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Abstract

The goal of the presented thesis is to build a psycholinguistically plausible

computational model of phonological development, inspired by the existing

models of Takac, Knott, and Stokes, 2017 and Dell, Juliano, and Govindjee,

1993. Takac’s current model of phonological development is considering local-

istic representations of phonemes and word-meanings (one-hot vectors, more

technically). Moreover, according to their study, even the localistic neural ac-

tivations provide an explanation for several patterns shown by infants during

phonological development.

Merely all the neurobiological or even neuro-imaging studies claim, that

neural activations are distributed within the brain; Moreover, neither an area,

where an activation pattern is exceeding during a given treatment, can be con-

sidered as the brain area responsible for phenomenon invoking the activation.

Suggesting, that every brain area respond to different treatments to different

extent. (Tremblay and Dick, 2016). Our thesis aims to reproduce this phe-

nomenon within the hidden layer of our Artificial Neural Network.

Thus, in the experimental part of our work, we developed a Simple Recur-

rent Neural Network (SRN) model, trained under circumstances of the source

study by Takac, Knott, and Stokes, 2017. However, in our study, phoneme and

even the meaning representations are modified in a neurobiologically more

plausible way. The model is tested for performance during the training, ana-

logically to children learning their first 300 words, approximately in their first

two years. Nevertheless, even the methodology of analyzing infant’s data

will be maintained, accounting for phonological Neighborhood Density and

related phenomena.

Our results suggest, that the phonological Neighborhood Density effect is

not necessarily related to localness of representations. In line with our novel

findings, we provide an alternative explanation of the present phenomenon.
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Furthermore, speech error analysis (in line with Dell, Juliano, and Govindjee,

1993) is presented on the speech errors produced by our model, in order to sup-

port our hypotheses based on the Parallel Distributed Processing Paradigm.
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Abstrakt

Ciel’om tejto práce bolo vyvinút’ psycholingvisticky plauzibilný model fono-

logického vývinu, inšpirovaný prácami Takac, Knott a Stokes, 2017 a Dell, Ju-

liano a Govindjee, 1993. Takáč používal vo svojej práci koncept lokalistických

reprezentácii (presnejšie one-hot vektory) tak pre kódovanie foném ako pre kó-

dovanie významu slov. Navyše, ich výsledky a ich analýza nasvedčujú tomu,

že práve za pomoci takýchto lokalistických aktivácii neurónov možno psycho-

lingvistické fenomény fonologického vývoja detí vysvetlit’.

Na druhej strane, súčasné neurobiologické a neurozobrazovacie štúdie tvr-

dia, že vzory neurálnych aktivácii v mozgu sa javia byt’ paralelnými a distri-

buovanými. Zároveň, aj ked’ v danej mozgovej časti vyvoláme lokálne zväč-

šenú aktivitu (aj najväčšiu), nemôžeme túto mozgovú čast’ považovat’ za zod-

povednú pre fenomén, ktorým som danú aktiváciu vyvolal. Totiž, jednotlivé

časti mozgu majú tendenciu reagovat’ inými aktivačnými črtami na rozdielne

vzruchy (Tremblay a Dick, 2016). Náš model sa snaží zachytit’ práve tento jav

vo svojej skrytej neurálnaj vrstve.

Totiž, v praktickej časti našej práce sme vyvinuli model, jednoduchú re-

kurentnú siet’, ktorá sa trénovala pri podmienkach východiskovej štúdie Ta-

kac, Knott a Stokes, 2017. Avšak, s rozhodujúcim rozdielom: s distribuovanými

vektorovými reprezentáciami sme zakódovali fonémy - v súlade s prácou Dell,

Juliano a Govindjee, 1993 - aj významy jednotlivých slov (za pomoci GloVe

vektorov Pennington, Socher a Manning, 2014). Pri experimente sa zazname-

návali všetky aspekty učenia, všetky produkované sekvencie foném, pre po-

rovnanie s det’mi počas podobného fonologického vývinu, pri učení svojich

prvých zhruba 300 slov, v prvých dvoch rokoch svojho života. Zároveň, aj me-

todológia analýzy a vyhodnocovania dát sú prebraté, sústred’ujúc sa na efekt

fonologického susedstva (Neighborhood Density) a príbuzných efektov.
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Naše výsledky ukazujú, na rozdiel od Takac, Knott a Stokes, 2017, že loka-

listické reprezentácie foném a významov nie sú nutnou podmienkou pre pro-

dukovanie efektu fonologického susedstva. Zároveň, ponúkame iné vysvetle-

nie tohto efektu, vzhl’adom na naše nové zistenia. Navyše, analýzou rečových

chýb si posvietime na vnútornú dynamiku neurónovej siete, pre podporu našej

hypotézy opierajúc sa o konekcionistickú argumentáciu.
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Introduction

Present work attempts to enclose the biological, philosophical and compu-

tational views on phonetic development and phonetic mechanisms within a

model of the phonological system and its development. Based on findings of

(Sirigu et al., 1998) we consider higher-level speech structures like syntax to

be executed in frontal lobes so that we are building a model of the lower-level

speech-mechanisms, interfacing the above mentioned higher-level systems as

a black-box. The functional architecture of speech mechanism (first proposed

by Lichtheim, 1885, shown in Figure 1; Which is trying to catch the core of

phonetic-processing; The interaction between the output of Wernicke’s and

Geschwind’s territory, Broca’s area, and the sensory-motor cortex.

Later, brain- and neuro-imaging techniques helped us to recognize, neither

the speech nor any other brain function is as simple, feedforward, as models of

the classical theory. With the rise of neurobiological pieces of evidence depict-

ing other brain areas, and with improvements of Artificial Neural Networks, a

new paradigm formed, emphasizing the need and the causalities of the dense

interconnection within the neural networks in the brain, called Parallel Dis-

tributed Processing. However, the pioneering connectionist works were pub-

lished in the mid-1980s, distributed representations of concepts in the brain are

in question even nowadays. Thus, a current model of phonological develop-

ment (Takac, Knott, and Stokes, 2017) is considering localistic representations

of phonemes and word-meanings. Moreover, it has found, that even the lo-

calistic neural activations provide an explanation for several patterns shown
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by infants during phonological development. We aim to research this contra-

diction. Since merely all the neurobiological or neuro-imaging studies claim,

that neural activations are distributed within the brain. Also, even if an activa-

tion pattern is concentrated within such a brain-area, it cannot be considered

as brain area responsible for the given treatment (Tremblay and Dick, 2016).

While in turn, another neural focal point is considered to include the area in

processing a completely different treatment.

FIGURE 1: Brain areas involved in speech producing by
Geschwind, 1970

Our thesis’ methodology is scientific modeling, more precisely a valida-

tional reimplementation of a source study by (Takac, Knott, and Stokes, 2017)

under modified, neurobiologically more plausible conditions. The model in

question is a model of phonological development, which is to reproduce the
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circumstances, under which infants learn their first ca — 300 words, approxi-

mately in their first two years. Nevertheless, even the methodology of analyz-

ing infant’s data will be maintained.

However, we are aware of how small, and low-level features of speech

production are we modeling, we should emphasize, when such a model gets

trained to produce sequences of phonemes, it can even more. Its predictions

of new phonemes necessarily express phonotactic constraints of the exposure

language. Such as the mappings of meanings, to their phonological forms.

Therefore, another pioneering study by (Dell, Juliano, and Govindjee, 1993)

will be analyzed, and to a certain extent reproduced; mainly in the field of

phonological speech errors and related distributed representations. Present

work is to add a level of complexity to existing models, and spice of biological

plausibility.

The goal of the present thesis is to compare two perspectives on the phono-

logical part of speech production system through simulation of its develop-

ment. Unlike the source studies, it will use meaningful parallel distributed

vector representations in all levels of representations, articulatory features in

case of phonemes, semantic features for the meaning representations. The

time-course of the phonetical learning will be followed, and all available fea-

tures will be likened to the infant’s dataset, comparatively analyzed by (Takac,

Knott, and Stokes, 2017).

The rest of the thesis is structured as follows. The first chapter reviews rele-

vant previous work: in Chapter 1 we start with investigating the neurobiolog-

ical background of speech, from the classical „Broca–Wernicke“ model to the

neuroimaging studies, which were to indicate speech activation patterns in the

brain are distributed, running in parallel. Next, a current linguistic approach

is presented in Chapter 2, focusing on the speech errors, to be reproduced in

our experiments, such as the Neighborhood-density and related phenomena in

Section 2.3, where we discuss reproducible aspects of children’s phonological
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development. The next part summarizes the methods to use in the experiment:

Recurrent Neural Networks, parameter optimization techniques, and the two

specific applications of such networks for tasks similar to ours. In Chapter 4

the experimental setting is presented. First, the differences are presented be-

tween our work and the source studies. Thereafter, our distributed phoneme-

and meaning-representations exhibited and discussed in context. Finally, in

Chapter 6 we present our results, which are novel in several ways.
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Chapter 1

The classical Neuro-biological

models of speech production

1.1 Neurobiological perspective

According to the classical "Broca–Wernicke–Lichtheim-Geschwind“ neurobio-

logical perspective, speech-production and -understanding is associated with

several brain areas within the cerebral cortex (See Figure 1). In the case of

spoken-language-processing, auditory cortex is involved first. Then, in the

temporal lobe, the brain matches the phoneme against the vocabulary. Here,

in the Wernicke’s area is the meaning assigned to words, and language com-

prehension is achieved. Then the arcuate fasciculus – AF (a bundle of bidirec-

tional nerve fibers) transmits the activation to Broca’s area in the frontal lobe,

where the pre-motor program is being produced for the motor cortex, which

controls the muscle movements even for speech production.



6 Chapter 1. The classical Neuro-biological models of speech production

FIGURE 1.1: Wernicke-Lichtenstein’s schema of Speech produc-
tion

Recently, almost every part of the classic theory is in question; Especially

the AF being a single fiber pathway, magically ensuring the significant associ-

ations between the two, functionally specific areas: Wernicke’s and Broca’s

Graves, 1997. Nevertheless, the most contemporary models are proposing

more complex architectures, including areas that had not been considered as

parts of speech comprehension or production working as a substantial modu-

lar (distributed) system in parallel Tremblay and Dick, 2016. On the one hand,

it means, that even our model – considering just few processing nodes (mo-

tivated by areas like Broca’s, Wernicke’s, etc.) - would be so simplifying, to

brand it as biologically plausible. On the other hand, it ensures foundations for

Parallel Distributed Processing (PDP) paradigm by Rumelhart, McClelland,
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and Group, 1987 used in the latter parts of our work.

1.2 The Parallel Distributed Signals and their pro-

cessing

PDP theory suggests that linguistic units, such as phonemes or semantic con-

cepts are represented by their features rather than a specific neuron, produc-

ing Hit-NoHit binary output as it is considered by the opposing localistic ap-

proach. Therefore, we are to use feature vectors for the representation of our

linguistic units. Thanks to Pulvermüller’s event-related MRI experiment Pul-

vermüller et al., 2006 we know, articulatory features of phonemes – we are

to catch in our representations – are processed via motor circuits in the supe-

rior temporal lobe. Although the activation map is different when speech is

perceived or produced, their involvement is unquestionable. Even the articu-

latory planning of phonemes like /p/ or /t/ evokes specific activation in the

primary and premotor cortex, based on the phoneme’s articulatory features.

E.g., for /p/ we get an activation pattern in the motor area related to lips; re-

spectively for /t/ we get adequate activation in the motor area of the tongue.

For details see Figure 1.2.
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FIGURE 1.2: „Phoneme-specific activation in precentral cortex during
speech perception. It is showing activation during lip (red), and tongue
(green) movement along with the Region Of Interests (ROIs) centered
in precentral gyrus. (B) Activation (arbitrary units) during listening
to syllables including [p] and [t] in precentral brain areas where pro-
nounced activation for lip (red) and tongue (green) movements were
found. The significant interaction demonstrates differential activation
of these motor areas related to the perception of [p] and [t].“ (Source:

Pulvermüller et al., 2006

All in all, we can sum up, that the articulatory motor programs in precen-

tral cortex take a considerable part in phoneme encoding in the brain (if not

responsible at all). Therefore, we implement Our Distributed phoneme encod-

ings, based on these distinctive articulatory features in Section 4.3
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Chapter 2

Linguistic theory

2.1 Frame constraints in Language

A standard assumption of linguistic theory e.g. by Smith, Kosslyn, and Barsa-

lou, 2007 states, that words and sentences are properly described as a merger of

structure and content. A word description contains both a string of phonemes

(its structure) and a semantic entity – lexeme, describing the content.

FIGURE 2.1: Triangle model of speech by Smith, Kosslyn, and
Barsalou, 2007
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The historical view of language theories suggests, that linguistic content

and linguistic structure are produced by two distinct mechanisms; Where men-

tal lexicon should ensure the content, and as a slot is inserted to a frame of

rules, called frame constraints. These constraints e.g., can set the order of

phonemes. Let’s consider the word dog, which has Consonant-Vowel-Consonant

(CVC) phoneme-order, withal, being the first consonant onset, rhyme sub-syllabic

unit containing the nucleus, and the final in the remaining part. These phonological-

level features make up a phonological frame. For it’s tree-representation see

Figure 2.2

FIGURE 2.2: Syntactic- and phonological-tree representation in
theories of language production (Source: Petruck, 1996)

Phonological frames long have been the basis of language models. E.g.,

Dell, 1986 proposed a set of hard-wired rules,https://www.overleaf.com/project/5bebe452f0403a664bb15228

taking into account prohibition of invalid phoneme-sequences, as a part of the

definition for a specific frame. Our model’s theoretical background is opposing

this kind of simplifying rule-based approach (just like the later model of Dell,

Juliano, and Govindjee, 1993, we were inspired by). Here we do not want to
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argue or contradict the frame-theories, we present them in order to better un-

derstand speech error’s nature, and to get used to the terminology of studies

exploring and classifying speech errors.

We will consider two classes of frame constraints:

• general constraints, which apply to all phonological errors, both move-

ment and nonmovement errors. E.g. a reading list → a leading list

(phonological movement error, movement of /l/, by Fromkin, 1971)

• movement constraints, which apply only to movement errors. E.g. De-

partment → jepartment (substitution of textit/j/ for textit/d/, a non-

movement error by Stemberger, 1983a)

2.2 General constraints

2.2.1 Phonotactic Regulatory Effect

Phonotactic Regulatory Effect suggests, that speech errors almost always pro-

duce phoneme-sequences that occur in the language; So that the frame reduces

all possible phoneme-sequences to legal ones. Many studies refer to this effect

as „first law,“ since it has been observed in about every speech error collection

MacKay, 1972. E.g., Stemberger, 1983a found this effect violated in less than

1% of his error corpus. Therefore, no available frame should accept an invalid

sequence like „dlorm“ in the following example.

2.2.2 Consonant-Vowel Category Effect

This effect appears to be the strongest one among the evidence of speech er-

rors.MacKay, 1970 and Stemberger, 1983b did not report any error-instance

proscribing this effect. The rule, itself, says, that the basic phonological cat-

egories, consonants, and vowels, should be respected and remained within a
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flip or replacement speech error, which means, that vowels can be replaced by

vowels and consonants with consonants solely. However, there can be found

some counterexamples (such as Mexico being spoken as „meksakL“, which can

be analyzed as /o/ replaced by syllabic /L/, in Stemberger, 1983b; But they are

scarce.

2.2.3 Syllabic Constituent Effect

2.2.4 Initialness Effect

It assumes, initial or onset consonants are more likely to slip than non-initial

ones, with two related effects. In behind can be several causes. As can be seen

in Figure 2.2, the sub-syllabic structure of a syllable is often divided into on-

set and the rest (rhyme, coda . . . ). In such a way, the first phoneme is more

often a sub-syllabic unit, much easier to flip Shattuck-Hufnagel, 1987. Pieces

of evidence suggest, approximately 80% of consonant-movement errors con-

cern initial consonants. There is also a tendency to of word-initial and even

syllable-initial consonants to flip more often than syllable-final ones. Accord-

ing to Dell’s review of the topic, the standard explanation for this effect is that

word- and syllable-initial consonants are structurally distinct in the phonolog-

ical frame. Meaning, that they form a phonological constituent on the top of

the hierarchical structure of the word, which results from the easier division of

the word bat as b-at than ba-t.

These four constraints long have been considered as the foundation of speech

production theories of nowadays. However, many findings in speech-related

fields (neuroimaging, neurology, computational linguistics) put it in question

or refute their biological plausibility; frame constraints remain a shred of quan-

titatively massive evidence, useful to consider; Especially when evaluating a

model of speech production. A model, where no hand-made rules were used,
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and related empirical phenomena
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although, producing (nearly) the same phenomena. We will handle these er-

rors, and constraints, considered to form them, to validate our model’s behav-

ior and outputs.

2.3 Phonological Neighborhood density

and related empirical phenomena

Phonological Neighborhood Density (ND) is a measure referring to the num-

ber of words that can be generated by inserting or deleting one phoneme in

a target word or replacing one phoneme with another phoneme in the same

position. A word has high ND if there are many words phonologically similar

to it. High ND words are more easily learned by infants of all abilities (e.g.

Storkel, 2009, Stokes, 2014). From the point of phonological view, Neighbor-

hood Density is a measurement tool of neighborhood size, that refers to the

number of words that could be generated by replacing, inserting or deleting

one phoneme in some word by another phoneme in the same position.

Recent linguistic studies found that the pND phenomena is correlating to

the greatest extent with word learnability (Stokes stokes2010neighborhood,

stokes2014impact) for infants of all abilities. By all abilities we mean Late

talkers included. A child belonging to the slowest 10-20% of word learners is

considered to be Late talker. A Late talker learns by approximately 20% fewer

words, than the normal ones until their 2nd birthday. Moreover, Late talkers

tend to learn higher-ND words in preference; Rather, than children with ordi-

nary learning course.

Given a specific word from the dictionary and its ND, the age of acquisition

is the measure to be followed. It states when having a given word been learned

- in what period. For that matter, the trend is decreasing for the ND with an

increase of Age of Acquisition. It is supported by empirical evidence of Stokes,

2010; Stokes et al., 2012; Stokes, 2014.
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However, the implications of ND-effect are well known, and even sup-

ported by empirical evidence; its origin remains in question. On the one hand,

high-ND words tend to contain phoneme sequences, which have a higher-

than-average frequency in exposure language. Therefore, it long has been con-

sidered being purely frequency-phenomena and can be explained by statistics

of the language. On the other hand, many studies, including Takac, Knott,

and Stokes, 2017, successfully isolated ND-effect from other frequency-related

phenomena, so that the focus of research has been moved to cognitive word

representations that lead to this effect. Most of the informal explanations of

ND-effect suggest, that novel words are easier to learn, if they are phonologi-

cally similar to known words. Thus, their phonological representations can be

coded as modified existing representations. (Storkel and Lee, 2011). Besides

the opposing views on the phonological development, computational linguists

agree, that during the learning of either a child or a model the above-described

trait can be observed, the so-called Conspiracy effect.

Conspiracy effect stands for, and to a certain extent even explains, how the

updates of neural interconnections control the learning course of a neural net-

work. In our particular case, when learning two phonologically similar words,

one word’s weight update contributes to the potentially needed weight update

for its phonologically similar word pair. In such a way, when the network is

trained for the second (similar) word, much less effort is needed concerning

the updates of connections. We are going to research the direction of causal-

ity between Conspiracy effect and phonological Neighborhood Density in the

following.
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Chapter 3

Computational theory

3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are biologically motivated computing sys-

tems. These systems are able to learn patterns and tasks based on examples,

mainly with supervision. Supervision means labeled examples, i.e., a task with

a solution so that the network’s parameters are updated due to the difference

between the network’s output and the teaching signal – the supervision (the

right answer).

FIGURE 3.1: Schema of a single perceptron
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The building blocks of ANNs are perceptrons, single neurons. These units

(in Figure 3.1) linearly combine their inputs, in other words, sums up the input

signals multiplied by appropriate weights to produce the net signal, the net

input function. This signal used to be saturated, normalized to range [0, 1]-

unipolar or [−1, 1]-bipolar. From a mathematical perspective such network’s

(in Figure 3.1) output o, is computed as:

o = f (net) = f (w · x) = f

(
n+1

∑
j=1

wjxj

)
= f

(
n

∑
j=1

wjxj − θ

)
(3.1)

Where ~x is the input vector, the pattern, and ~w is the vector of weights. The

dot product of w and x to be marked as net as the net’s signal. The function f ,

encompassing that signal is the Activation function of the network. Since one

of the main advantages of neural networks is the ability to solve non-linear

problems, mostly non-linear neurons are used. Here the activation functions

must be non-linear ones. The most commonly used are Logistic function, a.k.a

Sigmoid (Unipolar) or Tanh (Bipolar). In case of linear activations Rectified

Linear Units are the most common choice. For details see Figure 3.2

FIGURE 3.2: The three most frequently applied activation func-
tions. In order: Sigmoidal, Hyperbolic tangential, and Rectified

Linear Unit

As above mentioned, after the forward pass (obtaining network’s output
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based on inputs) the weights must be updated to produce more accurate out-

put in the future. In our project, we chose the most widely used algorithm

for the update: The Stochastic Gradient Descent (SGD). SGD is an iterative

optimization algorithm, optimizing the network’s parameters, the weights in

order to produce minimal error. Error in time t, E(t) is mostly computed as

(squared) sum of the element-wise difference between the network’s output,

o(t)k and the target vector d(t)k .

E(t) =
1
2

K

∑
k=1

(
d(t)k − o(t)k

)2
(3.2)

Then the weight updates are computed as the partial derivative of the Error

with respect to the weights w multiplied by α, the learning rate, controlling the

speed of learning.

∆wkj = −α
∂Ep

∂wjj
= −α

∂Ep

∂ (nek)

∂ (netk)

∂wij
= αδokyj (3.3)

Where δok is computed as:

δok = −
∂Ep

∂ (netk)
= −

∂Ep

∂ok

∂ok
∂ (netk)

=
(
dpk − opk

)
f ′k (3.4)

Here d is the target, o is the network’s output and f ′k is the derivative of

activation function with respect to the net signal. At the end of the day we

can assume, that the k-th neuron’s j-th weight’s change vector’s magnitude

will depend on the difference between target and output, it’s direction will

be given by the derivative of activation function multiplied by the j-th input;

thus, it gives us the slope of the error surface, the direction to the nearest local

or global minimum.

∆wkj = α
(
dpk − opk

)
f ′kyj (3.5)
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3.1.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) represent a class of Artificial Neural Net-

works, where besides feedforward connections time-delayed connections are

present in the network. Their need stems from phoneme sequences of differ-

ent length, to be processed, discussed in 4.1. These so called Recurrent Neural

Networks are widely used in sequence processing problems.

FIGURE 3.3: Schema of a recurrent neural network architecture
A:original network, B:unfolded network in 4 timesteps, when

processing the word cat

RNNs are multi-layer ANNs, in other words: ANNs at least with one hid-

den layer. The recurrent connection here means a time delayed copy of activa-

tions of the whole layer of the network; Mostly, the hidden-, (Elman, 1990) or

less often the output-layer (Wilson and Keil, 2001) is delayed. These recurrent

connections are fed back to the network as a context layer. The Simple Recur-

rent Neural Network (In Figure 3.3 A) is a three-layer neural network, where

the recurrent connection points from- and to the hidden layer. When unfolded

(Figure 3.3 B) the time-resolution becomes apparent.
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Consequently, in every time-step t:

• one input vector – xt and one context vector ht−1 presented to the system.

• hidden layer activation is obtained as their dot-products with appropri-

ate weight matrices Wxh and Whh.

• output vector – yt is obtained after passing hidden layer activation

through the weight matrix Why.

• hidden layer activation, h is copied to the context layer.

ok(t) = f

(
J

∑
j=1

Why(t)h(t)j

)
(3.6)

Where:

h(t)j = f

(
J

∑
j=1

Whh(t)h(t−1)
j +

l

∑
i=1

Wxh(t−1)x(t−1)
i

)
(3.7)

Most recurrent settings consider the internal-only feedback loop, copying hid-

den state to the context, as above. Although, external feedback also used; these

are time delaying the output layer’s activation to context units – like Dell, Ju-

liano, and Govindjee, 1993 do. Since our network will consider internal-only

feedback, the following derivations will reflect exclusively our setup. In our

project, the number of time steps will depend on the length of input sequences

to be produced. Initial activations in the context layer usually set to zeros.

When it comes to Error Backpropagation, a novel approach is needed: Back

Propagation Through Time (BPTT) Werbos, 1990. It suggests, that an unfolded

network should be treated as a multi-layer network with as many layers, as

many timesteps we have - such as in Figure 3.4.
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FIGURE 3.4: Recurrent neural network unfolded in time t = [(t−
2); (t)]

Therefore, the network’s parameter updates are computed: For output nodes:

δpk = −
∂(C)

∂
(
ypk
) ∂

(
ypk
)

∂
(
netpk

) =
(
dpk − ypk

)
g′
(
netpk

)
(3.8)
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For hidden nodes:

δpj = −
(

o

∑
k

∂(C)
∂
(
ypk
) ∂

(
ypk
)

∂
(
netpk

) ∂
(
netpk

)
∂
(
spj
) ) ∂

(
spt
)

∂
(
netpj

) =
o

∑
k

δpkwkj f ′
(
netpj

)
(3.9)

The possible activate functions f are in principle the same as in previous sec-

tion: Logistic, Bipolar or Linear. Cost function can be any function reflecting

the difference between output and target, which is differentiable. Sum Squared

Error from equation 3.2, as one of the most often used cost function, secures

enough simplicity in derivative, and precise difference representation to pick

it for our project. So that the weight changes could be easily obtained as:

∆wkj = η
n

∑
p

δpkspj (3.10)

For hidden→ output weight, wkj, the element from kth row and jth column of

Why. Then:

∆vji = η
n

∑
p

δpjxpi (3.11)

For input → hidden weight, vkj, the element from jth row and ith column of

Wxh. And finally:

∆uji = η
n

∑
p

δpjsph(t− 1) (3.12)

For hidden→ hidden weight, ukj, the element from jth row and ith column of

Whh.

3.1.2 Improvements and adjusting the structure of the network

Momentum

The above derived equations stand for gradient descent (GD). It’s standard

variant, Stochastic gradient descent (SGD) to be used in our project. It’s only
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parameter to be adjusted manually is the learning rate, controlling the learning

speed. Nowadays, so many ways accessible to improve learning ability of

the network by optimizing the GD. Almost every such adjustment’s goal is to

control the learning rate, to produce a smoother curve on the error surface (see

Figure 3.5).

FIGURE 3.5: Comparing SGD without (on the left) and with mo-
mentum (on the right) on the contour plot of error surface. Where
each point stands for error value, with given parameters. (Source:

Montavon, Orr, and Müller, 2012)

Our source studies used momentum, which is a moving average-like algo-

rithm, considering the last updated value vt−1 (in time t− 1) when updating

the parameter vt. Here γ is the momentum factor to be optimized for each

task.

vt = γvt−1 + η∇θ J(θ)θ = θ − vt (3.13)

Adagrad

Adagrad is an improved momentum-based algorithm, distinguishing between

frequent and infrequent activation patterns when updating the parameters.

It adapts the learning rate based on these frequencies; larger update for in-

frequent parameters and smaller ones for frequent parameters.Duchi, Hazan,

and Singer, 2011 By the way, Pennington, Socher, and Manning, 2014 also used

Adagrad to train GloVe word embeddings (our meaning representation’s bank

- discussed in 4.3). Adagrad’s goal is to modify the learning rate, µ, based on
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the previous modified learning rate θt,i, which is dependent on the previous

gradient, gt,i. It is calculated as:

θt+1,i = θt,i −
η√

Gt,ii + ε
· gt,i (3.14)

Where θt+1,i denotes updated modified learning rate,µ is the previous learning

rate, Gt,ii is a diagonal matrix, with sum of squared gradients with respect to

the net’s output on the diagonal.ε is stabilization factor to be fine-tuned for

specific tasks; And gt,i is the current gradient.

3.2 Existing Models of phonological development

Processing sequential data (most often language structures like graphemes,

phonemes, lexemes ...) is one of the standard tasks for ANNs. Recurrent struc-

tures, such as RNNs has shown a great ability of mapping temporal connec-

tions between these language structures. Thus, they have been developed and

optimized for such tasks Elman, 1990; Elman, 1991. After numerous success-

ful project proving the ANNs’ ability to map (even irregular) sequences-to-

sequences, computational linguists -mainly connectionists- are to find the rel-

atives of such algorithms, that are implemented in the brain. To enclose these

perspectives, choosing a psychological phenomenon, and trying to reproduce

its measurable output by a computational model is a standard way. Even our

source studies (Takac, Knott, and Stokes, 2017; Dell, Juliano, and Govindjee,

1993) do the same, however in divers depth. So that, such as these source

studies, we chose the most straightforward recurrent artificial neural network

architecture, the Simple Recurrent Neural Network, the so-called Vanilla Net-

work Elman, 1990 too. Due to its long tradition in word-processing models, it

was a safe choice, ensuring processing of phoneme-chains of arbitrary length

when combined with the Backpropagation Through Time as training algo-

rithm. Moreover, Takac and Knott, 2015 suggest, it is more than likely, that
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even the human brain uses such recurrent connections when it comes to the

encoding of sequences such as other sensorimotor routines.

3.2.1 Model of Takac, Knott, and Stokes, 2017

Takac, Knott, and Stokes, 2017 focused on the dynamical aspects of learning;

Investigating which words are more likely to be learned earlier under which

conditions. The well-defined phenomenon they examined is the Neighbor-

hood Density (ND), thoroughly presented in 2.3. Moreover, they proposed a

slightly new explanation of ND-effect and its relation to word meanings. The

novelty of their study rooted in generalizing the ND effect based on simulation

of realistic phonetical development. Many earlier studies proposed models

learning phonological sequences, but with notable limitations, e.g., in the field

of word-lengths, or just failed to reproduce cues, showed by the learning chil-

dren. Nevertheless, their results showed a similar effect than the Late-Talker

ND-phenomenon, where a network with limited capacity showed a tendency

to learn high-ND words in preference, as Late-Talker children do. However,

earlier studies (e.g., Vitevitch and Storkel, 2013) provided mathematical ap-

paratus (an Autoassociative Artificial Neural Network), reproducing the ND-

effect, during phoneme-sequence learning; Their control conditions (uniform

word-length, uniform word-frequencies) made it harder to compare to the

phonological development of real children. Though, their goal was to sepa-

rate the ND-effect from others (word length, word frequency), correlated with

it.

The model, itself was an SRN (Scheme in Figure 3.6), with internal con-

text representation – the network’s hidden state is presented as the context

with time-delay. The phonemes presented temporally, with a specific word-

boundary at the beginning and the end of the sequence. During the production

task, the predicted phoneme representation from the output layer is copied to

the current input phoneme slot.
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FIGURE 3.6: SRN architecture of the phonological learner model
by Takac, Knott, and Stokes, 2017

Its specialty is the composition of the input vector. Hence, it consists of two

parts: Meaning- and Phoneme-representation. The network’s input-output

representations are localistic one-hot vectors. Such vectors must have lengths

equal to the number of entities to represent, and naturally, for all distinct enti-

ties, another element will be non-zero (mainly 1). So that, these one-hot repre-

sentations hold information about the identity of the substance and says noth-

ing about its content. The similarity of all localistic representations within a

dataset will be equal when comparing them with each other. One localistic

vector for the meaning and one for the phonemes are produced and concate-

nated to the input vector. Since MacArthur-Bates Communicative Develop-

ment Inventory (CDI) of English words by Fenson et al., 1994 for the „known

words“ was reduced to 268 words, meaning vector was 268 dimensional, and

44-dimensional vectors for the 44 English phonemes.

Another specialty of their model is to learn even from „not-known words,“
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where no meaning input presented to the network (meaning vector is a zero-

vector), just the phoneme sequence is passed through the network. For this

purpose, they used an extract from the CELEX corpus (Baayen, Piepenbrock,

and Van Rijn, 1995 in the amount of 2588 English monosyllables. Training of

the network consisted of 100 epochs, presenting the same training set in ran-

dom order. After the output is obtained, the error is computed and backprop-

agated through time Werbos, 1990. Between the individual training examples,

the context layer was reset, to prevent from the bias of the predecessor. They

trained 40 instances of SRNs, with different learning capacities among four

classes of networks regarding the hidden-layer sizes: [5, 10, 15 and 20]. So that,

each group consisted of 10 artificial participants. Between every two epochs,

test session followed, where the network was given a meaning and the word-

boundary phoneme. Then, the network’s output predicted a phoneme, which

was fed back to the input’s phoneme slot, until word boundary or more than

seven phonemes anticipated. The resulting dataset – the generated phoneme

sequences – with all their metadata, was analyzed for to assign to every se-

quence:

• Age of Acquisition for every word for every instance

• NDaw – Neighborhood Density calculated over all words the network

was exposed to

• NDkw – Neighborhood Density calculated over known words only

Their following analysis proved that however, NDaw is due to conspiracy

effect, no meaning-specificity found; Unlike in the case of NDkw, which re-

lies on the word-specific biases. Moreover, their regression analysis suggests,

that the main effect of ND is due to biasing influence of meanings; proven by

effect size, much higher of NDkw. Although, they cannot use this measure

when comparing to children data. Thus, it would be tough, if not impossi-

ble, to determine the whole vocabulary for a set of individuals. Hence NDkw
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should enumerate the neighbors in the dictionary of the child. To sum up, their

results show significant similarity to children data, mainly in the field of ND-

effect. Thus, they concluded, since meaning plays a crucial role in phoneme

sequence generating; even the representation (of the meaning) they chose is

indicative. Even their mathematical proof supports that localistic representa-

tions of meaning can be the factor which provides a basis for such a realistic

behavior of the model.

3.2.2 Model of Dell, Juliano, and Govindjee, 1993

Pioneering work of Dell, Juliano, and Govindjee, 1993 was one of the first mod-

els of phonological development with proven speech error convenience. As

stated in Chapter 2, speech errors long have been the only empirical basis of

speech theories. Frame constraints, which build on these pieces of evidence,

were widely accepted so that the explicit frame rules were out of the ques-

tion. In turn, proponents of PDP paradigm in 1980’s published a set of game-

changing neural models (Rummelhart’s model of past tenses - Rummelhart,

1986; Sejnowski and Rosenberg, 1987), which stated, that no such explicit rules

needed to act like a rule-based system. The emerging conclusion in the 1990s

became Elman’s Elman, 1989 statement, suggesting that not the existence of

rules and structure matters, but the way rule-governed effects are produced.

Then, all generally accepted theories and even models worked with the con-

cept of distinct linguistic structure and content. That is, what they attempted

to change, by their alternative model, respecting the frame constraints without

explicitly set rules. The model’s architecture was also SRN (Figure 3.7). Lexi-

cal state units were either grapheme encodings or random vectors (correlated

and uncorrelated respectively), Internal (phonological) state units represented

articulatory features. Hidden state units were obtained as mapping of logistic

activation function mapping the linear combination of all input units (lexical +

phonological). The acquired hidden unit activation then propagated through
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one more weight matrix, to produce distributed phoneme representation in

the output layer. Training meant updating the weight matrices with standard

backpropagation algorithm with momentum factor.

FIGURE 3.7: SRN architecture of the phonological learner model
by Dell, Juliano, and Govindjee, 1993

Dell et al.’s model is a model of phonological development; It is learning

phoneme sequences based on meanings, and the features of phonemes making

it up. In line with PDP paradigm, meanings and phonemes were encoded in

distributed vectors or encoded by their features - in other words. His above-

cited paper actually contained three studies, let’s call them three experiments,

where he tested his network model under different circumstances:

• Factorial manipulation with model characteristics

Testing the models’ performance with a set of changing parameters.

Namely: training vocabulary, input representations (correlated or not)

and the nature of state representations (internal only, internal + external,

external only)
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• Error generation by degradation

In the second part, trained networks, able to produce all words from

training set properly, are forced to produce speech errors. Thus, speech

errors mostly come from adults, phonologically developed individuals.

Therefore, a noise was added to the weights of the network, during the

production task.

• Larger vocabulary

Three attempts made in the third part, with three different upgrades to

handle enlarged vocabularies (308 and 412 words) including 2-syllable

words too. All in all, the performance of their network became less accu-

rate. However, the model reached 99.1% accuracy, all the error-patterns

became vaguer, violating frame constraints to a greater extent.

Their results represent substantial evidence of speech errors by an artificial

learner, respecting the frame constraints in a significant manner. Dell, Juliano,

and Govindjee, 1993 proved the network’s ability to act as a rule-based system,

with a satisfactory explanation of neural learning. Their frequently spelled

phenomenon „well-worn paths“ turned out to be similar, as not the same as

the conspiracy effect.

3.3 Corpus-based methods

for deriving distributed meaning representations

From a connectionist point of view, questions about how semantic units, cat-

egories or even entities are represented and stored in our brain are clear. The

activations propagated by our simple but massively interconnected networks

must serve a set of patterns uniquely (but within a category similarly) defining

semantic entities. In other words, concepts in our semantic memory, or lexicon,
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are represented by activation patterns, so that a finite set of features can deter-

mine entities in the lexicon. Leastwise, in that way, presents the “Semantic

Cognition: A Parallel Distributed Processing Approach” book of Rogers and

McClelland, 2004. Moreover, they argue, such representations are distributed,

and the patterns are served by neural activations governed by the weights be-

tween the units, the neurons. This perspective proposes that such weights are

acquired by day to day adjustment when processing semantic information.

Nowadays, great support comes from neuroimaging evidence. Even the

openings of such studies assume that there is a consensus of memory-contents

dependency on the activity of neural ensembles across cortical and subcorti-

cal regions Rissman and Wagner, 2012. Hence, the neuro-imaging approach is

pivoted from concentrating on peak regional effect, in other words from the

localistic approach. The game-changing study by Haxby et al., 2001 hypothe-

sized that however, a given brain region (e.g., ventral temporal cortex, VTC)

respond to specific treatments in preference, (e.g. to houses, faces, chairs),

the extent to which such region is active (measured by the magnitude of their

Blood-oxygen-level dependent response) carries information, about how sim-

ilar the triggering stimulus is to their preferred ones. Nevertheless, each se-

mantical category is identifiable by its “neural signature,” reflecting the mean

feature weights for known exemplars from the category. Rissman and Wagner,

2012.For differences in localistic and distributed features see Figure 3.8
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FIGURE 3.8: Comparing features of localistic and distributed vec-
tor representations. Each column represent one feature

So, what could a single neuron perceive in above specified massively inter-

connected distributed network? In line with Rissman and Wagner, 2012, we

hypothesize, that every synapse delivers information- or more generally sig-

nal - from another neuron or a sub-area in the brain. So, against the localistic

approach, where a single neuron is considered to be active under a specific

treatment (lexeme), we set our meaning representations to be a collection of

its features. Such supposition is present in the field of computational linguis-

tics, and it is called Distributional hypothesis introduced by McDonald and

Ramscar, 2001.

The Distributional hypothesis says, that “meaning of a word can be approx-

imated, or derived from the set of contexts in which it occurs in texts”. Also, that

assumption validated a lack of corpus-based methods for generating valid dis-

tributional lexeme representations instead of coding them manually or semi-

manually as Rogers and McClelland, 2004 did.

The context in which a given word, or it’s lexeme occurs, is defined as n

neighboring words in natural text, or the whole corpus. So that, based on

neighboring or dependent words we are able to quantify co-occurrences of
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planet night full shadow shine crescent
moon 10 19 55 16 35 12
sun 11 5 1 20 53 0
dog 0 1 2 5 0 0

TABLE 3.1: Co-occurrence matrix of related terms from corpus in
Figure 3.9

word pairs, and a co-occurrence vector is obtained (Table 3.1). E.g. with a such

small corpus (in Figure 3.9) is feasible to find out, which word pairs share more

semantic features:

FIGURE 3.9: Sample of corpus for occurrences of word “moon"

Calculating the co-occurrences, we get:

Represented in 2-dimensional (co-occurrence with shadow and shine) con-

text:
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FIGURE 3.10: 2-dimensional (co-occurrence of target word with
“shadow” and “shine” words as context) representation of target

words: sun, moon, dog.

In Figure 3.10 we can see, that the co-occurrence vectors for semantically

related terms moon and sun are similar and dissimilar from a semantically

unrelated word: dog.

Above described techniques gave the conceptual framework for the two

popular approaches of the 2010s for learning word vectors: global matrix fac-

torization, derived from Latent Semantic Analysis (LSA) Deerwester et al.,

1990 (e.g., Levy and Goldberg, 2014b; Levy and Goldberg, 2014a) and local

context window methods such as the skip-gram model of Mikolov, Yih, and

Zweig, 2013). Skip-gram models train on local co-occurrences in context win-

dows, LSA-methods build upon global co-occurrences. Therefore skip-gram

models do better on analogy tasks, LSA-methods on comprehensive statistic
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information. Their competition did not take too long, since in 2014 Penning-

ton, Socher and Manning released their GloVe (Global Vectors for Word Rep-

resentation) model Pennington, Socher, and Manning, 2014, integrating the

two models, becoming the etalon, as the state-of-the-art distributed word rep-

resentation not just for analogy tasks1. Proved competency in a wide range

of semantical and even syntactic tasks made it appropriate for our purpose,

producing systematically different representations of lexemes in line with the

PDP paradigm. Therefore, we aim to represent even our meanings in such a

way; they would serve their key features, which could be evaluated for all the

meanings. For differences in localistic and distributed features see Figure 3.8

GloVe vectors are trained on a dataset that contains:

• 2010 Wikipedia dump with 1 billion tokens

• 2014 Wikipedia dump with 1.6 billion tokens

• Gigaword 5 which has 4.3 billion tokens

• 42 billion tokens of web data, from Common Crawl5

Then, the GloVe vectors’ vocabulary has been reduced to the 400,000 most

frequent words from the list above, before the matrix of co-occurrences calcu-

lated.

1https://aclweb.org/aclwiki/Analogy_(State_of_the_art)

https://aclweb.org/aclwiki/Analogy_(State_of_the_art)
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Chapter 4

Experiment

4.1 Differences between source studies

and our model

As indicated in the previous chapter, the architecture of our model of lan-

guage acquisition is a Simple Recurrent Network (See Figure 4.2), in many

aspects different from models of source studies. We intended to enclose the

PDP paradigm with semantic processing. In accordance with (Takac, Knott,

and Stokes, 2017) and (Dell, Juliano, and Govindjee, 1993), we assume, the

presence of the meaning signal is crucial of learnability; Therefore, appropriate

attention must devote to the simulation of such signal. In Section 4.3 we clari-

fied our choice of GloVe vectors, which meant an increase of needed learning

capability against all the source studies. On the one hand their dimensional-

ity (300) did not exceed the vector lengths Takac’s model significantly, but on

the other hand, the density of word vectors caused an increment in computing

power needed (in context of non-zero multiplications). Also, even the weight

update became more complicated as well since every gradient must have been

backpropagated to every non-zero input neuron. Dell chose another two - not

surprisingly – computationally also a less complex meaning representation of

the 30-dimensional vector. Although, the main difference does not root in in
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dimensionality. They assumed a vector of random numbers would be in ac-

cordance with the PDP paradigm. We would argue with it; Since the similarity

(what they representations lack) between meaning vectors gives the opportu-

nity to produce semantic speech errors, to be evaluated and analyzed in Chap-

ter 5. Nevertheless, all of our arguments hold for biological plausibility from

Section 1.2 The other way of creating meaning vectors, the „correlated way“

stemmed in an incomprehensible way correlated with the orthography of the

word, not the lexemes. This branch to be ignored in our project.

The representations of phonemes differed just from the Takac’s model, in

the context of their localistic approach. The phoneme-features from Section 4.2,

actually, matched the ones in (Dell, Juliano, and Govindjee, 1993). The train-

ing vocabulary of present work is taken over from (Takac, Knott, and Stokes,

2017): the MacArthur-Bates Communicative Development Inventory (CDI) of

English words by (Fenson et al., 1994) for the “known words” the CELEX cor-

pus (Baayen, Piepenbrock, and Van Rijn, 1995) for the complementary data,

the “not-known words.” Dell’s two 50-word, 3-segment samples meant just

another facilitation for their work, against ours. Though, fixed-size consonant-

vowel combinations make it somewhat easier to analyze speech errors pro-

duced by the model. Moreover, since we are to reproduce children data, with

all their learning aspect, we will consider speech errors produced during the

vocabulary development, unlike Dell’s second experiment. By the way, nei-

ther his third experiment will be followed for similar reasons. To be compara-

ble with children data, appropriate treatments must be reproduced including

the constant size and consistency of training data. When it comes to network

architectures, in training session, the internal-only feedback loop was selected

by us. For generating task, (between two epochs), the network’s output was

copied to the input with a time delay (external recurrence by (Dell, Juliano, and

Govindjee, 1993)) In respect of activation functions, unipolar logistic functions

were used, in both studies, Only the activation of the hidden layer was set
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to bipolar hyperbolic tangent tanh in our experiment, as it improved the net-

works ability to distinguish even negatively among samples from input layer.

For that matter, (Takac, Knott, and Stokes, 2017) used linear output neurons

and softmax function to match one-hot encodings of phonemes at the out-

put. Our output layer’s activation remained sigmoidal, according to the dis-

tribution of phoneme vectors. Due to the above particularized computational

disparity between source studies and our project (input vector-dimensionality

and -density, vocabulary size, word-lengths) about 10x more hidden neurons

and 6x longer training time (epochs) were needed to reach human-like perfor-

mance on phonological development task.

4.2 Phoneme encoding

Most of the phonology textbooks claim – in accord with the International Pho-

netic Alphabet ((Association, 2005)) that the phonological system of the En-

glish language is made up of 44 phonemes, of which 24 are consonants, and 20

are vowels, considering clusters of sounds (e.g., diphthongs) as single phonemes.

We used phonemes of the International Phonetic Alphabet (IPA) to support all

phonemes of MacArthur-Bates Communicative Development Inventory (CDI)

of English words (Fenson et al., 1994), the base dataset of the present project.

The complementary data, the “not-known” words came from the CELEX cor-

pus (Baayen, Piepenbrock, and Van Rijn, 1995). Homophones, homographs,

and abbreviations excluded in accord with (Takac, Knott, and Stokes, 2017).

After Rummelhart and McClelland’s (Rumelhart et al., 1986) PDP model of

the acquisition of English past tense, many PDP-based vector representations

have been proposed to increase generality of their phoneme representation,

what turned out to be the weak point of their work. Most of these works

came up with word-patterns of fixed-size words. E.g., (Miikkulainen, 1997)

used five units on a continuous scale for each phoneme in an arbitrary word



38 Chapter 4. Experiment

(previous ones considered only monosyllables), classifying the phoneme’s fea-

tures like voicing, sonority, place, and manner of articulation. Their model

has also been criticized for presenting the similarity only in phoneme level; So

that two words encoded in their way, are dissimilar from many quantitative

perspectives. However, representation of phonemes in time could resolve the

trouble. Meaning, that one phoneme per timestep to be analyzed could resolve

this vectorial dissimilarity issue in our model. In line with (Dell, Juliano, and

Govindjee, 1993) and (Miikkulainen, 1997) we created a semi-binary feature

vectors for our phonemes; based on above mentioned Distinctive articulatory

features on unipolar scale [0,1]. One when one of the following 18 features

is true for the maximal extent: Syllabic, consonantal, sonorant, voiced, con-

tinuant, nasal, strident, lateral, distributed, affricate, labial, coronal, anterior,

high, back, low, round, tense. These specific 18-dimensional vectors are hard

to imagine and even check for validity. Therefore, we calculated their Distance

matrix, containing the Euclidian distance between each vector with each other,

to produce a tree diagram of it. The particular kind of tree diagram in Fig-

ure 4.1 is a so-called dendrogram. It is a product of hierarchical clustering of

our phoneme vectors so that we can make sure, that phonologically similar

phonemes are represented similarly, i.e. belong to the same cluster. Moreover,

the number of clusters and their cardinality indicate how unique our represen-

tations are, or how many similar phonemes do we have and to what extent are

they similar.
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FIGURE 4.1: Result of hierarchical clustering of phonemes by a
dendrogram.

4.3 Meaning encoding

As discussed in Section 3.3, GloVe vectors proved competency in a wide range

of semantic tasks. Therefore appropriate for our purpose, producing systemat-

ically unique representations of lexemes in line with the PDP paradigm. There-

fore, our aim is to represent even our meanings in such a way; they would

represent their key features, which could be evaluated for all the meanings.

However the these datasets’ vocabulary is way more extensive than our

dictionary (from child-data), we use the vectors build upon them (upon their

co-occurrences) to ensure distinct representations for all the words with ap-

propriate semantic relations between them. These pre-trained GloVe vectors

were obtained fromPennington, Socher, and Manning, 2014, and then reduced

to the baseline vocabulary - the CDI data inventory by Fenson et al., 1994
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4.4 Training regime

Our reference dataset was prepared by (De Cara and Goswami, 2002) from

CELEX corpus consisting about 4000 English monosyllables. For our purpose,

we reduced it to “more frequent” words, which has more than numerical zero

frequency. Moreover, frequencies for CDI words, the “known words” were

also assigned from the CELEX corpus in line with (Takac, Knott, and Stokes,

2017). That was the crucial moment for ensuring realistic treatment in the ac-

count of probabilities to hear or learn a specific word.

FIGURE 4.2: Schematic architecture of our model, a Simple Re-
current Network.

In every training epoch, the network was exposed to a shuffled batch of

training samples reflecting their probability to occur in the CELEX dataset.

Meaning, that 268 word-vectors were sampled in every training batch, com-

monplace words, even multiple times included.

During the training, 18 models were created, three instances for a given num-

ber of hidden neurons, 100, 110, 120, 130, 140, 150. Weight matrixes Wxh, Whh,

Why initialized as random matrix with uniform distribution over [−0.05, 0.05].
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Context vector ht−1 was initially set to zeros. In line with time resolution ad-

umbrated in Chapter 3.1.1, one phoneme vector presented in every timestep.

For every training sample (phoneme-sequence corresponding to a specific lex-

eme) an additional input vector created for word boundaries, denoted by /./.

So that, the network must predict the next phoneme after the word boundary

/./ given, that meaning is xa. Next, if the first phoneme were predicted to

be for instance /k/, the network must predict concerning unchanged mean-

ing xa and the input phoneme (/k/)-s distributed representation xb what’s the

most likely next phoneme. In the case of xa is the word vector for word cat, it

should be phoneme /a/ and so on; Until the last phoneme /t/ is predicted.

Then the word boundary, /./ to be predicted. In that way, after the forward

pass of training sample of length k, for every time step in the range (0, k) error

is computed, and recursively accumulated to a global error, E, which is back-

propagated through time.

After weight update executed for all lexemes (words) in the batch, test session

follows. Within that, a word boundary is given for all meaning vectors, (initial

phoneme vector setting) and the network predicts phoneme representations in

the output layer y, which is fed back as input meaning xb until word bound-

ary predicted, or the length of predicted phoneme sequences exceeds number

seven. During this session, all the produced phoneme sequences registered

and evaluated for further analysis.

Here we want to highlight, that we intended to make every aspect of train-

ing as realistic as possible in respect of learning children. The composition of

input batches, containing words with, and without meaning vector should re-

flect the fact, that also children are exposed to phonotactic patterns (words they

do not know) without meaning, during their phonological development; influ-

encing their learning process (in accord with (Takac, Knott, and Stokes, 2017).

Moreover, the probability distribution of the input batches is also matching the

frequencies of words in an average child’s environment.
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Chapter 5

Results

Eighteen models were created, three instances for every hidden unit amount

- for statistical compliance. Hidden layer sizes (100, 110, 120, 130, 140 and

150) were chosen surrounding the model with the best performance (with 120

hidden units, based on preliminary testing). The mean performances of the

above-listed parameter settings (in Figure 5.1) show a moderate convergence.

After 300 epochs, the mean error got under 10% (7.73%) among all instances in

accord with Dell’s results.

FIGURE 5.1: model performance in Error decrease (left), and vo-
cabulary enlargement (right).

However, we chose network parameters producing the best performance;

we did not let the network to catch up to its minimal error. Thus, our aim is
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not to find the best approximator of mappings between lexeme and phoneme

transitions. That could be done quickly in another way. We needed a massive

error-evidence to compare with pieces of evidence of empirical research from

many aspects. Therefore, contrary to source studies, testing was launched af-

ter every training epoch. Thanks to this setup, 315 159 errors were produced

and analyzed, excluding the extremely declinatory predictions (a single word-

boundary, single phoneme predicted many times, etc.).

5.1 Phonological errors

TABLE 5.1: The Percentual extent of speech errors respecting
the Frame constraints (Consonant-Vowel Category, Syllabic Con-
stituency, and Initialness Effect.) 100% means, that all of the
speech errors of a given model (in rows) respected the constraint

(in columns)
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Across 315 159 errors of 18 model trained for 300 Epochs, there was no error

violating the Consonant-Vowel Category Effect; In other words, none of the

Consonants were slipped with a Vowel and vice versa. There is essentially no

difference compared to 99% in (Stemberger, 1983b) collection of natural errors.

Every model’s behavior reflects the human phenomenon. Syllabic Constituent

Effect examines speech errors, where more than one, neighboring phonemes

are replaced. The Effect of CV-rule, predicting much more flips in order Vowel-

Consonant than Consonant-Vowel is out of the question. The proportion of

CV-flips exactly matches 2%, the average among shreds of evidence (Dell, Ju-

liano, and Govindjee, 1993). However, The VC-slips oversteps even the highest

measured rate in (Stemberger, 1983b) corpus; we consider it to be acceptable;

Especially considering the ratio of CV- and VC-slips. Since the training batches

and even the testing setup was on a one-word basis, shift movements (errors

of two word-initial Consonants) were not possible. Meaning, that a particular

case of Initialness Effect has not been generated at all. It represents a remark-

able bias in every aspect of error processing, mainly in Strict Initialness Effect,

where nothing but the onset consonant should be slipped.

target error

drĄ brĄ

fĄn vĄn

fĄn rĄn

fĄn lĄn

fĄn sĄn

fĄn %Ąn

TABLE 5.2: Some errors under the Initialness Effect, flips of onset
consonants

(Shattuck-Hufnagel, 1987)’s first phoneme effect was based on, that 66%

of their 1520 single-phoneme speech errors from the MIT database involved
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word onsets. This is twice as frequent as 33% which is the frequency of word-

onset consonants in connected speech (Shattuck-Hufnagel, 1987). That implies

that onset phonemes have a special role in word production. Moreover, many

frame theorists suggest, they must be processed and represented separately.

Although it is hard to measure the legality of a sequence, based on the above-

presented results we predict Phonotactic Regularity asymptotically approach-

ing the 100%. Instead of defining what is considered to be a legal sequence,

we found just several counter-examples among the studies cited above. These

counterexamples mainly focus on appearing a consonant in place of the vowel.

Due to the absence of CV Category Effect violation and the significant (.92)

correlation between Phonotactic Regularity Effect and CV Category Effect, we

assume, the error-patterns are consistent with Phonotactic Regularity Effect.

However no exact proportion available, we claim, our model, and it is every

instance produces phonotactically legal errors.

5.2 ND Effect

Our ultimate aim was to explore whether the ND Effect of our model befits the

patterns shown by children and other models of phonological development.

Our first hypothesis held high-ND words (with many phonological neighbors)

are more likely to be learned earlier. The high-ND has been operationalized to

Average ND in the vocabulary of individuals, the time as the epoch. Thus,

we expected the highest-ND words to be learned within the first few epochs,

producing high-ND in average in vocabularies. As training proceeds, lower-

ND words were learned, smoothly decreasing the mean ND of the vocabulary.

Such a smooth course with a fast decrease of average ND we can see in Figure

5.2
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FIGURE 5.2: Average Neighborhood Density in time (epochs) for
all the words within vocabulary of the entire population of SRNs

in time

The ND-effect in time is significant for the undivided population of artifi-

cial learners, such as for individual groups with a given amount of learning

capacity (varied sizes of the hidden layer). Notwithstanding, several outly-

ing points found, mainly produced by an instance with 140 hidden neurons

(H140). From the training logs (A) we can look up, what was behind (The

learning course is presented in Table 5.3). The second instance of our SRNs,

with 140 hidden neurons (H140_2), learned a lower-ND word first, the word:

FINE / fĄn/ with ND of 36. However, by lower-ND, we do not mean low

in general. Since the average ND is 19,7 in not-known (words without added

meaning vector during the training) and 22,0 in the dataset of known words

(CDI words / with meaning vector) (for detail see Figure 5.3).
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FIGURE 5.3: Histograms of ND Distributions in known, and not-
known datasets. The black bin denotes the interval, the word

FINE belongs to

The ND of 36 is much lower compared to the average ND at the beginning

of the training (learning process) whereas the mean ND of the first two epochs

among the SRN population is 46.

Such a relatively low-ND word is quite likely to have unusual structure,

resulting an infrequent path of the network becoming „well-worn“ (Dell, Ju-

liano, and Govindjee, 1993; Takac, Knott, and Stokes, 2017). These updated,

„well-worn“ path promote potential to another word with the same unusual

structure to be the next word learned. In case of H140_2 these were BROWN

/br&n/ with ND of 10, FLY /flĄ/ with phonological neighbors in count of 18 and

MOON /mu:n/ with ND 24 in epoch 4. Their common rare feature is probably

the long syllable in the rhyme-constituent represented by diphthongs (ai, oi,

au, uu) and long /u:/.

Table 5.3 shows, that even if a word has been learned in epoch 3, there is no

guarantee, that the word will be correctly pronounced within the production

task in next epoch. However the misplaced phonemes are close to each other,

our algorithm marked it as a speech error. Although, the incorrect phoneme ř
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share the feature being learned with preference: Long-syllable and diphthong-

like.

epoch 3 fine
epoch 4 fine moon fly brown
epoch 5 fine moon fly brown buy

TABLE 5.3: Known words in epochs (3,4,5). Red color marks the
words with not correct pronunciation. In case of fine it was fřn

instead of fĄn (oi-ai)

However, the mean ND within epoch 4 is near to the median of the ND

within the source dataset, against, the mean of the all 4th epochs it accumu-

lated approximately a ∆ 30 ND (17 is the mean of above presented second

epoch vs. 46). In our view, the above-presented violation of ND-effect is in line

with the PDP paradigm, especially with the Conspiracy Effect. Moreover, it is

strengthening the findings of our source studies. According to (Takac, Knott,

and Stokes, 2017), the shared similarities between low-ND words (produced

by H140_2 in epoch 4) is represented with similar activation patterns in the

network; Therefore, weight update for one of them necessarily overlaps with

the weight change potentially needed for the other, phonologically neighbor-

ing word. These ’slightly outlying’ points we consider being caused by strange

weight initialization.

Nevertheless, we must add that the source studies excluded the partici-

pants (either artificial and real) with vocabularies with less than 20 words. So,

if we would have taken in account the fact, that all of our distant points be-

long to learners with small (even smaller than 20 words) vocabulary, we could

easily exclude them from the dataset, referring to the Heteroscedasticity as our

source study did (Takac, Knott, and Stokes, 2017). But not doing so helped us

to explore the dynamics of Conspiracy effect.
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5.3 Age of Acquisition & Vocabulary Size

Since we took over the training datasets, and many aspects of the training

regime, we are able to compare our results with (Takac, Knott, and Stokes,

2017) and even with child language data directly. Our results reflect consis-

tency with the above-cited SRN model in the fields of ND dependency on lex-

icon size (Figure 5.4)

FIGURE 5.4: Scatterplots of ND against Vocabulary Size. Com-
paring the results of our model (left) to (Takac, Knott, and Stokes,
2017) (right). NDs are calculated within the (Baayen, Piepen-

brock, and Van Rijn, 1995, CELEX) dataset

Moreover, conversion of measures to Z-scores (in both Figure 5.4 and 5.5)

lets us explore much more analogies even with child data from studies of En-

glish and Danish children from (Stokes, 2010; Stokes et al., 2012; Stokes, 2014)

in Figure 5.5.
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FIGURE 5.5: Scatterplots of average ND vs. Vocabulary Size in
English (left) and Danish (right) children. ND-s calculated within

the (Baayen, Piepenbrock, and Van Rijn, 1995, CELEX) dataset

Per the above-referred works of Stokes and Takac, we can state, the trend is

uniform for children and simulation data, showing a decrease in average ND

with growing vocabulary. Nevertheless, another clear trend is shown by both,

children and SRN data: the decreasing variance in average ND with increasing

Vocabulary Size. The explanation of different variances among children, and

SRN data - due to (Takac, Knott, and Stokes, 2017) - might stem in the different

memory capacity ranges of neural models and children. While children data

came from as many individuals as many samples, the simulation data track

just four instances of artificial learners with given memory capacity (number

of hidden neurons) in different stages of their development.
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FIGURE 5.6: Comparing results of two artificial SRN participants,
with different memory capacity. 100 hidden neurons on the left,

150 on the right hand-side

Both of the scatter plots are produced by a single instance of SRN, with dif-

ferent amounts of hidden neurons. They show reduced variance compared to

Figure 5.4, where the whole SRN population is presented. Hence, the network

with a higher number of hidden neurons (Figure 5.6, right), results increased

the capacity of memory, shows greater variance than the lower-capacity net-

work with 100 hidden units. All in all, Takac’s statement seems to be sup-

ported by our data. Nevertheless, our experimental setting caused the inability

to reproduce late-talker phenomenon. Since even the network with the fewest

amount of hidden neurons (H100) was able to learn lower-ND words, to inves-

tigate this ability, instances with less hidden neurons must be generated and

tested in future work.
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Chapter 6

Discussion

The goal of the present thesis was to compare two perspectives on the phono-

logical part of speech production system through simulation of its develop-

ment. In the first chapter we start with investigating the neuro-biological back-

ground of speech, from the classical Broca–Wernicke–Lichtheim- Geschwind”

model to the neuroimaging studies, which were to indicate speech activation

patterns in the brain are distributed, running in parallel. Next, a current lin-

guistic approach is presented in Chapter 2, focusing on speech errors, to be

reproduced in our experiments, such as the Neighborhood-density and re-

lated phenomena in Section 2.3. Here we discussed reproducible aspects of

children’s phonological development. The next part summarizes the methods

to use in the experiment: Recurrent Neural Networks, parameter optimiza-

tion techniques, and the two specific applications of such networks for similar

tasks to ours. In Chapter 4 the experimental setting is presented. First, the dif-

ferences between our work and the source studies. Thereafter our distributed

phoneme- and meaning-representations exhibited and discussed in context. In

Chapter 5 we present our results, which’s novelty we discuss in Chapter 6.

First of all, our model reproduced the ND-effect, in every aspect; however,

it should not have happened, according to the source study by Takac, Knott,

and Stokes, 2017. They explained the Neighborhood Density phenomena in

an even mathematically very convenient way; Suggesting, that the localistic

representation of word-meanings might be the cause or at least the support for
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such behavior. By all means, their theory should be reviewed, and appropri-

ate interpretation is needed for contradictions between their theory and our

results.

In our view, Conspiracy effect and our analysis of the outlying points in Fig-

ure 5.2 offer an at least logically passable explanation since in our distributed

representations, phonological and even semantic similarity can be found, mak-

ing possible to explain the semantic ND effect. Furthermore, our distributed

representations, are biologically far more plausible, than the source studies’ by

either Dell, Juliano, and Govindjee, 1993 and Takac, Knott, and Stokes, 2017.

As described in Section 1.2, almost every neuro-imaging study of speech pro-

duction found parallel activation patterns distributed along the brain. If we

consider the localistic ones, it will imply, that an infant exactly knows all the

English phonemes even before learning the first word.

Our work’s originality also stems in speech error analysis of errors pro-

duced by artificial children’s phonological development. However, a quan-

titative analysis made only in Chapter 5, the nature of phonological errors

produced by the model, could help the speech therapists unfold ponderous

phonological patterns, to focus more on, or to avoid during speech therapy of

late or even regular talkers.

Beyond the successful parts of the project, words must also fall about the

limitations. The first would be the inability to find semantic errors produced

by the model. Our searching algorithm (semantic_test.py in Appendix A)

searched for mismatch of a known word in the vocabulary. Meaning, that

for a positive hit two meaningful phoneme sequences should be flipped; And

that did not happen not even once. In the future, a semantic analysis should be

improved in several ways. First, we do not know whether semantic errors are

explicit or implicit. If a child knows the word cat and pronounces mat instead,

what he does not know, will it be considered as a semantic error? What if the

child really does not know the meaning of it, just heard several times from
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parents that „cat is on the mat”? Anyhow, our analysis should consider even

other-than-known words. Another limit represented again, the discretization

of the phoneme space in the output layer. Thus, when a network’s output vec-

tor is computed, it is just a point in 44-dimensional continuous space. So it

is essentially impossible to predict exactly the same coordinates, we store in

our look-up table of the phoneme encodings. Therefore, the nearest neighbor

is chosen from the database. So that we get a discrete phoneme, as a predic-

tion. Although, predicting vector in-between two others, is an ambiguity, dis-

cernible in human speech errors. E.g., when we are mixing up two phonemes.

Moreover, some of the English phonemes are as close to each other, so that a

non-native English speaker would hardly distinguish between them (Wilson

and Iacoboni, 2006). So that our decision criterion should have been fuzzier,

working with more potential output phonemes, until matching them against

the vocabulary, and choose the meaningful one. Furthermore, this proposal is

totally in line with the model of Levelt, 1999; Where “self-monitoring” loops

make the same comparison and matching against the conceptual representa-

tions. Another less convenient way to handle such ambiguous inter-phoneme

vector representation in the output layer would be to miss out the phonemes’

discretization and let another additional layer of the neural network produce

voice sequence instead. Like neural text-to-speech systems do nowadays. Al-

though, if we think about it, the situation would be the same as above; except-

ing that the priming effect would happen in the brain of the person listening

to the ambiguous voice. Again, as people do, e.g., by evidence of Rodd et al.,

2013.

The second thing in question is the outlying "not-so-high-ND" words, learned

at the beginning of the learning period. As discussed in 5.2, these outlying

words were caused by initializing the network’s weights randomly. Such that,

when the initial weights for non-frequent features are a bit stronger, it is likely

to learn a word with non-frequent phonological features, so that with just a
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few phonological neighbors. But how about children? How are they learn-

ing the first words? What are the limitations of speech organs? According to

Jakobson, Fant, and Halle, 1951 we know, that the first words are likely to be

semantically related to mother and father of the child. Moreover, phonolog-

ically must be as simple as possible - voices with an opened mouth (a) and

closed mouth (m, p, b). These phonemes form the optimal consonant-vowel

pairs (subject to the energy needed for their production). With sufficient in-

volvement of these constraints to a future model, the learning-course would

better fit the children-data.

Nevertheless, we must be aware, that we are modeling a small, low-level

subsystem of a robust system producing meaningful sentences, with syntax,

semantic relations, and sense along the sentences so that our model must lack

an enormous amount of functionality to consider it as a speech production

model.

The results of our experiment suggest that changing the representation of

phonological and semantic features does not affect the phonological Neigh-

borhood Density phenomenon. Our results - in accord with results of Takac,

Knott, and Stokes, 2017 - are representing a decreasing trend of average pND

in time during the learning course of artificial learners; Such as children’s. It

implies that phonological Neighborhood density is not necessarily related to

localness of feature representations. Instead, we suggest, that phonological

Neighborhood density, and probably even the semantic Neighborhood Den-

sity, is due to the Conspiracy effect as we discussed above. To prove our the-

sis, further work is going to be done, including the changes suggested in this

Chapter.
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Appendix A

CD contents

The attached CD contains:

• :/Training_logs - including error lists of 4 SRN instances, Calculated lin-

guistic measurements and scripts producing the results

• :/Source_codes - of reimplementation of Takac’s model, of our SRN with

distributed representations, source datasets and testing scripts.
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