliant and the dosage has already been increased to the rec-
ommended maximum, the patient will not show any reduction in seizure occurrence. In
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the second and third case, different antiseizure medication can be tested separately or
added to the previous AED. If none of these measures show effect within a six months
to two year period of unsuccessful trials (depending on the severity of the illness), the
patient can usually be diagnosed with pharmacoresistant epilepsy. Beside patients never
responding to drug treatment from the start, this status, also called multi-drug-resistant
epilepsy (MDR), can even unsuspectedly be reached after years of successful medication.
While the reasons for developing MDR epilepsy are unclear, oftentimes surgery remains
the only chance for the patient to become seizure free (Luders, 2008).

Table 1: Overview of seizure types and suitable medication, adapted from Knezevic &
Marzinke (2018).

Seizure type Presentation First-line drug
options

Adjuvant or alter-
native drug options

Drugs that may
worsen seizure

Generalized
tonic clonic

Initial general muscle
stiffening, then rhyth-
mic jerking of limbs.

Carbamazepine,
lamotrigine, oxcar-
bazepine, valproic
acid

Clobazam, lamotrigin,
levetiracetam, valproic
acid, topiramate

Gabapentin, pheny-
toin, pregabalin,
tiagabine, vigabatrin

Tonic or atonic Tonic: sudden general
muscle stiffening, for ∼
1 minute. Atonic: sud-
den loss of muscle tone.

Valproic acid Lamotrigine Carbamazepine,
gabapentin, oxcar-
bazepine, pregabalin,
tiagabine, vigabatrin

Absence Seizure with arrest of
current behaviour with
EEG showing general-
ized spike wave activ-
ity.

Ethosuximide, lamot-
rigine, valproic acid

Clobazam, clon-
azepam, levetiracetam,
topiramate, zon-
isamide

Carbamazepine,
gabapentin, oxcar-
bazepine, phenytoin,
pregabalin, tiagabine,
vigabatrin

Myoclonic Very short and sudden
jerking movements.

Levetiracetam,
valproic acid, topira-
mate

Clobazam, clon-
azepam, piracetam,
zonisamide

see above (Absence)

Focal Seizure is limited to
one hemisphere, can be
localized or widely dis-
tributed.

Carbamazepine,
lamotrigin, levetirac-
etam, oxcarbazepine,
valproic acid

Clobazam, gabapentin,
topiramate

NA

Juvenile
myoclonic
epilepsy

Myoclonic seizure af-
ter waking, onset b/w
5-20 yo. Often also
absence / generalized
tonic-clonic seizures.

Lamotrigin, levetirac-
etam, topiramate,
valproic acid

Clobazam, clon-
azepam, zonisamide

Carbamazepine,
gabapentin, oxcar-
bazepine, phenytoin,
pregabalin, tiagabine,
vigabatrin

2.1.2.2 Surgery

Depending on the type of epilepsy syndrom, up to 70% of pharmacoresistant epilepsy
patients can become seizure free after surgery (Baumgartner, 2001). Generally it can be
said that surgery is a very effective treatment for refractory epilepsy or temporal lobe
epilepsy. Further, some studies and surveys clearly confirmed improvement of quality
of life after surgery in adults. Albeit, resective surgery is currently exclusively feasible
for focal seizures, which originate from a specific source that can be clearly located in
one brain hemisphere. The procedure of epilepsy surgery is mainly composed of three
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gross steps. First, a very detailed pre-surgical evaluation has to be executed, to ensure
that the respective patient is qualified for surgery, not responsive to any other treatment
and doesn’t fit the exclusion criteria. In a next step, the source of the seizure has to
be located as detailed as possible through applying multiple brain research and imaging
tools. Commonly, fMRI as well as a very detailed, often invasive EEG recording are used
to identify the source. Again, being aware of the type of seizure the patient is suffering
from is crucial for any further procedure. In a last step, the surgery is performed (Luders,
2008).

2.2 Electroencephalography (EEG)

For the purpose of this study data from electroencephalography (EEG) recordings will
be evaluated. The following paragraph presents an overview of EEG as a brain research
method and as a diagnostic measure for epilepsy patients.

2.2.1 Method and mechanisms

EEG enables researchers and physicians to measure the electrical activity of the brain. To
monitor and record this activity non-invasively, electrodes are typically placed on the scalp
according to the international standard 10-10 or the reduced 10-20 electrode placement
system. Figure 4 shows all possible electrode positions according to the 10-10 standard
electrode placement system, with the reduced 10-20 electrode positions highlighted in grey.
Commonly a reduced number of electrodes is actually used when recording, depending on
the individual need for high spatial resolution and detailed ability to assess the location
of the neurophysiological origin of brain signals. In the clinical setting EEG signals
are commonly recorded by a minimum of 21 electrodes (Zschocke & Kursawe, 2012).
Further, if even higher resolution is necessary to locate brain lesions, identify epilepsy onset
locations for surgery or detect oscillations of very high frequency, there is the possibility of
invasive EEG systems, where electrodes get surgically implanted onto the brain surface.

The electrodes of the EEG pick up the electrical activity of postsynaptic potentials
from large groups of pyramidal neurons in the upper layer of the cortex. In healthy
humans at rest those cells mostly show asynchronous activity, while in many pathological
conditions (e.g. epileptic seizures) groups of cells fire increasingly synchronous in the same
frequency range. The activity of such neuron groups adds up and manifests itself in the
form of higher amplitudes in the EEG recording.

2.2.2 Epileptic biomarkers in EEG

As already mentioned in Section 2.1.1, patients with suspected epilepsy are usually
screened through recording routine EEG or if necessary even undergo the long-term proce-
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Figure 4: 10-10 electrode montage setup with 10-20 electrodes highlighted in grey.

dure of VEM. This measure is necessary to detect seizures and ideally estimate an approx-
imate frequency of seizure occurrence. Seizures identified in a patient’s EEG recordings
are the most unambiguous biomarker of epilepsy, but as discussed above, the presence of
such ictal events alone does not suffice to diagnose chronic epilepsy and predict future
seizures. Furthermore, a correlation between interictal epileptiform discharges (IEDs) and
epilepsy has been shown by several research studies and within recent years automated
spike detection has been greatly improved. Nevertheless, spikes can also be found in oth-
erwise healthy brain activity and many epileptic patients do not show spikes consistently,
but only rarely or at specific times, e.g. at night. Identifying reliable electrophysiological
biomarkers of epilepsy besides spikes and seizures could significantly decrease the mon-
itoring times needed for a clear diagnosis and thus make faster appropriate treatment
possible. Biomarkers which occur more frequently and consistently than seizures and
spikes could therefore come very handy for the purpose of speeding up the diagnostic
process. By now, such non-ictal biomarkers that can be utilized confidently for diagnosis
have not been found (Engel et al., 2018). Though, meaningful interictal electrophysi-
ological disturbances have been repeatedly found in routine EEG of epilepsy patients.
The most reliable of such have been proven to be interictal spikes (IIS) and sharp waves,
while invasive studies using wide bandwidth recording and small diameter electrodes have
identified pathological high-frequency oscillations (pHFOs) and microseizures (Staba et
al., 2014).

In the following paragraphs EEG snippets will be included for increased understanding
of what is meant by epileptic EEG biomarkers in this thesis and how epileptic EEG differs
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from normal, healthy brain activity. Those recordings were taken directly from the data
sets used for creating the algorithm subject to this thesis.

2.2.2.1 Seizures

In EEG recordings epileptic seizures are visually characterizable and quite clearly distin-
guishable from PNES (Baumgartner & Pirker, 2019). In Figure 5 a normal EEG recording
is shown and compared to Figure 6 below, which shows a recording with seizure onset at
approximately the second vertical line. The development of very rhythmic brain activity
at seizure onset time followed by increased amplitudes is well visible in the center of the
picture.

Figure 5: Normal, healthy-looking EEG recording during daytime.

Figure 6: EEG recording of transition from normal activity to focal seizure.

This work will not focus on seizures and only include EEG recording snippets without
seizure activity into algorithm training and testing. The goal here is to base diagnosis on
different, more discreet biomarkers, that occur more consistently and might even be able
to predict ictogenesis.
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2.2.2.2 Interictal epileptiform discharges (IEDs)

Interictal epileptiform discharges (IEDs) can show various different patterns, the most
common and identifiable being spikes, spike bursts and sharp waves (Bagheri et al., 2019).
Interictal spikes (IIDs) are characterized by a large-amplitude rapid component that is
usually followed by a slow wave. IIDs can also appear irregular, regional, as bursts of
spikes or combined with sharp waves depending on the particular epilepsy form. Spikes
usually last between 50-100 ms, sharp waves consist of a rapid component lasting 100-300
ms and slow waves span over 200-500 ms (de Curtis et al., 2012).

In Figure 7 three examples of IEDs of different intensity and clarity are shown. All
examples were taken from the data sets described in Section 3.1.

Figure 7: Comparison of two EEG snippets containing spikes. At the lower center of
the left picture spikes are quite clearly visible, in the middle picture more subtle spiking
behaviour is visible across channels right after the green line and the right picture shows
a clearly visible polyspike wave complex.

Such IEDs and similar discharges are in the focus of the biomarker algorithm devel-
oped in this study. The goal of the proposed end-to-end algorithm is to identify such
subtle interictal discharges in the data and deduce epilepsy risk from those detections.
Additional underlying subtle patterns of IEDs are suspected and could help the algorithm
to discriminate even better between epileptic and non-epileptic routine EEG recordings.

2.2.2.3 Pathological high-frequency oscillations (pHFOs)

Pathological high-frequency oscillations (pHFOs) of 80+ Hz were first detected in the con-
text of epilepsy surgery (Frauscher et al., 2017). Since then pHFOs have gained attention
as one of the most informative biomarkers, with the ability to indicate the epileptogenic
region of the cortex and potentially even to indicate epileptogenesis and ictogenesis (Engel
et al., 2018). Unfortunately a large proportion of previously recorded EEG data has most
likely not been recorded with sufficient resolution to be able to consistently and realiably
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detect such pHFOs. Thus, even though pHFO detection will be subject of further research
within this project, it will not be targeted in particular in this thesis.

2.2.2.4 Theta rhythm reduction

Epileptogenic IIDs seem to reduce theta rhythm (4–7 Hz frequency range) in the brain.
Research suggests that theta reduction by up to 60% happens right after each spike in
all patients (Fu et al., 2018). In some patients, especially such without a clear epilepsy
onset location or several focal points, Theta rhythm reduction extends to between-spike
periods.

2.2.2.5 Connectivity

Research in functional neuroimaging has increasingly focused on connectivity in recent
years and some astonishing insights were found by those means. This approach targets
explanation of inter-communications and pathways in the brain instead of focusing on
dedicated brain regions for specific tasks. Studying the connectivity of the epileptic brain
seems to be promising for seizure prediction and epileptogenic focus localization (van
Mierlo et al., 2014). If an interictal EEG biomarker based on connectivity could be de-
tected, this could potentially be a robust and reliable way of predicting epilepsy from
relatively short EEG recordings. This means of analysis has already been pursued by
various researchers in the field of epilepsy (Centeno & Carmichael, 2014). Such connec-
tivity analyses combined with machine learning methods as applied in this study can offer
interesting insights. Diving deeper into that opportunity unfortunately exceeds the scope
of this thesis.

2.3 Artificial Intelligence

This section explores the theoretical framework of the computational methods applied
in the study at hand. Starting with a conceptual description of artificial intelligence in
general and convolutional neural networks and residual networks in specific, this chapter
will go on to discuss the current state of the art in applying AI in healthcare, where
ethical considerations on AI assisted medical diagnostics will be taken into account. A
subsection is dedicated to the theory and implementation of explainability in deep learning
algorithms and explores possibilities to ensure the development of trustworthy systems.

Science and technology started fostering the idea of automatic, self-regulating control
under the term Cybernetics back in 1948. The term Artificial Intelligence was coined in
1956 and helped to spark the public debate about this concept (Russell, 2014). Since then,
this comparatively new field has gone through periods of varying popularity, closely tied
to ongoing discussions about its potential and associated risks. Within the last decade,
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the power of data has gained importance globally. With more focus on data science and
immensely increased availability of data in various domains, AI has simultaneously gained
popularity again. The reasons for this were first and foremost the tremendously increased
capabilities of AI methods given increased amounts of data to learn from. To understand
those concepts more thoroughly, the notions Artificial Intelligence and Machine Learning
will be defined and some technical assets will be highlighted in the following. Figure 8
visualises how the AI concepts discussed in this thesis relate to each other.

ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

DEEP LEARNING/
NEURAL NETWORKS

CONVOLUTIONAL
NEURAL

NETWORKS

RESIDUAL
NEURAL

NETWORKS

Figure 8: Visual definition of how the discussed AI concepts interrelate.

Artificial intelligence is the broader, more general concept, while machine learning
strictly constitutes a subcategory of AI. However, currently applied AI technically can be
considered almost identical with ML. While future innovations might enable other ways
to create some sort of intelligent behaviour in machines, at this stage of AI advancement
most methods in use and under development fall under the umbrella of ML.

The term ML denotes computational models and algorithms that are designed to learn
from input data, similar to how humans are believed to learn from experience and update
their beliefs about the world. In other words, ML algorithms are programmed in a way
that enables them to automatically draw conclusions from ’training data’ that generalize
to an independent set of ’test data’. Those predictions and decisions drawn from data
are made and acted upon without being explicitly programmed to do so, but instead for
every new ’experience’, internal computations are performed and learning parameters are
updated.

Using the human brain as a model for developing learning algorithms was a big step
towards more efficient systems. Artificial neural networks (ANNs) similar to the ones
developed nowadays were first built back in the 1980s. Even though they were already
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functioning similarly as we know them today, their actual power was only made visible in
recent years due to the increasing availability of massive amounts of data and increased
computing power of GPUs. Input is processed by various nodes and huge amounts of
different connections are constantly updated until a satisfying classification accuracy is
achieved. Subsequently the network is able to correctly classify and evaluate novel incom-
ing data. However, just as in human mundane decision making in day to day life, it is
usually hardly comprehensible for an outside spectator what exactly led to the decision
at hand. And while humans might be able to explain the process which led to making
that decision, algorithms usually fail to do so.

2.3.1 Artificial Neural Networks

Deep learning is a subcategory of machine learning and usually refers to methods based
on artificial neural networks (Goodfellow et al., 2016). Those systems are built using a
deep architecture which consists of several layers of operations between input and output.
This can on a high level be compared to its role model, the brain. Each layer of the ANN
consists of so-called neurons, which pass on a signal by performing an operation and
sending the weighted result on to the next neuron. Through this complex architecture
such models are able to learn high-level patterns and hidden features in the input data.
This technology can be applied to classification as well as regression problems and very
diverse data types. This fundamental idea has been further developed into countless
variations and different approaches depending on the problem and the input data. In the
following, the conceptual background of the two ANN variations used in the project at
hand will be described. The concrete implementation of those will be discussed in the
methods Chapter 3 of this thesis.

2.3.1.1 Convolutional Neural Networks

Loosely inspired by the brains visual cortex, modern convolutional neural networks were
first developed in the 1990s. Accordingly, CNNs were originally mainly applied to image
recognition challenges. Within the last years of research and development, implementing
convolution operations into ANNs has been proven to be a great asset also for audio,
language and time series classification. A CNN learns so-called feature filters during
training, which enables it to detect e.g. edges and shapes in images. Depending on the
input data, the learned features can correspond to different types of data patterns. Using
this technology on time series, and more specifically on EEG data, it can be expected
to detect typical shapes like IEDs and thus learn to classify the input data accordingly.
What sets this technology apart from other ANNs is its usage of the convolution operation.
This mathematical operation is an element-wise multiplication and addition as depicted
in equation 1.
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s(t) = (x ∗ w)(t) (1)

In the above equation, x represents the input and w the so-called kernel. In the
context of CNNs, a kernel is an array storing the weights that are adapted during training.
Depending on the problem formulation and the input data, several kernels can be stacked
and used as a bigger filter. The filter size is usually chosen considerably smaller than
the input size, so that the convolution is applied to the input step by step when sliding
the filter over the input data. The smaller the filter size is compared to the input, the
more detailed features will be detectable. Convolving the kernel with an input over an
index (e.g. EEG recording time t) results in a so-called feature map (s(t)). With every
convolutional layer applied in a CNN, more detailed feature maps are created (Goodfellow
et al., 2016). As this process is hard to image from pure verbal description, please refer
to the visual explanation of a 2D convolution in Figure 9.

Figure 9: 2-D convolution example by Goodfellow et al. (2016).

After each convolutional layer commonly a pooling layer is applied to compress the
information. This is usually done by sliding another filter over the convolution output.
This filter either chooses the maximum or averages over the output of each piece it sees.
Whether average or max pooling is more appropriate depends strongly on the problem
formulation and the input data. After all convolutional and pooling layers are performed,
usually fully-connected layers, or also called dense layers, are applied. Here all neurons
are connected to all output options and a classification or regression result is created.
As in any other supervised learning algorithms, at this point during training the result
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created by the network is compared to the ground truth or label of the input data and
the error is back-propagated to update the weights of the network.

2.3.1.2 Residual Networks

Another subtype of artificial neural networks are residual networks (ResNets), which con-
sist of so-called residual blocks. This technology was built to resemble a similar structure
as pyramidal cells in the human cerebral cortex. Hence, it is implemented in a way that
connections between layers are skipped through so-called ‘shortcuts‘. Those shortcuts are
added at the end of each residual block and usually either are identical to the input of the
corresponding block (identity block) or one simple convolution operation is performed on
the shortcut (convolutional block). Figure 10 depicts the mechanisms of residual identity
and convolutional blocks in the manner they were applied in the algorithm presented in
this thesis. This type of network can have a few proven advantages over classic plain
networks. First of all, it makes building deeper networks possible, while at the same time
residual connections often get rid of the vanishing and exploding gradient problems (He
et al., 2016).
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Figure 10: Residual identity block (left) and a shortcut convolutional block (right).

2.3.2 Deep learning in medical diagnostics

There have been recent studies using deep CNNs on EEG recordings in a similar manner
as the study at hand. Researchers in several other studies have trained a CNN to dis-
tinguish normal from abnormal EEG recordings with over 80% accuracy (van Leeuwen
et al., 2019). IED detection algorithms based on deep learning methods have also been
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developed (Fürbass et al., 2020). Further, the implementation of deep learning for pre-
dicting brain maturation from EEG recordings of premature neonates showed promising
results (Gschwandtner, 2020).

Applying novel AI methods to the field of medicine brings along ethical challenges
concerning trust and transparency of such systems in clinical use. At the current fast
pace of development in the field of AI, evaluating measures to make consistent ethical
decisions constitutes a very important foundation. AI researchers and developers should
be aware of ethical aspects of their work and integration of potential solutions should be
self-evident. In the following sections those considerations and the current state of the
art in explainable AI will be elaborated on in more detail.

2.3.2.1 Explainability and transparency

Applying AI and ML methods to issues in the medical field and especially to medical
diagnostics and decision support currently appears to be a popular topic. Besides many
successes of medical AI, this topic carries ethical conflicts and issues to debate.

Due to its technical characteristics and functioning, ML usually does not offer a
straightforward way to understand its reasoning. Specifically the technology of deep
ANNs is often referred to as a ‘black box’, as the procedure of how such algorithms reach
their conclusions are hardly explainable. As described in Section 2.3.1, deep ANNs are
based on several layers of computations creating great amounts of parameters and high-
level features which are not explicitly coded but automatically deduced from input data.
Thus, after numerous layers of computations a clear meaning and origin of each of the
obtained features is not transparent and comprehensible anymore.

This lack of explainability makes it often rightfully difficult for medical personnel to
trust in systems based on ML technologies. Furthermore, this characteristic of deep neu-
ral networks can be accidentally or deliberately exploited through feeding incomplete or
biased data to the system during training. An ANN algorithm strictly learns what it is
taught by the data. Hence, ML systems for medical use should be handled with great
caution and only be applied after careful consideration and under supervision of informed
medical professionals. Before trusting a system to an extent where diagnosis and treat-
ment is based on its evaluation, the algorithm design and the data used for training should
be investigated and understood to prevent the integration of fatal biases. For example, a
model accidentally trained only on data of male patients could be biased towards this data
type and overlook the disease in females if the manifestation and symptoms are slightly
different. Issues like this are fall under the term gender data gap and are fortunately
increasingly debated recently.

However, inspecting not only the composition of the input data itself but also which
features of this data the algorithm is actually paying attention to poses another key
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problem. Understanding what exactly happens within the hidden layers of a deep ANN is
not even accessible to the ones building it. ML engineers thus have a hard time optimizing
their ANNs deliberately when the results do not turn out as expected and they have no
clear evidence helping them to understand why. Currently a lot of heuristics are involved
when optimizing ML models, parameters are tweaked and layers are added in the hope
of more or less coincidentally creating better accuracy. This process can be much more
straight forward with more insight into the workings of the algorithms. Therefore, growing
numbers of analysis methods for machine learning algorithms are being developed and the
usage of such tools is gaining popularity. The importance of creating interpretable and
explainatory AI is increasingly being highlighted from various angles and promoted by
scientists in the field. Even though literature mostly concludes that current methods are
insufficient, new opportunities and ethical ideals are continuously discussed, as this will
remain a crucial issue as long as AI methods persist (Gilpin et al., 2019).

Before the available methods are elucidated in more detail, a definition will be given of
what is meant by the notions explanation and understanding in the context of this thesis.
According to previous literature (Montavon et al., 2018), the term understanding talks
about functional understanding of the networks decision making behaviour, not about
understanding algorithmic details of its computations. Hereby the aim is to understand
individual decisions of the model. On the other hand, an explanation of a model decision
provides several human-comprehensible features which have presumably contributed to
the respective decision. For instance, a DNNs prediction of high epilepsy risk in a specific
patient can be understood, if the explanation is provided that there were several spikes,
HFOs and a reduced theta rhythm in the respective recording of that patient.

A notable amount of different options for achieving explainable AI systems has been
developed over recent years. Table 2 shows an overview over the most popular modern
methods. Explainability methods can be divided into three different types depending on
their strategy and point of implementation. Thus, there are pre-modeling, modeling and
post-modeling approaches (Fellous et al., 2019).

Pre-modeling explainability mainly deals with the input data before training the model.
Input data can be characterized, feature extraction can be performed and more. However,
this option inherently involves the risk of biasing the model. Another possible side effect
is decreased model performance due to too many set defaults and not letting the model
learn potentially unexpected or unknown features. If this is done unrestrictedly anyways
after pre-modeling measures were taken, we face the risk of the model ignoring those pre-
modeling results, which means that this pre-modeling evaluation actually does not explain
what the model bases its decisions on. Modeling explainability includes all methods in-
tegrated into the model itself. This usually means that during training an explanation
gets trained as well in some way. In the end the model is able to explain its workings
’itself’ while it is applied to new data samples. Thus this variant can be described as the
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Table 2: Approaches to explainable AI systems, adapted from Fellous et al. (2019).

Type Pre-modeling Modeling Post-modeling
Goal Characterize input data Design explainable model archi-

tectures and algorithms
Extract explanations from
outputs

M
eth

od
s

1. Exploring data
analysis: beyond
reporting statistical
properties.
2. Data set descrip-
tion & standard-
ization: describing
variables, metadata,
provenance, statis-
tics, between variables
(pair plots, heatmaps),
ground truth corre-
lations, probabilistic
models generating
synthetic data.
3. Explainable fea-
ture engineering:
Using the right features
to explain predictions
is crucial.
4. Data set summa-
rization: Interpretable
prototype selections
and identification of
meaningful outliers.

1. Adopting a more explain-
able model family: linear
models, decision trees, rule sets,
generalized additive models, etc.
2. Hybrid explainable mod-
els: Deep k-Nearest Neighbors
(DkNN), Deep Weighted Av-
eraging Classifier (DWAC),
Self-Explaining Neural Network
(SENN), Contextual Explanation
Networks (CEN), Bag-of-feature
network (BagNets).
3. Joint prediction & expla-
nation: Teaching Explanations
for Decisions (TED), Mul-
timodal/Visual explanation,
Rationalizing Neural Prediction.
4. Explainability through ar-
chitectural adjustments: Ex-
plainable CNNs, ’This Looks Like
That’ architecture, Attention-
based models.
5. Explainability through
regularization: Tree Regulariza-
tion, Reg. by local explanations
constraints.

1. Explanation targets:
Mechanistic (internal, al-
gorithmic) vs. functional
(external, interpretative)
explanations at different
complexity levels.
2. Input based expla-
nation drivers: How
input manipulations can
drive/change the outputs.
3. Macro-explanations:
Importance scores, De-
cision rules, Decision
trees, Dependency plots,
Verbal/Counterfactual ex-
planations.
4. Explanation es-
timation methods:
Perturbation-based (LIME,
SHAP), Backward prop-
agation, Proxy model,
Activation optimization.
5. Be careful with:
manufacturing explanations
or over-interpreting the
outputs!

most transparent. In this method one does not project anything on the learning process
before or afterwards, but information is extracted directly from the process. Unfortu-
nately though, implementing such explanation mechanisms right into the model itself in
practice often turns out to be the most complicated option. In post-modeling explainabil-
ity, information about the network and its decision making is extracted from the output.
This can for example be done by using decision trees or other methods to reconstruct the
decision making process given the output choices. Conceptually such methods can give
the impression of ’guessing’ why the network potentially decided the way it did. As with
pre-modeling, general causality is the main target here. This approach makes it possi-
ble to create great results for some problem formulations, but the actual transparency is
debatable. Also post-modeling is mostly useful to more or less artificially create a user-
friendly explanation in the end, but doesn’t help engineers developing such algorithms to
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figure out what goes wrong within their network.

2.3.2.2 Precision medicine

With precision medicine another healthcare trend emerged within recent years and at-
tracted attention from different fields and perspectives. Epilepsy is a particularly diverse
disease, where personalized factors are essential for diagnosis and treatment. Hereby
genetic testing has gained importance throughout recent years (Kearney et al., 2019).
Besides novel genetic approaches, utilizing AI methods to personalize diagnosis and treat-
ment can further offers many novel opportunities to improve the current efficiency of med-
ical care around the world. In the following, this thesis project will be tackled with the
values of precision medicine in mind. This project attempts to position itself within the
scope of precision medicine to identify additional challenges revolving around the epilepsy
syndromes.
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3 Methods

This chapter summarizes the methods used in the research project presented in this the-
sis. The data used for training and testing the proposed neural network are introduced.
Further, this chapter explains the designed algorithms, the experiments performed with
those models and the statistics used to evaluate their performance.

3.1 Data sets

For this research project, EEG data from six different sources were available, comprising
a data set with routine EEG recordings of 3568 patients in total. 3345 EEG recordings of
the publicly available EEG corpus provided by the Temple University were included, while
475 of those were taken from the seizure subset and 2870 from the normal/abnormal sub-
set. 100 recordings with diverse diagnostic outcome were provided by NRZ Rosenhügel.
Recordings of 31 patients with clear epilepsy diagnosis were provided by the University
Clinic Erlangen, 18 by Kempenhaeghe epilepsy center and 14 by Vienna General Hospital
(AKH). Additional recordings of another 60 patients (30 epilepsy, 30 non-epilepsy) were
provided by the Danish Epilepsy Center Dianalund. For the purpose of training and test-
ing the proposed end-to-end neural network not all of those recordings were suitable. The
data sets were split up into clearly annotated data and recordings without a diagnosis or
annotation of spikes. The latter could not be used for now in this supervised training
path, as there is no ground truth available. Thus, for the purpose of training this network
to differentiate epileptic EEG from non-epileptic EEG, the Erlangen, AKH, Dianalund
and Kempenhaeghe data sets and 56 spike and 31 control recordings from the NRZ data
set were used. Additionally the medical documentation text files were scanned for all
recordings and those with clear spiking behaviour and an epilepsy diagnosis were anno-
tated. Those data, as well as TUH recordings annotated as being seizure and spike free
without a history of epilepsy were included in the end-to-end training and testing. This
results in recordings of 387 patients (241 epilepsy and 146 non-epilepsy) used in most of
the experiments described in this thesis. Later, 116 additional epilepsy patients without
any epileptiform EEG activity were included in a subset of the performed experiments.

For most experiments the Dianalund data set was excluded from training and vali-
dation to serve as an independent test set in the end. This choice was made, because
of the size and the balanced class distribution of the Dianalund set. However, subse-
quently additional experiments were performed with a random balanced independent test
set. For this, 60 patients (30 epilepsy, 30 non-epilepsy) were chosen at random from all
387 patients and removed from the data set to serve as a final test set. The remaining
327 patients were split into training and validation set with a ratio of 90/10, thus 294
patients were used for training and 33 for validation. The distribution of the data sets
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used in most experiments can be seen in Figure 11. To compensate for the imbalance in
the training set the experiments were performed with oversampling and undersampling
of the data set respectively to evaluate the more effective technique for the particular use
case at hand. The data were pre-processed by applying a low-pass filter at 49 Hz and
then downsampling to 128 Hz. For further experiments the data were pre-processed using
the tool PureEEG for automatic artifact reduction (Hartmann et al., 2014).

Training294
Validat ion

33

Test

60

Figure 11: Distribution of the data into train, validation and test set.

3.2 Algorithm design

The focus of this master’s thesis was to develop an end-to-end algorithm, aiming to identify
epilepsy biomarkers in raw EEG data and classify the recordings accordingly. Figure 12
provides a schematic graphic description of the general network structure used within the
presented project.

SpatialCommon
3 Layers
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...14x3

128x60
(60 sec)

1

14

16x60

30 14

4x60

120
BackboneNet 2D

13 Layers
400k Parameters

BiomarkerHead
1 Layer, Dropout
121 Parameters

SpikeHead
Efficientnet

1.2M Parameters

Epilepsy Risk

Spikes

Figure 12: Overview over the algorithms used in the entire project and their relationship.

In all applications of this network structure the data is first sent through a few layers of
computations with the purpose of handling the spatial information contained in the data,
which is referred to as SpatialCommon network in the following. Hereby, two convolutional
and two pooling layers were used for extracting features from the spatial dimension of the
EEG data and then reducing the redundant dimension. Next, the spatially reduced data
is fed into the BackboneNet, which is in the focus of this thesis. The results obtained from
this network are subsequently classified through a fully-connected layer (BiomarkerHead)
and the estimated risk for epilepsy is returned. At this point it is possible to train the
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additional ’SpikeHead’ in parallel, which allows the network to specifically learn IED
patterns from accordingly labelled data. However, the spike training is not part of this
thesis. Instead, the presented project focuses on general end-to-end training using the
BiomarkerHead, with the aim to classify the data based on any salient patterns that can
be found consistently.

In the following, all network architectures that were experimented with in this study
regarding the end-to-end training will be presented. The algorithms were built using
Python and the deep learning framework TensorFlow by Google Brain (Abadi et al.,
2015). The training process utilized Adam (Adaptive Moment Estimation) optimizer.
Each convolutional layer is followed by a ReLU (rectified linear unit) activation function
and subsequently batch normalization is applied. Besides batch normalization, further
means for regularization were implemented. To account for the risk of overfitting, most
networks presented in the following include at least one dropout layer in there architecture.
Further, the training data was slightly augmented by adding random noise and by applying
amplitude alteration (random between 0.8 and 1.2) and spatial flipping.

3.2.1 Basic Convolutional Neural Network

At first a rather simple model was trained, before complexity was steadily increased with
the aim to optimize performance. First the network consisted of 3 convolutional layers
(7×1, 3×3, 3×1), with a maximum pooling after each layer and another final maximum
pooling layer, located after reducing the dimensions and before the dense layer. In a next
step the kernel was changed to (5×5, 3×3, 3×1) and a dropout (0.5) was added. The
third step here was to change the last pooling layer from maximum to average pooling. All
those indicated steps positively affected performance and accuracy of the model. The final
version of this network is depicted in Figure 13. Here also the SpatialCommon network
mentioned above is visualized in detail. This structure for handling spatial information
in the data is implemented in the same manner in all networks used in this project.
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Figure 13: Basic convolutional neural network (BasicConvNet).
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To further increase depth and number of feature maps, the next step was to implement
a residual structure.

3.2.2 Residual Network

Inspired by comparable previous research and the current trend in the ML community,
a residual network structure was chosen. This structure promises faster convergence
despite the possibility of greatly increased depth. A recent study by Lu & Triesch (2019)
successfully utilized a residual network structure for EEG signal classification in epilepsy.
They showed promising results for applying a network consisting of two iterations of one
convolutional block and two identity blocks each.

For building a residual network architecture for the project at hand, increased com-
plexity had to be considered due to the data not including seizures and the specific goal
to differentiate short non-ictal recordings. In Figure 14 the final structure of the basic
residual end-to-end biomarker network is shown and in Figure 15 its structure with the
use of attention pooling is depicted.
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Figure 14: Residual network for end-to-end training (BasicResNet).
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Figure 15: Residual network with Attention Pooling (AttentionResNet).
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Likewise as in all neural networks built during this project, the data is first sent
through the simple SpatialCommon network (the detailed structure was shown in Figure
13). Then the spatially reduced data is fed into the BackboneNet, which in this case is
built up by three repetitions of the residual structure. Each repetition consists of one
convolutional and two identity blocks. The structure of the residual blocks was described
in detail in Section 2.3.1.2 and depicted in Figure 10.

For the purpose of creating an intrinsically explainable algorithm, another network
structure was built. In this case, a novel technique called attention pooling is applied
(Trinh et al., 2019), which will be explained in more detail in Section 3.2.3 below. Several
experiments regarding this network architecture were performed. One larger variation of
the AttentionResNet included a second dense layer with 120 features in the end and a
dropout layer between the two dense layers, while another, more reduced version went
from the residual blocks right into the attention pooling layer and did not compute any
further layers except for the final dense layer.

3.2.3 Explainability

In this section all considered or attempted methods to create a more interpretable, ex-
plainable CNN will be reviewed and discussed. This ranges from approaches implemented
right into the network (ProtoPNet, Attention) to post-hoc methods (SHAP, LRP). The
four techniques mentioned were chosen to be investigated in detail and compared. The
aim was to compare the different approaches and see which one offers the most trustworthy
and fast results and is straightforward to implement.

3.2.3.1 ProtoPNet

The first idea regarding a suitable explainable AI technique in this project was an adapted
version of the ProtoPNet (C. Chen et al., 2018). ProtoPNet is designed to be trained using
an explainable network architecture right from the start. During training the model learns
to identify so-called prototypes for each class. For every novel inference to the trained
model, it maps the input to the most similar prototype. The prototypes can be plotted
in the end with the classification results for comparison. In the original application a big
data set was used consisting of pictures of birds classifiable into 200 different bird species.

For several reasons the task at hand is quite different from the original use case.
First of all, this thesis project deals with a binary classification problem (epilepsy vs. no-
epilepsy). Additionally, of those two classes only epileptic EEG shows a distinct structure,
while non-epileptic EEG can be a recording of a patient suffering from any other disease
but epilepsy and can therefore include very diverse patterns. Accordingly, it will be quite
difficult to define a reasonable prototype of non-epileptic EEG. Another challenge here
is the fundamental difference in input data. Even though in CNNs EEG recordings are
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treated very much like images, those data types are not much alike and their dimensions
and features differ greatly.

3.2.3.2 SHAP

When researching in the area of explainable AI tools, LIME is one of the XAI techniques
that pops up first. It was developed with the aim to be capable of creating explanations
for any classifier (Ribeiro et al., 2016a). The algorithm is treated as a black box here.
Thus, the created explanation is not based on the actual workings of the algorithm, but is
deduced post-hoc. Even though this approach is not ideal for the medical use case at hand,
evaluating it and comparing the results seemed reasonable. As LIME was complicated
to install in the specific configuration used in the project (Python 3.8, tensorflow 2.2.0,
etc.), finally the decision fell on SHAP (SHapley Additive exPlanations). The basic idea
is similar, however in SHAP a game theoretic approach is taken. Shapley values are
computed to evaluate the contribution of each involved high-level feature. Hereby the
features have to be defined beforehand. Those Shapley values are then used to reason
and explain the networks decisions (Lundberg & Lee, 2017).

3.2.3.3 Attention pooling

This approach to interpretable deep learning is implemented right into the neural network
itself. Hereby, attention mechanisms are utilized (Vaswani et al., 2017) and applied in
a novel manner in form of attention pooling (AP), similar to how it was proposed by
Trinh et al. (2019). Attention learns to focus on relevant parts of the input to reach the
optimization goal. In this work a transformer layer originally used in natural language
processing (NLP) (Vaswani et al., 2017) is utilized. Several attention layers can be ap-
plied within a network, for example to focus on important temporal as well as spatial
information. Considering the example of applying attention over time, the attention layer
performs a dot product to detect similarities of previously successful detected input pat-
terns to minimize the loss. In attention pooling (AP), these attention transformer layers
are used to perform pooling. The network is taught to compress information of sequence
of input vectors into a single vector. By performing those computations, the attention
pooling layer enables the network to learn how to compress a sequence to a single element
with minimal loss of important information. As opposed to classic convolutions basically
detecting individual patterns in data, this type of learning is able to efficiently recog-
nize important patterns in long sequences of data that resemble sequences seen before
and match them to each other. Recognizing this correspondence is possible even though
context and patterns of sequences are not identical. This mechanism can be very useful
in NLP for detecting specific words succeeding others, no matter how many filler words
would occur in between. In the use case at hand, the idea is that some IEDs might be
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meaningful if they occur in a specific sequence. Attention pooling could learn and point to
such IED patterns. These calculations subsequently return the so-called attention vector
the network has learned. The values of this vector can be plotted on the input data to
visualize what the network is paying attention to.

In this project, one AP layer replaces the usual max or average pooling after the
last convolution. Here the attention layer (tf.keras.layers.Attention) precedes the final,
fully-connected dense layer in the very end of the network (Figure 15. This is convenient,
because at that point the temporal resolution of the data is available to be processed
by the attention pooling layer. Thus, here the attention vector is only able to highlight
a point in time and not specific patterns located on single electrodes. This is due to
the performed reduction of spatial dimensions in the beginning (SpatialCommon). For
additional spatial attention another attention pooling layer would be necessary earlier and
more spatial features need to be computed before this layer. Integrating and optimizing
more than one attention pooling for spatial resolution exceeded the scope of this thesis,
but is planned to be explored in ongoing reseach.

3.2.3.4 Layerwise relevance propagation

Another approach that is increasingly popular and seemed well suitable was the so-called
layerwise relevance propagation (LRP), proposed by Lapuschkin et al. (2016). This ap-
proach analyzes the model outcome by propagating a specific computation backwards
through each layer and then creates a heatmap for visualization of the explanation. Hereby
various propagation rules can be applied, depending on the model and the desired com-
plexity of the rule. The different rules arise from specific choices of the parameters α and
β in equation 2. The simplest LRP propagation rule with α=1 and β=0, also applied as
deep taylor decomposition, is expressed in equation 3.
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∑
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−
k∑

j ajwj
−
k
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The computed relevance scores resemble to what extent each feature contributes to the
networks decision, considering the actual feature maps computed by the given network.
A vector of the same size as the input is created from those relevance scores, which for
explanation purposes can be plotted in the form of a heatmap. Heatmapping highlights
the parts of the input data which were the most and the least relevant for creating a
classification. With higher order LRP rules (β 6= 0) in use, the parts (e.g. pixels or time
points) of the input data that contribute to the prediction (positive relevance) are high-
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lighted in red and parts that contradict the prediction (negative relevance) are highlighted
in blue. Using the simplest rule only the red highlighting is applied.

Unfortunately, previous literature suggests, that LRP heatmapping is associated with
some systematic artifacts if applied to CNNs with residual structure (Rojas et al., 2019).
Therefore, for this thesis project a specific SimpleConv architecture was created with the
aim to be used to simulate LRP heatmapping.

3.3 Experiments

Various different experiments were performed, using different network architectures and
varying hyper-parameters and input compositions. A high-performing subset of those
trials will be described in the subsequent section. The residual network structure was ex-
pected to yield promising results for the end-to-end network, so most further advancement
of this project focused on optimizing the ResNet architecture.

3.3.1 Network architecture

First of all the architecture itself, namely the number of convolutions, size and type of
pooling and the number of residual blocks, was modified.

The residual network was first kept quite shallow, consisting of just three residual
blocks, each consisting of three convolutional layers and a residual (shortcut connection)
added in the end. This structure expanded up until a depth of one simple convolution
followed by four iterations of three blocks each. Including the spatial layers at the start,
this deepest setup added up to 39 convolutional layers.

The simple CNN architecture was continuously adapted and evaluated too. Hereby
experiments were performed with a network depth ranging from five to ten convolutional
layers. Again spatial dimension were convoluted and reduced first, but also here the
number of layers was varied.

3.3.2 Loss function

Next, different possibilities for effective loss functions were compared. Mean squared error
(MSE), Root mean squared error (RMSE), Mean absolute error (MAE), Squared error
(SE) and Tukey Loss (biweight or bisquare function) came into use. Tukey function is
known to be more robust and has notable benefits when trying to eliminate larger errors
without being too sensitive to outliers. The function behaves rapidly around zero and
only marginal changes for errors exceeding a variable threshold (see Fig. 16).
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Figure 16: Comparing Tukey (left) and Squared Error (right) loss functions.

3.3.3 Hyper-parameters

Lastly and most importantly many parameters were adaptable and experimented with in
diverse combinations. The size of compared learning rates ranged between 0.2 to 0.00001
and a large variety of options was experimented with. In all experiments learning rate
warm-up and exponential learning rate decay were applied to adapt the learning rate over
time. Hereby different decay rates and step sizes were experimented with. Also different
training batch sizes were examined, from 8 up to 32 patients per batch. Also the input
features were varied between 8, 12 and 16 features. Per residual block the features were
increased by the factors 1.5 up to 9.0 depending on the depth of the network with steps
of 1.5.

3.3.4 Input data

The same recordings of non-epileptics were used in all experiments. All of them were
diagnosed with not having epilepsy and showed normal EEG activity.

Regarding the epilepsy data sets, several setups were experimented with. At first the
training data only consisted of epilepsy recordings without seizures but including at least
one visible spike. This was motivated by the assumption that it would make it easier
for the network to recognize a difference between the sets. Next, recordings of epileptics
which do not show any spikes nor seizures were included additionally. Finally, experiments
were performed by training the network only on those no-spike recordings.

Also the impact of pre-processing and artifact reduction in the input data was inves-
tigated. For this experiment all non-epileptic recordings and the initial epilepsy set (no
seizure, visible spikes) were pre-processed using the automatic artifact reduction PureEEG
(Hartmann et al., 2014).

Furthermore, experiments on the class distribution of the training and validation data
sets were performed. As the used data consisted of more EEG recordings of diagnosed
epilepsy patients than of non-epileptics, this imbalance had to be made up for when
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training the networks. In oversampling experiments the non-epileptic recordings included
in the training set were duplicated until both classes reached approximately the same
number of training samples and the distribution of positive and negative labels in the
data yielded about 50%. For undersampling, the training recordings of the epilepsy class
were reduced by a factor that again resulted in the two classes reaching approximately
50% of distribution across the training set. Hereby the necessary number of recordings
was randomly chosen and then removed from the data set.

Another experiment looked at the distribution of the data in the training, validation
and test set. As already mentioned above, the validation set was always directly chosen
at random from the training set. The test set, on the other hand, needed to be inde-
pendent and was only applied after training was completed. In a first trial, the test set
only consisted of recordings from one medical center. No data recorded at that specific
hospital was hereby included in the training and validation data. In an alternative setup,
a balanced test set was randomly chosen from all patients. Hence, in this experiment
training, validation and test set all included patients from each medical center available.
This ensured a more diverse data composition.

3.3.5 Explainability

Means of creating a transparent and explainable algorithm were tried out and then meant
to be compared considering several criteria. Given the complications that arose in at-
tempting the implementation of several XAI tools, only the first part of this evaluation
could be conducted in a comparative manner so far.

First, it is important to evaluate how practical or complicated the respective method
is to be integrated into an existing algorithm. Hereby it is first considered how complex
and time-consuming the required adaptations of the existing code are. Concurrently, it is
beneficial to take into account if those changes and the implementation of each method
tended to result in improved or decreased performance or showed other unanticipated
side effects occur. This evaluation is also dependent on the type of adaptations necessary.
Architectural changes of the network itself are for example considered as more complex
and costly than adaptations relating to superficial code structure or arrangements that
do not affect the network architecture.

The final objective of the XAI evaluation obviously concerns how well each approach is
able to explain the algorithms decisions. Hereby the goals is to compare visual presentabil-
ity and intuitive comprehensibility. For this evaluation the end user of such systems (e.g.
doctors) needs to be kept in mind, while simultaneously considering which explanations
are relevant for the designers and developers of the algorithm.

A more detailed experimental theme of XAI unfortunately exceeds the scope of this
thesis. For now, the four techniques of ProtoPNet, SHAP, LRP and attention pooling
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were inspected in some detail. In the experiments documented in Chapter 4, the latter
was primarily applied and visualized in Section 4.1, while the attempt to implement the
other three is discussed in the same section.

3.4 Statistical analysis

All of the experiments described above were statistically analysed and compared. This
evaluation was mainly based on the statistical metrics of accuracy, F1-score, specificity and
sensitivity, which will be defined in the following. For an overview over the foundational
notions of true positive, false positive, true negative and false negative, a summary is
found in the confusion matrix in Table 3. Hereby the notion ground truth indicates
the label the algorithm learns from in a supervised learning setting, which for the issue
at hand constitutes the official clinical diagnosis determined by a medical professional.
Classification here means the prediction provided by the algorithm. Please note, that the
official diagnosis can be flawed too and doesn’t necessarily reflect the real ground truth
(actually being sick with epilepsy or not). Hence, the matrix in 3 can also be interpreted
considering the traditional diagnostic procedure and potential misdiagnoses.

Table 3: Confusion matrix explaining truth conditions using the example of this thesis
topic.

True positive (TP)

• Ground truth: epilepsy

• Prediction: epilepsy

False positive (FP) - Type I error

• Ground truth: healthy / no epilepsy

• Prediction: epilepsy

False negative (FN) - Type II error

• Ground truth: epilepsy

• Prediction: healthy / no epilepsy

True negative (TN)

• Ground truth: healthy / no epilepsy

• Prediction: healthy / no epilepsy

Understanding and knowing the truth conditions is essential for calculating the fol-
lowing metrics for model evaluation.

Accuracy measures the number of predictions correctly classified by a model. This
metric is quite basic and widely used for evaluating machine learning models. Unfortu-
nately though, it misses out on valuable information in case of class-imbalanced data sets.
For instance, a model might perform very poorly and simply classify every EEG recording
as epileptic. If this model is evaluated using a validation set consisting of 20 epileptic but
only 2 non-epileptic recordings, it will achieve an accuracy value of over 90%. Therefore,
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usually other metrics are evaluated additionally to avoid misinterpretations.

Accuracy =
Number of correct predictions
Total number of predictions

=
TP + TN

TP + FP + TN + FN
(4)

Precision is a metric for calculating what proportion of positive predictions were ac-
tually correct, namely how many true positives are predicted in relation to false positives.

Precision =
True positives

Total number of positive predictions
=

TP
TP + FP

(5)

Sensitivity, or also referred to as Recall, measures how many actual positives were
classified correctly.

Sensitivity = Recall =
True positives

Total number of actual positives
=

TP
TP + FN

(6)

Specificity, as opposed to Sensitivity, calculates how many actual negatives were clas-
sified correctly.

Specificity =
True negatives

Total number actual negatives
=

TN
TN + FP

(7)

Additionally, F1 score was calculated as an alternative measure of Accuracy. It con-
siders both Precision and Sensitivity by calculating the harmonic mean of those two
measures. This fact enables the F1 score to capture accuracy more meaningfully for
imbalanced data sets with uneven class distribution.

F1score = 2 · Precision · Sensitivity
Precision+ Sensitivity

=
TP

TP + 1
2
(FP + FN)

(8)

The above described metrics were calculated in the project at hand to measure the
performance of the validation set during the training process, as well as for evaluating the
independent test set at the end of the study.
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4 Results

Table 4 shows a selection of conclusive experiments and their results. The listed results
each resemble a single run of a specific experimental setup. Rather than repeating the
exact same setup several times, the experiments in this thesis focused one evaluating as
many different configurations as possible. From several hundred trials, seven informative
example runs are displayed in Figure 4 for comparison. The most significant factors
influencing the model performance are described in the following.

# Architecture Data sec/w Loss LR ValAcc F1 Sens Spec TstAcc
1 BasicResNet Raw,

Dian.
120 MSE 0.002 0.949 0.962 1.000 0.857 0.600

2 BasicResNet Pure,
Dian.

60 Tukey 0.002 0.917 0.929 0.867 1.000 0.627

3 BasicResNet Pure,
rand.

60 Tukey 0.02 0.923 0.950 1.000 0.714 0.820

4 AttentionResNet Pure,
Dian.

60 Tukey 0.0002 0.860 0.900 0.931 0.714 0.627

5 AttentionResNet Pure,
Dian.

120 Tukey 0.0001 0.907 0.933 0.966 0.786 0.627

6 AttentionResNet Pure,
rand.

180 Tukey 0.0001 0.881 0.912 0.929 0.786 0.610

7 SimpleConvNet Raw,
Dian.

60 Tukey 0.02 0.878 0.932 0.944 0.400 0.760

Table 4: Algorithm performance in various experimental setups. Column titles: Data
= level of pre-processing of the input data with Raw being not pre-processed and Pure
with automatic artifact reduction by PureEEG, Dian. denotes the use of the independent
Dianalund test set, while rand. means training and test set were chosen at random
from all data sources; sec/w= seconds per window of input EEG slices; LR = Learning
rate; ValAcc = Best accuracy achieved on the validation set during training; Sens =
Sensitivity, Spec = Specificity; TstAcc = Accuracy of evaluating the respective model
with independent test data.

For explanation purposes, the model architectures experimented with are split into a
simplified representation of three main types of networks. In reality small adaptations
were made throughout the experimental process and networks in the same category are
likely to be not entirely identical. Generally speaking the network categories are resembled
by the graphics in Figure 13, 14 and 15 respectively. SimpleConvNet means a network
without residual connections, but an architecture solely consisting of convolutional, pool-
ing and dense layers (see Figure 13). Further types are referred to as BasicResNet and
AttentionResNet, like it was differentiated in Section 3.2.2 and depicted in Figure 15 and
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14.
The presented models were trained for up to 30 epochs. Each epoch took approxi-

mately 2-3 hours to train, depending on the number of training samples and the batch
size. The number of steps per epoch corresponds to the number of samples divided by the
batch size used in the respective experiment. During training, every 2000 steps the current
model was evaluated using the validation set. According to these evaluation results early
stopping was applied and the model that performed best on the validation set was saved.
The validation accuracy values provided here correspond to the validation results of the
saved model and the testing accuracy results from evaluating this best model afterwards
using the test set. Figure 17 shows an example of how validation accuracy progresses over
time during training. Figure 17 exhibits 18 epochs being evaluated over 39 hours.
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Figure 17: Example of accuracy development of the validation set over time during one
training run (network described in #3 of Table 4).

Similar results were achievable for the BasicResNet and the rather shallow SimpleCon-
vNet consisting of four convolutional layers after the SpatialCommon network. A notable
insight when comparing the different architectures was, that suitable hyper-parameters
were very individual and sensitive and needed careful adaptation when changing the ar-
chitecture.

The learning rate in specific had to be adjusted carefully in order to maintain a high
performance. With a learning rate between 0.02 and 0.0002 the network achieved the
best results, but performance with identical learning rates varied greatly depending on
the network architecture. In networks where an Attention Pooling layer was implemented,
a significantly lower learning rate was crucial to make the model to learn at all. For an
effective AttentionResNet a learning rate of at least 0.0002 or lower was necessary.

Tukey and MSE loss functions showed comparable results and the network performed
significantly worse using the other functions. Thus, Tukey biweight function was imple-
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mented in the final version of the algorithm, as it provided a more stable performance.
The effect of using slightly pre-processed data is not well visible in the plain results

shown in Table 4. However, the networks turned to be more stable and consistent using
’pure’ data and the highest performing networks were reached by training them with that
type of data. Like already mentioned, the automatic tool PureEEG was conducted to
produce those artifact reduced, clear EEG recordings. Regarding data choice it should be
further noted that models generalized significantly better when the test set was randomly
chosen from all patients (Table 4, #3). Opposed to this, using a test set consisting of
recordings by an entirely independent data source (Danish Epilepsy Center) resulted in
the model not being able to generalize to this data well at all.

Table 4 summarizes the networks with the presumably most important contribution
factors, even though further variables played into the performance of the networks as
well. Those factors were not included in the table to create a not too overloaded and well
comprehensible overview. Anyhow, a quick overview will be given below.

Batch sizes were found to be effective at a minimum of 16 and a maximum of 32
patients per batch. Bigger batches tended to be less accurate and smaller batches were
ineffective and used significantly larger amounts of computing power and time.

An increased number of input features improved the accuracy of the model, but more
than 16 features were inefficient and immensely slowed down the training process and
overloaded the GPU.

The optimal size to increase the feature depth in the SpatialCommon network and
then per residual block was found at [1, 1.5, 3, 4.5, 6, 7.5, 9.0]. Deeper variations of [1,
1.5, 3, 4.5, 6, 9, 12.0] and [1, 1.5, 3, 6.0, 9.0, 12.0, 16.0] were experimented with as well,
but did not show any positive effects.

4.1 Explainability

In the end, the implementation of several explainability tools had to be disregarded, due
to compatibility issues with the utilized networks or the data type. Thus, this chapter
first introduces the trials performed with the different XAI tools and their limitations.
Finally it goes into detail and shows examples of the rather successful attention pooling
method.

The application of the ProtoPNet turned out to be quite sophisticated. Given the
described fundamental differences in problem formulation and data structure, applying
this approach as proposed in the original paper was finally identified as unpromising.
Exploring this issue further exceeded the scope of this thesis.

Further, also the implementation of the SHAP tool entailed an extensive period of trial
and error and finally dashed against properly loading the pre-trained model. Investigation
of this issue is beyond the timeframe and resources of this project, but will be subject to
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future research.
The process of implementing LRP into the neural networks presented in this thesis

already went further than the previously described methods. Unfortunately, also LRP
did not yield any noteworthy results yet. The technique was simulated and inspected
using the classical MNIST database, where LRP seemed like a great tool for explaining
deep learning decisions in the image recognition field. The application to the clearly more
complex EEG data used in this thesis did not succeed so far. For this to work, the existing
networks have to be adapted entirely. Subsequently the hyperparameters again need to
be optimized until the performance is considerably high for XAI tools to be applicable.
This unfortunately exceeds the scope of this thesis. Further, it is not guaranteed to be
successful with this data and research question, as LRP has been reported impractical
with residual structure. Also, there is the chance that there are no other markers present
in the non-ictal data besides spikes and there might be no novel insights from applying
LRP. Therefore, ongoing research will investigate the application of LRP in automatic
EEG analysis with different data and research questions first.

The presented AttentionResNet models finally made the exploration of the algorithms
decisions and its reasoning possible. The plotting of the attention vector together with
the input EEG recording slice, yields the results shown in Figures 18, 19 and 20. Hereby
the attention vector shows in the form of a colored row below the corresponding EEG
segment. This plot is set up in a way that areas of higher importance are highlighted
in a brighter color. For example, in Figure 18 the green highlighting points to a clearly
visible pattern in the EEG slice. Interestingly, it considers the rest of the recording piece
as irrelevant even though two more distinct patterns can be visibly detected easily. In
Figure 19 on the other hand, the light-green part marks a relatively long EEG period and
hence does not point to detailed brain activity patterns. Figure 20 shows that in that
particular EEG slice nothing was found to specifically play into the model’s decision. This
can mean that nothing in this sequence was informative or that everything was equally
significant for the decision taken. As outlined in Section 3.2.3.3, this attention vector only
highlights specific time points and does not specify the most significant electrode.
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Figure 18: Attention vector pointing to abnormality in input EEG recording.

Figure 19: Attention vector not customized for size of input EEG slice.

Figure 20: Attention vector on a regular, normal EEG slice.

42



5 Discussion and future work

The presented results of this AI modeling based thesis provide various conclusions from
several interdisciplinary perspectives. It allows to reevaluate involved concepts and offers
hints on future topics to be investigated. As the conducted experiments each take a lot
of computational power and time to train, additional means of analysis unfortunately
exceeded the scope and resources of this thesis project. The following paragraphs will
also include several suggestions for future research in algorithmic epilepsy diagnosis.

Methodologically it can be concluded, that utilizing CNNs for evaluating raw EEG
data is feasible, but the research questions and aims have to be thoughtfully chosen and
clear. Otherwise, promising and reliable results cannot be produced. Within the course
of the study presented here, it became evident that the initial aim of creating a direct
end-to-end classifier for routine EEG data to assist epilepsy diagnosis potentially was too
ambitious to easily create clinically valid results. Even though the achieved accuracy is
informative and meaningful in scientific terms, it is not precise enough to be used in a
clinical setting. When creating a medical tool for diagnostic use cases it is important to
consider very high specificity as well as sensitivity scores as essential. High numbers of false
positives can prevent the end user (medical professional/physician in charge) from gaining
trust in the system and traditional diagnostic procedures would remain the preferred
instrument. On the other hand, many false negatives lead to epileptics not being detected
and sent home, which again entirely misses the point of the tool. Therefore, sensitivity
and specificity play an essential role in analyzing the results presented in Chapter 4.

5.1 Impact of data choice

Besides remarks concerning the methodology and research questions of the presented
study, also the choice of data sets for training and testing launches ideas for further
discussion. First and foremost, the above presented results show the importance of testing
neural network algorithms with an independent validation data set. Only because the
model seems to exhibit a great performance, it is not implied that the right features are
learned and the model is able to generalize well. The rather large gap between validation
and testing accuracy that is present in many of the presented models (e.g. #1 in table
4) can be explained in various ways. One possibility could be that the algorithm was
overfitting and hence could not generalize to an independent data set. On the other hand,
it can also be suspected that the specific test data set could potentially be flawed. In the
present case this option seems probable, given that the test data was recorded at a different
hospital (Dianalund) than all recordings included in the training and validation sets. This
theory is supported by further experiments, which were performed using randomly chosen
recordings from all sources as a test set. Those experiments (e.g. #3 and #7 in Table 4)
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achieved notably higher test performance compared to the ones tested on the Dianalund
set. Thus, it can be concluded that a mixed data set, consisting of recordings provided
by as many sources as possible, shows significantly better results than using an entirely
independent test set by only one source. The network potentially is unable to classify
the test data due to minor variances resulting from the individual recording procedure
or device. Therefore, choosing the right data for training and testing that are equivalent
but still entirely independent is essential here. To sum up, it can be stated that the
presented results imply that ensuring variant and diverse data sets is crucial for successful,
generalizable machine learning models.

5.2 Impact of network architectures and hyper-parameters

Regarding the application of CNNs and residual networks with EEG data, know-how was
created that is applicable in further research. Generally, a more complex residual network
with increased features is able to process more information. However, sometimes simpler,
shallower networks seemingly create a better performance. However, it is considerably
difficult to understand and explain what such networks are paying attention to and base
their decisions on. Simply training a model without scrutinizing its results further can
result in a network that is seemingly learning well, but not able to generalize well to a new
data set. This effect is usually either due to overfitting on the training data or the network
is not learning clinically valid information but some other high-level details (e.g. artifacts)
found in the data that do not resemble brain activity. During the trials performed in
this project, improving generalizable performance was accomplished through challenging
default setups and experimenting with different structures and input data distributions.
Hence, it can be learned from the presented results, that choosing an optimal model
architecture should always go along with appropriate validation and testing. Thereby it
is essential to utilize well chosen and diverse data sets, that represent all possible use cases
of the algorithm as detailed as possible.

5.3 Implications for neuroscience

The initial aim of this thesis was to find ways in which a deep CNN will be able to detect
biomarkers, which are not visually identifiable by human inspectors. This hypothesis was
not confirmed by the performed experiments. Explainability mechanisms were hardly
viable for this purpose and if so, they mainly pointed to spike biomarkers or seemingly
random EEG slices being the reason for the algorithm’s decisions. In that particular case
a spike detection algorithm could be used instead and would presumably be more precise.

The presented results show, that the applied machine learning methods are not able
to detect any novel hidden biomarkers in routine EEG recordings of epilepsy patients.
This suggests that routine EEG without IEDs and seizures shows relatively normal brain
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activity in epilepsy patients, that is remarkably similar to healthy brain activity. Hence,
epilepsy might only manifest itself in ictal and interictal events, while the brain and neural
activity otherwise resemble healthy behaviour in interictal periods. However, this thesis
can only give evidence on the brain activity in short EEG slices of up to three minutes.
Thus, the methods presented here fail to detect any biomarkers that might spread over
larger time periods and do not show when only up to three minutes are inspected at once.

A more overarching biomarker detector might be achievable through approaching the
question with a different type of analysis. Hereby one option could be to create an algo-
rithm which is able to understand the data over a longer time frame, ideally creating a
receptive field comprising the entire recording time. This could enable the network to de-
tect activity patterns like changing oscillatory behaviour, recurrent patterns or coherence
over time. Another attempt could be to give connectivity priority. Hereby, EEG record-
ings would be classified by analyzing if brain activity behaves synchronously and which
brain areas are likely to be connected in different intensities depending on the diagnosis.
Techniques like dynamic causal modeling (DCM) could be applied or the network could
be trained on statistical connectivity measures utilizing e.g. phase locking value analysis.

If successful, this biomarker could then be combined with other networks focusing on
specific features (like spike and HFO detection). Subsequently, a combined tool consid-
ering predefined promising features could potentially be developed. In a final stage this
synergy could even be further combined with additional data that allows to make assump-
tions about epilepsy likelihood in each individual patient. Thus, information about seizure
frequency, previous diseases, lifestyle and medication can be taken into account to create
a holistic diagnosis assistant, in line with the precision medicine approach mentioned in
the introduction.

5.4 Evaluation of XAI techniques

The presented results suggest that it is debatable if the current state-of-the-art of ex-
plainable AI tools provides the advertised solutions. While those tools are often claimed
to be universal, many of them were designed only for very specific use cases. Implemen-
tation requires a lot of changes within the network architecture and a more challenging
optimization process. In some cases the performance is impaired by excessive adapta-
tions, which subsequently might motivate developers to disregard explainability to avoid
the alternative of less accurate and potentially non-marketable models. Hence, from this
perspective the target of explaining complex but efficient models is missed entirely.

Fortunately though, after lengthy trial and error periods attention pooling did provide
relatively satisfying results. This approach can be reported as a quite convenient tool
with the clear advantage of being integrated right into the network. After following some
basic rules on choosing the structure and hyper-parameters, a network with included
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attention is able to learn well and additionally provide some explanations. However, this
type of explainability only yields well interpretable results when the size of the attention
layer input equals the length (time in seconds) of the initial input it should explain. In
the instant case this initial input corresponds to 60, 120 or 180 seconds of input EEG,
which is convoluted through several residual blocks and should arrive at the attention
pooling layer again with a size of 60, 120 or 180 respectively. This restriction requires
intensive adjusting of the other parts of the network until the model yields acceptable
results. Sometimes it is hardly possible to create results that are comparable to the
performance of similar structures that do not satisfy this restriction. The consequences of
this condition can be clearly seen in the visualizations in Chapter 4.1. While for example
the model evidenced by #5 in table 4 showed great overall performance, it unfortunately
does not offer a meaningful attention vector for visualization. This effect is due to the fact,
that after several convolutional layers the size of the input data did not match with the
original input length anymore and a considerably smaller attention vector is computed.
This makes detailed interpretation like in Figure 18 impossible, as can be seen in Figure
19. On the other hand, well implemented attention pooling can create informative plots
(Figure 18). Here the attention clearly points to salient patterns in the data.

Given the presented results and limitations, it also could be suspected that subtle
epileptic patterns in EEG data might be too complex to be captured by attention pooling.
Contrary to word sequences in NLP, IEDs are not identical, but only similar. Possibly,
this similarity is not enough for the attention pooling to recognize the correspondence.

5.5 Implications for cognitive science

From the cognitive science perspective several conclusions can be drawn from this study
that suggest improved strategies for future research in explainable AI. The topic of ar-
tificial intelligence and machine learning is intensely debated among cognitive scientists
and philosophers. Hereby, ethical issue like AI alignment are made a priority and po-
tential long-term dangers of AI are discussed. Also the topic of explainability is mainly
tackled from this future-centered perspective. Despite AI alignment and artificial general
intelligence being deeply interesting issues, they unfortunately seem to be almost entirely
unrelated to current applications of state-of-the-art AI. As already mentioned in the in-
troductory part of this thesis, cognitive science debates along the lines of explainability
do not offer any applicable insights. However, I believe that its uniquely interdisciplinary
orientation and knowledge base could provide highly relevant contributions. Neuroscience
and psychology have already inspired many advances in AI like convolutional neural net-
works, residual networks or reinforcement learning. Likewise, insights into mechanisms
like attention or understanding in the human brain could potentially be used to create
biologically inspired explainable AI.
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6 Conclusion

This project aimed to create a machine learning algorithm to assist epilepsy diagnosis
from raw routine EEG data. This was ideally meant to be realized in an explainable
and transparent manner. It can be concluded that there are many minor challenges to
overcome until this main, wide-ranging goal can be reached. Open questions encompass
more detailed data labelling, feature analysis and effective XAI tools for working with EEG
data. Solving those issues requires consultation with medical experts for data labelling
and the acquisition of greater amounts of data. Also more time and resources are necessary
for exploring other potentially relevant features (e.g. connectivity, HFOs) and adapting
XAI techniques to handle EEG data well. Tackling those solutions exceeded the scope of
this thesis but offers promising opportunities for future research.

In general, this study shows that machine learning can be successfully applied to
classification of epileptic routine EEG data with a validation accuracy during training of
approximately 90% and a testing accuracy of 82%.

It can be further concluded, that the next aim in this specific research topic should be
to create more stable results and increase the overall performance. Both could be done
by introducing more data and by adapting or changing network architectures. Viewing
larger EEG slices at once or focusing on different characteristics like connectivity could
provide meaningful insights. However, also the possibility, that routine EEG recordings
of epileptics might simply not provide many salient features besides the known IEDs
(spikes, HFOs, etc.), should be considered likely. In this case, focusing further on creating
more reliable algorithms for automatically detecting specific IEDs seems to offer the most
reasonable approach.

Despite this being a request entailing much effort, more detailed labels could provide
great opportunities for further investigation. Instead of labeling each recording as one
option of a binary decision, abnormal activity could be annotated right when it occurs
within the recordings. With such labels, the CNN could specifically learn what an abnor-
mal or epileptic pattern looks like. In the case of overall patient labels on the other hand,
it could be beneficial to train a regression of epilepsy risk or ictogenesis. The latter could
be approached in future research by cutting long-term VEM recordings before seizures
versus where the EEG just continues normally and labeling them accordingly. Then a
seizure prediction algorithm could be attempted.

On a more general account, it can be reasoned that the discussed area of research
could profit more from its high interdisciplinarity. A close collaboration on equal terms
combining the fields of computer science, neuroscience, psychology and philosophy could
provide great insights and know-how.
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Appendices

A Code snippets

Listing 1: Python code showing the residual blocks the residual network is built of.
Block type (Conv. or Identity) and filter/kernel/stride sizes are defined when calling this
function.

import t en so r f l ow as t f

def Resnetv2_block (x , f i l t e r s , g r ow f i l t e r s , k e rne l_s i z e =3, s t r i d e =1,
conv_shortcut=False , name=None ) :
k = t f . keras . l a y e r s

i f conv_shortcut i s True :
shor t cut = ConvSepBatch (x , g r ow f i l t e r s , k e rne l_s i z e =1, s t r i d e=

s t r i d e , name=name+"_sc" )
else :

sho r t cut = x

x = k .Conv2D( f i l t e r s=f i l t e r s , k e rne l_s i z e =(1 ,1) , s t r i d e s =(1 ,1) , padding
=’ same ’ , a c t i v a t i o n=None , name=name + "_c1" ) (x )

x = k . BatchNormal izat ion (name=name + "_bn" ) (x )
x = k . Act ivat ion ( ’ r e l u ’ , name=name + "_act1" ) (x )

x = k .Conv2D( f i l t e r s=f i l t e r s , k e rne l_s i z e=(kerne l_s i ze , 1 ) , s t r i d e s =(
s t r i d e , 1 ) , padding=’ same ’ , a c t i v a t i o n=None , name=name + "_c2" ) (x )

x = k . BatchNormal izat ion (name=name + "_bn" ) (x )
x = k . Act ivat ion ( ’ r e l u ’ , name=name + "_act2" ) (x )

x = k .Conv2D( f i l t e r s=f i l t e r s , k e rne l_s i z e=(kerne l_s i ze , 1 ) , s t r i d e s =(
s t r i d e , 1 ) , padding=’ same ’ , a c t i v a t i o n=None , name=name + "_c3" ) (x )

x = k . BatchNormal izat ion (name=name + "_bn" ) (x )
x = k . Act ivat ion ( ’ r e l u ’ , name=name + "_out" ) (x + shor t cut )

return x

Listing 2: Python code the SpatialCommon network used to create spatial features and
reduce the input data to 2D representation.

def SpatialCommon ( s e l f , input ) :

k = t f . keras . l a y e r s
input3d = t f . expand_dims ( input , −1)
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f i r s t _ f i l t e r = s e l f . c on f i g [ ’ cnn_f i l t e r s_b io ’ ]

x = k .Conv3D( f i l t e r s=int ( f i r s t _ f i l t e r ∗ s e l f . c on f i g [ ’ common_phi ’ ] [ 0 ] )
, k e rne l_s i z e =(7 , 3 , 1) , s t r i d e s =(1 , 1 , 1) , padding=’ same ’ ,
a c t i v a t i o n=None , name=’com_c1 ’ ) ( input3d )

ch f ea t = s e l f . channelFeatureDyn ( input3d , t f . shape (x ) )
x = k . concatenate ( [ x , ch f ea t ] , ax i s =4, name=’CONCAT_CHFEAT’ )
x = k .MaxPool3D( poo l_s ize =(4 , 1 , 1) , s t r i d e s =(4 , 1 , 1) , padding=’

va l i d ’ , name=’com_m1 ’ ) ( x )

x = k .Conv3D( f i l t e r s=int ( f i r s t _ f i l t e r ∗ s e l f . c on f i g [ ’ common_phi ’ ] [ 1 ] )
, k e rne l_s i z e =(3 , 3 , 1) , s t r i d e s =(1 , 1 , 1) , padding=’ same ’ ,
a c t i v a t i o n=t f . nn . re lu , name=’com_c2 ’ ) ( x )

x = k .MaxPool3D( poo l_s ize =(2 , 3 , 1) , s t r i d e s =(2 , 3 , 1) , padding=’
same ’ , name=’com_m2 ’ ) ( x )

x = t f . squeeze (x , 2) # s l i c e s e va l ua t ed by convnet r e s u l t i n g in
s l i c e f ea tu r e s , remove dimension

return x

Listing 3: Configuration of network architecture setup and hyper-paramenters of the final
BasicResNet model

c on f i g [ ’ backb_level ’ ] = 3
con f i g [ ’ cnn_f i l t e r s_spat ’ ] = 16
con f i g [ ’ cnn_f i l ters_chan ’ ] = 2
con f i g [ ’ f c_layer_s i ze ’ ] = 512
con f i g [ ’ secondsPerWindow ’ ] = 60∗1
con f i g [ ’ f s_for_learn ing ’ ] = 128
con f i g [ ’ cnn_f i l t e r s_b io ’ ] = 16
con f i g [ ’ a l g t e s t ’ ] = 3
con f i g [ ’ common_phi ’ ] = [ 1 . 0 , 1 . 5 ]
c on f i g [ ’ r e snet_blocks ’ ] = [ 3 , 3 , 3 , 3 , 1 ]
c on f i g [ ’ resnet_depthinc ’ ] = [ 3 . 0 , 4 . 5 , 6 . 0 , 7 . 5 , 9 . 0 ]
c on f i g [ ’ num_layers ’ ] = 1
con f i g [ ’num_heads ’ ] = 2
con f i g [ ’ d_model ’ ] = 64
con f i g [ ’ l ea rn ing_rate ’ ] = 0 .02
c on f i g [ ’ lr_decay_rate ’ ] = 0 .98
c on f i g [ ’ lr_decay_steps ’ ] = 700
con f i g [ ’ warmup_steps ’ ] = 200
con f i g [ ’ batch_size ’ ] = 16
con f i g [ ’ NchSl ice ’ ] = 3
con f i g [ ’ epochs ’ ] = 30

Listing 4: Code for implementing Tukey biweight loss function.

def TukeysLoss ( s e l f , mindist ) :
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c = 1

s l ope = 0.01
r = t f . abs ( mindist )
p f o r l a r g e = t f . ones_l ike ( r ) ∗ ( c ∗∗ 2) / 6 + r ∗ s l ope + s l ope
p = p f o r l a r g e ∗ (1 − (1 − ( r / c ) ∗∗ 2) ∗∗ 3) + r ∗ s l ope

compar is ion = t f . l e s s_equa l ( r , c )
l o s s = t f . where ( comparis ion , p , p f o r l a r g e )

return l o s s

Listing 5: Example output of residual network model evaluation on independent test set.

runtime : 1208 seconds EEG in 6 .59 sec : 7 . 9 min for 24h EEG
Epi lepsy r i s k #################### :1 .000 f o r Ground t ru t h : 1
runtime : 1216 seconds EEG in 6 .02 sec : 7 . 1 min for 24h EEG
Epi lepsy r i s k #################### :1 .000 f o r Ground t ru t h : 1
runtime : 1225 seconds EEG in 7 .23 sec : 8 . 5 min for 24h EEG
Epi lepsy r i s k ###### :0 .339 f o r Ground t r u t h : 0
runtime : 739 seconds EEG in 6 .82 sec : 13 .3 min for 24h EEG
Epi lepsy r i s k # :0 .075 f o r Ground t r u t h : 0
runtime : 1205 seconds EEG in 6 .41 sec : 7 . 7 min for 24h EEG
Epi lepsy r i s k #################### :1 .000 f o r Ground t ru t h : 1
runtime : 1217 seconds EEG in 5 .02 sec : 5 . 9 min for 24h EEG
Epi lepsy r i s k #################### :1 .000 f o r Ground t ru t h : 0
runtime : 1217 seconds EEG in 5 .55 sec : 6 . 6 min for 24h EEG
Epi lepsy r i s k ################### :0 .976 f o r Ground t ru t h : 1
runtime : 1212 seconds EEG in 5 .80 sec : 6 . 9 min for 24h EEG
Epi lepsy r i s k ############### :0 .779 f o r Ground t ru t h : 1
runtime : 1219 seconds EEG in 5 .02 sec : 5 . 9 min for 24h EEG
Epi lepsy r i s k : 0 . 0 0 0 for Ground truth : 0
runtime : 1232 seconds EEG in 6 .12 sec : 7 . 2 min for 24h EEG
Epi lepsy r i s k #################### :1 .000 f o r Ground t ru t h : 1
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