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Abstrakt 

 

Efektívna komunikácia zámerov robota (čitateľnosť) je kľúčová pre úspešnú interakciu 

človek-robot (HRI). Táto štúdia skúma, ako vzájomné pôsobenie pohľadu, giest ukazovania, 

dĺžky trajektórie a postojov pozorovateľov ovplyvňuje dekódovanie zámerov. Pomocou 

robota NICO sme testovali podmienky s rôznymi modalitami podnetov (iba pohľad, iba 

ukazovanie, multimodálne) a mierou skrátenia trajektórie (60 % vs. 80 % dokončenia). 

Výsledky ukazujú, že multimodálne podnety (pohľad + ukazovanie) zvyšujú presnosť vďaka 

integrácii vizuálno-priestorových a motorických signálov. Predĺžené trajektórie (80 %) 

zlepšujú presnosť pri ukazovaní a multimodálnych pokusoch, čím sa redukuje neistota 

extrapolácie, zatiaľ čo pohľad skracuje reakčný čas. Zhodné podmienky sú spojené s vyššou 

presnosťou oproti nezhodným. Predošlé postoje k robotom preukázali len zanedbateľnú 

koreláciu s výkonom. Tieto poznatky posúvajú vpred dizajn HRI s dôrazom na ľudské 

percepčné heuristiky prostredníctvom adaptívneho, spoločensky transparentného pohybu. 

 

Kľúčové slová: interakcia robot-človek, robot, pohyb, čitateľnosť, umelá inteligencia 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

 

Effective communication of robotic intent (legibility) is critical for human-robot interaction 

(HRI). This study examines how gaze, pointing cues, trajectory duration, and observer 

attitudes shape intention decoding. Using the robot NICO, we tested conditions varying in 

cue modality (gaze-only, pointing-only, multimodal) and truncation (60% vs. 80% 

completion). Results show multimodal cues (gaze + pointing) enhance accuracy by 

integrating visuospatial and motoric signals. Extended trajectories (80%) improve accuracy 

in pointing and multimodal trials, reducing extrapolation uncertainty, while gaze expedites 

reaction times. Congruent conditions are linked to better accuracy scores than incongruent. 

Pre-existing robot attitudes show negligible correlation with performance. This advances 

HRI design, prioritising human perceptual heuristics through adaptive, socially transparent 

motion. 
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Introduction 

 

We live in an era where robotics is constantly advancing and the subsequent 

interaction between humans and robots is becoming increasingly diverse and nuanced. 

Robots have long ceased to be exclusively tools on production lines but are increasingly 

being deployed in various areas such as services, healthcare, logistics and the home 

environment. Currently, robots are increasingly used in the areas of hospitality, services, 

warehousing, transport and in households. At the same time, however, this trend creates an 

inevitable need for human connection with robotic systems. If a robotic system cannot 

clearly communicate its intentions, misunderstandings may occur, cooperation efficiency 

may decrease, or user safety may be compromised. However, one of the characteristics that 

supports such interaction is the robot's ability to convey intent through movement, which is 

the subject of a concept known as legibility, which is analysed in detail in the professional 

literature. 

Specifically, legibility is defined as “the extent to which a human observer can 

correctly and quickly determine a robot’s goal based on observed movement that is 

incomplete.” Legible movement therefore does not result from the ultimate success or 

accuracy of the movement, but from its communicative prowess in how well (and 

effectively) the robot can convey what it is attempting through its movement. The 

importance of legible movement is due to the fact that humans naturally interpret meaning 

from the movements of agents in their environment that appear to be goal-directed. 

Therefore, if robots can confidently adapt this behaviour, humans will trust its goal and feel 

safe in its presence—in turn, humans will believe that they can successfully collaborate in 

robotic mode. Legible movement is particularly important in situations where a human and 

a robot share a common workspace—for example, when performing object manipulation 

while trying to avoid collision or manipulation through object transfer. This thesis attempts 

to address the concept of legibility of robot movement through a theoretical and experimental 

approach. We will analyse the technical terminology, available literature, and research 

developments in the field of legibility of movement. 

Furthermore, legibility will be separated from prediction, a formal measurement 

model will be discussed, as well as peripheral influences such as observer-determined fields 

of view or eye trajectories/fixation movements. The second half will take this theoretical 
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learning and apply it to a real experiment with a social robot named NICO to see if gesture 

and gaze of its hand affect the observer's ability to successfully predict a target. 

The aim of this thesis is to offer a comprehensive overview of the issue of legibility 

of movement in robotics in relation to the world of robotics, as well as to confirm through 

experimental control that human understanding of robot intentions is not only natural, but 

also testable. In the theoretical part, we will therefore rely on current professional literature 

and proven models that form the basis for developmentally and socially successful 

cognitively legible robotic systems. The work contributes to deepening knowledge in the 

field of legibility of movement and formulates recommendations for future research in the 

context of experimental robotics. 
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1. Theoretical Framework 

 

1.1 Legibility vs. Predictability 

The ability of a robot to express what it intends to do is of great importance in the 

field of human-robot interaction. The robot’s motion is often the only source of information 

from which a human can infer what the robot is planning or trying to do. However, in this 

field, there are two concepts that are often combined but are very different: legibility and 

predictability. They concern the understanding of the robot’s motion, but they emerge from 

opposite inferential starting positions and have different implications for trajectory 

generation (Dragan, Lee & Srinivasa, 2013).  

Specifically, a predictable action is one that is consistent with human expectations of 

the goal. This means that if the observer is informed about the robot’s goal, he or she should 

be able to determine the trajectory that the robot will take to achieve such an action. This 

type of movement occurs when the trajectory is most optimized according to a cost function 

of some efficiency – whether that means over the shortest distance or the shortest time to 

complete. Furthermore, it is based on the so-called principle of rational action, which 

assumes that agents (including robots) act efficiently and purposefully (Henry, n. d.; Dragan 

& Srinivasa, 2014). 

In contrast, readability stems from how well the observed trajectory of the robot can 

have its goal determined. It is not the trajectory that we would expect given a known goal, 

but how well we can estimate what goal the robot is pursuing based on the movement. 

Therefore, readable action helps the observer to accurately and quickly guess the robot’s 

intention – often before its trajectory is completed. Formally, this is represented by Bayesian 

inference, where an incomplete trajectory leads to what is the most likely goal (Dragan & 

Srinivasa, 2013). 

While these definitions may seem similar on the surface—both relate to human 

understanding of robot movement—they are actively at odds. The most predictable (i.e., 

efficient) action does not mean it is legible; in fact, the opposite may be true. For example, 

if there are many targets in close proximity, a robot may intentionally choose a strangely 

eccentric trajectory to help facilitate legibility—even though it might be more efficient 

(Dragan, Lee, & Srinivasa, 2013).  
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Ultimately, the rationale for these two approaches lies in the cognitive model of 

inference. Predictability is based on the assumption that a human knows the target and can 

therefore infer the likely intended path. Legibility exists in direct opposition—to inference 

through movement as an attempt to determine its target. These inference approaches differ, 

therefore even trajectories optimized for readability can differ significantly from those 

optimized for predictability (Dragan & Srinivasa, 2013). 

Interestingly, from a psychological perspective, both concepts are assessed by 

teleological inference, i.e. the human tendency to assume that the actions of others were 

intentional. This has been repeatedly demonstrated in children and adults, compared to the 

assumption of intentionality when a given action appears to be purposeful (Tomasello et al., 

2005; Csibra & Gergely, 2007). 

This principle is therefore also relevant for inferences related to the legibility of 

robotic movement. For example, when assessing legibility of action, the probability that 

other perceivers correctly interpret the intention from the intentional action is taken into 

account. This is formally expressed as the assessment of the posterior probability of intention 

conditional on the ongoing action via Bayes’ theorem. The resulting legibility is defined as 

the accumulated probability over time, with emphasis on the parts of movements that occur 

earlier in the temporal sequence, as they allow the observer to process information about the 

robot’s intention more quickly (Nikolaidis, Dragan & Srinivasa, 2016; Busch et al., 2017). 

In reality, however, movement efficiency and legibility of movement may compete 

with each other. For example, if a robot needs to reach an object that is on a table, it should 

do so as quickly as possible. It can take the path of least resistance in a straight line to the 

object, which minimizes the time and energy spent; however, this is an incomprehensible 

action if two objects are actually pressed against each other on the table. Therefore, to 

maximize the legibility of intention, the robot should raise its hand above the object and then 

point it towards the target, thereby clearly indicating its intention (Dragan & Srinivasa, 

2013). 

Since real-world environments are complex and diverse, there is an effort to create 

models that also take into account changing conditions and observer expectations. Many of 

them use the functional gradient method to obtain a trajectory in relation to maximum 

readability and efficiency over time and space. There are even models that relate perspective 
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– the position and distance from where the observer sees the agent’s action – to create so-

called viewpoint-based readability (Nikolaidis et al., 2016). 

These findings have direct implications for the design of robotic systems intended to 

interact with humans. In human-robot interactions within shared environments, operation 

needs to be more than efficient; it also needs to be understandable. This creates a conflict 

between predictability and readability or choosing one over the other based on the situational 

parameters of the task. If the environment is industrial and can tolerate less understandable 

actions, where predictability can increase efficiency, then yes. If it is in a home environment 

or a social robotics environment, then understanding actions and safety during interaction 

must come first (Alami et al., 2006; Hahn & Stone, 2021). 

 

1.2 Legibility of Motion in Robotics 

Since the beginning of the second decade of the 21st century, the literature on human-

robot interaction has increasingly emphasized the importance of legibility of movement, 

with research moving from purely performance indicators towards aspects affecting the 

social acceptance of robots. The first systematic efforts to grasp the legibility of robotic 

movement as a separate concept appeared in research focused on trajectory planning, which, 

in addition to efficiency, was intended to enable an unambiguous understanding of the 

robot’s intention by the observer. This meant that the robot’s trajectory had to be planned 

taking into account not only kinematic inferences, but also psychological inferences 

resulting from the human understanding of the robot’s movements (Dragan, Lee & Srinivasa, 

2013; Dragan & Srinivasa, 2014). 

Early research in this area drew on cognitive psychology, in particular teleological 

reasoning, according to which people naturally interpret the behaviour of others as 

purposeful and intentional (Tomasello et al., 2005). Such findings were then translated into 

robotic systems under the assumption that the observer will attribute action to the robot’s 

movements that result from an innate intention. Therefore, it is essential that the trajectory 

is not only kinematically accurate but also communicatively efficient. These early 

approaches led to the design of analytical models that allowed the generation of movements 

that increase the probability of correctly recognizing the robot’s intention during task 

execution. The logic of these models was based on Bayesian reasoning, where a trajectory 
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given to an observer infers a probable intention (Dragan & Srinivasa, 2013; Nikolaidis, 

Dragan & Srinivasa, 2016). 

One of the first attempts to quantify legibility as a construct occurred by considering 

legibility as an optimization problem, in which the input is a uniform probability distribution 

of potential targets, and the output is the optimization of the informativeness of movements 

associated with the correct target. These models were implemented using functional gradient 

methods, which allowed for the generation of trajectories that deviate from canonical, 

rational, or predictable movements because they favour greater resolution between potential 

targets (Dragan & Srinivasa, 2013). 

For example, instead of creating the shortest trajectory to target A, the robot can 

gesture over what appears to be target A, or create trajectories that avoid ambiguity with 

potential, distinguishable trajectories associated with other targets in the vicinity. Later 

research extended this issue in new directions, such as adaptive models that additionally took 

into account the relative position and viewpoint of the observer (Nikolaidis et al., 2016). 

In terms of metric evaluation, legibility began to be quantified through probabilistic 

measures that assessed whether and how likely it was that an observer would correctly 

identify the robot’s target before the end of its trajectory. 

This was later extended to time measurements, as readability is more than accuracy, but also 

speed. A trajectory that allows for rapid detection of intent is more readable than a trajectory 

that takes longer to process or leads to ambiguity (Busch et al., 2017). Studies have emerged 

using implicit behavioural determinants such as reaction time, guessing success, or 

observers' eye movements as indicators of readability (Wallkötter, Chetouani & Castellano, 

2022). 
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In recent years, the use of machine learning and generative models to generate legible 

movements has also expanded. These models are trained on the basis of human feedback 

and demonstrations and can thus create trajectories that are not only physically feasible but 

also socially understandable. Techniques such as behavioural cloning, generative models, or 

reinforcement learning with a penalty for ambiguous trajectories are used here (Bronars & 

Xu, 2023; Florence, Manuelli & Tedrake, 2022). 

An important aspect is also the robustness of such models in changing environments, 

variability of goals, or ambiguous situations where it is necessary to adjust the movement in 

real time in order to maintain intelligibility. The relationship between the trajectory and the 

robot's intention is currently considered the core of legibility. The trajectory is understood as 

a medium of communication in which the movement is the carrier of information about the 

goal. From the perspective of robotic behaviour design, this means that robots must be able 

to plan and execute movements not only with regard to the physical execution of the task, 

but also to how these movements will be interpreted by humans. For this reason, legibility 

becomes a key property, especially in areas where robots share space with humans, such as 

healthcare, logistics, assisted mobility or domestic environments (Alami et al., 2006; Hahn 

& Stone, 2021). 

The link between robot movement and intention is therefore not only a question of 

navigation, but above all a question of transparency of intention. The challenge for designers 

of such systems is to ensure that every aspect of the movement – from speed to direction to 

trajectory – contributes to the creation of a mental model that allows the observer to correctly 

and safely understand what the robot wants to do. For this reason, legibility is considered an 

integral part of the modern development of cognitive robotics and its application in real-

world social environments. 

 

1.3 Modelling Legibility 

Modelling legible robot motion is an engineering approach to designing robotic 

systems that are easily understood by a human observer. Standard motion planning 

algorithms typically optimize trajectories in terms of execution success, stability, and safety. 

When legibility—the ability of a motion to convey the robot’s intent to a human observer—

is also included in trajectory planning, the trajectory design process becomes more complex. 

Modern research focuses on formalizing legibility using probabilistic models, specifically 

the Bayesian approach, which estimates the probability that a human will correctly identify 
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a robot’s target based on the observed trajectory. (Dragan & Srinivasa, 2013; Nikolaidis, 

Dragan & Srinivasa, 2016). 

The fundamental premise of Bayesian modelling of legibility is the idea that a human 

observer, when watching a robot's trajectory, tries to infer which goal the robot is heading 

toward. This inference occurs even during the observation of an incomplete trajectory, that 

is, before the robot reaches its goal. The Bayesian approach provides a mathematical 

framework for formalizing this process. The calculation is performed using Bayes' rule, 

which describes how the probability of a goal is updated based on new information—in this 

case, a fragment of the trajectory. Formally, the posterior probability of a goal  

 given a trajectory      is calculated as: 

where                  represents the likelihood of the trajectory given a known goal,              is 

the prior probability of the goal, and            is the probability of the trajectory independent 

of the goal (Dragan & Srinivasa, 2013). 

This model allows us to quantify how well a given trajectory communicates the 

robot’s intention: a trajectory is legible if it maximizes the observer’s probability of selecting 

the correct target. This means that we need to create a so-called legibility score about how 

informative a given trajectory is with respect to its intention. In the simplest model, this is 

the maximum posterior probability of the correct target at a given time. In more complex 

models, this is summed over the trajectory with a higher weight assigned to the most 

informative points at the beginning of the action (Nikolaidis, Dragan & Srinivasa, 2016; 

Busch et al., 2017). 

The Bayesian approach is flexible and efficient, but its reliability depends on the 

quality of the probabilities and assumptions used. In later years, more and more models 

began to appear that combined this with cost functions. Cost functions are essentially the 

“costs” or penalties for executing a particular trajectory in terms of legibility. Cost functions 

penalize trajectories that are ambiguous or difficult to interpret, for example, if they lead to 

multiple targets with similar probabilities or if they take longer to understand. The goal of 

optimization methods is to find a trajectory that minimizes cost and maximizes readability 

(Dragan, Lee & Srinivasa, 2013). 
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The most discussed tool for readability optimization is the functional gradient – a 

function that allows you to gradually change the shape of the trajectory so that it is more 

informative to the observer. The functional gradient approach examines small variations in 

the trajectory and evaluates how they affect the probability of correctly recognizing the 

target. This means that some trajectories may be chosen to be more readable, even though 

they are not the shortest or most efficient according to traditional criteria (Dragan & 

Srinivasa, 2013; Nikolaidis et al., 2016). 

Another important factor in modelling for readability is the assumed a priori 

distribution of intentions. For example, if it is likely that the robot can move towards three 

different goals, but one occurs more frequently or is more critical than the others, you should 

adjust the calculation accordingly. This means that in more complex implementations, the 

dynamic updating of the prior probabilities based on the observer’s contextual information, 

previous actions, or robot preferences is also taken into account (Wallkötter, Chetouani & 

Castellano, 2022). 

When evaluating readability scores, the so-called trajectory informativeness is 

sometimes used as the difference between the posterior probabilities of the goals. This allows 

us to assess how effectively a trajectory distinguishes one goal from the others – does the 

observer have enough reasons to eliminate false possibilities? It can be understood as a 

measure of the contrast between the goals – the greater the contrast, the more readable it is 

(Nikolaidis, Dragan & Srinivasa, 2016; Busch et al., 2017). 

Theoretically, these measures apply to trajectory planning within robotic arms, other 

autonomous vehicles and drones, or social robots in the home. However, input differences 

between observers also have a major impact on readability ratings. Therefore, some applied 

authors include variables such as reaction times, target identification accuracy, saccade 

trajectories, or even neurophysiological data collected during passive observation of robotic 

movements. These behavioural factors are then used retrospectively to adjust the 

optimization functions. This allows current readability models to better adapt to the type of 

user or the context of the situation, which generally contributes to an increasingly effective 

robustness of their performance in real life (Busch et al., 2017; Wallkötter, Chetouani & 

Castellano, 2022). 

Recently, motion legibility has been extended through deep learning, which is trained 

through generative models such as variational autoencoders and latent diffusion models to 
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distinguish legible motion from a human perspective (Bronars & Xu, 2023; Florence, 

Manuelli & Tedrake, 2022). Such processes avoid the need for manual posterior probability 

computation by learning distributions from the training data. The advantage of such a process 

is that the trained model can automatically distinguish what is legible and useful through a 

trajectory to a human agent without the need for a manually specified cost function. 

Furthermore, using reinforcement learning methods, a robot can learn useful legible 

motion through engagement with the environment and human feedback (Zhao et al., 2020; 

Ravichandar et al., 2020). Therefore, Bayesian developments, cost function improvements, 

and the findings of newer generations of machine learning provide new expectations 

regarding legibility, where robots can not only function, but also appear to function and are 

easy to understand. This is a fundamental prerequisite for the development of cognitive 

robots, whose behaviour should clearly communicate intent and promote trust, safety, and 

efficiency in human-autonomy interactions. Legibility thus exists as a socio-technical 

characteristic of robotic locomotion in natural environments. 

 

1.4 The impact of gaze and smooth observation on readability 

The perception of robot motion plays a key role in the process of intention inference. 

How a person understands a robot’s intention is not determined solely by the shape or 

purpose of the trajectory, but also by the perspective from which the trajectory is observed. 

Therefore, the literature increasingly emphasizes the so-called visual perspective of the 

observer as an important parameter affecting the legibility of the movement. In this context, 

Nikolaidis, Dragan, and Srinivasa (2016) introduced the concept of viewpoint-based 

legibility, which directly involves the observer’s position and angle of view in the process of 

planning a robot trajectory. Their models showed that the same movement can be interpreted 

as unambiguous or ambiguous depending on the location and angle from which the person 

observes it. 

A trajectory optimized regardless of the human position may thus fail to 

communicate the intention, while another, less efficient in terms of performance, may be 

significantly more legible if designed with the observer’s visual field in mind. Further 

research by the same authors confirms that legibility is a spatially conditioned phenomenon. 

Their experiments showed that if a person is located outside the main axis of movement, the 

probability of correctly determining the robot’s goal before its trajectory ends decreases 
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(Nikolaidis et al., 2016). This knowledge implies that legibility is not a universal property 

of the trajectory, but must always be assessed in the context of a specific spatial arrangement. 

This framework is followed by Wallkötter, Chetouani and Castellano (2022), who expanded 

the understanding of the influence of visual access to the issue of movement occlusion. Their 

concept of occlusion-based legibility points out that if part of the trajectory is physically 

obscured – for example, by another object, part of the robot’s body or another person – there 

is a significant decrease in legibility. In their experiments, they measured how the success of 

determining the goal changes with different types of occlusions. 

The results showed that even short-term or partial visual blockages at key moments 

of movement can negatively affect the observer's ability to correctly interpret the robot's 

intention.  

These findings are particularly relevant in environments where dynamic human-

robot interaction is expected, such as hospitals, schools, domestic spaces, or manufacturing 

halls. Dragan and Srinivasa (2013) have already pointed out in earlier work that effective 

trajectory planning must also take into account which parts of the movement are most 

informative to the human. From a visual processing perspective, these are usually the parts 

that are at the beginning of the trajectory and are also fully visible. If these segments are 

obscured, the human's ability to correctly infer intention decreases dramatically. The authors 

therefore proposed motion planning with redundancy - that is, some movements are repeated 

or overemphasized to ensure their intelligibility even in the event of partial visual 

interruption. 

Moreover, recent research points to the need to consider multiple observers 

simultaneously. In real-world environments, it is often the case that a robot interacts with 

multiple people at the same time, each with a different perspective, a different location in 

space, and a different cognitive framework. Nikolaidis et al. (2016) therefore introduced the 

idea of multi-view optimization, in which readability is evaluated as an aggregate function 

across different perspectives. In this case, the trajectory is optimized to be as readable as 

possible for the largest possible number of observers. This approach requires the integration 

of a human-oriented sensor (e.g., cameras or depth sensors) that monitors where people are 

and how well they can see key parts of the robot’s movement. From a practical perspective, 

this knowledge means that when designing trajectories, it is also necessary to consider the 

so-called visual accessibility. 
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This means that planning should not only take place in the physical space of 

movement, but also in the so-called visual space, where what a person will actually see and 

process is taken into account. If the goal is to achieve legible behaviour, then the trajectory 

must be designed so that key information is accessible, visible and unambiguous from as 

many perspectives as possible. This can be done by using, for example, body expressions, a 

deliberate gesture towards the goal, or significant movements that are also readable from 

peripheral vision. Some research, such as the work of Busch, Mörtl and Hirche (2017), also 

shows that people tend to follow the parts of the movement that are either the fastest or the 

most unusual the most. This is why it is recommended to highlight the beginning of the 

movement, or create a so-called "information window" in the first stages of the trajectory, 

where the robot will provide as many signals about its intention as possible. This knowledge 

is also directly applied to the creation of an experimental design in the practical part of this 

work, where it will be investigated how different combinations of view and direction of 

movement will affect a person's ability to identify a goal in a social context. 

The results of all the above research clearly show that legibility is not only a question 

of what the robot does, but also of where we observe it from. In the context of modern social 

robotic systems, it is therefore essential to approach trajectory design as an information-rich 

process that takes into account the dynamics of the environment, the visual abilities of 

observers, and potential visual limitations. Without this, the robot could behave technically 

correctly but at the same time be communicatively illegible – which is a fundamental 

problem in an environment with human interaction. 

 

1.5 Readability modelling: simple approaches 

While the ongoing debate about the legibility of robotic motion suggests a growing 

consensus on the potential of both complex generative models and simpler alternatives to 

achieve comparable results, a less complicated solution is not only more feasible in terms of 

computation time and explainability. Simpler alternatives also exist that suggest 

generalization of concepts, such as finding an appropriate linear perceptron classification for 

predicting the goal of robot movement. A perceptron is a binary classifier that distinguishes 

between two classes using a linear combination of input features. The use of a perceptron as 

a classifier would successfully apply in such a way that the features consist of particular 
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points along the trajectory or derived aspects of motion (e.g. direction, speed, time point) 

and the classification is final movement goal. 

This is particularly useful in scenarios with a limited number of possible outcomes, 

such as with the work by Busch, Mörtl, and Hirche (2017), who found that participants were 

able to infer the robot’s goal near the end of the non-linear trajectory by observing their 

reactions throughout the movement. Therefore, using a perceptron to predict legibility not 

only facilitates the utilization of specific points along motion trajectories but also allows 

researchers to better understand which impulses were most useful to predict intention 

recognition through weight allocation. This means that the training set can give weights to 

specific sections of motion, allowing researchers to determine which orientations render 

motion intention recognition most effective and may be clearer if an observer needs to 

provide clear visual distinction between very similar motions or if only partial segments of 

the overall motion plan are visible to the observer. Furthermore, as it can be embedded into 

any trial without the need for modification or extensive manipulation from a preexisting 

experimental design to merely assess legibility in real or quasi-realistic settings, it serves as 

an effective method for evaluating legibility in practical scenarios. 

Yet while limited in computational ability, it is interpretable, both as a foundation for 

a more complex model of legibility classification or for post-hoc interpretation of the 

findings. Another noteworthy method involves using gradient descent as an optimization 

technique to render trajectories more legible. 

Where classical motion planners seek to minimize cost in terms of efficiency (time, energy, 

distance), the legibility planner seeks to maximize the likelihood of an observer correctly 

recognizing its intent. By iteratively modifying the trajectory's shape, one can converge to 

all forms that yield an increased posterior probability of the correct intention. 

Dragan and Srinivas (2013) explore this notion extensively; they redefine legibility 

as an optimization problem and demonstrate that gradient-based approaches can increase the 

differences between posteriors of individual intentions. Ultimately, the resulting trajectory 

may be less efficient from a classically rational perspective, but much more informative to 

the observer. 

Essentially, gradient descent allows for the creation of trajectories that purposefully 

avoid the fastest route to reduce uncertainty. Imagine a robot with multiple targets all in a 

similar proximity. Where a typical planner would generate an average or straight trajectory 

that maybe an onlooker mistakes—using gradient descent allows for the movement to be 

explicitly focused on just one target from the outset even if that means greater energy 
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expenditure to get to such a conclusion. Such optimization works well in dynamic 

environments where trajectories are constantly shifting, and responders must rely on the 

expected actions of the robot. In fact, using gradient descent becomes a useful tool for 

dynamically adjusting trajectories in real-time. 

The final technique that's growing popularity within the realm of readable motion is 

called motion blending. Motion blending occurs when multiple components of movement or 

gestures are blended together to create a trajectory that better expresses what the robot is 

doing than what any one component could do on its own. Therefore, it becomes two or more 

partial trajectories or gestures which work together to provide better informative power. 

Blending is based on the principle that human perception integrates multiple sensory cues 

and that visual features combined with features cognitively relevant yield faster recognition 

of intent. For example, a robot thrusting its hand toward one object while simultaneously 

looking at an onlooker may yield more effective results than just the thrusting gesture alone. 

This form of movement is used often in social scenarios where human-robot interactions 

necessitate instant awareness and response feedback. 

According to Alaccari et al. (2017) in their series of behavioural studies, the ability 

to merge movements renders a more expressive, informative gesture which allows 

participants to estimate the goal sooner and more accurately; however, merging gestures that 

are too dynamic or fusion/non-sensical can be detrimental, so a balance must be struck. The 

intention should be to determine the most rudimentary “units of information”—a hand move, 

twist of the torso, direction of the gaze—and successfully integrate those into a reasonable 

whole. This can be achieved through heuristics for legibility or through imitation-based 

learning or via imitation. 

Another benefit of blending is that it is context-dependent; the robot can vary the 

speed or technique of blending based on the present situation. For instance, if it determines 

that its action is not clear enough, it can blend more actions into it or blend additional cues 

to it. According to Wallkötter, Chetouani and Castellano (2022), when this happens, 

observers tend to respond faster and with greater accuracy which showcases how blending 

can enhance both interactivity and effectiveness in human–robot interactions. Thus, simple 

methods like perceptron, gradient descent and blending are readily applicable methods to 

improve clarity of robotic motion. Their benefits consist of not only lower computational 

complexity but also improved interpretability which is key in settings with end-users where 

rapid testing and refinement of motion models is needed. Furthermore, they operate well 

with the behavioural metrics, explored as part of the methodological section of this study, 
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therefore allowing for theoretical claims to be tested in micro-situations of human-robot-

interaction. 

 

1.6 Evaluating the readability of movements 

Assessing the legibility of robotic movements is an essential component of the 

human-robot interaction research. The execution of legible movement trajectories would 

remain unverified in terms of effectiveness without proper evaluation methods. The purpose 

of assessment is to understand how well a certain movement communicates its intended goal 

to a bystander and if it does so effectively, efficiently, and without supplementary resources. 

Thus, the literature provides a collection of assessive measures that quantitatively and 

qualitatively record over time the extent to which movements come across as legible. One 

of the most prominent developments in the formal assessment of movement legibility per se 

is the notion of posterior probability of the goal via Bayesian inference. This probability 

indicates how probable it is that a certain goal is being executed based on observed 

movement trajectory. 

This inference works in two directions—when the goal is known, one can predict the 

likely movement (predictability); when only the movement is observed, the goal must be 

inferred (legibility). The legibility index, extensively used in experimental setups, is a 

quantifiable assessment of how informative the trajectory is from an observer's point-of-

view within this wider Bayesian framework. This score can be derived as a maximum 

posterior probability at a given temporal increment during movement or through calculating 

the integral of posterior probabilities throughout the entire trajectory, ensuring that more 

weight is given to early movements which tend to be more important for observers 

(Nikolaidis, Dragan & Srinivasa, 2016; Busch et al., 2017).  

Another important aspect of legibility assessment concerns experimental setups 

which test if observers are capable of judging the motions correctly. Such designs rely on 

different forms of human feedback—either through behavioural responses such as choosing 

the correct target or measuring response time, that is, how quickly a person can make a 

decision. In reality, these are most often tasks where a human observes an endpoint motion 

of a robot and at some point, hopefully before the endpoint is reached, is prompted to indicate 

where he thinks the robot is going. The correctness in responses and the time it takes to 

respond can become basic dependent variables that are measured objectively. 
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Busch, Mörtl and Hirche (2017) rely on such an experimental design to explore the 

potential interaction between a human and an industrial robotic arm in a collaborative grasp 

of an object. Their findings demonstrate that legible motions increase the likelihood that a 

human can accurately identify the intended target before it is reached. Yet, they also show 

that legibility occurs not just in terms of accuracy but also in terms of latency—in order for 

a human to register what's going on, if it take too long to identify the intended target, not 

only does this decrease efficiency of interaction but it reduces trust in the system as well. 

This was determined through additional eye movement measurements which indicated that 

with legible trajectories, humans attended to relevant parts of the movement, whereas with 

less clear movements, attention was spread across more variables. Ultimately, human 

assessment of legibility can be subjective or objective. Objective criteria are based on 

measurable data obtained during or after the observation of robot motion. Subjective criteria 

rely upon those who observe during operation to provide reports on how clear, intuitive or 

predictable robot movement was. 

While these metrics reflect the effectiveness of interaction with the robot, they may 

be influenced by external factors such as the participant’s cognitive abilities, prior 

experience with robots, or emotional state during the assessment. Therefore, researchers 

prefer results that are more objective and statistically valid and reliable. For instance, 

response time—how long it takes for an individual to react to a specific action, successfully 

guessing a target, or eye-tracking performance. According to Wallkötter, Chetouani, and 

Castellano (2022), the best way to gauge movement readability is through both means; 

subjective testing reveals things that are not always visible through behavioural 

measurement. 

Other relatively recent studies also adopt a hybrid model in the sense that they apply 

behavioural experiments and machine learning simultaneously. For instance, Bronars and 

Xu (2023) found that trained neural networks on human responses are able to learn and 

predict an observed trajectory’s probability of correct target estimation. 

They not only generalized the results for novel trajectories but also revealed which 

aspects of the movement contain the most information from the perspective of an observer, 

employing large-scale data gathering through experimental tasks with the objective of 

trained networks being able to predict the feasibility of legibility in real-time and adjust robot 

trajectory based on what it perceives in its observer's response at that moment. 

Thus, the advantage of such new models is that they do not merely require static 

testing for feasibility; instead, it can evaluate legibility dynamically, while the user is 
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actively observing the robot's movement. For example, if a system senses lagging response 

time, it can retrospectively readjust its trajectory and provide an additional gesture as 

feedback. Such an approach for assessing legibility promotes responsiveness within robotic 

systems and makes them less vulnerable to misinterpretation that would otherwise lead to 

errors or even safety concerns. In light of these findings, it is also important to outline 

specific recommendations for experimental design. It is suggested that multiple types of 

targets are used with varying levels of spatial reasoning so that one can see whether legibility 

suffers when similar targets appear and what trajectories work best in those cases. It's also 

recommended that the experimental setting permits various angles of viewing so that 

researchers can see if legibility changes through other views. Finally, it's recommended that 

qualitative looming questionnaire items (ex: 1-7 scale for how intelligibility was perceived) 

coexist with measures of reaction time and accuracy in order to better assess how effective 

communication through motion was. 

These experimental results not only contribute to the theoretical understanding of 

legibility but also provide a foundation for designing future robotic systems that clearly and 

consistently communicate their intentions. Thus, it seems that the focus on combined 

measurement—both legibility and useful information measured quantitatively and 

qualitatively—presents an ideal solution for something so intricately perceived by humans 

in social settings with autonomous agents. 

 

1.7 Legibility in the Context of Human–Robot Interaction 

Legibility of robot motion is not only a technical attribute in human-robot interaction 

but also a psychological and social factor that influences user safety, task efficiency, and 

trust in autonomous systems. Robots who move in ways that are legible—and thus, perceived 

as having goals—allow humans to more easily collaborate toward a common goal and reduce 

cognitive load on the human, as they don't necessarily have to guess what the robot is doing 

(Wallkötter et al., 2022). For example, when robot movements are legible, humans are better 

able to predict what the robot is doing, which means that additional channels of 

communication are not always necessary for effective operation (Alami et al., 2006). 

Legible robot motions facilitate faster human responses and increase willingness to 

collaborate when actions are intuitive and goal-directed (Busch et al., 2017). This is 

especially relevant in physically collaborative contexts, such as surgery, eldercare, or joint 

object manipulation in industrial settings. Psychologically, this sense of legibility comes 
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from the assumption that the robot has intent behind action—otherwise known as 

teleological inference—the ability of people to see whether any agents—including 

themselves—move with purpose. 

Tomasello et al. (2005) and Csibra & Gergely (2007) found that humans—even 

infants—tend to assume that other people's movements have purpose—as long as they seem 

to be efficient and goal-directed. Therefore, if a robot can move efficiently and achieve 

movement legibility, it has a higher likelihood of people assuming there was purpose to the 

action as well, which opens them up to trusting the agent, especially if it has its own measures 

of efficiency and intention for such behaviour (Dragan & Srinivasa, 2013). Yet movement 

legibility takes this one step further—it does not only mean to ascertain goal-directed 

behaviour—it means to infer why the robot does what it does, as well. 

Thus, legibility functions as a form of social signalling, enabling robots to non-

verbally convey both their intended goal and the rationale behind their actions (Hahn & 

Stone, 2021). This stands to reason because in many instances, robots are in environments 

where they cannot be verbally acknowledged, or they are doing something time-sensitive to 

which a human machine operator must immediately respond. Therefore, embedding 

legibility into movement planning is essential for ensuring that actions are comprehensible 

even in complex, real-world scenarios. Moreover, findings suggest that legibility affects trust 

in use with an autonomous system. For example, Wallkötter et al. (2022) express that when 

a robot moves ambiguously without explanation of intention, the operating human is both 

distrusted and stressed; yet, those robots who can move with clarity are trusted more, viewed 

as predictable, safer and more appreciative of their space. This is particularly important for 

sensitive operations, inclusive of surgery and medical robots where human user trust is 

necessary for use of the technology. 

Furthermore, legibility intersects with the concept of shared intention, which in 

developmental psychology refers to the mutual understanding of a goal between two agents 

(Tomasello et al., 2005). For robotic systems in particular, the ability to convey shared 

intention through legible movement is vital to becoming a seamless partner of interaction. 

Practically speaking, this involves, for example, that the robot executes a movement whose 

objective is clear and simultaneously acknowledges the human's position in space so that 

this goal becomes manifest and intelligible (Nikolaidis et al., 2016). 

Legibility was examined by Hahn & Stone (2021) as a key factor in establishing trust 

when collaborative conditions existed for instrument passing. They reported that if a robot 

conveys its intention beforehand—such as waving an arm or preliminary motion before 
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gripping—then users are more likely to accept the interaction as natural and welcomed 

participation. Their results support that even minor adjustments to phase can shift perceived 

intention and person's ability to want to contribute. Therefore, among current scholarship, 

there seems to be a focus on achieving action as well as comprehension thereof—especially 

within true dynamic environments. For example, Wallkötter et al. (2022) claim that it 

benefits the system if adjustments can be made post trajectory based on human feedback; if 

sensors read a concerned expression or slow response, the robot should correct itself with a 

more direct gesture. 

This reflects the idea of cooperative legibility, where legibility is seen as an emergent 

quality resulting from continuous feedback between human and robot. Thus, in these cases, 

it's evident that legibility goes beyond the technical concern and operates as a functioning 

factor for successful sociocultural integration of robotics. For the considerations of systems 

design, this means that technology should render legible to developers that whatever required 

for movement planning should be approached as part of interaction design—meaning as a 

type of communication. Legible motion is therefore more than just movement from point A 

to point B—it reflects intentionality, openness to collaboration, and awareness of the human 

partner as an active agent in the interaction (Wallkötter et al., 2022) 
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2 Related Research and Applications 

 

Research on the legibility of robot motion has grown significantly in recent years, 

especially as initiatives to incorporate robotics into everyday human life increase. This topic 

extends beyond the efficiency and effectiveness of autonomous systems to include aspects 

such as understanding, synergy, and trust that are critical for successful human-robot 

integration. Readability—the ability for a robot to express intent through motion—is found 

on the continuum of potential applications from industrial assembly lines to household 

environments. One of the first attempts to tackle the concept comes from Dragan and 

Srinivasa (2013), who position readability as not a by-product of motion planning, but an 

orthogonal optimization objective. Where trajectory planning aims to create the most 

efficient action (i.e., minimal time, distance, or energy expenditure), these scholars propose 

planning from the perspective of an onlooker. The purpose? To maximize the posterior 

probability that the observer deduces what the robot aims to do as early as possible into the 

action. Thus, there exists a type of motion planning with readability as an intended purpose 

where the optimization objective is explicitly focused on how informative a motion is from 

a human perspective (Dragan & Srinivasa, 2013). This conceptual framework inspired 

empirical studies aiming to evaluate the effectiveness of legible trajectories in practice. 

 

Table 1 Summary of Key Research on Robot Motion Legibility 

Authors Focus of Research Key Findings 
Application 

Context 

Dragan & 

Srinivasa (2013) 

Legibility as 

optimization goal in 

trajectory planning 

Legibility should be planned 

from observer’s perspective; 

enables earlier goal inference 

General HRI, 

motion planning 

Busch, Mörtl & 

Hirche (2017) 

Experimental 

validation of legible 

trajectories 

Increases accuracy and speed 

of human responses; reduces 

cognitive load and increases 

trust 

Collaborative task 

performance 
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Authors Focus of Research Key Findings 
Application 

Context 

Wallkötter, 

Chetouani & 

Castellano (2022) 

Adaptive feedback 

and cooperative 

legibility 

Robots adjusting movements 

based on user feedback 

improve clarity and 

collaboration 

Real-time 

interaction, 

healthcare, 

robotics 

Source: Dragan & Srinivasa (2013); Busch, Mörtl & Hirche (2017); Wallkötter, Chetouani 

& Castellano (2022) 

 

Busch, Mörtl and Hirche (2017) hosted a series of experiments determining how 

humans react to the movements of a robotic arm when constrained by varying degrees of 

readability. Participants were charged with determining what the robot wanted to accomplish 

as quickly as possible. The results indicate trajectories optimized for readability allow for 

quicker and more accurate determination of goals which suggests successful collaboration. 

In addition, readability minimizes cognitive load - participants experienced reduced 

frustration, responded more naturally, and reported higher levels of trust with the robotic 

system (Busch et al., 2017). Thus, one of the critical findings related to readability emerges 

from its impact on human performance. When robots can move in a readable way, humans 

are better equipped to predict what their next steps may be, thus increasing their own 

effectiveness in collaborative scenarios. 

For instance, in a physical collaborative environment, legible trajectories lower 

response time, increase accuracy of predictions, and reduce conflicts or errors according to 

Wallkötter, Chetouani, and Castellano (2022). These findings extend beyond laboratory 

settings and apply to real-world scenarios of passing objects, tool assistance, and 

collaborative efforts in decision making. 

Thus, while legibility encourages behaviour change, it is also a method of 

communication in spaces that don't have or allow communication. In these situations, the 

only means of intent is via motion. For example, Dragan and Srinivivasa (2013) studied the 

idea that in situations where visual redundancy occurs—where specific parts of the motion 

are highlighted purposefully—this helps with goal inference, even if parts of the trajectory 

become blocked or occur outside one's main field of vision. Thus, legibility can be used 

effectively even in fragmented distracting scenarios. Furthermore, some emerging research 
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questions suggest that feedback from the observer from the onlooker should be used to 

inform what is generated for motion.  

 

Table 2 Types of Human Feedback Used for Adaptive Robot Motion 

Type of 

Feedback 
Description Impact on Robot Motion 

Example 

Study 

Eye gaze 

tracking 

Monitors where the user is 

looking during interaction 

Adjusts focus of robot's 

gestures or orientation 

Wallkötter et 

al. (2022) 

Facial 

expressions 

Detects signs of confusion, 

stress, or approval 

Modifies speed, angle, or 

adds clarification gestures 

Wallkötter et 

al. (2022) 

Response 

latency 

Measures time it takes for 

user to react to robot's 

movement 

Optimizes motion timing to 

enhance clarity and 

predictability 

Busch et al. 

(2017) 

Behavioral 

prediction 

Anticipates human action 

based on prior interaction 

patterns 

Adapts path planning 

dynamically before action 

occurs 

Busch et al. 

(2017) 

Source: Adapted from Wallkötter et al. (2022), Busch et al. (2017) 

 

Some of the systems that will soon be possible can use eye gaze or facial 

microexpressions as data points to change its course based upon perceived understanding. 

For instance, should a robot sense fear or puzzlement on someone's face, it can recalibrate 

its movement in terms of speed, approach angle, or by adding supportive gestures 

(Wallkötter et al., 2022). This is known as cooperative legibility, whereby legibility does not 

exist in a vacuum but instead through extended engagement with feedback from human to 

robot and vice versa. The advantage of such a system is that the robot operates dynamically, 

assembling responses over time and understanding communicative actions that make the 

most sense to particular individuals. 

In addition, research findings suggest that the impact of legibility is contingent upon 

prior technology experience. For example, in the study conducted by Busch et al. (2017), 

those participants unfamiliar with robot interaction benefited significantly more from legible 

motion than those who were previously exposed to working with robots. This suggests that 
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legibility can act as a homogenizing quality across interactions—more accessible to diverse 

users from novice to less technologically inclined and at-risk populations. 

Legible action has significant interaction characterization in joint object 

manipulation. The study by Dragan and Srinivasa (2013) examined the ways in which a 

robot can legitimate its intention when grasping and moving an object. They found that if a 

robot conveys its destination by leaning in or subtly moving its arm during a reposition, 

humans will be able to anticipate what comes next and adjust their behaviours accordingly. 

This action works well in surgical situations where a robot may switch tools from one hand 

to the other as it drops or hesitation must not occur. These environments have risks; 

therefore, understanding the legibility of motion promotes the desired reaction. Similarly, in 

a home, we want to believe that robots will do so naturally—with humans when they are 

passing items to one another, cleaning, or attempting to direct an elder with limited mobility. 

Here, legibility of action supports safe and successful engagement. 

The research positions predictive interaction planning as a furthering of motion 

legibility. These are systems that, not only through feedback but a prediction of human 

behaviour based on previous interactions, allows for changes in robotic movement 

accordingly. These hybrid systems integrate findings from behavioural research and machine 

learning to develop the types of systems that predict when some user might take something 

from them, attempt to go a certain way, or respond to a specific stimulus (Busch et al., 2017).  

Based on the findings presented, it can be concluded that the legibility of robotic 

motion represents a key concept in the field of human-robot interaction. It refers to a robot's 

ability to convey its intention through movement in such a way that an observer can 

intuitively recognize it before the trajectory is completed. This ability directly impacts the 

efficiency of joint activities, reduces the user's cognitive load, and, importantly, influences 

the level of trust in the robotic system. Research also confirms that the legibility of robotic 

motion has practical applications across a wide range of domains—from industrial settings 

to home assistance—significantly affecting human performance during collaborative tasks. 

The theoretical part revealed that the most frequently studied methods to date have 

focused on optimizing motion through advanced algorithms and incorporating observer 

feedback. However, a research gap remains in the area of simple and straightforward ways 

of generating legible motions that could be easily applied in various environments without 

the need for extensive computational resources. The lack of practical and intuitive methods 
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that enable the design of legible trajectories even for simpler robots represents a current 

challenge in this area. 

The practical part of the thesis builds upon these insights and focuses on an 

experiment with the humanoid robot NICO (Picture 1). The experiment tested the design of 

movements that should be intuitively legible from a human perspective. The goal was to 

verify whether it is possible to communicate a robot's intention through simple manipulative 

gestures in such a way that a human observer can interpret it correctly. The results of the 

experiment will also help evaluate the extent to which theoretical knowledge about motion 

legibility holds true in real-world interaction scenarios. 

 

                                                Picture 1-Nico robot 
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3 Technical Translation in Robotic Arm Kinematics 

 

3.1 Introduction 

In the context of our experiment, the movement of the robotic arm is constrained in 

a specific manner: the wrist must traverse a linear path while the forefinger of the robotic 

hand continuously points to the intersection of this line and a designated plane. This 

requirement necessitates a systematic approach to control the arm's movements, allowing us 

to manage the trajectory in discrete temporal segments. At each segment, we calculate the 

subsequent joint angles, from which we derive the angular velocities necessary for motor 

control. This chapter explores the methodologies employed to generate these joint angles 

and the challenges faced in achieving precise movement. 

3.2 Generating Joint Angles 

The primary objective is to map an input value between 0 (representing the initial 

position) and 1 (indicating the contact position) to 7 distinct joint angles of the robotic arm. 

This mapping is crucial for ensuring precise trajectory playback, which depends on effective 

control of the arm's motors while minimizing background noise. By sending angle 

commands exclusively at designated times, we maintain synchronization and reliability in 

the arm's movements. 

3.3 Data Collection and Forward Kinematics 

To create a reliable dataset for training our model, we utilized a semi-manual 

calibration process. A wire was stretched between predetermined start and end points, and 

joint angles were manually recorded as the robotic arm was moved manually along this linear 

path. To correlate these positions with fractional values—ranging from 0 to 1—we employed 

forward kinematics. Our method calculates the 3D coordinates for both the initial and contact 

positions within the reference frame of the kinematic model. For any intermediate position, 

we computed the closest 3D point on the line and derived its corresponding fractional value. 

The resulting dataset effectively maps these fractions to the respective joint angles, 

establishing a foundation for subsequent neural network training. 

3.4 Training via neural networks 

Robotic Arm Motion Control Model was designed as a two-layer fully connected 

perceptron. The input layer receives a single parameter representing position along a 

trajectory segment (normalized to 0–1). The architecture consists of two layers: a hidden 
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layer with 20 neurons using the ReLU (Rectified Linear Unit) activation function to enable 

efficient learning of nonlinear relationships. The output layer contains 7 neurons, each 

corresponding to a degree of freedom in the robotic arm. A sigmoid function activates the 

output layer, ensuring values in the 0–1 range. These outputs are then linearly mapped to the 

specific angular ranges of the arm joints.  

Initial experiments employed a training dataset of 20–25 manually recorded 

positions, but the limited data size led to reduced prediction accuracy. The model exhibited 

better performance in upper trajectory regions, where gravitational effects on arm 

compliance were less pronounced. Conversely, in lower positions, gravity caused greater 

motion deformation. Accuracy was further compromised by discrepancies between static 

and dynamic control modes, particularly during environmental contact, where the arm 

displayed oscillatory behaviour. Architecture optimization (e.g., neuron count, ReLU 

selection) was performed experimentally to mitigate these issues. (Pic. 2, Pic. 3, Appendix 

7)  

 

 

                                           Picture 2 – Perceptron structure 



 

 34 

 

                                               Picture 3 – Model structure, inner part 

 

3.5 Inverse Kinematics via Differentiable Framework 

To enhance our approach, we explored an alternative methodology by 

reimplementing forward kinematics using PyTorch’s differentiable operations. In this 

framework, joint angles were treated as parameters of the network, and gradient descent was 

employed to optimize these angles, minimizing the positional error between the outputs of 

forward kinematics and target coordinates. While this technique initially achieved sub-

millimeter precision in simulations, real-world deployment presented challenges. It became 

evident that the issue was not merely motor jitter due to rapid oscillations in angle 

adjustments; rather, it stemmed from not constraining the angles within the hardware's real 

capabilities. This discrepancy led to variations between simulated and actual angle requests. 
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By restricting the angle range with a suitable network architecture element, we improved the 

system's performance and achieved consistent results. 

3.6 Trajectory Blending 

To address the limitations encountered, we adopted a hybrid strategy for trajectory 

generation: 

• Upper Trajectory: Predictions derived from the neural network. 

• Lower Trajectory: Implementation of differentiable inverse kinematics. 

• Transition Zone: Linear angle blending between the upper and lower trajectories. 

This blended approach introduced minor positional errors (±2mm) in the transition region 

but effectively eliminated motor instability. The resulting trajectory demonstrated functional 

viability, even in the presence of non-ideal continuity. 

3.7 Key Observations 

Several critical observations emerged from our research: 

1. Manual datasets proved insufficient for high-precision modelling, primarily due to 

limited samples and inherent human calibration errors. 

2. Gravitational effects disproportionately impacted the accuracy of lower trajectory 

positions. 

3. Motor dynamics, including inertia and control latency, necessitated the 

implementation of trajectory smoothing techniques to ensure reliable performance in 

physical systems. 

4. The Rectified Linear Unit (RELU) activation function outperformed the sigmoid 

function in hidden layers, with 20 neurons identified as optimal for our model. 

3.8 Outstanding Challenges 

Despite the advancements achieved through this dual-methodology approach, several 

challenges remain: 

1. Developing dynamic compensation mechanisms for gravitational and inertial forces 

acting on the robotic arm. 

2. Quantifying the propagation of error within blended trajectories. 

3. Enabling real-time trajectory optimization while adhering to hardware constraints 
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4 Experiment design  

 

4.1 Aim 

The primary objective of this experiment is to investigate the motion legibility of the 

NICO robot as perceived by human observers. In this experimental framework, participants 

will predict the target points of NICO’s motion on a touchscreen interface, utilizing 

information derived from the gaze and/or pointing movements of the robot’s right arm. This 

study aims to establish a baseline for understanding how the integration of different 

modalities contributes to the legibility of NICO's movements. 

The central research question guiding this inquiry is: “How do various modalities 

(gaze and pointing) and their integration influence the perceived legibility of NICO’s robotic 

motion and the participants’ ability to predict the robot’s intended target?”  

We seek to quantify the extent to which the robot's gaze enhances legibility, the 

degree of integration that occurs between modalities, the impact of varying environmental 

cues on legibility, and how gaze influences participants’ behaviour and beliefs regarding the 

robot's intentions.  

To further analyse participants’ gaze patterns, an eye tracker will be employed during 

the experiment. It is also important to note that NICO’s eyes, which function as cameras, are 

fixed in position; therefore, the direction of its gaze is determined by the pose of the robot's 

head, which has two degrees of freedom. Despite this limitation, we will incorporate the 

concept of gaze in our analysis. 

4.2 Conditions 

Participants will be exposed to three main conditions and one additional condition 

composed of two sets of incoherent trials. When NICO will be moving its right arm, two 

types of trajectories will be created: In the first case, NICO will stop its pointing movement 

after completing a trajectory segment that covers three-fifths (⅗) of the total length from the 

starting position (shorter segment). In the second case, NICO will stop after completing a 

trajectory segment that covers four-fifths (⅘) of the total length from the start (longer 

segment). In both cases, participants will predict the target position on the touchscreen based 

on an incomplete trajectory. 

In gaze-only (G)condition, NICO will have its head oriented towards the target point 

on the touchscreen. The participants’ task is to estimate the target point based solely on the 
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robot’s gaze. Participants will not have any other cue than the robot's gaze. The condition 

serves as a baseline for understanding the effectiveness of gaze as a cue. 

In pointing-only (P)condition, NICO will be executing arm movements covering 

two different segments. In the first part of this session, NICO will complete a shorter segment 

and stop. In the second part NICO will complete a longer segment and stop. 

In gaze-pointing (GP)condition, NICO will combine its gaze and pointing 

movement to indicate a target point on the touchscreen. As in the pointing-only condition, 

the pointing movement will stop at two trajectory segments (shorter and longer). 

Additional gaze-pointing incoherent (GPi) trials are designed to investigate the 

impact of conflicting cues. In these trials the robot will point at a target on the touchscreen 

while gazing at a slightly shifted spot. Again, the pointing action will stop at two trajectory 

segments (shorter and longer) and the participants will predict the target location.  

4.3 Hypotheses  

1. Multimodal Superiority Hypothesis H₁: Target localization accuracy significantly 

exceeded unimodal conditions when participants observed coherent gaze-pointing 

cues (GP), compared to gaze-only (G) and pointing-only (P) conditions (AccGP > 

AccG, AccP). Rationale: Integration of visuospatial (gaze) and motoric (pointing) 

cues was hypothesized to optimize intention inference through complementary 

informational redundancy.  

2. Trajectory Completion Hypothesis H₂: Extended trajectory segments (80% 

termination) produced higher accuracy than truncated segments (60%) in both 

multimodal (GP80 > GP60) and unimodal (P80 > P60) pointing conditions. 

Rationale: Longer movement sequences were posited to reduce endpoint 

extrapolation uncertainty by providing richer kinematic evidence.  

3. Oculomotor Primacy Hypothesis H₃: Reaction times for gaze-only trials (RTG) 

were significantly faster than for multimodal (RTGP) or pointing-only (RTP) trials 

(RTG < RTGP, RTP). Rationale: Direct oculomotor cues were theorized to enable rapid 

attentional orienting, bypassing the computational demands of parsing limb 

kinematics.  

4. Attitudinal Bias Hypothesis H₄: Pre-existing robot attitudes, quantified by NARS 

scores, positively correlated with overall task accuracy (ρNARS-Acc < 0), such that 
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lower robotic anxiety predicted superior performance. Rationale: Reduced 

anthropomorphism scepticism was expected to enhance cue interpretation 

willingness, diminishing cognitive load from human-robot interaction atypicality. 

5. Cue Congruence Advantage Hypothesis H₅: Target localization accuracy in 

congruent multimodal conditions (e.g., GP60, GP80, where gaze and pointing cues 

align) significantly exceeded incongruent conditions (I60, I80, where cues 

conflict), due to reduced spatial ambiguity (AccGP60 > AccI60; AccGP80 > AccI80). 

Rationale: Consistent visuospatial and motoric signals in congruent trials were 

hypothesized to resolve referential uncertainty, whereas conflicting cues in 

incongruent conditions impose greater demands on attentional selection and conflict 

resolution. 

 

4.4 Demography and participants personal data  

The study employed a purposive sampling strategy to ensure demographic 

homogeneity, restricting participant selection to individuals aged 18–35 years to minimize 

variability associated with age-related differences in motor and sensory functioning. A 

convenience sampling approach was utilized, prioritizing university student populations due 

to their accessibility and operational feasibility for study participation. To maintain 

experimental control over linguistic variables and ensure precise comprehension of task 

instructions, all procedures were conducted exclusively in the Slovak language. 

Consequently, non-native Slovak speakers were excluded from participation, as linguistic 

proficiency constituted a predefined exclusion criterion. This recruitment framework aimed 

to balance methodological rigor with practical constraints inherent to participant acquisition 

in experimental research. 

4.5 Ethics  

The experimental paradigm was designed to prioritize non-invasive methodologies, 

ensuring participant safety by eliminating risks of psychological or physical harm. Stringent 

safety protocols were implemented throughout the study, including the integration of an 

emergency termination mechanism to immediately halt robotic operations in response to 

unexpected behaviours. Prior to experimental commencement, participants were required to 

review and sign informed consent documentation pertaining to study participation, data 

collection procedures, and the secure handling of personal information. All protocols 
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adhered to ethical standards governing human subjects research, with transparency 

maintained regarding the purpose, risks, and voluntary nature of involvement. 

4.6 Experimental setup 

The experimental protocol required all participants to complete the procedure within 

a standardized laboratory environment, seated at a workstation where a touchscreen was 

centrally positioned on the desk surface. The NICO robotic platform was situated directly 

opposite participants, separated by the display screen (Fig. 1). A video recording system was 

positioned at the ventral aspect of the robotic platform to capture interaction dynamics. 

Throughout experimental trials, the principal investigator remained stationed at a secondary 

workstation within the same laboratory space, obscured by a partition, while monitoring 

procedural fidelity via a laptop that streamed live footage from the recording apparatus.  

A head-mounted PupilCore eye-tracking apparatus was employed to quantify ocular 

metrics, with participants undergoing standardized calibration procedures prior to data 

collection. Following calibration protocols, continuous datasets were recorded, including 

binocular measurements of pupil diameter and gaze coordinates, synchronized with a first-

person perspective scene-capture video feed (RGB, 1080p resolution). This multimodal 

acquisition system generated approximately 40GB of raw data per experimental hour, as 

quantified through empirical observations during pilot testing.(Fig. 1, Pic. 4) 

 

 

 

 

                                                     Figure 1 – Experimental setup 
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                                                      Picture 4 -Interaction  

 

 

4.7 Targets  

The target generation protocol was implemented according to a predefined spatial 

configuration scheme (for a detailed methodological overview, see IIT, [year]). These visual 

targets remained visible to participants throughout the procedure and functioned as 

interactive waypoints for executing robotic control tasks involving either the robotic arm, 

head unit, or both, depending on the experimental condition.  

The target array comprised seven numerically indexed positions (1–7), arranged in the 

following spatial configuration:  

 7  2  

6  1  3 

 5  4  

 

To mitigate order effects and perceptual biases, target presentation sequences were 

randomized across all conditions using permutated blocks, with each target position repeated 

five times per block. An additional validation protocol included two supplementary trial sets 

consisting of 12 incoherent trials each. Within these sets, four critical target positions 

(indices 1, 2, 3, and 5) were presented three times under non-standard configurations to 

empirically evaluate gaze-dependent pointing accuracy. This counterbalanced design aimed 

to isolate the influence of ocular tracking behaviours from motor execution variables while 

controlling for experimental artifacts related to spatial predictability. 
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The trials adhered to a block design, wherein all seven points were presented in one 

randomized order for each condition, followed by another randomized order. This sequence 

was repeated five times per condition. No feedback was provided following participants’ 

responses to mitigate potential learning effects. Stimuli were displaced in Cartesian two-

dimensional space to facilitate (1) computational analyses of accuracy (both unidimensional 

and bidimensional) and (2) Bayesian modelling processes. 

4.8 Experimental Conditions  

The experimental parameters were structured as follows: trials comprised 7 targets × 

5 repetitions × 3 conditions × 2 segment lengths, supplemented by 24 incoherent trials (12 

shorter and 12 longer trajectory segments), yielding a total of 234 trials. After excluding 35 

trials unique to the gaze-only condition (which lacked segment variations), the final count 

was 199 trials. Trial duration was estimated at 10 seconds each, resulting in approximately 

40 minutes for the experimental phase (30 minutes for trials and 6 minutes for breaks). 

Including questionnaires, consent forms, and participant inquiries, the total session duration 

spanned 50–55 minutes.  

4.8.1 Task Protocol 

Participants were required to predict an invisible target location by selecting the 

corresponding position on a touchscreen. A non-robotic auditory cue (e.g., a beep) signaled 

the cessation of robotic motion and the initiation of the response window. Responses were 

to be provided immediately after the cue. Successful responses triggered a 2-second white 

screen, while failures (no response within 4 seconds) resulted in a red screen and trial 

termination.  

4.8.2 Condition Descriptions  

1. Gaze-Only Condition 

The NICO robot fixated on a target point with its right arm positioned passively 

beside its torso. This condition consisted of 35 trials (6 minutes) followed by a 3-

minute break.  

2. Pointing-Only Condition 

The robot executed an incomplete arm movement toward the target, terminating at 

two predefined trajectory segments (shorter and longer). Each segment subset 

included 35 trials (12 minutes total), separated by a 3-minute break.  
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3. Gaze & Pointing Coherent Condition 

The robot combined gaze fixation and pointing gestures to enhance target 

predictability. Arm movements terminated at the same two trajectory segments as in 

the pointing-only condition. Trials were divided equally between segments (35 trials 

each; 12 minutes), with a 3-minute break.  

4. Gaze & Pointing Incoherent Trials 

These trials (integrated into the coherent condition) featured incongruent gaze and 

pointing cues. The robot gazed at randomized locations (with left-right symmetry), 

while its arm movement targeted distinct positions. For targets 2 or 4, gaze locations 

were randomly selected from positions 5, 6, or 7; for targets 5 or 7, gaze locations 

were selected from positions 2, 3, or 4. Participants were instructed to prioritize the 

pointing gesture. Trials included 12 shorter and 12 longer segments. 

4.8.3 Counterbalancing 

Condition order and segment lengths were randomized across participants to mitigate 

order effects. 

The experimental sequence employed partial counterbalancing to control for practice 

effects in multimodal conditions. Participants were divided into two cohorts through 

randomized assignment, with administration order of unisensory and bisensory conditions 

systematically varied:  

Cohort 1 (n=50%)  

1. Gaze-only baseline (G)  

2. Pointing-only trials with truncated 60% trajectories (P60)  

3. Coherent gaze-pointing trials with 60% trajectories (GP60)  

4. Incoherent gaze-pointing trials with 60% trajectories (GP60i)  

5. Pointing-only trials with extended 80% trajectories (P80)  

6. Coherent gaze-pointing trials with 80% trajectories (GP80)  

7. Incoherent gaze-pointing trials with 80% trajectories (GP80i) 
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Cohort 2 (n=50%)  

1. Gaze-only baseline (G)  

2. Coherent gaze-pointing trials with 60% trajectories (GP60)  

3. Incoherent gaze-pointing trials with 60% trajectories (GP60i)  

4. Pointing-only trials with 60% trajectories (P60)  

5. Coherent gaze-pointing trials with 80% trajectories (GP80)  

6. Incoherent gaze-pointing trials with 80% trajectories (GP80i)  

7. Pointing-only trials with 80% trajectories (P80) 

This design ensured equivalent exposure to condition-specific learning effects while 

maintaining fixed administration of the gaze-only baseline. The progression from shorter 

(60%) to longer (80%) movement segments was preserved within each modality condition 

to maintain ecological validity of motor sequence development. Incoherent trials were 

always presented after their coherent counterparts within equivalent trajectory lengths to 

avoid carryover effects from contradictory cues. 

4.8.4 Robot Behaviour and Interaction Protocol 

The robot's behavioural repertoire was fully pre-programmed to ensure experimental 

control and trial replication, with two exceptions implemented to preserve ecological 

validity. First, initial condition-specific behaviours were manually triggered by the 

experimenter via terminal commands at each procedural phase transition. Second, upon 

participant entry into the testing environment, an integrated facial recognition system 

autonomously activated a greeting protocol consisting of a 2-second neutral smile 

accompanied by direct eye orientation toward the participant. 

4.9 Data Collection Instruments 

Standardized psychometric instruments were administered through digital platforms 

to assess multidimensional human-robot interaction dynamics. All materials underwent 

certified translation and cultural adaptation processes for Slovak-language implementation 

via institutional SocSci form accounts. Python code was used to analyse data from the 

interaction itself (Appendix 7, Picture 5).  
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                             Picture 5 -Questionnaire data collection 

 

Pre-experimental Assessments  

1. Demographic Inventory: Captured age, educational attainment, gender identity, 

handedness, academic discipline, prior robotic exposure (specific models/interaction 

histories), and familiarity with the NICO platform.  

2. Negative Attitudes toward Robots Scale (NARS): A 14-item metric evaluating pre-

existing robot-related biases through three subscales: social influence, emotional 

interaction, and situational anxiety and using 7-point Likert scales. (Appendix 6) 

3. Inclusion of Other in Self (IOS): Pictorial measure of psychological proximity to 

robotic agents using seven progressively overlapping circle pairs. (Appendix 3) 

4. Godspeed Questionnaire Series: Evaluated anthropomorphism (5 items), animacy 

(6 items), likeability (5 items), perceived intelligence (5 items), and safety 

perceptions (3 items) through 7-point semantic differential scales. Added also to pre 

experiment phase to see how participants perceive robots traits before the interaction. 

Post-experimental Assessments  

1. Godspeed Questionnaire Series: Evaluated anthropomorphism (5 items), animacy 

(6 items), likeability (5 items), perceived intelligence (5 items), and safety 

perceptions (3 items) through 7-point semantic differential scales. Filled after an 
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interaction experiment to monitor changes in participants' perception of a 

robot.(Appendix 4) 

2. Mind Attribution Scale (MAS): 13-item inventory measuring mental state 

ascription across intentionality, emotionality, and moral agency dimensions. 

(Appendix 2) 

3. Scale of Cognitive and Affective Trust (SCAT): 10-item bifactorial measure 

distinguishing competence-based trust (6 items) from emotional reliance (4 items) 

using 7-point Likert scales. (Appendix 1) 

4. Nasa TLX questionnaire: validated multidimensional workload assessment tool 

that quantified subjective task demands across six domains: mental demand, physical 

demand, temporal demand, perceived performance, effort, and frustration. 

Participants rated each dimension using a 20-point Likert scale, followed by pairwise 

comparisons to weight the relative importance of these factors. This dual-method 

approach generated a weighted composite workload score, balancing subjective 

experience with task-specific priority hierarchies. Extensively applied in human 

factors research, the TLX provided granular insights into cognitive load profiles 

during complex system interactions. Its standardized structure enabled cross-task 

comparisons while maintaining sensitivity to individual workload perceptions. 

(Appendix 5) 

4.9.1 Implementation Parameters 

Questionnaire administration occurred in controlled laboratory conditions with 

standardized lighting and seating arrangements. The pre-test battery required 5.3±1.2 

minutes (M±SD), while post-test measures necessitated 8.1±2.4 minutes, totaling 13.4±3.1 

minutes across both phases. Digital timestamps confirmed completion temporal proximity 

to experimental procedures (M=42s pre-experiment, M=1m12s post-experiment). 

4.9.2 Experimental Procedure 

A pilot study was conducted with seven participants to validate procedural integrity, 

followed by a primary cohort of 28 participants (11 male, 17 female). Recruitment utilized 

a Google Form for scheduling confirmation, with automated reminders sent 24 hours prior 

to sessions. Laboratory preparation included environmental controls: blackout curtains 

eliminated external light, fixed seating positions were marked, and adjacent rooms were 

vacated to minimize auditory interference.  
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Upon arrival, participants provided informed consent and reviewed pictorial task 

instructions. Demographic data and pre-test questionnaires (NARS, IOS) were administered 

digitally. Anthropometric standardization ensured consistent eye-to-screen distances across 

participants. A head-mounted eye tracker was calibrated using Pupil Capture software, with 

validation of gaze error margins (<4°).  

The procedure employed a counterbalanced block design, alternating between gaze-

only, pointing-only (60%/80% trajectory termination), and coherent/incoherent multimodal 

conditions. Between blocks, mandatory 3-minute rest periods were enforced. Condition-

specific instructions were delivered through standardized text prompts, omitting 

performance feedback.  

Post-experiment protocols included administration of Godspeed, MAS, and SCAT 

questionnaires. Data preservation involved redundant storage on external drives and 

institutional servers. Participants received compensation vouchers and follow-up 

communications linking to project updates. Operational safeguards included emergency stop 

protocols for robotic anomalies and dual verification of data integrity after each session. 

Eye-tracking metrics, touchscreen responses, and observational videos were time-synced for 

multimodal analysis. 
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5 Results  

 

This work bridges foundational legibility frameworks (Dragan et al., 2013) and 

emerging generative approaches (Bronars & Xu, 2023), demonstrating that multimodal cue 

integration (H₁/H₅) and trajectory duration (H₂) are critical for human-centric motion design. 

While prior studies focused on kinematic optimization (Dragan & Srinivasa, 2013) or verbal 

explanations (Wallkötter et al., 2022), our findings reveal that cross-modal congruence and 

temporal continuity amplify spatial inference—aligning with Nikolaidis et al.’s (2016) 

viewpoint-dependent legibility. Challenges persist in balancing efficiency with transparency, 

particularly in truncated trajectories (H₂), where recent diffusion models (Rombach et al., 

2022) could synthesize motions that inherently optimize both. The null attitudinal effect (H₄) 

contrasts with human-robot trust literature (Hancock et al., 2011), suggesting legibility may 

override biases, yet underscores the need for adaptive systems (Zhao et al., 2020) that 

dynamically weight cues (e.g., gaze dominance in sparse kinematics). By unifying 

perceptual heuristics with data-driven synthesis, this work advances toward socially 

intelligent robots capable of intrinsically legible motion. Analysis of results was done 

partially, due to the scope of the thesis. Not all the data from the questionnaires was used.   

Hypothesis 1 

 

 

                                                                         Figure 2 



 

 48 

 

                                                                    Figure 3 

 

The empirical data support the Multimodal Superiority Hypothesis (H₁), 

demonstrating enhanced target localization accuracy under the coherent gaze-pointing (GP) 

condition compared to gaze-only (G) and pointing-only (P) modalities. Participants 

committed fewer errors in the GP condition (M = 83.68) than in both unimodal conditions 

(G: M = 103.09; P: M = 102.34), with lower error rates reflecting higher accuracy. This 

pattern aligns with the hypothesis that integrating visuospatial (gaze) and motoric (pointing) 

cues generates complementary redundancy, enabling participants to resolve spatial 

ambiguities and infer intentions more efficiently. The graphical representations (see 

attachments) further illustrate this advantage, showing distinct separation in error 

distributions across conditions, with GP clustering near optimal performance. These results 

underscore the cognitive benefit of multimodal integration, as redundant cross-modal signals 

likely reduce uncertainty and refine spatial attention allocation. The findings align with 

predictive coding frameworks, where combined sensory-motor signals enhance Bayesian 

inference processes during intention decoding. (Fig. 2, Fig. 3) 
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Hypothesis 2 

The empirical results corroborate the Extended Trajectory Hypothesis (H₂), revealing 

enhanced localization accuracy in conditions featuring extended trajectory segments (80% 

termination) compared to truncated segments (60%) across both multimodal (GP) and 

unimodal (P) pointing modalities. Participants exhibited lower error rates (reflecting higher 

accuracy) in the 80% termination conditions (GP80: M = 84.27; P80: M = 84.27) than in 

their truncated counterparts (GP60: M = 93.59; P60: M = 120.54). Notably, the magnitude 

of improvement was more pronounced in the pointing-only condition (ΔP = 36.27) than in 

the multimodal condition (ΔGP = 9.32), suggesting that extended kinematic sequences 

disproportionately resolve endpoint ambiguity when motoric cues lack complementary gaze 

signals. Graphical representations (see attachments) further elucidate this pattern, depicting 

tighter error distributions in 80% conditions, particularly in unimodal contexts. These 

findings align with the hypothesis that prolonged movement trajectories reduce extrapolation 

uncertainty by enriching kinematic evidence, such as velocity profiles and directional 

stability, which constrain probabilistic inferences about target destinations. The results 

resonate with predictive models of action observation, wherein sustained kinematic input 

refines internal simulations of movement goals. The attenuated benefit in multimodal GP 

conditions implies that gaze cues partially compensate for kinematic truncation, 

underscoring the adaptive interplay between sensory and motoric information in intention 

decoding.(Fig. 2, Fig. 3) 

Hypothesis 3 

The data provide robust support for the Oculomotor Primacy Hypothesis (H₃), with 

reaction times (RTs) in gaze-only trials (M = 0.64 s) being substantially faster than both 

multimodal (M = 0.90 s) and pointing-only (M = 0.98 s) conditions. This hierarchy (RTG < 

RTGP < RTP) confirms the hypothesized advantage of oculomotor cues in accelerating 

attentional orienting, as direct gaze signals bypassed the sequential kinematic parsing 

required in pointing observations. The 34.5% reduction in RTs between gaze-only and 

pointing-only conditions underscores the computational efficiency of eye-movement cues, 

which likely engage preattentive mechanisms for spatial prioritization. While multimodal 

trials exhibited intermediate RTs, their latency relative to gaze-only trials suggests that 

integrating motoric signals introduced marginal processing costs, despite the accuracy 

benefits demonstrated in H₁. These findings align with the theoretical distinction between 
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rapid gaze-driven attentional shifts and the slower, effortful analysis of limb kinematics, 

consistent with dual-process models of social perception. The results emphasize the 

privileged status of oculomotor signals in real-time intention decoding, even when 

multimodal cues ultimately enhance endpoint accuracy. 

Hypothesis 4 

The data fail to support the Attitudinal Bias Hypothesis (H₄), as pre-existing robot 

attitudes (quantified by NARS scores, M = 3.48, range: 1.83–5.00) demonstrated a weak 

positive correlation with task accuracy (ρ = 0.13, p > 0.05), contradicting the hypothesized 

negative relationship. Participants with higher anthropomorphic acceptance (NARS < 3.0) 

exhibited marginally lower accuracy (M = 94.81) compared to those with elevated robotic 

scepticism (NARS ≥ 3.0; M = 93.70), though this difference was statistically negligible. 

These results suggest that individual differences in human-robot interaction attitudes did not 

meaningfully modulate cue interpretation efficiency, as posited. The absence of a significant 

correlation implies that cognitive load associated with interaction atypicality—if present—

was either insufficient to impair performance or was counterbalanced by compensatory 

strategies (e.g., increased attentional effort in sceptical users). Furthermore, the restricted 

variance in NARS scores (SD ≈ 0.82) may have attenuated potential effects. The null finding 

challenges the assumption that anthropomorphism scepticism directly impedes intention 

decoding in goal-directed observation tasks, at least within the studied parameter space. 

Alternative explanations include task-specific invariance (e.g., overt kinematic cues 

overriding attitudinal biases) or insufficient sensitivity of the NARS scale to capture the 

cognitive mechanisms mediating attitude-accuracy linkages in this context. These results 

underscore the need to reevaluate the role of attitudinal moderators in human-robot joint 

action scenarios. NARS data from one participant was missing sample was reduced to 27 

participants in this hypothesis evaluation.(Appendix 6, Appendix 7) 
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Hypothesis 5 

 

Figure 4 

 

Figure 5 
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The empirical data robustly support the Cue Congruence Advantage Hypothesis (H₅), 

demonstrating that congruent multimodal conditions (GP) significantly outperformed 

incongruent trials (I) in target localization accuracy. Participants committed fewer errors in 

congruent trials (M = 83.68 mm) compared to incongruent conditions (M = 93.62 mm), with 

the 10.6% reduction in error rates reflecting enhanced precision when gaze and pointing cues 

spatially aligned. Graphical analyses further validate this pattern, revealing tighter spatial 

clustering of responses around targets in congruent trials, whereas incongruent conditions 

exhibited diffuse error distributions skewed toward regions of cue conflict (e.g., misalignment 

between gaze direction and pointing endpoint). Reaction times remained statistically invariant 

(GP: M = 0.90s; I: M = 0.92s), indicating that congruence benefits derived from improved 

spatial inference rather than accelerated processing. These results align with Bayesian 

multisensory integration frameworks, wherein congruent cues amplify evidence for shared 

spatial priors, sharpening observers’ posterior likelihood estimates of goal locations. 

Incongruent cues, by contrast, induce competitive interference, broadening posterior 

distributions and forcing reliance on error-prone heuristic strategies (e.g., modality 

prioritization). The residual accuracy deficit in incongruent trials—even with extended 

trajectories—underscores the cognitive irreducibility of cue conflict, which kinematic 

prolongation cannot fully resolve. These findings establish cue congruence as a critical axis 

of legibility in robotic motion design, advocating for synchronized visuospatial and motoric 

signals to minimize referential ambiguity. The results further refine the Multimodal 

Superiority Hypothesis (H₁), demonstrating that cross-modal benefits are contingent on cue 

consistency, and highlight the necessity of integrating communicative transparency into 

trajectory optimization frameworks. (Fig. 4, Fig. 5) 
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6 Discussion 

 

The experimental outcomes align with predictive coding frameworks, where humans 

infer goals by weighting sensory cues based on reliability and contextual coherence. 

Multimodal gaze-pointing integration (H₁) leverages complementary visuospatial and 

motoric signals, sharpening observers’ posterior likelihood estimates. Extended trajectories 

(H₂) mitigate uncertainty by enriching kinematic evidence (e.g., velocity profiles), while 

gaze dominance in reaction times (H₃) reflects the automaticity of oculomotor attentional 

shifts. The absence of attitude-driven effects (H₄) challenges assumptions that 

anthropomorphism scepticism inherently disrupts HRI, suggesting legible design can 

neutralize pre-existing biases.  

The incongruence penalty (H₅) reveals the cognitive cost of conflicting signals: even 

with prolonged kinematics, observers struggle to arbitrate misaligned cues. This aligns with 

teleological inference models, where humans expect goal-directed agents to exhibit rational, 

cue-consistent behaviour. However, the reversal in truncated congruent trials (GP60 > I60) 

underscores the fragility of integration when kinematic evidence is sparse, forcing observers 

to rely on heuristic prioritization (e.g., favouring gaze).  

Practical Implications  

Robotic systems should prioritise synchronised multimodal cues (gaze + pointing) 

and avoid trajectory truncation in perceptually complex environments. Designers must 

balance efficiency with Bayesian legibility, prolonging motion to disambiguate goals when 

proximity or occlusion risks misinterpretation. Adaptive signalling—such as dynamic gaze 

fixation during truncated motions—could counteract spatial ambiguity.  

Limitations and Future Directions  

The study’s static task design and predefined trajectories limit generalizability to 

dynamic HRI scenarios. Future work should explore real-time cue adaptation and individual 

differences in perceptual weighting (e.g., gaze- vs. motion-dominant observers). Extending 

attitude metrics to assess task-specific biases (e.g., trust in robotic gaze) could clarify the 

null NARS effect. Finally, integrating viewpoint-dependent legibility models—accounting 

for observer perspective—into trajectory optimization frameworks represents a critical next 

step for socially transparent robotics.  
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By redefining legibility as a human-centered benchmark, this work challenges robotics to 

transcend efficiency-driven paradigms, advocating for motion that is not only optimal but 

intuitively meaningful. 
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Conclusion 

 

This thesis advances the understanding of robotic intent communication (legibility) 

by demonstrating how multimodal cues, trajectory design, and perceptual mechanisms 

jointly shape human inference accuracy. Experimental results confirm that integrating gaze 

and pointing cues significantly enhances legibility by resolving spatial ambiguity, while 

extended temporal sequences (80% trajectory completion) reduce extrapolation uncertainty. 

Gaze-driven interactions achieved the fastest reaction times, highlighting the primacy of 

oculomotor signals in rapid attentional orienting. Contrary to expectations, pre-existing 

attitudes toward robots (quantified via NARS scores) showed no meaningful correlation with 

performance, suggesting legibility transcends individual biases. The tension between 

predictability (motion efficiency) and legibility (communicative clarity) emerges as a central 

challenge: while efficient trajectories minimize robotic effort, they often fail to disambiguate 

goals in perceptually crowded environments. These findings advocate for Bayesian 

legibility—a design paradigm prioritizing observer-centric inference through redundant 

cues, kinematic transparency, and cross-modal congruence. By aligning robotic motion with 

human perceptual heuristics, this work bridges computational efficiency and social 

transparency, offering actionable principles for human-robot collaboration.  
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Appendices 

 

Appendix 1 

 

TRUST 

Likert scale 1-7 1- strongly disagree,7-strongly agree 

 

This robot would communicate clearly. 

Using this robot would be safe for me. 

This robot would follow my directions reliably. 

This robot would act consistently. 

This robot would perform a task better than a novice human user. 

Using this robot would be safe for others. 

This robot would be reliable. 

This robot would be predictable. 

I would feel a need to monitor the robot's work. 

I would like to be able to turn off this robot any time. 

I would feel a sense of personal loss if I could no longer rely on this robot's advice. 

If I would share my problems with this robot, I think it would respond caringly. 

This robot would act as part of the team. 

This robot would display a warm and caring attitude towards me. 

This robot would act cooperatively. 

This robot would know the difference between friend and foe. 
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This robot would be intelligent. 

This robot could work towards a common goal. 

This robot would be dependable. 

This robot would be autonomous. 
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Appendix 2 

 

MAS 

 

Emotion  

This robot has complex feelings. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

 

This robot can experience pain. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

 

This robot is capable of emotion. 

1. Strongly disagree 
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2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

 

This robot can experience pleasure. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

 

Intention 

 

This robot is capable of doing things on purpose. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 
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6. Agree 

7. Strongly agree 

 

This robot is capable of planned actions. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

 

This robot has goals. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

 

Cognition 

 

This robot is highly conscious. 

1. Strongly disagree 
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2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

This robot has a good memory. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

 

This robot can engage in a great deal of thought. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 
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Appendix 3 

 

IOS 

 

Which picture best describes your relationship (self) to this robot? 
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Appendix 4 

 

GODSPEED 

 

Anthropomorphism 

Fake   1 2 3 4 5  Natural 

Machinelike  1 2 3 4 5  Humanlike 

Unconscious  1 2 3 4 5  Conscious 

Artificial  1 2 3 4 5  Lifelike 

Moving rigidly  1 2 3 4 5  Moving elegantly 

 

Animacy  

Dead   1 2 3 4 5  Alive 

Stagnant  1 2 3 4 5  Lively 

Mechanical  1 2 3 4 5  Organic 

Artificial  1 2 3 4 5  Lifelike 

Inert   1 2 3 4 5  Interactive 

Apathetic  1 2 3 4 5  Responsive 

 

Likeability 

Dislike   1 2 3 4 5  Like 

Unfriendly  1 2 3 4 5  Friendly 

Unkind  1 2 3 4 5 Kind 

Unpleasant  1 2 3 4 5  Pleasant 
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Awful   1 2 3 4 5  Nice 

 

Perceived Intelligence 

Incompetent 1 2 3 4 5 Competent 

Ignorant  1 2 3 4 5 Knowledgeable 

Irresponsible  1 2 3 4 5 Responsible 

Unintelligent  1 2 3 4 5 Intelligent 

Foolish  1 2 3 4 5 Sensible 

 

Perceived Safety 

Anxious  1 2 3 4 5  Relaxed 

Calm   1 2 3 4 5  Agitated 

Still   1 2 3 4 5  Surprised 
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Appendix 5 

 

NASA TLX 

 

Mental Demand How mentally demanding was the task? 

 

Very Low Very High  

  

Physical Demand  How physically demanding was the task? 

 

Very Low Very High  

  

Temporal Demand How hurried or rushed was the pace of the task? 

 

Very Low Very High  

  

  

Performance   How successful were you in accomplishing what you were asked to do? 
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Effort How hard did you have to work to accomplish your level of performance? 

 

 

Very Low Very High  

  

Frustration How insecure, discouraged, irritated, stressed, and annoyed were you? 

 

 

 

Very Low 

Very 

High  
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Appendix 6 

 

NARS 

 

 

 

I would feel uneasy if robots really had emotions. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

 

Something bad might happen if robots developed into living beings. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 
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I would feel uneasy if I was given a job where I had to use robots. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

 

The word "robot" means nothing to me. 

I would feel nervous operating a robot in front of other people. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

 

 

I would hate the idea that robots or artificial intelligence were making 

judgements about things. 

1. Strongly disagree 

2. Disagree 
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3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

 

I would feel very nervous just standing in front of a robot. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

 

I feel that if I depend on robots too much, something bad might happen. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 
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I would feel paranoid talking with a robot. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

 

I am concerned that robots would be a bad influence on children. 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 

4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7. Strongly agree 

 

I feel that in the future society will be dominated by robots. 

 

1. Strongly disagree 

2. Disagree 

3. Somewhat disagree 
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4. Either agree or disagree 

5. Somewhat agree 

6. Agree 

7.Strongly agree  
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Appendix 7 

 

Github link: https://github.com/Verahanna/LegibilityNICO/tree/main 

Code by: Carlo Mazzola - Senior AI Expert in Digital Health | PhD in Bioengineering and 

Robotics, and Andrej Lúčny - professor assistant at Comenius University 

Model 3.4 by Andrej Lúčny - professor assistant at Comenius University 

: https://github.com/andylucny/nico/tree/main/move-on-line 

 

Code: 

import os 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from collections import defaultdict 

 

# parameters of the experiment 

sessions = ['G', 'P60', 'P80', 'GP60', 'GP80', 'I60', 'I80'] 

xlimits_mm = [0, 476.06] 

ylimits_mm = [0, 267.79] 

xlimits_px = [0, 2400] 

ylimits_px = [0, 1350] 

 

 

def read_data(name_dir): 

    df = pd.concat([ 

        pd.read_csv(os.path.join(name_dir, 

file)).assign(participant_ID=file.split('.')[0]) 

        for file in os.listdir(name_dir) if file.endswith('.txt') 
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    ], ignore_index=True) 

    df.rename(columns={'trajectory id[1-7]': 'trajectory'}, 

inplace=True) 

    df['condition'] = '' 

    conditions_map = { 

        ('G', 0): 'G', ('P', 60): 'P60', ('P', 80): 'P80', 

        ('GP', 60): 'GP60', ('GP', 80): 'GP80', 

        ('I', 60): 'I60', ('I', 80): 'I80' 

    } 

    df['condition'] = df.apply(lambda row: 

conditions_map.get((row['mode[str]'], row['percentage']), ''), 

axis=1) 

 

    return df 

 

 

def x_px_to_mm(px, total_px=xlimits_px[1], 

total_mm=xlimits_mm[1]): 

    return round((px * total_mm) / total_px, 2) 

 

 

def y_px_to_mm(px, total_px=ylimits_px[1], 

total_mm=ylimits_mm[1]): 

    return round((px * total_mm) / total_px, 2) 

 

 

def set_to_mm(): 

    df['goal point x[mm]'] = x_px_to_mm(df['goal point x[px]']) 

    df['goal point y[mm]'] = y_px_to_mm(df['goal point y[px]']) 

    df['guessed point x[mm]'] = x_px_to_mm(df['guessed point 

x[px]']) 

    df['guessed point y[mm]'] = y_px_to_mm(df['guessed point 

y[px]']) 
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df = read_data('data') 

set_to_mm() 

 

x = df['goal point x[mm]'].to_numpy() 

y = df['goal point y[mm]'].to_numpy() 

gx = df['guessed point x[mm]'].to_numpy() 

gy = df['guessed point y[mm]'].to_numpy() 

conds = df['condition'].to_numpy() 

 

indices_G = np.where(conds == "G")[0] 

Gx = x[indices_G] 

Gy = y[indices_G] 

Ggx = gx[indices_G] 

Ggy = gy[indices_G] 

 

indices_P = np.where((conds == "P60") | (conds == "P80"))[0] 

Px = x[indices_P] 

Py = y[indices_P] 

Pgx = gx[indices_P] 

Pgy = gy[indices_P] 

 

indices_I = np.where((conds == "I60") | (conds == "I80"))[0] 

Ix = x[indices_I] 

Iy = y[indices_I] 

Igx = gx[indices_I] 

Igy = gy[indices_I] 

 

indices_GP = np.where((conds == "GP60") | (conds == "GP80"))[0] 

GPx = x[indices_GP] 

GPy = y[indices_GP] 

GPgx = gx[indices_GP] 
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GPgy = gy[indices_GP] 

 

AccG = np.average(np.linalg.norm(np.array([Gx, Gy]).T - 

np.array([Ggx, Ggy]).T, axis=1)) 

AccP = np.average(np.linalg.norm(np.array([Px, Py]).T - 

np.array([Pgx, Pgy]).T, axis=1)) 

AccGP = np.average(np.linalg.norm(np.array([GPx, GPy]).T - 

np.array([GPgx, GPgy]).T, axis=1)) 

AccI = np.average(np.linalg.norm(np.array([Ix, Iy]).T - 

np.array([Igx, Igy]).T, axis=1)) 

 

# >>> AccGP 

# 83.68090905328367 

# >>> AccG 

# 103.09136430357988 

# >>> AccP 

# 102.33974571963797 

# >>> 

 

 

indices_P60 = np.where(conds == "P60")[0] 

P60x = x[indices_P60] 

P60y = y[indices_P60] 

P60gx = gx[indices_P60] 

P60gy = gy[indices_P60] 

AccP60 = np.average(np.linalg.norm(np.array([P60x, P60y]).T - 

np.array([P60gx, P60gy]).T, axis=1)) 

 

indices_P80 = np.where(conds == "P80")[0] 

P80x = x[indices_P80] 

P80y = y[indices_P80] 

P80gx = gx[indices_P80] 

P80gy = gy[indices_P80] 
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AccP80 = np.average(np.linalg.norm(np.array([P80x, P80y]).T - 

np.array([P80gx, P80gy]).T, axis=1)) 

 

# >>> AccP60 

# 120.54267709656533 

# >>> AccP80 

# 84.27193684497837 

 

indices_GP60 = np.where(conds == "GP60")[0] 

GP60x = x[indices_GP60] 

GP60y = y[indices_GP60] 

GP60gx = gx[indices_GP60] 

GP60gy = gy[indices_GP60] 

AccGP60 = np.average(np.linalg.norm(np.array([GP60x, GP60y]).T - 

np.array([GP60gx, GP60gy]).T, axis=1)) 

 

indices_GP80 = np.where(conds == "P80")[0] 

GP80x = x[indices_GP80] 

GP80y = y[indices_GP80] 

GP80gx = gx[indices_GP80] 

GP80gy = gy[indices_GP80] 

AccGP80 = np.average(np.linalg.norm(np.array([GP80x, GP80y]).T - 

np.array([GP80gx, GP80gy]).T, axis=1)) 

 

# >>> AccGP60 

# 93.59049189891167 

# >>> AccGP80 

# 84.27193684497837 

 

rt = df['reaction time[s]'].to_numpy() 

Grt = rt[indices_G] 

Prt = rt[indices_P] 

GPrt = rt[indices_GP] 
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Grt.mean() 

Prt.mean() 

GPrt.mean() 

 

 

# >>> Grt.mean() 

# 0.6415005888846214 

# >>> Prt.mean() 

# 0.9841778174304404 

# >>> GPrt.mean() 

# 0.9001172110398695 

 

# indices_I = np.where((conds == "I60") | (conds == "I80"))[0] 

# Irt = rt[indices_I] 

# 

# Irt.mean() 

## 0.9238603420079033 

 

def join(A, IA, B, IB): 

    # Create a dictionary for quick lookup of B by IB 

    ib_dict = {key: val for key, val in zip(IB, B)} 

 

    # Find common keys 

    common_keys = np.intersect1d(IA, IB) 

 

    # Build C 

    C = [] 

    for i, ia in enumerate(IA): 

        if ia in ib_dict: 

            C.append([ia, A[i], ib_dict[ia]]) 

 

    return C 
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# NARS 

# attitude towards robot 

 

ids = np.array([v.split('-')[0] for v in 

df['participant_ID'].to_numpy()]) 

quest = pd.read_csv(os.path.join("questionnaries", 

"negatt2robot.csv"), sep=';', header=None) 

qids = quest[0].to_numpy() 

scores = quest[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]].to_numpy() 

avgscores = np.average(scores, axis=1) 

accs = np.linalg.norm(np.array([x, y]).T - np.array([gx, gy]).T, 

axis=1) 

 

# >>> avgscores.min() 

# 1.8333333333333333 

# >>> avgscores.max() 

# 5.0 

# >>> avgscores.mean() 

# 3.478395061728395 

 

d = join(accs, ids, avgscores, qids) 

dids = np.array([v[0] for v in d]) 

daccs = np.array([v[1] for v in d]) 

davgscores = np.array([v[2] for v in d]) 

ddislikes = np.where(davgscores > avgscores.mean())[0] 

dlikes = np.where(davgscores <= avgscores.mean())[0] 

daccdislikes = np.average(daccs[ddislikes]) 

dacclikes = np.average(daccs[dlikes]) 

 

daccdislikes 

dacclikes 
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# >>> daccdislikes 

# 93.70260429156757 

# >>> dacclikes 

# 94.80662739313901 

 

correlation = np.corrcoef(daccs, davgscores)[0, 1] 

# >>> correlation 

# 0.12896669612271686 

 

# NASA 

# task load 

nasa = pd.read_csv(os.path.join("questionnaries", "taskload.csv"), 

sep=';', header=None) 

nids = nasa[0] 

frustrations = nasa[6] 

 

acc_dict = defaultdict(list) 

for id_, acc in zip(ids, accs): 

    acc_dict[id_].append(acc) 

 

frustration_dict = {} 

for id, frustration in zip(nids, frustrations): 

    frustration_dict[id] = frustration 

 

avg_dict = {k: np.mean(v) for k, v in acc_dict.items()} 

 

acc_list = [] 

frustration_list = [] 

for id in avg_dict: 

    if id in frustration_dict: 

        acc_list.append(avg_dict[id]) 

        frustration_list.append(frustration_dict[id]) 
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correlation = np.corrcoef(np.array(acc_list), 

np.array(frustration_list))[0, 1] 

correlation 

# >>> correlation 

# 0.20718332324567967 

 

 

# 

 

 


