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Abstract

Language and ability to communicate are thanks to their importance to humanity
one of the most discussed phenomena in scientific field. The aim of detailed analysis
of their nature lead to the creation of separate scientific disciplines focused on their
specific attributes. Behavioural methods were the key explanations in certain particular
signs although because of the difficulties of their design and often ethical restrictions
they cannot be applicable in some cases of research. Computational models bring into
this manner new direction of their investigation.

In this work we aimed to create biologically plausible model of language compre-
hension based on a principle of self-organization and its comparison with model using
supervised learning in sentence processing component. We used Self-Organizing Map
for the representation of the meaning of the sentences. As a sentence processing com-
ponent was chosen Merge Self-Organizing Map. On the other hand the reference model
used Simple Recurrent Network. These components were trained to map the meaning of
the sentences to the their text representation even after processed part of these senten-
ces. We tested these models to predict the meaning of the sentences after the particular
words were presented to them. We also scrutinized how well they can reconstruct the
specific elements representing meaning of particular sentence.

The results suggest, the model based on self-organization principle can sufficiently
predict the meaning of the sentence after presenting each word in comparison with the
reference model. In the prediction task the self-organization based model performed
even better then the other model. Thus, we came to the conclusion that biologically
plausible model based on self-organization principle can compete with classical models
using supervised learning and therefore it can be appropriate alternative in simulation
of cognitive processes related to the tasks of sentence comprehension.

Keywords: sentence comprehension, self-organizing map, merge self-organizing map,
simple recurrent network, language, connectionist model



v

Abstrakt

Jazyk a schopnosť komunikácie patria vďaka svojmu významu pre ľudstvo k jedným
z najdiskutovanejších fenoménov vo vedeckých kruhoch. Snaha o detailenjší rozbor ich
podstaty viedla k vytvoreniu samostatných vedeckých disciplín zameraných na špeci-
fické atribúty, ktorými disponujú. Behaviorálne metódy boli kľúčovými vo vysvetlení
niektorých špecifických znakov, avšak kvôli náročnosti ich dizajnu a častokrát etickým
výhradám nemôžu byť aplikovateľné v niektorých prípadoch vedeckého skúmania. Vý-
počtové modely prinášajú v tomto ohĺade nové smerovanie ich výskumu.

V tejto práci bolo naším cieľom vytvoriť biologický plauzibilný model porozumenia
jazyka na princípe učenia samo-organizáciou a jeho porovnanie s modelom výžívajúcim
učenie s učiteľom v časti architektúry pre spracovanie viet. Na reprezentáciu významu
jednotlivých viet sme použili samo-organizujúcu sa mapu. Ako komponent pre spra-
covanie viet prezentovaných po slove sme zvolili tzv. ”zlúčenú” samo-organizujúcu sa
mapu (Merge Self-Organizing Map). Referenčný model využíval pre túto úlohu jedno-
duchú rekurentnú sieť (Simple Recurrent Network). Komponenty na spracovanie viet
po slovách boli natrénované, aby dokázali reprezentovať význam danej vety a to aj po
predložení len jej časti. Modely sme testovali, ako dobre dokážu predpovedať význam
danej vety po tom, ako im boli prezentované jednotlivé slová. Taktiež sme skúmali, ako
dokážu modely rekonštruovať špecifické elementy reprezentujúce význam v danej vete.

Výsledky našich experimentov naznačujú, že model na princípe samo-organizácie
dokáže uspokojivo predpovedať význam vety po predkladaní jednotlivých slov v po-
rovnaní s referenčným modelom, pričom v predikčnej úlohe bol jeho výkon lepší oproti
modelu s jednoduchou rekurentnou sieťou. V úlohe na rekonštrukciu sémantických
elementov viet prezentovaných po slovách bol výkon modelu so samo-organizáciou po-
rovnateľný s referenčným modelom. Vďaka tomu môžme konštatovať, že biologicky
plauzibilný model na báze samo-organizácie dokáže konkurovať klasickým modelom
využívajúcim učenie s učiteľom a môže byť preto vhodnou alternatívou pri simulovaní
kognitívnych procesov súvisiacich s úlohami na porozumenie jazyk.

Kľúčové slová: porozumenie vetám, samo-organizujúca sa mapa, ”zlúčená” samo-
organizujúca sa mapa, jednoduchá rekurentná sieť, jazyk, konekcionistický model



Content

Introduction 1

1 Language comprehension 3
1.1 Comprehension of the language . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 The levels of representations in text comprehension . . . . . . . 4
1.1.2 Situational models . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 World knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 The microworld strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Semantics of the sentences . . . . . . . . . . . . . . . . . . . . . 10
1.4 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Self-Organizing Map (SOM) . . . . . . . . . . . . . . . . . . . . 13
1.4.2 Merge Self-Organizing Map (MSOM) . . . . . . . . . . . . . . . 15
1.4.3 Simple Recurrent Network (SRN) . . . . . . . . . . . . . . . . . 16

2 Models 19
2.1 Microworld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Sentence meaning . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 SOM-SRN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 SOM-MSOM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Reconstruction of the meaning and its prediction . . . . . . . . . . . . 34
2.5 Technical summary of the program and training data . . . . . . . . . . 35

3 Results 36
3.1 Performance measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Summary of the models . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Reconstruction of the meaning of the sentences . . . . . . . . . 48

Conclusion 52

vi



List of figures

1.1 Three levels of representation . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Deictic routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 MSOM architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 SRN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Sentence meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Symbolic representation of a sentence . . . . . . . . . . . . . . . . . . . 24
2.3 Representation of episodes in SOM neurons activity . . . . . . . . . . . 27
2.4 SOM-SRN model schema . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Input of SOM-MSOM model training . . . . . . . . . . . . . . . . . . . 31
2.6 SOM-MSOM model schema . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Training process of neural networks . . . . . . . . . . . . . . . . . . . . 43
3.2 Adjustment of neurons of SOM and MSOM . . . . . . . . . . . . . . . 44
3.3 Kullback-Leibler divergence between predicted and actual meaning . . 48
3.4 Example of reconstruction of the meaning - SOM-SRN model . . . . . 50
3.5 Example of reconstruction of the meaning - SOM-MSOM model . . . . 51

vii



List of tables

2.1 Words that can occur in the text . . . . . . . . . . . . . . . . . . . . . 20

3.1 Parameters of the Self-Organizing Maps . . . . . . . . . . . . . . . . . 40
3.2 Parameters of the Merge Self-Organizing Maps . . . . . . . . . . . . . . 40
3.3 Parameters of the Simple Recurrent Networks . . . . . . . . . . . . . . 41
3.4 Summary statistics of models’ training . . . . . . . . . . . . . . . . . . 41
3.5 KL divergence after word is presenting (SOM-SRN model) . . . . . . . 47
3.6 KL divergence after word is presenting (SOM-MSOM model) . . . . . . 47

viii



Introduction

Communication is one of the most fascinating and probably the most important tool
which animals have. While the majority of animal world communicates with partially
learned system (e.g. bird songs), or an innate ability to produce a limited number of
meaningful vocalizations (e.g. bonobos). There is no other species than human which
can express infinite ideas with limited set of symbols. Thus, it is naturally in sight of
interest of many researchers over past decades.

Human language is a complex system of rules, symbols, and abilities to work with
them appropriately. To fully understand such phenomena we need to include knowledge
of neural systems in human brain, process of acquisition, social and cultural environ-
ment and other aspects. That leads to developing of many particular research fields
which study specific nature of language (e.g. psycholinguistics, sociolinguistics, neuro-
linguistics, study of grammar, semantics, discourse and text analysis etc.). Naturally,
every field uses different sophisticated methods to its study. In the early research typical
were behavioral experiments with usage of invasive techniques. But there are several
ethics and moral restrictions which lead to use mainly non-invasive techniques. Howe-
ver, some hypotheses cannot be tested directly (e.g. when we want to learn the effect
of some substances in the brain such as neurotransmitters). Furthermore, sometimes
we want to answer the questions which require time consuming research design (e.g.
how the children acquire language). In such situations computational models can be
helpful.

Nowadays, with massive improvements of computational power and progress in
high level machine learning methods, the natural language processing becomes very
popular (Kumar et al., 2016). Simply said, this field of computer science concerns to
process massive natural language data and solve particular tasks such as language
production and comprehension, sentiment analysis, speech recognition, text-to-speech
transformation, translation and many more. Rapid progress of particular areas like
deep learning (LeCun et al., 2015) or convolutional neural networks (Krizhevsky et
al., 2012) encouraged the interest in natural language processing even more. However,
these methods demand high computational power and very large datasets. In this
sense, the research interests in area of computational modelling of language processes
remains very popular and a demand for more accurate and less computational power
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Introduction 2

consuming methods increases rapidly. Therefore, it is reasonable to investigate language
comprehension using computational modelling.

Large amount of interests in NLP area is not only motivation for using compu-
tational modelling for research of language comprehension. Behavioural research can
cover a broad area of language processes. Using neuro-imagining methods is an an-
swer to variety of research questions in more detail. Nevertheless, there are many cases
where the behavioural methods have their shortcomings. These are mainly related to
the direct manipulation with human participants which can be dangerous for them
(e.g. application intracellular in substances, direct stimulation of specific areas of the
brain etc.). Here are the computational methods very helpful. Specifically, when the
sufficiently accurate computational model is found out, it demands only manipulation
with the parameters of the model which can be done easily by rewriting them in the
source code of the program. Therefore, the manipulation with such parameters is very
easy and even though it costs a lot of effort by testing, it is safe for human participants.

In our work we aim to examine language comprehension using connectionist model-
ling. This paradigm has several advantages such as distributed representation of many
concepts or background in biological processes. We will compare two models of lan-
guage comprehension using the artificial neural networks for representing the meaning
of the text sentences and for the sentences processing task per se. We will focus to
investigate this task in an interdisciplinary way through cognitive science field.

First chapter is devoted to theoretical background of language comprehension, the
models that try to simulate this phenomena and artificial neural networks used in our
architectures.

In the second chapter we will focus on technical explanation of our models’ archi-
tecture.

Finally, the third chapter will contain the results of our research.



Chapter 1

Language comprehension

In this chapter we will discuss sentence comprehension in theoretical perspective. We
will introduce research motivation and describe several models which try to examine
the nature of this phenomena using computational and connectionist paradigm.

1.1 Comprehension of the language

Comprehension of the text is an important function of cognitive system which we can
describe as an ability to extract information out of verbally and textually described si-
tuations. It has vital role in remembering, understanding and inferring. Hereby emerges
several questions. How can we extract information from the plain text? What happens
to it when it is extracted? And how can we infer from such extracted material? Several
researchers tried to investigate these questions. Probably the biggest impact in this
area had works of Van Dijk & Kintsch (1983) Strategies of Discourse Comprehension
and Johnson-Laird (1983) Mental models: Towards a cognitive science of language,
inference, and consciousness. Van Dijk & Knitsch postulated concept of ”situational
model” while Johnson-Laired formulated ”mental model”. Both terms have similar pro-
perties. Simply speaking, they assumed that we create mental representations of what
text is about. These representations are not just simple propositions extracted from the
text but they combine previous experience and knowledge which assists to comprehen-
sion of the text and inference of what a text is about. Precisely, mental representation
is abstract concept of the real world which emerges as a product of neural activity of
human brain system. In our work we will use the term ”situational model” defined by
Van Dijk & Knitsch as it is widely used in literature and in our opinion best descri-
bes this phenomenon. Before we describe situational model into the detail we shortly
discuss other levels of representation of information in text comprehension.

3



CHAPTER 1. LANGUAGE COMPREHENSION 4

1.1.1 The levels of representations in text comprehension

There are several theories which try to explain the situation model or so called mental
model in different representations. Some of these deal with the comprehension from
the text into the situation model itself. In situational level it can be simply described
as:

Sentence -> Situational Model.
However, researchers differentiate two other representation of the text. Including

situational representation there are (Van Dijk & Kintsch, 1983):

1. Surface representation

2. Textbase representation

3. Situational representation

Surface representation is a simple visual representation of the text itself which
consists of literal meaning of particular words without relationships between them.
The meaning of the text base representation can be expressed as a network of concepts
and propositions from the text. The nodes in such network are connected according to
the similar structural symbols (they share common, variable). Thus, we can call this
propositional representation. As an example should be the sentence Jacob loves Susan.
In the text base form we can express this sentence as LOVES[JACOB, SUSAN]. Finally,
situational representation is the mental model constructed by the text base form. To
better illustrate the relationships of these levels we construct following image.
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Figure 1.1: Inspired by (Van Dijk & Kintsch, 1983)

1.1.2 Situational models

The concept of situational models helps us understand how the situational informa-
tion from the text is collected and integrated. Van Dijk & Kintsch (1983) argue that
situational models are responsible for processes like translation, learning from mul-
tiple sources, domain-expertise, or completely understanding situations just by reading
about them. These models are multidimensional in their nature. In this sense, some
researchers claim that the weight of the dimensions shifts according to the situation
which is described. Van Dijk & Knitsch explained the processing of new information
by activation one of the dimensions according to the information. Situational model
is changed accordingly to the situation described in the text. The bigger this change
is more time the reader needs to comprehend. When the new information does not fit
into the model, the reader tends to fail and he needs to re-read the text again. Next, we
will explain several language processing tasks where the situational models find their
application.

• Integration of information across sentences:

E.g. ”Barack Obama stays in front of some journalist. Public speaking is nothing
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special for the Ex-president of United States.” The reader should know that these
two sentences have the common subject - the same person - Barack Obama. The
subject can be considered as token which allows to integrate two sentences into
one coherent situational model.

• Explanation of similarities in comprehension performances across modalities

By this example we can simply imagine that we read the newspaper, listen to the
radio and watch late television where the same information is presented. Often it
is easy to combine these information into coherent whole. Baggett (1979) found
out that students who saw a short film and students who heard a spoken version of
the events in the short film finally produced a structurally similar recall protocol.
Further, (Tanenhaus et al., 1995) examined if the visual context influences spoken
language comprehension. They concluded that visual spoken word recognition
and sentence processing are influenced by visual context, even during the earliest
phase of sentence processing.

• Domain expertise on comprehension

Situational models have influence on effects of domain expertise on comprehen-
sion. Specifically, experts in particular domain use their knowledge stored in long
term memory when they create situational models during comprehension of a
text while novices in a domain have only the text (Ericsson & Kintsch, 1995).
This idea was supported by Schneider & Körkel (1989). They realized an experi-
ment with 3rd, 5th and 7th soccer experts1. The participants had to recall units
from the text they have read. The 3rd grade experts recalled 54% of units with
compared to 42% by the 7th grade novices.

• Explanation of translation skills

Translation of a text is not simply done by translating each word until we cons-
truct some sentence structure which seems to be sound. We have to consider a
right meaning of a sentence or a text before we build up appropriate translation.
R. Zwaan et al. (1998) provided an experiment where participants had to trans-
late sentences from French into English. They capitalized on the fact that the
French does not have a neuter pronoun, whereas theEnglish does. They found
out that participants which considered meaning of the text across several senten-
ces were more successful in translation task. Furthermore, more fluent English
speakers were better in comparison to less fluent English speakers. Such findings
supported assumptions of effect of situational models in both domain expertise
and translating of a text.

1The lower grade number indicates the higher domain knowledge.
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• Multiple source learning

and reasoning from multiple sources. Perfetti et al. (2012) provided an example of
how situation models are needed to be taken into account for text-based learning
and reasoning about historical events. They argue that people can form text base
for each material they read. Nevertheless, the actual learning and reasoning come
into account when information from the documents are integrated into situational
models.

Dimensions of situational models

As it was mentioned previously, many researchers claim that situational models are
multidimensional in their nature. In this section we will shortly describe particular
dimensions of situational models. For deeper insight into this topic we recommend the
work of R. A. Zwaan & Radvansky (1998).

1. Space – Comprehensive linguists make mental models of protagonist’s perspec-
tive (e.g. when they know the space/place of the story, like building, they compre-
hend better). Also, when they know properties of the space (e.g. sizes, locations,
shapes, spacial layout).

2. Time - We a priori assume the chronological order of the story. When the senten-
ces do not preserve chronological order, it takes longer time to comprehend such
text. Study of Münte et al. (1998) shows that ”before” 2 sentences elicit greater
negativity than ”after” sentences during Event-Related-Potential measurements.

3. Causation - As we interact with the environment, we have a strong tendency
to interpret event sequences as causal sequences. It is important to note that,
just as we infer the goals of a protagonist, we have to infer causality - we cannot
perceive it directly.

4. Intentionality - We are often able to predict people’s future actions by inferring
their intentionality, i.e. their goals. (e.g. man walks to the chair after he stands
for a long time -> he wants to sit.).

5. Protagonists and objects – Comprehensive linguists are quick to make infe-
rences about protagonists, about the emotional states of characters etc. In study
of Carreiras (1996) the reading speed of participants was slowed down when the
mismatch with the stereotypical gender of electrician occurred. Specifically, the
sentences ”The electrician examined the light fitting. She took out her screwdri-
ver” showed slower reading speed comparing to the second sentence ”He took out
his screwdriver”.

2Indicating that an event has happened before something that will be explained next.
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1.2 World knowledge

In modelling of higher cognitive processes like text comprehension need to be imple-
mented so called world knowledge. Since no realistic amount of such information can
be made available to a model, researches had to find out how they can be input. Frank
et al. (2008) described four types of world knowledge implementation:

• Disregarding world knowledge

• Ad hoc selection of world knowledge

• Extracting knowledge from text corpora

• The microworld strategy

First type of implementation of world knowledge is not appropriate by creating app-
ropriate model of text comprehension. However, for particular low-level sub-processes,
the influence of world knowledge may seem small enough to be ignored. Such mo-
del simulated only sub-processes is The Resonance model (Myers & O’Brien, 1998).
This model attempts to simulate the process called reinstatement, which is reactivated
previously background text when it is required, while central concepts and propositi-
ons of the text remain in working memory. Since this model was not intended for a
functioning with a large amount of added knowledge, it cannot deal with the highly
connected network resulting from including semantic relations (Frank et al., 2008).

Next technique of adding world knowledge takes pieces that seem relevant to the
particular text under consideration and only those will be provided to the model. This
prevents technical problems with running a model in the context of large amounts of
knowledge, but introduces free parameters which are set by the modeler on an ad-hoc
basis. However, these parameters can be considered as an input to the model rather
than part of the model itself. Therefore, the models of text comprehension should avoid
free parameters taking into account the plausibility of the model.

The Construction-Integration model (Kintsch, 1988) uses this type of adding world
knowledge into the model. This model consists of two phases: construction, where world
knowledge potentially relevant to the text is selected, and integration, where inapprop-
riate materials are discarded. This model, however, introduces many free parameters
and with appropriate setting can give almost any desired output (Frank et al., 2008).

Another way to include world knowledge into the model is computing word repre-
sentations that encode semantic relations among the words. That computation can
be done from large text corpora. Latent Semantic Analysis (LSA) is an example of
technique which can accomplish this task Landauer & Dumais (1997). Here each word
is represented as a vector in high-dimensional semantic space. The similarity between
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two word vectors is measured by cos(X, Y ) where X and Y are two word semantic
vectors. The result is value < −1, 1 > and indicates semantic relatedness of the two
words. However, we cannot extract the meaning of the whole sentence what is more
important in text comprehension (Frank et al., 2008).

The last strategy of implementation of world knowledge is the use of microworld.
Because this topic is closely related to our own models we will pay more attention to
it.

1.3 The microworld strategy

At this moment the reader can assume that modelers have to consider several reflecti-
ons implementing world knowledge into the model. There should not be too many free
parameters because it decreases credibility of the model. The generalization to the un-
seen texts would be problematic as well. Since the model can operate with constrained
computational power, the world knowledge should be trimmed off useless information.
However, the last point should be considered carefully because humans can be very
effective in selection important information to the current problem and in the end of
the day we try to simulate cognitive processes in humans per se. Furthermore, the
constrained world knowledge is valuable since the modeler has higher control in the
process of simulation, therefore it can increase general interpretability of the simulating
mechanism.

The microworld strategy helps to solve the issues mentioned above. Frank et al.
(2008) suggest that corpus included world knowledge should not consist of texts but of
events or situations in the world. But such corpora are not readily available and need
to be build up from scratch, therefore, it can bring to the modeler even higher control
of simulating process since he/she has to construct it. As a result a tiny subset of real
world situations in which the knowledge is encoded will be provided to the model. This
subset is called microworld.

In the microworld all knowledge is encoded in fixed parameters. That means their
values remain the same whatever the model’s input is. Thus, they can be viewed as
part of the model itself. Therefore, such models can be trained on different texts, while
the modelers can stay certain that the results are not caused by their interference. One
of the model which uses microworld strategy is called Distributed Situational Space
model (Frank, 2004, 2005; Frank & Haselager, 2006; Frank et al., 2008).

Distributed situational space

The model of distributed situational space (DSS) can be described as followed: There
are limited possible events (situations) which can occur in the microworld. Some of
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the events are more probable. But, there are also some restrictions on the events and
their protagonists like in the real world. For example, a boy can play computer only
inside, not outside. The events are than represented as n-dimensional binary vector
where 0 indicates basic proposition which is not the case in the situation, and 1 a
proposition that is present. Since particular propositions can be combined, the number
of situations is a result of all possible combinations, depending on the constrains defined
by the modeler. These situational vectors are then used as the train data for the
Self-Organizing Map (SOM) (Kohonen, 1998). As a result, each basic proposition is
represented by a pattern of activation over the cells of the SOM. Specifically, the
situations are encoded as m-dimensional vector of SOM units’ activation, where m is
the number of neurons in SOM. These vectors are therefore called situational vectors.

As the authors claims, to each SOM unit and basic situation is associated mem-
bership value µi(p) ∈< 0, 1 > that indicates the extent to which cell i forms part of the
representation of p. If the SOM has m units, the representation of p can be viewed as
a m-element situational vector of membership values µ(p) = (µ1(p), ..., µm(p)) (Frank
& Haselager, 2006). Then we can express a priori probability that the situation occurs
as follows:

Let (x1, ..., xm) be a vector represented some situation in microworld. Then

τ(X) =
1

m

m∑
i

xi (1.1)

is the a priori probability of event. The DSS allows to extract the content of any
situation X by comparing its representation to several known situation vectors µ(p).
With adding the rules of fuzzy logic, the estimated conditional probability that some
p is the case in situation X is:

τ(p|X) =
τ(p ∧X)

τ(X)
=

∑m
i mi(p)xi∑m

i xi
(1.2)

These τ -values are called belief values and they are accurate estimates of (un)conditional
probabilities in the microworld. That can be consider as a prove that relations among
microworld situations are encoded (implicitly) in the organization of situation space
(Frank & Haselager, 2006; Frank et al., 2008). This properties of DSS are very useful
and to some extent we use them in our model.

1.3.1 Semantics of the sentences

Encoding meaning of the sentences is an ongoing question in connectionist models of
sentence comprehension. In our work we use the method proposed in Takac et al. (2012).
The authors suggest that meaning of the sentences can be represented as structured
sequences of semantic elements, whose structure reflects the sequential framework of



CHAPTER 1. LANGUAGE COMPREHENSION 11

the sensorimotor (SM) routines through which they are experienced. These sequences
have canonical structure, so the semantic roles like Agent, Patient or Action are asso-
ciated with specific serial positions. The whole idea has its core in embodied cognition
paradigm. The models based on this paradigm argue that the high-level semantic re-
presentations may reflect the SM routines through which these representations were
obtained. Ballard et al. (1997) find out that the agent’s interaction with the world
often take specific form of short sequences of SM processes which structure is defined
internally. They called these sequences deictic routines. This concept was studied and
explained into the detail in Knott (2012) on elementary transitive action: reaching to
grasp a target. In summary, whether the participant is executing or perceiving the
action, attends the protagonists of the situation in following order:

1. Attention to the agent - activating a representation of the agent

2. Attention to the target3 - activating a representation of the target

3. Activation of a reach/grasp motor programme - reattending to the agent in the
process

4. Reattending to the target - this is done at the end of the action, when a stable
grasp is achieved.

Because we use this concept in the encoding the meaning of the sentences we use
the sentence ”Man grasps a cup” as an illustrative example for better understanding
(we will explain the process of encoding and training into the detail later). Semantic
roles in this sentence are:

• Agent : Man

• Action : Grasps

• Target : Cup

Let’s imagine that we watch this situation as observers. Our cognitive system firstly
activates representation of the ”Man”. Then we focus attention to the ”cup”. After that
we activate motor program ”Grasps an object”. Finally, when the action is done, we are
reattending to the ”cup” again. Activation of a motor program while we observe the
action is presented not only in humans but also in other primates. For that activation
are responsible specific types of neurons called mirror neurons (Kohler et al., 2002).

3Another name for this semantic role is a patient or simply an object
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Figure 1.2: Ilustrative example of deictic routine: I. activating representation of the
agent; II. activating a representation of the target; III. activation of a reach/grasp
motor programme; IV. reattending to the target.

Thus, we can use the properties of DSS or specifically of SOM to encode such
sentence into representation of its meaning.

1.4 Artificial Neural Networks

Artificial Neural Networks (ANN) are computing system based on connectionist pa-
radigm. Their theoretical background comes out from biological systems in the brain.
They simulate the core units of biological neural architecture - neurons. The artificial
counterpart of connections between biological neurons (throughout axons and dendri-
tes) are represented as weights between particular units. Individual artificial cells can
transform the signal through their weights. Since their investigation at the end of 60’s
they found application in many areas both in academic or practical areas (e.g. spe-
ech recognition, computer vision, image processing, social network filtering and many
more). As it is in general machine learning, we know two types of ANN based on the
type of the training process (Haykin et al., 2009):
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1. Supervised networks - the target to these networks is known. Thus, an error of
the network’s output is known and the weights are updated to get desired target
accordingly. This is usually done by backpropagation algorithm. Example of such
network is perceptron, simple recurrent network etc.

2. Unsupervised networks - the target to these network is unknown. Here we let
the network to create its own representation of training data. We call this type
of training process self-organisation. The well-known example of such network is
Self-Organizing Map.

In the next sections we will describe three types of ANN which we used in our
models. They are:

• Self-Organizing Map (SOM)

• Merge Self-Organizing Map (MSOM)

• Simple Recurrent Network (SRN)

1.4.1 Self-Organizing Map (SOM)

Self-Organizing Map can be considered as self-organizing mapping of high-dimensional
data into 2-dimensional representation while it preserves topology of layout of input
vectors (Kohonen, 1998). Typical representation of the SOM is in 2-dimensional grid
where the nodes indicates particular SOM units, cells or neurons. The learning principle
of the SOM is mapping input vectors into weight vectors. While the network is able
to capture similar patterns between input vectors and weight vectors, it arranges the
units according to their similar weight vectors - the units with smaller distance between
their weight vectors are arranged close to each other. We differentiate three phases in
the training process of the SOM (Haykin et al., 2009):

1. Competitive phase

2. Cooperative phase

3. Adaptive phase

The unit with weight vector most similar to particular input vector (their Euclidean
distance is the lowest across all pairs (unit − input)) wins the competitive phase and
the unit goes closer to particular input vector. This phase can be expressed by following
equation:

i(~x) = argmin
j

‖ ~x− ~wj ‖2; j ∈ N (1.3)
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where i is a function of input vector x that returns the lowest Euclidean distance
between input vector x and weight vector wj. N is the number of neurons in SOM.

After finding winner neuron learning process continues to cooperative phase. The
goal is to find the neighbors of the winner and shift them according to their closeness
to the winner. The closest units to the winner are shifted more than the cells far away
from the winner. This process is expressed by equation:

hj,i(x) = exp

(
−
d2i,j
2λ2

)
(1.4)

where h is gaussian function that favors the units closer to the winner, d is Euclidean
distance between j-the unit and i-the input, and λ helps to decrease resulting value of
h during the ongoing training process. That causes stabilization of the network.

Finally, the weights are updated according to following equation:

4~w = αhj,i(~x)(~x− ~w(t)) (1.5)

where α is a learning rate, h is gaussian neighborhood function, x is input vector
and w is weight vector of particular neuron.

The mechanism in the last phase enables the neurons which are excited to increase
their individual values of discriminant function in relation to the input pattern. This
is done by suitable adjustment of the neurons applied to their synaptic weights. This
phase can be divided further into ordering and convergence phase. In ordering phase
the large amount of neighbours of the winning neuron are included in the topological
ordering while in phase of convergence is the neighborhood function reduced to small
value and only small number of neurons (if any) around the winner are adjusted.

Learning rate α and parameter λ

As the process of learning proceeds, the learning rate α and λ parameter needs to
decrease. Decreasing learning rate causes stabilization of the network while decreasing
of the λ reduce the neighborhood of the winner neuron that is updated. Therefore, in
the later phase of the learning only the small number of neighbours are updated with
the winner. The λ gradually decreases according to (Ritter & Kohonen, 1989):

λ(t) = λ0

(
λf
λ0

) t
tmax

(1.6)

where λ0 refers to initial setting of parameter λ, λf is the final value to which the
λ aims, t indicates current training epoch and tmax is maximum number of training
epochs. Learning rate α can be updated according to the same rule. There are also other
possible ways how these values can be updated (see Haykin et al. (2009); Van Hulle
(2012))
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1.4.2 Merge Self-Organizing Map (MSOM)

Next type of ANN is similar to previous one. Difference between them is in storing a
context - representation of material what has been seen so far. This kind of ANN are
called recurrent. In general, as a recurrent can be considered whatever ANN in which
there is subset of neurons that stores information about activities in the past. They
perform the same task for every element of a sequence, with the output being depended
on the previous computations. They have a ”memory” which captures information about
what has been calculated so far. The main area of using their properties are serial
processing tasks (e.g. processing sequences like letters in words, words in sentences
etc).

The learning architecture of Merge Self-Organizing Map implements a compact
back-reference to the previous winner with separately controllable contribution of the
current input and the past with arbitrary lattice topologies (Strickert & Hammer,
2005). Thus, the neurons in MSOM specialize not even on the input data but also on
the previous winners, then neuron activation orders are established. Therefore, order
is coded by a recursive position of the current input and already trained neurons.

The context of Merge SOM

The MSOM context can be characterized as a fusion of two properties reflecting the
previous winner. First, the weight of its units and the second, context of last winner
neuron. These two parts are merged by a weighted linear combination. During MSOM
training, context of last winner neuron (context descriptor) is kept up-to-date and it is
used as the target for the context vector cj of the winner neuron j and its neighborhood.
By target we mean that the combined vector of weights wj and context cj of neuron
j is adapted into the direction of the current input pattern and context. Definition of
MSOM is the following (Strickert & Hammer, 2005):

MSOM network is composed of neurons N = {1, . . . ,m} which are equipped with
a weight wi ∈ Rd and context ci ∈ Rd. The best matching unit i(x) (or winner neuron)
has minimum recursive distance between given sequence entry x(t) and the context
descriptor c(t):

i(~x) = argmin
j

(
(1− β)∗ ‖ ~x(t)− ~wj ‖2+β∗ ‖ ~c(t)− ~ci ‖2

)
; j ∈ N (1.7)

Contributions of weights and context are balanced by the parameter β. The context
descriptor

~c(t) = (1− γ) ∗ ~wIt−1 + γ~cIt−1 (1.8)
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is the linear combination of the properties of winner neuron It−1 in the last time-
step. We set initial c1 to a fixed vector, e.g. 0.

Finally, the weight and context vector are adapted towards the current input and
context descriptor

4 ~wi = α1hj,i(~x)(~x(t)− ~wi)

4~ci = α2hj,i(~x)(~c(t)− ~ci)
(1.9)

α1 and α2 are learning rates and h is Gaussian shaped function, as it was in SOM.

Figure 1.3: MSOM architecture: A: weight space ( ~wi ∈ Rd); B: context space (~ci ∈ Rd);
C: current input vector (~x(t)); D: context descriptor ~c(t). Solid lines indicate finding
a best matching unit. Input vector is comparing with vectors of weights and context
descriptor with vectors of context weights. Dashed lines represent updating context
descriptor in time step t+ 1 according to best matching unit I t+1

1.4.3 Simple Recurrent Network (SRN)

The last ANN that we used was proposed and designed by Elman (1990, 1991). Similar
to the MSOM, Simple Recurrent Network (SRN) is recurrent type of ANN but unlike
the previous one it uses target output in the learning process. Thus, we consider it
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as supervised ANN. However, in this network is the learning process different than
in the classical ANN like perceptron or multi-layer perceptron (MLP). While MLP
uses connections between neurons in direction from input to output, recurrent ANNs
can have connections in backward direction or even inside a single layer. In principle,
output values of recurrent neurons in time t + 1 are copied onto the context neurons.
Next, they will join to input vector in time t. Thus, this copying process is ongoing
with one unit delay and that causes expanding of network with internal memory. Those
properties increase the possibility of using these networks, however, it has also impact
on the computational capacity because of more complicated training process.

Simple Recurrent Network has the recurrent connections located in hidden layer (see
figure 1.4). Usually they are trained using algorithm called Back Propagation Through
Time (BPTT) (Werbos, 1990). Specifically, activations on the individual layers are
computed using following equations

hk(t+ 1) = fh(
∑
j

wkjxj(t) +
∑
l

cklhl(t)) (1.10)

for the hidden state activations, where w are weights connecting input layer with
hidden and c are weights connecting context units with hidden layer in time step t− 1,
and

yi(t) = fy(
∑
k

vikhk(t)) (1.11)

for the output activations. Here v are weights connecting hidden layer with output
units and hk is activations of the hidden units in time step t.

fh and fy are activation functions, usually set to sigmoid

sigmoid(x) =
1

1 + e−x
(1.12)

tangent-hyperbolic

tanh(x) =
2

1 + e−2x
− 1 (1.13)

or softmax function

softmaxi(x) =
exi∑J
j e

xj

, for i = 1, . . . , J. (1.14)

The learning process can be described as follows:

1. SRN is getting sequences of the patterns from training data as an input to the
network. These sequences can be variable in length.
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2. The network expand through the time. It has as many hidden layers as it is the
length of an input sequence.

3. That expanded SRN is then trained by back-propagation algorithm. Simply said,
desired target is compared to the actual output of the network. Local gradients
are recorded during every single forward pass. Computed error is then back-
propagating (spreading backwards) and the weights are updated according to
desired output (see Elman (1990); Werbos (1990) for the detail).

Figure 1.4: SRN architecture: signal is spreading in forward direction. Activations of
hidden units in time step t+ 1 are copied onto the context neurons.



Chapter 2

Models

In this chapter we will introduce two connectionist models of sentence comprehension
that we created. Each of them included Self-Organizing Map for representation of
situational vectors of the text. In addition, first uses Simple Recurrent Network for
encoding a sequence of words to the meaning of the situations that they represent.
The second one uses Merge Self-Organizing Map for the same task as SRN in the first
model. Thus, we compare two types of architectures where one combines supervised
and unsupervised type of learning while the other one uses only unsupervised type
of learning. As it is known, self-organization is a common process in human brain,
occurring in sensorimotor cortex by movement (Jirsa et al., 1998), visual perception
(Gray & Singer, 1987; Gerstner & Kistler, 2002), dreaming (Kahn, 2013) and more (see
Singer (1986); Kelso (1997) for further reference).Therefore, we claim that such model
can be biologically plausible and can be used for further research.

2.1 Microworld

We mentioned in previous chapter that representing situations described in a text is
an important question for validity of the connectionist model of text comprehension.
In our work we are inspired by methodology proposed by Frank (2005) where the
author used microworld strategy for importing world knowledge into the model as
well as representing situations which are described in a text. We also base on the
assumption that during comprehension humans create structured representation of
the situation which is described in the text. These representational sequences have
canonical structure as it was described in Takac et al. (2012). Next, we will describe
our method into the detail.

Our training data was composed from sentences of different lengths. The shortest
sentences have only two words containing a subject and an action that a subject per-
forms. Maximum length of the sentences is seven words. The sentences describe basic

19
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situations and they do not form coherent story. It means that individual sentences do
not follow on the previous text. Each sentence contains a subject and a verb an optional
object. Particular protagonists in the sentences can have two properties: size and color.
Both of them are optional (subject or object can have it but it is not a condition).
Other attributes which the words can have are those which are in their nature but they
are not described in the text. These attributes are included in situational vectors of
the sentences that these situations describe. Specifically, nouns can be human, animal
or item and verbs can be transitive (there occurs an object/patient with them) or in-
transitive (there are no object/patient). Table 2.1 shows possible words that can occur
in the text.

Table 2.1: Words that can occur in the text

Class Property Words

Nouns
Human Man Woman Jacob Susan
Animal Dog Cat Mouse
Item Cup Chair Ball Bottle

Verbs
Transitive Grasps Hits Pushes Sees Catches
Intransitive Walks Sneezes Runs Arrives

Sizes Small Medium Big
Colors White Yellow Black Blue Red Brown Pink Green
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2.1.1 Sentence meaning

Figure 2.1: Mapping sentences to their meaning: A1: Text of the sentence. A2: Semantic
roles of the elements of the sentence. Each element can have additional property (noun
- human, animal, thing; verb - transitive, intransitive). A3: Symbolic representation of
the sentence meaning. Binary vector where 1 indicates that element is present, 0 that
it is not. B: Self-Organizing Map trained by binary vectors representing the sentences.
C: Subsymbolic representation of the sentence meaning. They can be considered as the
distributed situational vectors represented by activation of the cells of the SOM.

Subject - Agent

In a sentence, every verb must have a subject. If the verb expresses action like sneeze,
catch or see — the subject is who or what does the verb. We recognize two types of
subjects:
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• The complete subject is who or what is doing the verb plus all of the modifiers
(descriptive words) that go with it. E.g. The big white man grabs a cup. The
man is the agent who grasps a cup. The complete subject is then the big white
man.

• The simple subject, on the other hand, is who or what is doing the verb without
any description. From above example, ”big” and ”white” are just descriptive words
that differentiate particular man. The simple subject is therefore the man.

There can be seven possible subjects in our text: a man, a woman, Jacob, Susan,
a dog, a cat, and a mouse. As we can see in the table 2.1 they have natural property,
specifically, they can be a human type subject or animal type subject. These proper-
ties are not expressed in a text explicitly. However, in situational representation of a
sentence are these properties included (more on this topic later).

Verb - Action

Every sentence must have a verb. There are nine possible verbs that can occur in the
text: to grab, to hit, to push, to see, to catch, to walk, to sneeze, to run and to arrive.
Regarding whether the sentence has an object the verb can be transitive (there is an
object) or intransitive (there is no object).

Object - Patient

An object in a sentence (patient) can be every noun from our list (see table 2.1).
Instead of subject part of a sentence, an object also can be the noun which has an item
property. Similar to human or animal type nouns, that property is not expressed in a
sentence explicitly. It is rather represented in a situational vector of the sentence.

Symbolic representation of sentences’ meaning

In chapter 1 we discussed the problem of encoding situations which are described in
text. In our work we base on methodology used distributed situational space. (Frank,
2005; Frank et al., 2008). We use the properties of Self-Organizing Map to encode
meaning of the sentence into patterns of activity of its neurons.

Each individual sentence can be between two up to seven words long. Meaning of
every sentence contains an agent and an action semantic element. An object element
is optional. Each sentence is then encoded into symbolic representation. That means,
there are k-dimensional binary vector where 1 indicates that element is present, 0
that it is not. These vectors are symbolic representation of the meaning of sentences.
Specifically, each sentence’s meaning can be divided into separate parts according to
individual semantic elements (agent, action, patient). Since there are eleven possible



CHAPTER 2. MODELS 23

nouns, both agent and patient part are 11-dimensional binary vector a priori. We do
not restrict agent part from the item nouns which cannot be agents. Further, agent
and patient of the sentence can have additional properties that can be expressed in a
sentence explicitly or they occur in their nature. Explicit properties can be size or color.
They may occur simultaneously, one by one, or they may be absent. Implicit property
of an agent or patient means that they can be a human, an animal or an item. Figure
2.2 shows symbolic representation of an example sentence’s meaning. This type of
representation is similar to localist type where each element (e.g. a boy) is encoding by
one neuron. However, in distributed connectionist models the activation of a particular
neuron may not have specific interpretation. The entities are rather represented by
sets of neurons (population coding). As it was mentioned earlier, microworld strategy
offers really good opportunity to control modeling process. Thus, before we explain the
process training any further we should mention some details about the training text
and restrictions which we have defined.

• The sentence meaning can be created by combination of particular semantic
elements. Specifically, an agent, an action, and a patient.

• An agent and an action are mandatory parts of the sentence meaning. A patient
is optional.

• Minimum length of a sentence is two words. Maximum length is seven words.

• Object type of nouns cannot stand as an agent in a sentence.

• Animal nouns cannot be combined with intransitive verb ”to sneeze”.

• Animal nouns can be combined only with transitive verbs ”to see” and ”to catch”.

• Transitive verb ”to grasp” can only be combined with object noun in the role of
a patient.

• Human nouns are constrained to colors ”white”, ”black”, and ”yellow”.

• Human nouns can be only ”small” and ”big”.

• Animal and object nouns can acquire any color or size.

• Each element can only have one property from particular category. E.g. Jacob
who stands as the agent in the sentence can be small and black, but he cannot
acquire more than one size (small and big) or color (white and black). He is
always a human noun.

• Colors and sizes are optional properties. Nouns can have them but it is not a
requirement.
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• Noun properties, human, animal, and object are mandatory. Each noun is in one
of these categories. Every noun can only be in one such category.

• Verb properties transitive and intransitive are mandatory as well. Each verb (or
action) is in one of these categories and they are mutually exclusive (if the verb
is in one category, it can be in the other one).

Figure 2.2: Symbolic representation of a sentence meaning. For imagining reason the
sentence is divided into separate parts. In modeling, the symbolic representation of the
sentence is one k-dimensional binary vector (1 = element is present; 0 otherwise) com-
bining all three parts of the sentence - if a patient is not present his part is represented
as vector of all 0’s of.

Situational vectors of sentences

Models of language comprehension which are based on symbolic paradigm lack various
features that are present in language. Perhaps the main drawbacks of such models are
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that they do not perform well when it comes to semantics, graded constraints satis-
faction or learning. However, connectionist models perform in such tasks better since
they add robustness into the system. As mentioned earlier, they represent the pat-
terns rather numerically than by symbols. That comes out from the nature of neurons
communication between each other.

In our models the meaning of the sentences is represented in activations of SOM’s
neurons. Specifically, the sequences of words that build up the sentence are comprehen-
ded through creating situational representation which they are describing (Van Dijk &
Kintsch, 1983). Because these situations share some similar features we can represent
them by specific method which takes into consideration these similarities. It may be
obvious to the reader that SOM can be used for such task. Thus, such situations can
be encoded into k-dimensional vector of activities of SOM neurons where the represen-
tation of the meaning is hidden. This whole process consists of following steps:

1. Encoding sentence meanings into binary vectors of 0, 1 where 1 indicates presence
of the element and 0 absence.

2. Creating training data from encoded sentences.

3. Training SOM to represent sentence meanings in a compressed form.

4. Computing activity of the SOM neurons after presenting them the sentences each
by one.

First step of the training process has been already introduced in previous section.
Figure 2.2 shows it into the detail. Note, that the whole sentence is divided into parti-
cular semantic elements for better imagination. One training unit is a combination of
all these elements.

Training data consists from permutation of binary vectors which number is equal
to number of sentences that we chose as our training text. Similarly to the process by
which the child learns to comprehend language, the sentences 1 can occur in training
dataset number of times. This brings another feature into the representation of the
meaning. The sentence meanings which have occurred in the training set more times,
are more pronounced anchoring in pattern of activity of SOM neurons. This means,
that presenting such sentence meaning to the SOM will follow to higher activations of
particular cells or fields in the SOM lattice.

Next step goes further right into the training of the SOM. Particular binary vectors
are presenting to the SOM each by one. Each vector are presented to the SOM once

1Here we admit that it would be better to speak about situations. However, it may bring mislead
into understanding the explanation. Therefore, we write about ”sentences” in process of learning of
comprehension, instead of ”situations”.
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during one epoch2. After completing the training process, the information from the
”text” vectors is stored in the layout of SOM lattice. Specifically, some cells or broader
area encode similar sentences in accordance with their symbolic vectors. For example,
the neurons that store information about the human type nouns or particular subject
like Jacob are closer to each other. However, in some lattice layout more areas of
neurons can appear which encode similar patterns. Figure 2.3 shows representation of
example sentences.

Finally, we want to extract semantic information which SOM encodes. Similarly,
as Frank proposed distributed situational space (Frank, 2005), we want to get repre-
sentation of the meaning of the text sentences. Instead of representation of sentences,
which is symbolic3, representation of their meaning are on sub-symbolic level. Because
of that, the SOM can represent more concepts at the same time as probability dis-
tribution, where particular elements of the distribution refer the likelihood that the
concept is presented. Thus, it can be considered as an advantage of the SOM for using
it as a tool for representing the meaning of the sentence against the binary symbolic
encoding vectors which can only represent one concept. Specifically, rather than exact
formulation of the presence of particular element (symbolic level), on sub-symbolic le-
vel is the information distributed throughout artificial neurons and is rather numeric4.
We obtain this information by presenting training vectors to SOM each one at the
time. However, this time we do not include updating of the weight vectors. It is rather
extracting activity of the cells of the SOM. This is done by equation:

ai(t) = exp(−c ∗ ‖ ~wi(t)− ~x(t) ‖2) (2.1)

On the right hand side of equation 2.1 is gaussian term that reflects how likely the
current input xi(t) corresponds to an episode (situation) remembered in the weights
wi(t) of the i-th cell. Parameter c expresses sensitivity of the gaussian term. Finally,
we normalize activity of each unit to sum up to 1 by

Ai(t) =
ai(t)∑N
j=1 aj(t)

(2.2)

so that overall activity of the SOM for current input xi(t) can be interpreted as
a probability distribution over possible memorized training episodes. (Takac & Knott,
2015).

2Unit of training process. Usually more epochs are needed for successful training.
3Or localist since the 1’s ”locate” the element in the vector
4On symbolic level it may be understood also as logical when 1 indicates True or that element is

present and 0 False.
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(a) Episode described by 2 words
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(b) Episode described by 3 words
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(c) Episode described by 4 words
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(d) Episode described by 5 words
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(e) Episode described by 6 words
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Figure 2.3: Activation of neurons on the SOM lattice after presenting them particular
episodes to which they were trained. Note, that every episode has quite a distinctive
representation. It means that the episodes are well distinguishable what is good in the
further training process.
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2.2 SOM-SRN Model

Our first model of text comprehension uses for sequential processing task the Simple
recurrent Network (SRN) (Elman, 1990, 1991). The role of this network is to process
the sentence word by word at the time and ”to associate” it with the target - the
meaning of the sentence. This process is computational simulation of the process of
comprehending the text in human, where people create situational representation of
the episodes that are described. This model is similar to the one proposed by Frank
(2005). However, his training text created using microworld strategy was different to
ours 5. We rely, we base on assumption that during comprehension the participant
creates his/her representation of episode activating sensorimotor routines called deictic
routines that have canonical structure. Specifically, they consist of semantic element
such as agent, action and patient. Next, we will describe the training of the model into
the detail.

The sentence is divided into words which are represented as one-hot 6 vectors where
1 indicates presence of the word from all possible words. These vectors serve as an
input to the SRN. The signal from the weights connected input and context layer to
the hidden layer is spreading into hidden neurons. Activation function on the hidden
neurons was tangent-hyperbolic function. Intermediate signal of hidden neurons is now
copied into the context layer. Then, the final prediction of meaning of the sentence
(episode) by computing linear combination of weights connecting the hidden units with
the output layer and activation of hidden neurons. Target function on the output layer
was softmax function that ensures that output vector gives by sum 1. Therefore, we can
consider it as the probability distribution of units’ activations. Since the target signal,
which is the distributed situational representation of the episode achieved by activation
of SOM neurons is known, the error between the prediction of the network and desired
output is computed and stored. After finishing the sequence of words (sentence), the
errors are propagating backwards and the weights are updated accordingly. In the
result, the model tries to map the meaning or situational representation of the sentence
to the text where the situation is described. For better imagination the model is shown
in figure 2.4.

5”His” microworld consists only from 15 words while ours includes 32 words. We also work with
the explicit attributes of the particular subjects like colors or sizes.

6One-hot vector is specific type of binary vector of 0s and 1s. The 1 occurs only once and all other
values are 0s.
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Figure 2.4: Training process of SOM-SRN model. Each input vector consists of word
part, meaning part and context of previously seen elements (that was copied from
hidden units from previous time step). Solid arrows indicate full connectivity from one
layer to the next. On the other hand, dashed arrows indicate that after processing of
each word, the activations of the hidden neurons are copied to the context layer. Note,
that first context layer is vector of 0s since there was no previous word. Finally, the
target of the output signal is activity of the SOM neurons that represents meaning of
the sentence.
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2.3 SOM-MSOM Model

The second model that we created uses for sequential processing task the Merge Self-
Organizing Map (MSOM) (Strickert & Hammer, 2005). Instead of the first model that
uses SRN, MSOM belongs to category of unsupervised learning networks and therefore
its training process must be different. However, the principle of self-organization is
more biologically plausible than backpropagation algorithm (Newman & Polk, 2008)
and our work can be an initial point to further research in language comprehension
using such principles.

Unsupervised learning paradigm does not allow comparing results produced by the
model with desired output. That is often the case when target or dependent variable
is not available. In that case, algorithms operating on unsupervised base usually use
available attributes and try to find some similar relationships, patterns or dependencies
between them based on distance of their vectors, similar occurrence etc. Nevertheless,
in our model the task to which MSOM deals with, takes into consideration desired
output values. Specifically, meaning of the episodes encoded in the activities of SOM
neurons. That can be achieved in the way that we add desired distributed situational
space vectors to all one-hot vectors representing the word in the current episode. It is
important to combine only target vectors that correspond to current episode. Thus,
the MSOM will learn to associate sequences of words with a sentence meaning (see also
figure 2.5):

• Word part

• Meaning part
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Figure 2.5: Illustration of input vector of SOM-MSOM model. A and B represents
word and meaning part of the vector respectively. C illustrates the meaning part of
the input vector which consists of the meaning of the whole episode of which the word
(A) is a part. Example of the episode can be [JACOB SEES SUSAN ].

As in SOM-SRN model, word part of the input vector is represented by one-hot
vector where 1 indicates that the element is present. On the other hand, meaning part
of the input vector is exactly desired output as in the SOM-SRN model. However, while
in SOM-SRN model this vector is located ”behind” the output layer where it serves to
computing error between actual result of the model and what is desired, in SOM-
MSOM model is located within input vector as its part. Thus, such vector has n +m

dimensions, where n is dimensionality of the word part7 and m is dimensionality of the
meaning part. Since the meaning part is exactly the activations of SOM neurons, which
encodes the meaning of episodes, m is equal to number of neurons of SOM. Training
process of MSOM then continues regularly as it was explained in section 1.4.2. It can
summarized as follows:

1. Select a sentence that describes particular episode.

2. Setting context descriptor to vector of 0s.

3. Choose input vector representing particular word from the sentence8

4. Finding best matching neuron. Here are also considered context descriptor and
context weights as they hold the information from previous steps.

7How many possible words can occur in all episodes.
8In combination with the meaning of whole episode which the sentence is describing.
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5. Updating regular and context weights of the MSOM.

6. Updating the context descriptor. Since it holds the properties of the winner ne-
uron in the last step, there is contribution of both regular weights of the MSOM
and context weights as well.

7. If the sentence continues, go to the step 3.

8. When the sentence is over, go to the step 1.

9. Repeat until the training ends.

Detailed illustration of this process can be found in figure 2.6. In that example
we show the training of the episode [JACOB SEES SUSAN ]. The one-hot vectors
representing the words have the same structure as in the SOM-SRN model. Note, that
in figure 2.6 are the word parts of the input vectors abbreviated but it is always vector
of length equals to number of possible words in microworld. On the other hand, the
meaning part of the input vector is the same for the whole sentence which is describing
the episode. The vectors approach to MSOM by one at the time. Specifically, in our
example there are 3 steps, one for each word. Context descriptor is updated twice,
after time step t1 and t2 respectively. When the training approaches word ”SUSAN ”,
the context descriptor are setting to vector of 0s, since the new episode begins. This
process is repeating for every episodes and for T times, where T is maximum number
of epochs (training cycles).
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Figure 2.6: Training process of SOM-MSOM model. Each input vector consists of word
part, meaning part and context descriptor. First two parts are compared with the regu-
lar weights of the neurons on the MSOM while context descriptor finds best matching
unit in the context weights. Context descriptor are updated after each word. When an
episode comes to an end context descriptor, are set to vector of 0’s.
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2.4 Reconstruction of the meaning and its prediction

The goal of our models is to bring computational architecture relevant to the task of
language comprehension. That means, both models should be successful in prediction of
the meaning the sentences (text) that are describing the episodes (abstract situations).
Since we are simulating the process of how the human comprehends the language,
it is reasonable, that our model should predict the meaning from the uncompleted
information, in this case, unfinished sentences. We can take stereotypes as an example.
Since early childhood we have heard that cats catch the mice. Thus, when someone
tells us: ”Hey, look, a cat ...”, we may a priori assume that there is a cat that catches
a mouse. Obviously, this depends also on other factors like how much we have heard
about such situation or whether we have a cat in our house etc. However, when we hear
or read such unfinished sentence we start to predict the situation which the sentence
is describing. Specifically, we are starting to create situational model of the sentence.
Naturally, we may make a mistake and create a wrong situational model9. For this
reason we tried not only to predict the meaning of the episode from the whole sentence
that describes the episode, we also tested how the models performed on the prediction
of the meaning after presenting them one word at the time. Specifically, how the model
predicts the meaning of the sentence after first word is presenting to it, then second
word, etc.

The computation of prediction of the meaning after word is presenting to SOM-
SRN is straightforward and is computing, using equations 1.10 and 1.11. Nevertheless,
in the SOM-MSOM model this is achieved by propagating the activities of MSOM
neurons top-down throughout the vectors of their weights:

~y =
K∑
j=1

Aj ∗ ~wj (2.3)

where Aj is normalized activity of the j-th MSOM neuron and wj represents its
vector of weights. Note, that activity of the MSOM neurons is computed considering
the context as:

aj = exp

(
− c

( (
1− β

)
‖ ~wj − ~x(t) ‖2 + β ‖ ~c(t)− ~cj(t) ‖2

) )
(2.4)

and such activity is normalized to sum up to 1 as in equation 2.2.
As it was said previously such vector of activities can be considered as a probability

distribution of possible meanings. Thus, the value of activity of the winner neuron (or,

9We can predict that there is only ”a cat” but there is ”a cat that catches a mouse” or we can
incorrectly predict that there is ”a black cat that crosses the street”, especially if we are superstitious,
but there is only ”a nice cat”.
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vice versa, neuron with the highest activity) can be considered as the most probable
hypothesis from the hypothesis space represented as the vector of activities. Therefore,
such neuron has the highest impact in further reconstruction of the sentence meaning.
That is computed by top-down reconstruction from the weights of the SOM (Takac &
Knott, 2015):

~y =
N∑
j=1

Aj ∗ ~wj (2.5)

where Aj is the normalized activity of the jth neuron of the MSOM and ~wj is the
vector of vector of weights of the SOM corresponds to particular place of the element in
situational space vector. N is number of neurons in SOM. Simply said, we take all the
weights corresponding to particular element in DSS (e.g. Man, Human etc.) multiply
them by activity of the jth neuron of the MSOM and then sum up these weights. In
the result we gain the probability of the presence of particular semantic element. It is
important to note, that in reconstruction of the meaning of the sentence we take into
consideration only the word part of the input vectors (see figure 2.5 for more details).

2.5 Technical summary of the program and training

data

In this section we will summarize the technical details of our models and training data.
We programed the models in Python language (3.7) in Anaconda environment. We
used our implementation of Self-Organizing Map and Merge Self-Organizing Map both
programmed by ourselves. As implementation of Simple Recurrent Network we use the
program created by Denny Britz which we modified to our purposes. The program can
be found on his website (Britz, 2018).

For generation of training data we used the sentence generator created by Martin
Takac. The program was made in JAVA. Using the words summarized in table 2.1 we
have generated 10 000 sentences constrained to the rules showed in section 2.1.1 on
page 22. From these sentences we randomly chose sentences with particular lengths
from 2 up to 7 words. From each length of the sentence was chosen 50 examples. Thus,
our training data contains 300 sentences where were 50 2-word sentences, 50 3-word
sentences etc.
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Results

In this chapter we will present the evaluation of our models of sentence comprehension.
We will compare these models against each other, since our aim is to introduce biologi-
cally plausible model of sentence comprehension based on self-organization. Firstly, we
will shortly describe the methods of evaluation of models’ performance. We will next
show the progress during training process. Finally, we will compare the two models in
how well they can predict the meaning of the whole episode after presenting them one
word at the time.

3.1 Performance measure

Each training process does not take place without the evaluation of how well the model
performs in achieving the goal to which it was created. To evaluate ongoing training
process of Simple Recurrent Network we used cross-entropy loss function which is
defined as following:

H (~p, ~q) = −
∑
i

pi log(qi) (3.1)

where p is probability distribution of prediction of the vector of meaning1 and q

is the meaning vector of the episode. Recall, that softmax activation function on the
output layer in SRN secures that the prediction vector gives in sum 1 and can be
considered as the probability distribution. In the meaning vector this is secured by
normalizing the activities of the SOM neurons.

Vančo & Farkaš (2010) described several types of measurements of the recursive
self-organizing maps’ performance. We used in our work:

• Quantization error

1We just recall that this vector is obtained from activity of neurons of Self-Organizing Map. But
we have to distinct the probability distribution p which is the output predictions of the SRN.

36
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• Winner differentiation

• Average amount of adjustment of the neurons

Quantization error is the measure of how well the input weight vectors retain statis-
tical information about the labels distribution. Simply said, it takes into consideration
the average distances between the weight vectors and their best matching units. This
measure is defined formally as:

E =
1

N

∑
i

minj ‖ ~xi − ~Ij ‖2 (3.2)

where ~xi is the input weight vector and ~Ij is the weight vector of its best matching
unit and N is number of training examples. Note, that this equation is valid for regular
SOM. For the MSOM it has to be considered within the context, thus the formulation
is :

E =
1

N

∑
i

minj

(
‖ ~xi − ~Ij ‖2 + ‖ ~c(t)− ~cj ‖2

)
(3.3)

where ~c(t) is the context descriptor and ~cj is the weight context vector of jth neuron.
Winner differentiation is simply the ratio of the number of all different winners from

the entire dataset and the size of the dataset (or number of examples that the network
has seen).

The last measure is rather informative and tells us how much the neurons adjust
throughout the training process. The adjustment of neurons should be large at the
beginning of the training and it should dramatically decreased during the learning. In
the end of the training the adjustment of neurons is minimal. It is expressed as:

A(t) =
1

N

∑
j

4 ~wj(t) (3.4)

where
4 ~wj(t) =‖ ~wj(t)− ~wj(t− 1) ‖2

is the distance of displacement of neuron wj from time step t− 1 to time t.
Previous types of measurements of performance are focused on testing if the trai-

ning process was successful. However, our goal is to design a model which provides
sufficiently good mapping of meaning of episodes to the sentences that these episodes
describe. In other words, that could be considered as a proof that the model can extract
the semantic information from the text whenever it is presented to the model. Recall,
that the meaning of the sentences are encoded in the activities of the SOM neurons
while the recurrent neural networks (SRN and MSOM) try to map these meaning to
the sentences which describe their meaning. For testing whether the model correctly
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predict the meaning of the sentence we use Kullback-Leibler (KL) divergence which
is the measure of how the one probability distribution differs from another - expected
probability distribution. Or in other words, it is the measure of how much information
we lost when we tried to approximate one distribution with another. KL is formally
defined as:

KL(~p, ~q) =
∑
i

pi log
pi
qi

(3.5)

where ~(p) is observed or predicted probability distribution while ~(q) is expected
one.

Similar to human who creates situational representation of an episodes which he/she
perceives, computational model should be also able abstract such a representation of
an episode. This should be done even at the beginning of the situation, where we do
not know all of the information about the episode (e.g. we are reading second word
from the eight word sentence). Specifically, we are able to predict the meaning of the
sentence according to only few words which have seen so far or at least, to predict to
some amount. Such ability our models should have as well. To test it, we presented
to the networks the sentences word by word and after each word we measure the KL
divergence between predicted meaning of the sentence and actual meaning. As it was
mentioned in previous chapter, in SRN is this task quite straightforward. We only
need to spread the signal from the input layer in the forward direction to the output
layer. On the other hand, in MSOM we need to reconstruct the meaning by spreading
the activity top-down to the weights of the MSOM. Nevertheless, it is important that
we only use the part of the input vector that corresponds to the word. For better
illustration, we recommend to see the figure 2.5 where the structure is shown of an
input vector to the MSOM. If the meaning of the sentence after presenting a particular
word were reconstructed from the whole input vector, the resulting prediction would be
contaminated by the desired output and such result would be incorrect2. Finally, this
reconstruction is done using equations 2.3 and 2.4. Note, that in this step we do not
reconstruct particular elements of the meaning (e.g. Jacob, Human, Transitive Verb
etc), thus we do not spread the signal top-down to the weights of the SOM (see section
2.4 for more details).

3.2 Summary of the models

In this section we will summarize the process of finding the most appropriate model.
There is a lot of trial-error ”playing” with the models’ parameters in computational

2And perhaps incorrectly more accurate
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modeling and researchers often try many combinations and variations of the parame-
ters’ settings. In our work we tried various combinations of parameters and from all
possible combination we have chosen the best representative model. In tables 3.1, 3.2
and 3.3 respectively are the parameters that the models showed the best results with.
We chose 4 models with the best performance with current parameter settings. Our
methodology was as following:

1. Find the most appropriate parameter settings of Self-Organizing Maps that would
encode the meaning of the sentences in the best way. Here we have mostly mani-
pulated with the number of epochs, the size of the adaptive phase, learning rate
α, parameter of neighborhood and gaussian sensitivity in computing activation
of the SOM neurons.

2. Find the best parameter settings for Simple Recurrent Network and Merge Self-
Organizing Map. These networks are used for serial processing task, specifically,
mapping the meaning to the sentence which is processed word by word.

3. The measure of performance of the model is an extent to which the model is
able to predict the meaning of the sentence from the presenting the words of that
sentence.

Next we are presenting parameter settings of most successful models. Each model
was tested for various combination of parameters. For example, by Model 1 of Self-
Organising Map we tried to manipulate with initial and final values of learning rate.
The values of parameters of Model 1 3 in table 3.1 then represent the best settings of
learning rate while holding other parameters constant. Note, that it would be almost
impossible to try every possible combination and variation of parameters. Therefore we
manipulate based on theoretical background and our intuition (see (Ritter & Kohonen,
1989; Kohonen, 1998; Haykin et al., 2009; Van Hulle, 2012) for more about SOM
parameter settings). Even though the parameters of the models were introduced in
section 1.4, for quick reference we again briefly explain here these parameters. However,
we recommend to see section 1.4 for detailed information4.

• αiαiαi - learning rate, where i indicates initial value5.

• αfαfαf - learning rate, where f indicates final value6.

• λiλiλi - parameter that helps to control the neighborhood function. i represents the
value from start of the training.

3M_1 indicates ”Model 1”
4We mention a reference of a section by every parameter
5The value of α at the beginning of the training
6The value to which the α decreases during the training
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• λfλfλf - final value of parameter λ. All previous parameters are described in section
1.4.1 on page 14.

• ccc - gaussian sensitivity participating in computing the activity of neurons in SOM
and MSOM. More in section 2.4 on page 34.

• γγγ - controls a contribution of the regular and context weights during computing
context descriptor (equation 1.8 on page 15)

• βββ - controls a balance between regular and context weights while best matching
unit finding process (equation 1.7 on page 15)

Table 3.1: Parameters of the Self-Organizing Maps

ID N epochs Ep conv Width Height αiαiαi αfαfαf λiλiλi λfλfλf ccc

M1 1000 750 15 15 1 0.15 8 1 1.5
M2 1000 850 20 20 1 0.5 8 1 3
M3 1000 920 15 15 1 0.5 12 1 4
M4 1000 950 15 15 1 0.5 9 1 3

Table 3.1 shows the best parameter settings for 4 models of SOM. Column ID
indicates ID of the model, N epochs the number of epochs, Ep conv is the epoch when
the training goes to adaptive phase and width and height define size of the SOM lattice.
Note, that all the models were compared to the other ones where specific combination
of parameters was manipulated while the other settings remain constant. The final
models were chosen according to the best performance showed in table 3.4.

Next table (3.2) shows the best parameter settings for 4 MSOM models. The mea-
ning of the parameters are equal as in previous table, however, there are two additional
ones, γ and β which have been explained already as well.

Table 3.2: Parameters of the Merge Self-Organizing Maps

ID N epochs Ep conv Width Height αiαiαi αfαfαf λiλiλi λfλfλf γγγ βββ ccc

M1 50 45 20 20 1 0.5 10 1 0.6 0.7 5
M2 500 425 15 15 1 0.5 7 1 0.35 0.35 1.5
M3 200 180 15 15 1 0.5 15 1 0.6 0.2 5
M4 100 90 15 15 1 0.5 15 1 0.6 0.3 5

Unlike previous networks which work based on self-organization, in simple recurrent
network fewer parameters are needed to be defined. Specifically, N input is dimension
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of the input vector7, N hidden is a number of neurons on hidden layer, N epochs is
number of epochs in training and α is a learning rate.

Table 3.3: Parameters of the Simple Recurrent Networks

ID N input N hidden N epochs ααα

M1 32 150 1000 0.08
M2 32 200 1500 0.08
M3 32 120 1500 0.05
M4 32 100 1500 0.05

Table 3.4: Summary statistics of models’ training

ID
SOM E
min

SOM E
avg

SOM A
min

SOM A
avg

SRN E
min

M1 0.592 2.837 0.000 0.914 1.838
M2 0.031 2.423 0.000 0.917 2.554
M3 0.209 3.509 0.001 1.659 0.136
M4 0.608 3.244 0.002 1.146 1.972

SRN E
avg

MSOM E
min

MSOM E
avg

MSOM A
min

MSOM A
avg

M1 3.983 0.417 1.940 0.365 1.092
M2 6.733 0.354 1.205 0.001 0.945
M3 1.570 0.409 2.274 0.007 1.480
M4 2.568 0.398 2.083 0.012 1.476

Table 3.4 shows basic statistics of models’ performance. By ”model ” we mention
here the model of particular neural network (SOM, MSOM or SRN) not a complex
model of sentence comprehension per se. However, the number of the model of MSOM
and SRN also represents a reference to the model of SOM. Specifically, the SRN M1M1M1

model was trained to the target meaning obtained from activities of the SOMM1M1M1 model
neurons. This also applies to the MSOM M1M1M1 model.

In section 3.1 we have introduced several types of performance measure of the
models. Table 3.4 summarizes how the models performed in the training. In SOM and
MSOM models E refers to quantization error, in SRN model to cross-entropy loss. A
indicates adjustment of the neurons of SOM and MSOM. min indicates minimum and

7Since we used only the microworld with 32 possible words, the value of N input can be considered
as constant across all models.
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avg refers to average particular values across the whole training (the size of the training
can be found in tables 3.1 - SOM models, 3.2 - MSOM models, and 3.3 - SRN models).
Nevertheless, these measures should not be considered as an overall measures of model
quality. Rather it is an indicator that the models have been trained sufficiently.
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(a) Quantization error of Self-Organizing Maps
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(b) Quantization error of Merge Self-Organizing Maps
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(c) Cross-entropy loss of Simple Recurrent networks

Figure 3.1: Training process of neural networks. Quantization error is shown for SOM
and MSOM and Cross-entropy loss for SRN.
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In SOM and MSOM networks can be also shown an adjustment of neurons during
the training. Although this information is quite straightforward and we may assume
that this adjustment would continuously decrease during the training, a plot showing
this process can be used for purpose of training’s diagnostic. This information about
SOM and MSOM training is shown in figure 3.2. Apparently, there is no suspicious
event showing in the plots. A rapid decrease of the adjustment of the neurons is caused
by starting an adaptive phase of the training.
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(a) Adjustment of neurons of the SOMs averaged across epochs
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(b) Adjustment of neurons of the MSOMs averaged across epochs

Figure 3.2: Adjustment of neurons of SOM and MSOM
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The parameters’ settings

At the beginning of the section 3.2 we have summarized our steps in the process
of choosing the best model. Firstly, we should find the best parameter settings for
particular neural network. From the results shown in table 3.4 and figure 3.1a we can
conclude that the best parameter settings of Self-Organizing Map for encoding the
meaning of the sentences are those in model M2 because the model achieved the lowest
average quantization error. Similar criteria can be used in choosing the best parameters
of SRN and MSOM models. Thus, the best setting of parameters of Simple Recurrent
Network is that used in model M3 and for the Merge Self-Organising Map the ones
used in model M2. Note, that these criteria are rather arbitrary and researcher can use
other conditions. From the figure 3.1 we can also conclude that the training of models
using self-organization (SOM and MSOM) was smoother8 than of the SRN. There is
also visible flagrant decrease of error in starting an adaptive phase of training of SOM
and MSOM (figures 3.1a and 3.1b).

We use these information in the setting with the best parameters for our models.
The best training performance from the SOM models shown the model M2. However,
since this model used bigger SOM lattice (20x20 neurons) and the difference between
average error was not large, we decided to use parameters of SOM model M4, also
taking into consideration the Occam’s razor. Furthermore, since the SOM and MSOM
networks have to have the same size of lattice we considered the results of MSOM
models in making appropriate combination. Secondly, for SRN we chose the parameters
corresponding to SRN modelM3. Finally, we trained MSOM with the parameters used
in MSOM model M2.

Predicting the meaning of the sentences

As a measure of how well the model predicts the meaning of the sentence we have
chosen Kullback Leibler divergence (more in section 3.1). An accurate computational
model of sentence comprehension should not only gain sufficiently small discrepancy
between comprehended meaning of the sentence but as well its actual meaning when
the model knows the whole context9. It should achieve a good prediction power to
comprehend the meaning of the sentences while only few words from the sentence have
been presented to it. Therefore we have tested the prediction power of the models
each time after a particular word from the sentence was introduced to the model. We
summarize its computation into following steps:

1. Combine sentences with the similar length into groups. In our case we get 6
8The error decreased continuously in a direct way while the SRNs showed more saccades in fitting

the model.
9In this case we mean that the model has already seen the whole sentence.
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groups of text sentences while each group contains 50 sentences.

2. Take each group and compute the prediction of the meaning from each sentence
after each word was presented.

3. Compare these predictions with actual meaning of the sentences by Kullback-
Leibler divergence.

4. For every group of sentence compute the average KL divergence after each word.
Specifically, take a group with sentences composed of 4 words. Average the pre-
dictions of the meaning after 1st word then after 2nd word etc. until we get the
prediction from the whole sentence (4 words).

5. Repeat this process for all groups of sentences.

Tables 3.5 and 3.6 as well as figure 3.3 shows the results of the models’ performance
in prediction of the meaning of sentences. We can see that SOM-MSOM model did
better at the beginning of the sentences. It is obvious that both models achieved much
higher prediction accuracy after more words from the sentence were presented. Spe-
cifically, when the model ”sees” the first word, its prediction of the meaning is highly
dependent on the word that is presented and how often it occurred at the beginning of
any sentence. For example, we can take a sentence ”Small Jacob sees Susan.”. When we
consider only the first word of this sentence small, the sentence can continue in a very
large number of ways. After we are reading further, we continuously discover its actual
meaning, or the situation that this sentence describes. Elman (1990) explains this pro-
cess in context of connectionist modeling. Thus, when the model sees ”small ” as a first
word of the episode it predicts some combination of all possible episodes where the
small stood at the first place in the training text data10. Therefore, after a first words
of the sentence is the prediction error highest and it is decreasing after more words
is presented to the network. Such case is clearly seen in the figure 3.3. Thus, we can
conclude that we successfully simulated ”online” process of sentence comprehension.
However, in this case is only carrying on the mapping the meaning of the sentence to
the words that it contains and its accurate prediction.

10In reality, there is infinity number of possible sentences started by word small. It is related to
generativity of our language. However, since we constrained the language into the microlanguage or
microworld, here the number of possibilities is discrete number but is also high.
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Table 3.5: KL divergence after word is presenting (SOM-SRN model)

1st1st1st word 2nd2nd2nd word 3rd3rd3rd word 4th4th4th word 5th5th5th word 6th6th6th word 7th7th7th word

1.3945 0.1001
2.2836 0.7728 0.2209
2.5964 1.0333 0.3952 0.1791
2.9562 1.1694 0.6461 0.3832 0.2258
3.2440 1.4024 0.5707 0.3919 0.3383 0.5968
3.4795 1.5553 0.7124 0.4634 0.4426 0.6109 0.6266

Table 3.6: KL divergence after word is presenting (SOM-MSOM model)

1st1st1st word 2nd2nd2nd word 3rd3rd3rd word 4th4th4th word 5th5th5th word 6th6th6th word 7th7th7th word

0.2876 0.2948
1.0036 0.3517 0.3540
1.2271 0.3846 0.3313 0.4436
1.6759 0.3952 0.4540 0.4637 0.4076
1.7289 0.4794 0.3740 0.4175 0.4435 0.3894
2.3110 0.5816 0.4127 0.3888 0.5317 0.3867 0.4550

Figure 3.3 shows that our models successfully mapped the meaning of the sentences
to the text which they describe. It is obvious that the error between actual and predicted
meaning is highest at the beginning of the sentences. This discrepancy decreases after
more words are presented. Such an aberration can be considered as an uncertainty of
the actual meaning. Thus, we can say that the meaning is changing while we know more
about the context of a particular episode. These changes can be captured by the SOM
since it encodes the meaning of the sentences in a distributed manner. In summary, we
can conclude that both models showed good prediction accuracy of the meaning of the
sentences. The SOM-MSOM model performed better in this task since it reduced the
error in its prediction after second word and remained good performance.
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Figure 3.3: Kullback-Leibler divergence between predicted meaning of the sentences
by SRN and MSOM and the actual meaning represented in activity of SOM neurons.
KL was computed after presenting one word at the time. The particular KL values
are averaged within the sentences with specific length, distinguished by the color and
shape of the points. E.g. red line with square points averaged KL divergence across all
sentences containing 7 words. Particular points represent KL values after presenting
the number of words according to x axis. The legend refers to the length of the sentence.

3.2.1 Reconstruction of the meaning of the sentences

In previous section we have showed that our models performed sufficiently good in
prediction of the meaning of the sentences. However, the meaning of the sentences
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is just encoded information in the activity of the SOM neurons. We would want to
extract this information to find out what the numbers inside distributed situational
vectors mean. To do so we spread the activation of neurons of MSOM and SRN down
to the weights of the SOM. Similar method used Frank (2005) combining SOM with
SRN for the serial processing of the words of sentences. Unlike his method, we based
on an assumption that episodes are perceived as sensorimotor-routines with specific
structure. On the other hand, combination of SOM and MSOM used Takac et al.
(2012). However, in their model they used the top-down reconstruction in modelling of
language production. The methodology of reconstruction of the meaning of sentences
is explained into detail in section 2.4.

We show in figures 3.4 and 3.5 the example of reconstruction of the meaning of
the particular episodes. We use example episodes described by 6 words for SOM-SRN
model and by 5 words for SOM-MSOM model. Note, that the more words the sentence
has the more certain the model is after presenting the last words. That is caused by the
known context of the episode which is explained more detailed by more words. We can
also see that there are predicted probabilities in unseen parts of the meaning vectors
(e.g. at the beginning in the patient part of the vector). This probabilities refer to prior
probability composed of what the network has seen during the training process. For
example, in the first subplot of figure 3.5 can be seen, the activity in the place refers to
word white instead of yellow. That means, that the network has seen the combination
of words small - white in agent part of the vector more often than small - yellow.
However, presentation the next word to the network updates the prediction referring
to the right meaning, specifically small - yellow.

Figure 3.4 shows the reconstruction of the meaning of the episode ”Small Jacob Cat-
ches medium black dog”. The particular subplots show the probabilities of the particular
semantic elements. In the first subplot is presented some uncertainty in prediction of
these elements. The model have seen a little context and the prediction is not quite
accurate. After next words are presented to the model the estimate becomes more ac-
curate and the meaning of the episode is more clear. We can see that after the first
element from the patient part ”medium” is shown to the model the prediction becomes
sufficiently precise.

Next figure (3.5) shows how the SOM-MSOM model reconstruct the meaning of
the episode ”Small yellow man catches cat”. The behavior is similar as in SOM-SRN
reconstruction. The estimate becomes more accurate after more words are presented
to the model. In summary, we can conclude that both models fairly reconstruct the
meaning of the episodes. We note that the sentences were chosen randomly and we
shows these reconstructions as an example.
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 Small Jacob Catches Medium Black Dog

Figure 3.4: Example of reconstruction of the meaning - SOM-SRN model. The example
episode is expressed by the sentence Small Jacob catches medium black dog. Particular
words are presenting to the model and the reconstruction of the meaning of the whole
sentence is computing. The methodology is explained in section 3.1.
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Figure 3.5: Example of reconstruction of the meaning - SOM-MSOM model. The exam-
ple episode is expressed by the sentence Small yellow man catches cat. Particular words
are presenting to the model and the reconstruction of the meaning of the whole sentence
is computing. Again, the methodology is explained in section 3.1.



Conclusion

In this work we compare two connectionist models of sentence comprehension. Both
models using Self-Organizing Maps for representation of the meaning of the sentences.
They differed in a sentence processing component. First one used Simple Recurrent
Network design by Elman (1990). This model was similar to the one built by Frank
(2005). The second one contains Merge Self-Organizing Map introduced by Strickert
& Hammer (2005). An inspiration for such choice was the work of Takac et al. (2012)
where the authors trained a model for sentence production task. However, to our kno-
wledge such a model has been not used for language comprehension so far. Therefore
our work can be considered as an initial research in this area using this architecture.

First chapter was devoted to describing theoretical background of language com-
prehension, computational models that tried to simulate this process, and artificial
neural networks which we used in our models. Second chapter goes into the detail of
our models’ architecture. Finally, in the third chapter we have shown the results of
performance of our models in language comprehension task.

Our goal in this work was to create the model of sentence comprehension in biologi-
cal plausible manner. Specifically, the models which use symbolic or localist system for
representing the semantic concepts do not perform sufficiently good. Thus, comprehen-
sion has largely been the domain of distributed, connectionist models (Rohde & Plaut,
2003). However, even connectionist models sometimes lack of enough of biological plau-
sibility. They are often include Simple Recurrent Network (e.g. Frank (2005); Rohde
(2002)) which is trained by backpropagation algorithm. Therefore using other network
as sentence processing component seems as a legit way in finding suitable biological
appropriateness. Using network that uses self-organization as a training method may
be a good direction in this area.

Self-organization is a process which can be seen in various brain locations (Singer,
1986; Kohonen, 1998; Gerstner & Kistler, 2002; Newman & Polk, 2008; Van Hulle,
2012; Kahn, 2013). There is evidence that this process is involved in processes that
can proceed hand-to-hand with language processing (Chersi et al., 2014). Working
memory also plays an important role in language comprehension, where the active
reverberation circuits as well as a connection with long term memory storage helps
to adequate functioning of processes needed in language processing (Gathercole &
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Baddeley, 2014). These findings support the idea of using computational model of
language comprehension based on self-organizing systems.

The results of our experiments suggest that the model architecture composed of
systems on a basis of self-organization can be represented as an opponent against
the traditional connectionist models using SRN. In our meaning prediction task the
SOM-MSOM model performed even better than the SOM-SRN model. In addition, the
SOM-MSOM model reconstructs the particular elements from the vector of meaning
appropriately. Therefore, we can conclude that this architecture can be used in further
research using connectionist modeling of language comprehension.

As we have mentioned previously, the self-organization based model can be conside-
red as biologically plausible simulation of process of language comprehension. Another
research is needed in examination of the role of other participating processes like wor-
king memory, long term memory or executive functions. Our research can therefore
bring the a light in explanation of the language phenomena.
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