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Abstract 

For decades, interest in emotion recognition by artificial intelligence has been growing 

steadily. Lately, especially because of improvements in the processing capabilities of 

computers and the creation of new machine learning algorithms, this path of research grew 

even faster, substantially improving the accuracy of the task. Currently, emotion recognition 

through facial expressions can achieve close to 73% accuracy with state-of-the-art 

implementations tested with images in natural settings (Pramerdorfer & Kampel, 2016). 

Comparably, human accuracy tested on the same images reaches 65±5% (Goodfellow et al., 

2013). This thesis consists of two main parts: first, a neural network based emotion 

recognition system trained with static images of faces with a neutral expression and six basic 

emotions (sadness, happiness, anger, fear, disgust, surprise); and second, an emotion 

imitation system trained on outputs of the emotion recognition system, learning to imitate 

the facial expressions of new images. The thesis combines state-of-the-art level facial 

expression recognition implementations with an emotion imitation system to produce a 

human–robot interactive system capable of perceiving and imitating human emotions 

through facial expressions. For this purpose, state-of-the-art neural network models are 

modified and trained with static images of faces from three commonly used datasets of facial 

expressions. Also, the imitation system is trained with associative learning, using the 

resultant information from the previously trained neural network. The emotion recognition 

system achieves an average accuracy of 62% on the most challenging, natural setting dataset 

used in this research; while achieving an average accuracy of 83% on laboratory setting 

datasets. The emotion imitation system correctly associates all images with an average 

accuracy of 96% on the laboratory setting dataset, which results in correctly imitating 

emotion with a 78% accuracy in combination with the emotion recognition system. 

Regarding the natural setting dataset, association accuracy is 91% on average, which 

combined with the recognition system results in 56% average imitation accuracy. The results 

show that the robotic system would not be very accurate at imitating emotions in a natural 

setting with current emotion recognition capabilities, nevertheless, on a laboratory setting, it 

could be viable. 

Keywords: associative learning, computer vision, convolutional neural networks, emotion, 

facial expression recognition 



Abstrakt 

Už niekoľko desaťročí sa záujem o rozpoznávanie emócií umelou inteligenciou neustále 

zvyšuje. V poslednom čase, najmä z dôvodu zlepšenia spracovateľských schopností 

počítačov a vytvorenia nových algoritmov, výskum v tejto oblasti rástol ešte rýchlejšie, čím 

sa podstatne zvýšila presnosť rozpoznávania emócií. V súčasnosti môže rozpoznávanie 

emócií prostredníctvom výrazov tváre dosiahnuť takmer 73%-nú percentnú presnosť 

pomocou najmodernejších implementácií testovaných s obrázkami v prirodzenom prostredí 

(Pramerdorfer & Kampel, 2016). Táto práca sa skladá z dvoch hlavných častí: po prvé, 

systém rozpoznávania emócií, ktorý má umelú neurónovú sieť, ktorá je vycvičená pomocou 

statických obrazov tvárí s neutrálnym výrazom a vyjadrením 6 základných emócií (smútok, 

radosť, hnev, strach, znechutenie, prekvapenie); a po druhé, systém imitácie emócií, ktorý 

je trénovaný s výsledkami systému rozpoznávania emócií a napodobňuje výrazy tváre v 

nových obrazoch. Diplomová práca kombinuje najmodernejšie implementácie 

rozpoznávania výrazov tváre so systémom imitácie emócií a vytvára interaktívny systém 

človek-robot schopný vnímať a napodobňovať ľudské emócie prostredníctvom výrazov 

tváre. Za týmto účelom sú najmodernejšie modely neurónových sietí modifikované a 

trénované pomocou statických obrazov tvárí z troch bežne používaných súborov dát výrazov 

tváre. Imitačný systém je tiež trénovaný s asociatívnym učením, využívajúc výsledné 

informácie z predtým trénovaných neurónových sietí. Systém rozpoznávania emócií 

dosahuje presnosť 62% v prípade najnáročnejšieho dátového súboru s prírodnými 

podmienkami použitom v tomto výskume, pričom dosahuje presnosť 83% na dátovom 

súbore s laboratórnymi podmienkami. Imitačný systém správne asociuje všetky obrázky s 

priemernou presnosťou 96% na dátovom súbore s laboratórnymi podmienkami, čo vedie 

k správnej imitácii emócií so 78% presnosťou v kombinácii so systémom rozpoznávania 

emócií. Pokiaľ ide o dátový súbor s prírodnými podmienkami, presnosť asociácie je v 

priemere 91%, čo v spojení so systémom rozpoznávania vedie k priemernej presnosti 

imitácie 56%. Výsledky ukazujú, že robotický systém by nebol veľmi presný pri imitácii 

emócií v prirodzenom prostredí so súčasnými schopnosťami rozpoznávania emócií; napriek 

tomu, v laboratórnom prostredí by mohol byť realizovateľný. 

Kľúčové slová: asociatívne učenie, počítačové videnie, konvolučné neurónové siete, 

emócie, rozpoznávanie výrazov tváre 
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Introduction 

Affective computing has the potential to become part of our everyday life. Advances in 

research and technology allowed emotion recognition systems to be used in several fields of 

work like customer experience and fraud detection (Gartner, 2017). Also, in the coming 

years emotion recognition systems could be used more extensively in fields such as 

healthcare, education, transportation, and security (Dzedzickis, Kaklauskas, & Bucinskas, 

2020; Lucey et al., 2010). Due to the importance and growing interest in the field of affective 

computing, this research is focused on emotion recognition and imitation through facial 

expressions, an interdisciplinary research which is tightly related to concepts from 

psychology, artificial intelligence, and to a lesser extent, neuroscience. Our objective was to 

use an interdisciplinary approach by evaluating artificial neural network models in 

conditions similar to human evaluations, with facial expressions datasets with minimal 

preprocessing, and evaluate a biologically inspired association model for the task of 

imitation of emotions. The main question to answer with this research is whether a 

computational system is capable of recognizing and imitating emotions accurately. Two 

hypotheses were formulated from this question; 1. Will the emotion recognition system be 

as performant as state-of-the-art implementations; 2. Will the imitation system be able to 

imitate emotions through associative learning? 

The thesis is organized as follows. Chapter 1 deals with the many definitions of emotion and 

universality of emotions, it also gives a theoretical background for affective computing and 

convolutional neural networks. Chapter 2 reviews current state-of-the-art models in emotion 

recognition and imitation and compares human accuracy with current emotion recognition 

computational solutions. Chapters 3 and 4 present the emotion recognition and imitation 

systems, their methodology and results, respectively. Finally, in Chapter 5 we discuss the 

results, limitations of this thesis and ethical concerns. With the help of this research, it is 

expected that we will be able to better understand what architectures fit best emotion 

recognition and if it is plausible to teach robots to imitate emotions through associative 

learning. 
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1 Theoretical background 

 

1.1 Definitions of emotion 

It is important to mention first what is meant by emotion, and for that, several definitions of 

emotion are provided next to indicate that there is not one precise definition of emotion, and 

that authors of these definitions can, over time, modify them adding new findings or 

clarifications. 

According to the American Psychological Association (n.d.) emotion is “a complex reaction 

pattern, involving experiential, behavioral, and physiological elements, by which an 

individual attempts to deal with a personally significant matter or event.” 

Scherer defines emotion as “an episode of massive, synchronous recruitment of mental and 

somatic resources to adapt to, or cope with, a stimulus event that is subjectively appraised 

as being highly pertinent to the needs, goals, and values of the individual.” (Barrett, 

Niedenthal, & Winkielman, 2007, p. 314) 

Sander and Scherer (2009, p. 106) define emotions “as transient, bio-psychosocial reactions 

designed to aid individuals in adapting to and coping with events that have implications for 

survival and well-being.” 

We can see that the previous definitions do have common elements, emotions influence our 

behavior, emotions play a role in dealing with events that affect us, and they also seem to be 

of short duration, differentiating them from moods, attitudes or traits (Sander & Scherer, 

2009, p. 202). Apart from these definitions from a psychological perspective, they are, 

neuroscientific perspectives such as “emotion is a fundamental property of the brain and is 

instantiated in distributed circuitry that enables emotion to interact with other major mental 

functions such as attention and memory” (Sander & Scherer, 2009, p. 199), and early 

philosophical perspectives as “an attempt to bundle together states that were supposedly 

marked by a degree of 'emotion', a metaphorical extension of the original sense of the word, 

namely agitated motion, or turbulence.” (Sander & Scherer, 2009, p. 200). 
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When we consider all the perspectives of what emotions are, in general, they seem to refer 

to the same phenomenon. However, it is in the details that differences arise, such as between 

Barrett, Niedenthal, and Winkielman (2007, p. 314) where emotion affects behavior to 

achieve individual needs, goals, and values, and Sander and Scherer (2009, p. 106)  where 

emotion is a reaction of an individual in order to survive and avoid danger. 

It is because of these details and other differences that are not even mentioned in general 

definitions, that Scherer created a framework that would allow several disciplines 

(neuroscience, psychology, philosophy, anthropology) and different perspectives inside 

those disciplines to continue their research having a common ground that would allow for 

more compatibility between these perspectives.  

The framework is as follows: 

Emotions (1) are focused on specific events, (2) involve the appraisal of intrinsic 

features of objects or events as well as of their motive consistency and conduciveness 

to specific motives, (3) affect most or all bodily subsystems which may become to 

some extent synchronized, (4) are subject to rapid change due to the unfolding of 

events and reappraisals, and (5) have a strong impact on behaviour due to the 

generation of action readiness and control precedence (Sander & Scherer, 2009, p. 

202). 

The above-mentioned framework is used when referring to emotions throughout this thesis.  

 

1.2 Universality of emotions 

This is a long-debated topic – are emotions the same across all human cultures, or do they 

differ by culture – which can be attributed to the nature-vs-nurture debate. Nurture alone 

means that a person is a blank slate (tabula rasa) who learns everything from the culture 

they live in, while nature alone means that humans come ready when born having everything 

they need to survive, including emotions. Behaviorists from mid-20th century like B. F. 

Skinner were inclined to nurture albeit they would not disregard nature. By the end of the 

20th century there was already more agreement that nature and nurture are entangled, and 

humans have something from both concepts (Sander & Scherer, 2009, p. 202).  
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Paul Ekman dedicated plenty of his research to find emotion universals, he proposed the 

theory of basic emotions, which includes the emotions anger, joy, surprise, fear, sadness, 

and disgust (Figure 1.1); and later he proposed to add other emotions that could be universal, 

such as, amusement, contempt, contentment, embarrassment, excitement, guilt, pride in 

achievement, relief, satisfaction, sensory pleasure, and shame (Ekman, 2005; Reisenzein, 

2015). Several experiments with participants from different countries, focused on the initial 

six emotions,  led to the conclusion that basic emotions are universal, regardless of cultural 

differences (Ekman, 2005; Ekman & Friesen, 1971; Reisenzein, 2015). Nevertheless, social 

norms can influence the expression of any given emotion as seen in Ekman & Friesen (2003) 

where they compared cultural differences between American and Japanese participants when 

they express emotions: while Americans would express the emotions in group settings in the 

same way as when alone, Japanese would not display negative emotions in group settings, 

however, they would express them when alone (not being directly observed). 

 

Figure 1.1. Examples of facial expressions of 6 basic emotions as defined by Paul Ekman. 

From top left to bottom right: happiness, disgust, surprise, fear, anger, sadness (Ekman & 

Friesen, 2003, pp. 104, 181, 175, 179, 185, 195). 
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1.3 Affective computing  

Affective computing is an interdisciplinary field of research that uses computational systems 

to detect, analyze, simulate, and convey emotions and related affective states (Sander & 

Scherer, 2009). It is very important for human-robot interaction, were it aids communication 

by displaying empathy and emotional intelligence. However, it is important to notice that 

the display of the emotions by the robot, or another computational system does not mean 

that the robot feels them or understands them as we do. Human emotions may be simulated 

at different levels of complexity in a robot by adding modules that are inspired by the nervous 

and other systems of the human body.  

In affective computing different sensors can be used to recognize emotions through several 

modalities, from which the most common are visual (video or static images) of facial 

expressions, body posture, and gestures; and auditive. Additionally, physiological modalities 

like electro-encephalography (EEG), electrocardiography (ECG), electrodermal activity 

(EDA) also called galvanic skin response (GSR), electromyography (EMG), heart rate 

variability (HRV), respiratory rate analysis (RR), skin temperature measurements (SKT), 

and electrooculography (EOG) can be used; usually in a multimodal manner where two or 

more modalities complement each other in order to recognize the desired emotions 

(Dzedzickis et al., 2020; Janssen et al., 2013; Liu, Sourina, & Nguyen, 2010). 

1.4 Neural networks for emotion recognition 

Neural networks are commonly used in computer vision problems such as object detection, 

classification, and emotion recognition; specifically, convolutional neural networks (CNN) 

have seen a great increase in popularity in the last decade because of the accuracy they 

achieve compared to other solutions (Kim, Roh, Dong, & Lee, 2016; Ko, 2018). They are 

part of the connectionist approach which is an interdisciplinary approach that tries to explain 

the inner workings of the brain with the premise that biologically inspired structures that 

resemble neurons and their connections can be created to simulate brain activity, in the case 

of CNNs they model areas of the human visual system (Kriegeskorte, 2015; Lindsay, 2020). 

In the case of emotion recognition through facial expressions, the input of a CNN is an image 

with a human face and the output is a label that the CNN assigned to that image. They are 
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several algorithms that are organized into preprocessing, training methods, and algorithms 

in the network architectures (Kim et al., 2016). 

Training algorithms can be gradient based, which have as an objective to minimize the loss 

function to obtain a local minimum (Bushaev, 2017). The loss function shows how good a 

neural networks is for a task, while lower the value of a loss function is, the better the 

network is for the specified task (Bushaev, 2017).  

In order to better understand how CNNs work, the general structure composed of layers is 

presented next:   

• Convolutional layers split the information from the image into feature maps that store 

the information of where the feature occurs in the image, and have as an output an 

activation map (Can, 2017).  

• Rectified linear unit (ReLU), which is a linear function with a threshold at zero, that 

propagates the gradient through the network avoiding the common problem of 

vanishing gradient that prevents weights from updating (Can, 2017). Also, because 

the function has a threshold at zero, negative values are not taken into account which 

avoids the cancellation problem were positive values and negative values would 

cancel out each other, thus improving robustness when the inputs are noisy (Can, 

2017). ReLUs also present simple computations (comparisons between values) 

which makes them more efficient in CNNs compared to other functions (Can, 2017).  

• Pooling layers, which reduce the spatial size of the activation map reducing 

computational requirements  and minimizing overfitting of the data (Can, 2017). The 

pooling layer can discard more than 75% of the data with the smallest sized filter 

which can limit depth and performance, however, they are still used, especially in 

image recognition tasks, because the detected features are more important than their 

location in the image (Can, 2017). 

• Fully connected layers, which in CNNs are multi-layer perceptrons that map the 

outputs from the combination of the previous layers and have the goal of tuning the 

weights of the network and producing the final output of the CNN (Can, 2017).  

The previously mentioned layers are ordered in the architecture in an interspersed fashion of 

convolutional layers and pooling layers, with ReLU usually being part of the convolutional 

layer, and the fully connected layers at the end of the CNN. 
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2 State of the art in emotion recognition and 

imitation 

There are not many studies in emotion recognition that compare human accuracy with 

machine learning accuracy, and the state-of-the-art machine learning solutions are often 

taken as the benchmark. However, these studies are necessary to assess machine learning 

performance on emotion recognition.  Next, some of these comparative studies are presented, 

and the results show that by now machine learning can be as good or even better at 

recognizing emotions than a layperson (Janssen et al., 2013).  

Currently, there already are companies on the market that offer emotion recognition software 

for different uses such as marketing, product placement, gaming, driving safety, education, 

and healthcare; however, specifically for facial expression recognition, the accuracy of their 

products did not achieve human accuracy levels when tested on two facial expressions 

datasets (BU-4DFE, UT-Dallas) in a study made by Dupré, Krumhuber, Küster, and 

McKeown (2019); human accuracy of 14 participants was 73%, while the emotion 

recognition software of 8 companies ranged from 49% to 62% accuracy. As Dupré et al. 

mention, the software had problems with spontaneous emotions from UT-Dallas dataset, and 

it was most accurate in recognizing a happy expression even surpassing human accuracy for 

this facial expression. On the other hand, one of the software companies claims an above 

80% accuracy in emotion recognition of seven basic emotions (anger, contempt, disgust, 

fear, joy, sadness, and surprise), and mentions that their software is trained on millions of 

images of faces from 86 countries in real-world environments (Affectiva, 2017), which 

implies that the conditions of the environment, or the input data differ from the study by 

Dupré et al. 

In another study, Janssen et al. (2013) set as the benchmark the human accuracy in 

recognizing emotions. The researchers recorded physiological signals and videos with audio 

of Dutch participants that elicited emotions by describing emotional events that they had 

experienced; later, they presented the videos in three modalities, audio only, video only, and 

audio-video to two other groups of participants and the emotion recognition software, and 

compared the accuracies between all the groups. One group was composed of Dutch native 

speakers, and the other of American participants that could not understand Dutch. The results 

show that for humans, semantic understanding and context are important for emotion 



8 

 

recognition, and the accuracy of the recognition software surpasses that of a layperson 

considerably if the person does not have a semantic understanding of the elicited emotions.  

The accuracy of the recognition software was 65% with audio-video data, while for humans 

it was 47.9% for Dutch participants and 31% for Americans. They also mention that acted 

emotion elicitation is more intense and easier to detect for humans, in this case the emotion 

elicitation might have been more subtle because of the artificial setting the participants were 

in, and because the participants were not acting according to the tests they took to ascertain 

they were expressing the emotions they felt. 

In a study by Esparza, Scherer, Brechmann, and Schwenker (2012), emotion recognition 

through audio was tested in humans and two machine learning algorithms, hidden Markov 

models and support vector machines. The participants analyzed audio recordings from two 

German datasets (WaSeP and emoDB) of acted emotional speech. The accuracy of humans 

for the datasets WaSeP and emoDB were 84% and 84.7% respectively, while the accuracy 

of the algorithms was 84% for WaSeP and 77% for emoDB.  

In addition, it is important to mention the study by Cao, Cooper, Keutmann, and Gur (2014) 

who created the crowd-sourced emotional multimodal actors dataset (CREMA-D)(Cao et 

al., 2014). The researchers contacted actors to elicit five emotions (anger, disgust, fear, 

happiness, sadness) with varied intensities, and generated visual, audio, and audio-visual 

data. The purpose of the research was to determine how accurate can humans be in 

recognizing emotions of different intensities through different modalities. As with other 

research in human emotion recognition the results are similar, 63.6% of accuracy for audio-

visual data, 58.2% for visual data, and 40.9% for audio-only data. 

2.1 Datasets of facial expressions 

Before mentioning state-of-the-art models of emotion recognition, it is important to describe 

some of the most common datasets used for facial expression recognition to have perspective 

on how varied they can be, and what challenges they can bring. They are different publicly 

available datasets that vary in the number of labeled emotions they contain, commonly from 

only two emotions up to eight. Further, datasets about facial expression recognition are 

divided into laboratory setting datasets, which have images of the faces taken frontally, 

centered, with specific lighting conditions, and oriented horizontally; and natural setting 

datasets (also called in the wild), which present different lighting conditions, they can be 
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rotated, with the face uncentered, occluded, and have images taken in different environments 

(Dhall, Goecke, Gedeon, & Sebe, 2016). State-of-the-art solutions are tested on one or more 

of the following datasets.  

FER-2013 dataset, which is a natural setting dataset created by Pierre Luc Carrier and Aaron 

Courville and used for the 2013 emotion recognition in the wild contest (Goodfellow et al., 

2013); this is the biggest publicly available dataset to date of writing, with 35887 labeled 

images distributed into 6 emotions (anger, fear, sadness, surprise, happiness, disgust) and a 

neutral expression as seen in Figure 2.1.  

 

Figure 2.1. FER-2013 dataset sample images; from left to right: angry, disgust, fear, happy, 

sad, surprise, and neutral expressions (Pramerdorfer & Kampel, 2016).  

 

GENKI-4K dataset (Http://mplab.ucsd.edu, 2009), which is a natural setting public dataset 

of 4000 smile and non-smile images (Figure 2.2), taken from the bigger 20 000 images 

dataset GENKI created to train algorithms for the use in cameras to take pictures of people 

when smiling (Whitehill, Littlewort, Fasel, Bartlett, & Movellan, 2009). 
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Figure 2.2. Smile (top) vs non-smile (bottom) images from GENKI-4K dataset (Sang, Bao 

Cuong, & Thuan, 2017). 

SWEF (Static Facial Expressions in the Wild) database (Dhall, Goecke, Lucey, & Gedeon, 

2011), which has 700 natural setting images for emotion recognition classified into 6 

emotions (anger, fear, sadness, surprise, happiness, disgust) and a neutral expression (Figure 

2.3), created from the Acted Facial Expression in the Wild (AFEW) dataset, which is  a 

collection of labeled movie clips created for the purpose of having data that would be 

comparable to a real-world scenario; these datasets are used in the EmotiW challenges (Dhall 

et al., 2016). 

 

Figure 2.3. SFEW database sample images (Dhall et al., 2011). 

 

JAFFE (Japanese Female Facial Expression) database (Lyons, Akamatsu, Kamachi, & 

Gyoba, 1998) which has 213 images of 10 female participants expressing anger, fear, 

sadness, surprise, happiness, disgust, and a neutral expression in a more subtle way than 

most laboratory setting datasets as seen in Figure 2.4; as well, the amount of data is 

considerably smaller compared to other datasets; regardless, this dataset is used commonly 

in research.  
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Figure 2.4. Sample images from JAFFE database of two out of ten participants expressing, 

from left to right, neutral, happy, sad, surprise, angry, disgust, and fear expressions (Lyons 

et al., 1998). 

At last, CK+ (the extended Cohn-Kanade dataset) which has 593 sequences of emotions 

going from neutral to peak emotion in a laboratory setting from 123 participants, with 

contempt present as an additional emotion to the other six previously mentioned emotions 

(Figure 2.5) (Lucey et al., 2010).  

 

Figure 2.5. Sample images of all expressions from CK+ dataset; from top left to bottom 

right: disgust, happy, surprise, fear, angry, contempt, sad, and neutral (Lucey et al., 2010). 

 

2.2 Models of emotion recognition 

Currently, artificial neural networks are the most used computational models in emotion 

recognition, specifically convolutional neural networks (CNNs); next, two studies are 

presented that managed to achieve top accuracy in facial expression recognition. 
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2.2.1 Hierarchical committee of deep convolutional neural networks 

This study by Kim, Roh, Dong, and Lee (2016) was the winning submission for the 

EmotiW2015 challenge (Dhall et al., 2016), it used a group of CNNs with different 

parameters and architectures, which allows the entire model to generalize better and improve 

accuracy. The group of CNNs was organized into committees where each output would get 

averaged in a hierarchical structure called exponentially-weighted average (EWA) (Kim et 

al., 2016) as seen in Figure 2.6. 

 

Figure 2.6. Overall architecture of a hierarchical committee of deep CNNs (Kim et al. , 

2016).  

With the best hierarchical architecture of this kind with 240 deep CNNs, Kim et al. managed 

to achieve an accuracy of 61.6% on the EmotiW2015 challenge SFEW database, while their 

best single deep CNN managed to achieve an accuracy of 57.3%, both significantly above 

the baseline of 39.1% accuracy on the SFEW database. 

2.2.2 The use of deep neural networks for emotion recognition 

Pramerdorfer and Kampel (2016) reviewed the state of the art of CNN solutions for facial 

expression recognition and searched for possible bottlenecks in those solutions; they found 

two main problems; the data available in the field of facial expression recognition is too 

small compared to other fields of research and CNNs that are used are too shallow in 

comparison with state of the art CNNs in other fields, such as object classification. When 

Pramerdorfer and Kampel tested three state-of-the-art CNNs from object classification on 

the FER-2013 dataset, they all performed better with 72.7%, 71.6%, and 72.4% accuracy in 
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comparison with the best shallow model by Kim et al. (2016) with 70.58% accuracy on the 

same dataset. Additionally, when they created an ensemble of 8 of these CNNs, in a similar 

fashion as in Figure 2.6., they achieved an accuracy of 75.2%, compared to 72.72% from 

Kim et al. (2016). 

2.3 Models of emotion imitation 

In the field of human–robot interaction it is not only important for the robot to recognize 

human emotions, but also to imitate the human emotions, to allow a more meaningful 

communication between both. Churamani, Kerzel, Strahl, Barros, and Wermter (2017) 

created a model with 4 neural networks that recognizes facial expressions and learns to 

imitate them by association with rewards and penalties. They use the Neuro Inspired 

Companion robot (NICO) which is a child-sized modular robot with multi-modal sensors, 

with tactile, auditory, visual, and proprioception capabilities (Figure 2.7).  

Churamani et al. (2017) model uses 4 emotions (anger, happiness, sadness, surprise) and a 

neutral expression for the recognition and imitation tasks because of the difficulty for 

participants to identify NICO’s disgust and fear expressions (Figure 2.8). The model was 

pre-trained using the CK+ dataset, and then trained with 5 participants that expressed one of 

the five emotions when prompted by the researchers. For the association learning to occur, 

the participants waited for NICO to express an emotion, and, if the expression was correct, 

the participant would express a happy expression as a reward, and an angry expression as a 

penalty. The learning by association was effective, and to improve accuracy, Churamani et 

al. simulated 100 additional interactions using images of the participants facial expressions. 

Their results show high accuracy in imitation of the emotions, with 100% accuracy for anger, 

happiness, and neutral, 78% for sadness, and 86% for surprise. 
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Figure 2.7. NICO (Neuro Inspired COmpanion) multimodal robot (Kerzel et al., 2017). 

 

 

Figure 2.8. NICO expressing seven basic emotions (Churamani et al., 2017). 
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3 Emotion recognition system 

The emotion recognition system has as objective accurately recognize emotions from facial 

expressions. The approach was to use supervised learning with CNNs that use as input 

labeled static images of human faces expressing anger, happiness, fear, sadness, surprise, 

disgust, and a neutral expression. 

3.1 Methodology 

CNNs were selected because they are inspired in the visual system (Kriegeskorte, 2015; 

Lindsay, 2020), and because they show improved accuracy over other methods in the task 

of emotion recognition through facial expressions (Goodfellow et al., 2013; Kim et al., 2016; 

Pons & Masip, 2018; Pramerdorfer & Kampel, 2016). The recognition system was based on 

an implementation of a facial expression recognition project on the JAFFE dataset by Patel 

(2018), and adapted to the version 3.5.6 of Python programming language. 

The machine learning platform used was TensorFlow and the application programming 

interface (API) used to create and evaluate the neural networks was Keras by François 

Chollet (2015). Keras allows to create deep neural networks easily with modules for every 

type of layer, activation function, regularizers; as well as, preprocessing, training, and 

analysis of the data. 

For the experiments, a DELL G5 5587 computer with Intel Core i7-8750H (2.2 GHz) CPU, 

16 GB RAM, and a 6GB NVIDIA GeForce GTX 1060 with max-Q design graphics card 

(GPU) with compute capability of 6.1 was used. Additionally, for the more challenging 

computations, a GPU computing server with AMD Ryzen 7 2700 (3.2 GHz) CPU, 48 GB 

RAM, and a 12 GB NVIDIA Titan V GPU with compute capability of 7.0 was used. The 

minimum requirements to run TensorFlow on a GPU require to have a compute capability 

of at least 3.5, which both GPUs meet. Both CNN models were run on DELL G5 5587 when 

tested on the merged dataset because of the smaller dataset size, and both models were run 

on the GPU server when tested on the FER-2013 dataset because of the bigger dataset and 

consequently longer training times. 
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3.1.1 Datasets 

Three publicly available datasets were used in this research, which are described in detail 

below: 

• JAFFE (Japanese Female Facial Expression) database by Lyons et al. (1998) is 

composed of 213 monochromatic images with size 256×256 pixels of 10 Japanese 

female participants in TIFF file format. Each participant expressed each emotion 

from three up to four times providing varied expressions for every emotion. 6 basic 

emotions are provided: happiness, fear, anger, disgust, surprise, and sadness; 

additionally, a neutral expression is also provided (see Figure 2.4). The images were 

rated by 92 students.  

• CK+ (the extended Cohn-Kanade dataset) by Lucey et al. (2010) is a dataset that 

contains 593 sequences of facial expressions from 123 participants in 8-bit grayscale 

images of size 640×480 or 640×490 pixels in PNG file format; 69% of participants 

were female, 81% Euro-American, 13% Afro-American, and 6% belonged to 

unspecified groups. The sequences have an initial neutral frame and each sequence 

ends with a peak expression frame; from the total of sequences, only 327 have 

expressions of emotions. Eight emotions are expressed: happiness, fear, anger, 

disgust, surprise, sadness, and contempt (see Figure 2.5). Contempt is excluded from 

this research because of the small amount of data and the incompatibility with the 

generation of emotions in the imitation system (see Figure 2.8). All frames of peak 

expressions were also coded in FACS (Facial Action Coding System) by one FACS 

certified expert; additionally, 15% of the images were compared between two 

certified FACS experts to check the validity of the coding of expressions.  

• FER-2013 (Facial Expression Recognition 2013) dataset by Goodfellow et al. (2013) 

contains 35887 grayscale images with size 48×48 pixels obtained by using the google 

image search API; emotional keywords were used to find images of faces expressing 

emotions that were verified by human labelers; subsequently, the images were 

cropped and classified into six basic emotions and a neutral expression (see Figure 

2.1). The images are codified into a CSV file format arranged in three columns: a 

label from 0 to 6 for the expressed emotions (anger, disgust, fear, happiness, sadness, 

surprise, and neutral respectively); the pixels of the images in space-separated values 
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in row-major order; and the usage, divided into training, public test, and private test 

with 28709, 3589, and 3589 images respectively. The images were organized in this 

manner for a machine learning contest on facial expression recognition (Goodfellow 

et al., 2013), and for this research the organization is kept the same using training 

images which correspond to 80% of the entire dataset for training the neural 

networks, using public test images as a validation set which corresponds to 10% of 

the dataset, and using private test images as the testing set which corresponds to 10% 

of the dataset as well.  

 

Since JAFFE and CK+ datasets have few images, they are merged into one dataset with a 

total of 639 images. All 213 JAFFE images are used, and all CK+ peak emotional frames 

and neutral (initial) frames are used totaling 308 emotional expressions images and 118 

neutral expression images; the neutral images are only 118 to avoid having a neutral 

expression repeated by the same participant several times. To achieve an optimal merge of 

both datasets and avoid images of different sizes, CK+ images where cropped to fit the face 

of the participants in a 256×256 pixel image which corresponds to the size of JAFFE dataset 

images. The faces where detected using a Haar-Cascade filter and the images from both 

datasets merged with an algorithm created by Duncan, Shine, and English (2016). The 

merged dataset is then split into training set with 461 images, validation set with 82 images, 

and testing set with 96 images. 

For FER-2013 dataset, the CSV file which contained the information of all 35887 images 

was converted into individual JPG files for each instance of facial expression. The images 

were assigned a number from 0 to 6 corresponding to each emotion continued by the position 

of the image in the list (e.g. 0-28709.jpg) and stored in 3 folders for training, validation, and 

testing. For the conversion, an algorithm provided by Iftekharanam (2017) was used. The 

images were further classified into the folders angry, disgust, fear, happy, sad, surprise, and 

neutral in this order. 
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3.1.2 Kim et al. convolutional neural network 

The most successful model from Kim et al. (2016) tested on FER-2013 dataset was adapted 

and used as the base model. The detailed architecture is shown in Table 3.1. 

Table 3.1. Adapted CNNM from Kim et al. (2016) 

Layer Shapea Kernelb 

Input 

Convolution 1 

Max-pooling 1 

Convolution 2 

Max-pooling 2 

Convolution 3 

Max-pooling 3 

48×48, 1 

48×48, 32 

23×23, 32 

23×23, 32 

11×11, 32 

11×11, 64 

5×5, 64 

- 

5×5 (1) 

3×3 (2) 

4×4 (1) 

3×3 (2) 

5×5 (1) 

3×3 (2) 

 Neuronsc  

Fully connected 

hidden 

512, or 3072  

Fully connected 

output 

7  

a Dimensions of each feature map and the number of feature maps. 
b Dimensions of kernels and in parenthesis, stride, which is the number of positions the kernel moves at a 

time on the feature map. 
c Number of neurons in the fully connected layers. 

 

 

The model uses ReLU activation functions after each convolutional layer. After each pooling 

layer and the fully connected hidden layer dropout regularization is used, which discards a 

percentage of units from the previous layer reducing overfitting and improving accuracy 

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). The fully connected 

output layer has a softmax activation function and 7 neurons to classify all 6 emotions and 

the neutral expression. 
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3.1.3 VGG convolutional neural network 

The most successful deep model from Pramerdorfer and Kampel (2016) was used, which is 

a modified version of VGG-B model by Simonyan and Zisserman (2014). The detailed 

architecture is shown in Table 3.2. 

Table 3.2. Adapted VGG-B model from Pramerdorfer and Kampel (2016) 

Layer Shapea Kernelb 

Input 

Convolution 1 

Convolution 2 

Max-pooling 1 

Convolution 3 

Convolution 4 

Max-pooling 2 

Convolution 5 

Convolution 6 

Max-pooling 3 

Convolution 7 

Convolution 8 

Max-pooling 4 

48×48, 1 

48×48, 64 

48×48, 64 

24×24, 64 

24×24, 128 

24×24, 128 

12×12, 128 

12×12, 256 

12×12, 256 

6×6, 256 

6×6, 512 

6×6, 512 

3×3, 512 

- 

3×3 (1) 

3×3 (1) 

2×2 (2) 

3×3 (1) 

3×3 (1) 

2×2 (2) 

3×3 (1) 

3×3 (1) 

2×2 (2) 

3×3 (1) 

3×3 (1) 

2×2 (2) 

 Neuronsc  

Fully connected 

hidden 

1024  

Fully connected 

output 

7  

a Dimensions of each feature map and the number of feature maps. 
b Dimensions of kernels and in parenthesis, stride, which is the number of positions the kernel moves at a 

time on the feature map. 
c Number of neurons in the fully connected layers. 

 

 

The model uses ReLU activation functions after each convolutional layer, and batch 

normalization after each convolutional layer and the fully connected hidden layer. Batch 
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normalization was implemented in the model by Pramerdorfer and Kampel (2016) to reduce 

the effect of suboptimal value initialization of weights in the network. Dropout regularization 

was also performed after each pooling layer and the fully connected hidden layer. The output 

layer has a softmax activation function to classify the output into one of the 6 emotions or 

the neutral expression. 

3.1.4 Analysis 

From the two previously mentioned models, the solution with higher accuracy in facial 

expression recognition was used as the base for the emotion imitation system. Both models 

were analyzed and evaluated on both FER-2013 and the merger of JAFFE and CK+ datasets 

separately. The models input varied between FER-2013 with 48×48 pixels images and the 

merged dataset with 256×256 pixels images. 

Image preprocessing was minimal to keep data similar to what humans would perceive if 

they would have to evaluate the images. Only rescaling of images was performed from the 

original range of 0-255 to 0-1 pixel values to avoid too high values of the weights, which 

could difficult training (Brownlee, 2019; Omid, 2015). Data augmentation was not 

performed, to evaluate the models in a more real-world type of scenario, similar to how 

humans would not be aided by augmented data. 

Also, the data was one-hot encoded so that categorical cross-entropy loss function can be 

applied at the moment of model compilation. Categorical cross-entropy outputs the 

probability of each predicted image belonging to a specific ground truth emotion class and 

is commonly used in classification problems with several categories (Chollet, 2015). Both 

models use Adam optimizer, a stochastic gradient descent-based optimizer also commonly 

used in CNNs which adapts the learning rate over time (Kingma & Ba, 2015).  

Initial testing for finding the best parameters was performed on the merged dataset with Kim 

et al. (2016) model. Each run was analyzed with version 0.20.0 of scikit-learn machine 

learning library which shows probability values for precision, recall, and f1-score for each 

emotion, and computes micro average, macro average, and weighted average. The different 

model configurations were run 5 times each and the accuracies averaged for each 

configuration. After testing the accuracy of the base model, regularization methods were 

implemented in the convolutional layers and the fully connected hidden layer to reduce 

overfitting; a grid search of possible values was performed which are shown in Table 3.3. 
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Table 3.3. Regularization parameters for Kim et al. (2016) model 

Regularization method Values 

Dropouta 0.25, 0.50, 0.80 

L1b, L2c, and combined L1 and L2d 10-7, 10-6, 10-5, 10-4, 10-3, 10-2, 10-1 

a Dropout regularization in the fully connected hidden layer is tested only with the values 0.50 and 0.80. 
b L1 regularization also known as LASSO regularization. 
c L2 regularization also known as Tikhonov regularization. 
d L1 and L2 regularization applied with the same value for both regularizations. 

 

 

After testing the regularization methods, the learning rate was analyzed. Initially, the 

learning rate was not modified and was left with the default value of 10-3 from Adam 

optimizer in Keras. After the tests with regularization methods, the learning rate schedule 

was modified, implementing a new method of varying learning rates called cyclical learning 

rates (CLR) created by Smith (2017), which reduces the amount of iterations needed for a 

model to converge and can slightly improve accuracy by 1% depending on the optimization 

method CLR is used with. The author also created a method for finding optimal learning 

rates (Figure 3.1) which linearly increases the value of the learning rate in a specified range 

for a partial amount of training epochs. An implementation of CLR and learning rate finder 

by Rosebrock (2019) was adapted to work with the emotion recognition system. 

CLR has an oscillating learning rate which starts at a minimum learning rate and increases 

linearly until it reaches a maximum value, which is called a step; after the learning rate 

reaches its maximum, it decreases until reaching the minimum, completing a cycle. There 

can be many cycles when training the network defined by the step size, the batch size, and 

the number of epochs; Smith (2017) recommends to go through at least 4 cycles to see 

improvements in training. CLR has 3 policies of varying learning rate schedules: triangular 

policy (Figure 3.2), which keeps the same minimum and maximum learning rates throughout 

the training; triangular2 policy, which keeps the minimum learning rate and halves the 

maximum learning rate each cycle; and exp_range policy, which keeps the minimum 

learning rate and exponentially decreases the maximum learning rate each cycle. 
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Figure 3.1. Example of learning rate estimation by the learning rate finder. 

 

 

Figure 3.2. Example of CLR triangular policy learning rate oscillation. 
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In Figure 3.1 we can see the change in loss across values of the learning rate generated by 

the learning rate finder that starts at 10-10 and ends at 10-1. The optimal learning rate 

boundaries are between 10-5 where the slope starts to be steeper, and 10-2 before the loss 

starts to increase. 

The final training parameters for both Kim et al. (2016), and Pramerdorfer and Kampel 

(2016) models are shown in Table 3.4. These parameters were used when evaluating the 

accuracy of the models after the initial tests with regularization methods and learning rate 

estimations were performed. 

Table 3.4. Training parameters for each model and dataset. 

 Adapted CNNMa Adapted VGG-Bb 

Training parameters Mergedc FER-2013 Merged FER-2013 

Epochs 256 128 128 64 

Batch size 64 256 64 128 

CLR policy Triangular Triangular Triangular Triangular 

Step sized 8 8 8 8 

Minimum LRe 10-5 10-4 10-5 10-5 

Maximum LRf 10-3 10-3 10-2 10-2 

Image size 256×256 48×48 128×128 48×48 

a Model based on Kim et al. (2016). 
b Model based on Pramerdorfer and Kampel (2016). 
c JAFFE and CK+ merged dataset.  
d The number of epochs the learning rate takes to reach its maximum value from its minimum value and vice 

versa. 
e Minimum learning rate as estimated with the learning rate finder. 
f Maximum learning rate as estimated with the learning rate finder. 
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3.2 Results  

Kim et al. (2016) base model mean accuracies of all dropout configurations are shown in 

Table 3.5.  

Table 3.5. Mean training and testing accuracy of CNNM model with dropout parameters 

on merged dataset 

Configurationa Training accuracy (M, SD) Testing accuracy (M, SD) 

No dropout 0.96, 0.01 0.76, 0.03 

Conv: 0.25, FC: 0.50 0.95, 0.00 0.74, 0.02 

Conv: 0.50, FC: 0.50 0. 92, 0.02 0. 69, 0.04 

Conv: 0.80, FC: 0.50  0.26, 0.06 0.22, 0.04 

Conv: 0.25, FC: 0.80 0.95, 0.00 0.76, 0.03 

Conv: 0.50, FC: 0.80 0.77, 0.09 0.58, 0.09 

Conv: 0.80, FC: 0.80 0.26, 0.04 0.23, 0.02 

a Conv and FC: convolutional layers and fully connected hidden layer respectively; the values stand for the 

percentage of units that are randomly dropped from the network temporarily. 

 

 

The dropout values from the fully connected hidden layer were specified in the research by 

Kim et al. (2016) as 0.50 and 0.80, therefore those were tested; additionally, Pramerdorfer 

and Kampel (2016) did a grid search to find optimal dropout values after each pooling layer; 

however, they did not specify the values they used; therefore, the values 0.25, 0.50, and 0.80 

were tested based on the findings made by Srivastava et al. (2014) about dropout 

regularization. Figure 3.3 shows the mean testing accuracy with the different dropout 

parameters. 

To test whether the mean testing accuracy between dropout configurations had a statistically 

significant difference, a one-way ANOVA test was performed. The results show there was 

a statistically significant difference between means with F(6,28) = 132.04, p < .001. 

Furthermore, post-hoc analysis with multiple comparisons with the best (MCB; Hsu, 1992) 

was performed, which indicates that dropout parameters Conv: 0.25, FC: 0.80 (see Table 3.5 

for reference) with the highest mean accuracy (M = 0.76 SD = 0.03) were not significantly 

different from no dropout (M = 0.76, SD = 0.03); Conv: 0.25, FC: 0.50 (M = 0.74, SD = 

0.02); and Conv: 0.50, FC: 0.50 (M = 0. 69, SD = 0.04). However, they were significantly 
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different from Conv: 0.80, FC: 0.50 (M = 0.22, SD = 0.04); Conv: 0.50, FC: 0.80 (M = 0.58, 

SD = 0.09); and Conv: 0.80, FC: 0.80 (M = 0.23, SD = 0.02).  

 

Figure 3.3. Mean accuracy of testing data with the use of dropout with standard deviations; 

first row of dropout parameters is from the convolutional layers and the second row is from 

the fully connected hidden layer. 

 

Two other commonly used regularization methods, L1 and L2, were tested and combined 

with dropout. As suggested by Srivastava et al. (2014), combined with dropout they can 

improve the accuracy of the model even more. The base values of dropout were 0.25 in the 

convolutional layer, and 0.5 in the fully connected hidden layer for all tests with L1, L2, and 

combination of both regularizations. The values used for L1, L2, and L1 and L2 combination 

are shown in Table 3.3. The initial training and testing accuracies for L1 are shown in Table 

3.6, for L2 in Table 3.7, and for L1 and L2 combination in Table 3.8. 
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Table 3.6. Initial parameters of L1 regularization and training and testing accuracies. 

Parameters Training accuracy Testing accuracy 

10-1 0.24 0.22 

10-2 0.24 0.22 

10-3 0.35 0.38 

10-4 0.94 0.73 

10-5 0.96 0.73 

10-6 0.96 0.77 

10-7 0.96 0.78 

 

L1 parameter values 10-4, 10-5, 10-6, 10-7 have the highest accuracy as seen in Table 3.6. 

These values were further analyzed performing 5 additional runs, and then means of the runs 

used for further analysis with one-way ANOVA to test if there is a statistically significant 

difference between means among these values. For training accuracy means, the results show 

there was not a statistically significant difference between means with F(4,20) = 0.64, p > 

.05. For testing accuracy means, there was as well not a statistically significant difference 

between means with F(4,20) = 0.42, p > .05. Figure 3.4 shows mean training and testing 

accuracies. 

For L2 regularization, 10-3, 10-4, 10-5, and 10-6 values were further analyzed (Figure 3.5) 

because of their high accuracy (Table 3.7). A one-way ANOVA test was performed which 

showed that for training accuracy, there was not a statistically significant difference between 

means with F(4,45) = 0.55, p > .05. And for testing accuracy, there was not a statistically 

significant difference between means either, with F(4,45) = 0.99, p > .05.  
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Figure 3.4. Mean accuracy of training versus testing with the use of dropout and L1 

regularization for highest accuracy regularization parameters and the baseline with only 

dropout. 

 

Table 3.7. Initial parameters of L2 regularization, and training and testing accuracies. 

Parameters Training accuracy Testing accuracy 

10-1 0.24 0.23 

10-2 0.93 0.65 

10-3 0.95 0.72 

10-4 0.96 0.80 

10-5 0.95 0.69 

10-6 0.95 0.69 
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Figure 3.5. Mean accuracy of training versus testing with the use of dropout and L2 

regularization for highest accuracy regularization parameters and the baseline with only 

dropout. 

 

Table 3.8. Initial parameters for L1 and L2 combination and training and testing accuracies 

Parameters Training accuracy Testing accuracy 

10-1 0.24 0.22 

10-2 0.24 0.22 

10-3 0.39 0.39 

10-4 0.95 0.76 

10-5 0.95 0.77 

10-6 0.96 0.79 

10-7 0.96 0.77 
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For L1 and L2 combination, 10-4, 10-5, 10-6, and 10-7 values were analyzed (Figure 3.6) 

because of their high accuracy (Table 3.8). A one-way ANOVA was performed with results 

showing statistically significant difference between means for the training accuracy with 

F(4,45) = 4.71, p < .05; however, for the testing accuracy, the means were not statistically 

significantly different with F(4,45) = 0.45, p > .05. Since the means of the testing accuracy 

were not significantly different, further analysis was not performed. 

 

Figure 3.6. Mean accuracy of training versus testing data with the use of dropout and L1 and 

L2 regularization combination for highest accuracy regularization parameters and the 

baseline with only dropout. 

After the experiments with regularization, dropout was kept in Kim et al. (2016) model with 

the values 0.25 for convolutional layers and 0.80 for the fully connected hidden layer. In 

Pramerdorfer and Kampel (2016) model, the value 0.25 for dropout was used after each 

pooling layer and the fully connected hidden layer was set to a dropout value of 0.50. No 

other regularization methods were implemented in the models. 

Cyclical learning rates (CLR) were used to optimize the learning rate of both models; 

learning rate estimation was performed with the learning rate finder. The calculated values 

are shown in Table 3.4 for both models on both datasets; 4 graphs were generated and 

analyzed similar to the one in Figure 3.1. 
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The results of Kim et al. (2016) model on the merged dataset applying CLR are shown in 

Figure 3.7 and Figure 3.8. We can see losses and accuracies of training and validation sets 

in Figure 3.7 of one run of the model, and we can see mean accuracy and standard deviation 

of training and validation sets of all 5 runs in Figure 3.8. 

 

Figure 3.7. Loss and accuracy on training/validation sets with Kim et al. (2016) model tested 

on the merged dataset. 

 

Figure 3.8. Mean and standard deviation of training and validation accuracies across all 

training epochs on merged dataset tested with Kim et al. (2016) model. 
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In Figure 3.9, we can see the confusion matrix of one run with Kim et al. (2016) model on 

the merged dataset, which shows all the 96 testing images classified into 7 facial expressions. 

The total of each row (true label) shows the ground truth of each emotion, which is the total 

of labeled images per class. On the other hand, the total of each column (predicted label) 

shows the number of images classified by the model into each class. In Figure 3.10, we can 

see the normalized confusion matrix of one run with Kim et al. (2016) model on the merged 

dataset, which shows the percentage of correctly classified and misclassified images for each 

class.  

 

Figure 3.9. Confusion matrix of the merged dataset results using Kim et al. (2016) model. 
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Figure 3.10. Normalized confusion matrix of the merged dataset results using Kim et al. 

(2016) model. 

The results of Pramerdorfer and Kampel (2016) VGG model tested on the merged dataset 

with CLR are shown in Figure 3.11 and Figure 3.12., which show the losses and accuracies 

for one run, and mean accuracy and standard deviation of training and validation sets of all 

5 runs respectively. The confusion matrix of one run with Pramerdorfer and Kampel (2016) 

model on the merged dataset is in Figure 3.13, and the normalized confusion matrix of one 

run with Pramerdorfer and Kampel (2016) model on the merged dataset is in Figure 3.14. 

To compare the accuracy between Kim et al. (2016) and Pramerdorfer and Kampel (2016) 

models on the testing set of the merged dataset, a paired sample t-test was performed. The 

results show there was no significant difference in the testing set accuracies of Kim et al. 

(2016) model (M = 0.83, SD = 0.02) and Pramerdorfer and Kampel (2016) model (M = 0.82, 

SD = 0.02); t(4) = 0.63, p > .05.  

 



33 

 

 

Figure 3.11. Loss and accuracy on training/validation sets with Pramerdorfer and Kampel 

(2016) VGG model tested on the merged dataset. 

 

 

Figure 3.12. Mean and standard deviation of training and validation accuracies across all 

training epochs on merged dataset tested with Pramerdorfer and Kampel (2016) model. 
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Figure 3.13. Confusion matrix of the merged dataset results using Pramerdorfer and 

Kampel (2016) VGG model. 

 

Figure 3.14. Normalized confusion matrix of the merged dataset results using 

Pramerdorfer and Kampel (2016) VGG model. 
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On the FER-2013 dataset the initial model tested was Kim et al. (2016) with CLR 

implemented. The losses and accuracies of one run of the model are in Figure 3.15, and the 

mean accuracies and standard deviation of the training and validation sets are in Figure 3.16. 

The confusion matrix in Figure 3.17 shows the classification of the 3589 images from FER-

2013 testing set, and the normalized confusion matrix shows the percentage of correct 

classification and misclassification of images in Figure 3.18. 

 

Figure 3.15. Loss and accuracy on training/validation sets with Kim et al. (2016) model 

tested on FER-2013 dataset. 

 

Figure 3.16. Mean and standard deviation of training and validation accuracies across all 

training epochs on FER-2013 dataset tested with Kim et al. (2016) model. 
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Figure 3.17. Confusion matrix of FER-2013 dataset results using Kim et al. (2016) model. 

 

Figure 3.18. Normalized confusion matrix of FER-2013 dataset results using Kim et al. 

(2016) model. 
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The results of Pramerdorfer and Kampel (2016) VGG model tested on FER-2013 dataset 

with CLR are shown in Figure 3.19 for the losses and accuracies of one run of the model, 

and in Figure 3.20 for the mean accuracies and standard deviation of the training and 

validation sets. The confusion matrix of one run with Pramerdorfer and Kampel (2016) 

model on FER-2013 testing set is in Figure 3.21, and the normalized confusion matrix is in 

Figure 3.22. 

To compare the accuracy of both models now on FER-2013 dataset, another paired sample 

t-test was performed. The results show there was no significant difference in the testing set 

accuracies of Kim et al. (2016) model (M = 0.62, SD = 0.01) and Pramerdorfer and Kampel 

(2016) model (M = 0.63, SD = 0.01); t(4) = –2.06, p > .05. Therefore, because of no 

significant differences between models on both datasets, Kim et al. (2016) model was chosen 

for a more stable architecture and overall lowest loss values (see Figure 3.15 and Figure 3.19 

for comparison). 

 

Figure 3.19. Loss and accuracy on training/validation sets with Pramerdorfer and Kampel 

(2016) VGG model tested on FER-2013 dataset. 
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Figure 3.20. Mean and standard deviation of training and validation accuracies across all 

training epochs on FER-2013 dataset tested with Pramerdorfer and Kampel (2016) VGG 

model. 

 

Figure 3.21. Confusion matrix of FER-2013 dataset results using Pramerdorfer and Kampel 

(2016) VGG model. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 8 15 22 29 36 43 50 57 64

Training accuracy Testing accuracy



39 

 

 

Figure 3.22. Normalized confusion matrix of FER-2013 dataset results using Pramerdorfer 

and Kampel (2016) VGG model. 

In summary, dropout regularization did not improve significantly the accuracy of both 

models, neither L1 nor L2 regularization. For this reason, these parameters were set to the 

defaults used in Kim et al. (2016) and Pramerdorfer and Kampel (2016) when mentioned; 

otherwise, they were set based on the research by Srivastava et al. (2014) on dropout. 

Regarding CLR (cyclical learning rates), the method reduced the training time considerably 

compared to the mentioned in Pramerdorfer and Kampel (2016). In their research they 

trained CNNs for 300 epochs on FER-2013 dataset; comparably, the adapted model used in 

this research was trained only for 64 epochs, which was enough to reach a plateau in 

accuracy. The same model was trained with 128 and 256 epochs; however, accuracy did not 

improve, and loss started to increase. For Kim et al. (2016) model, training epochs were 

higher (up to 256) because improvement in accuracy and loss did occur even passed 128 

epochs. The amount of data trained with the network also has a role in the amount of epochs 

necessary to reach a plateau in accuracy; for both models on the merged dataset the training 

epochs were double of the training epochs in FER-2013 dataset, which is considerably 

bigger.  
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Ultimately, Kim et al. (2016) model was chosen to be used with the imitation system because 

it was more stable with lower losses, and accuracy (83% on merged, 62% on FER-2013 

datasets) not significantly different from Pramerdorfer and Kampel (2016) VGG model. 
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4 Emotion imitation system 

The emotion imitation system receives the output of the model from the recognition system 

of both datasets. When the imitation system receives an input, it associates it internally with 

an emotion; if it associates the emotion correctly, the system is rewarded; otherwise, the 

system is penalized. 

4.1 Methodology 

The imitation system is trained with the testing sets of merged and FER-2013 datasets 

individually. Kim et al. (2016) model training results are in the form of a matrix which 

contains the probability values of the emotions for each image, which is loaded into the 

imitation system to begin the association process. 

The internal representation of emotions in the imitation system is stored in the form of a 7×7 

weights matrix. To achieve association of perceived emotions from the recognition system 

with the internal representation of emotions from the imitation system, Oja's (1982) learning 

rule (1) was implemented. Oja’s rule is a biologically inspired model, which updates the 

network weights like the Hebbian rule with an additional component that controls the growth 

of the weights.  

Oja’s learning rule which modifies the Hebbian rule to include weight normalization is: 

 wij(t+1)= wij(t) + α y
i
(t)[xj(t)-y

i
(t)wij(t)], (1) 

where wij(t+1) is the updated weight, wij(t) is the current weight, α is the learning rate, and 

y
i
(t) is the current output at argmax position of the dot product between the weights matrix 

and the input vector x. 

To begin the association learning, weights are initialized first. For weight initialization, two 

variants of He, Zhang, Ren, and Sun (2015) initialization were tested: the first one initializes 

weights in the form W = rnd𝑖j√1/classes, where W is the weights matrix, rndij are the 

elements of the weights matrix randomly generated with values within the standard normal 

distribution, and classes is the number of layer inputs, in this case 7, for each emotion class; 

the second variant initializes the elements of the weights matrix W with random values 



42 

 

within a uniform distribution of values between 0 and 1. He et al. (2015) weight initialization 

was implemented to avoid large initial weights, which could disrupt the association learning 

of the imitation system. 

After weight initialization, reward learning rate α and penalty learning rate β are set. Then, 

argmax of the input vector x is selected, which would correspond to the emotion class with 

the highest probability value calculated by the recognition system. Afterwards, the output 

vector y is calculated by applying dot product between the weight matrix W and the input 

vector x as seen in (2). 

 y=W ∙ x. (2) 

Subsequently, the weights element wij on the argmax position of the output vector 𝑦𝑖 is ready 

to be updated with a reward or a penalty. If argmax is equal for both the input vector and the 

output vector, the related weight is fortified with Oja’s rule (1); otherwise, the learning rate 

α is multiplied with the input vector argmax xj and the output 𝑦𝑖 at argmax position of the 

output vector 𝑦𝑖 and subtracted from the current weights element wij. The algorithm repeats 

this learning process for a given number of epochs as shown in Figure 4.1. 

The emotion imitation system is first tested on the merged dataset, with two variants of He 

et al. (2015) weight initialization; and 3 different learning rates: 0.05, 0.1, and 0.2; the 

learning rates are individually set for the rewards and penalties. Each test is run 30 times 

with 30 epochs for each test. After concluding the tests on the merged dataset, the best 

association learning configuration is used and evaluated on FER-2013 dataset. 
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begin 

set α, β, Epochs 

set W = rndij√1/classes 

for each epoch in Epochs do 

 select x from images data set 

 max_x = argmax(x) 

 compute eq. 2 

 max_y = argmax(y) 

 select wij at max_y from W 

 select y
i
 from y at max_y 

 if max_x == max_y 

  compute eq. 1 

  W[max_y, max x] = wij 

 else 

  wij = wij – β xj yi
 

  W[max_y, max x] = wij 

end 

Figure 4.1. Association learning algorithm for the imitation system. 

 

4.2 Results 

The imitation system learns to imitate emotions on both datasets. On the merged dataset, to 

compare the accuracy of both variants of He et al. (2015) weight initialization, a paired 

sample t-test was performed. The results show there was a significant difference between 

the first variant (M = 0.47, SD = 0.17) and the second variant (M = 0.96, SD = 0.07); t(29) =  

–15.29, p < .001. Further, choosing the second variant (M = 0.96, SD = 0.07) for its 

significantly higher accuracy, tests with learning rates were performed. 4 configurations of 

learning rates were tested as seen in Table 4.1. 
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Table 4.1. Learning rate configurations for the imitation system. 

Learning rates Accuracy (M, SD) 

α:0.05, β:0.05  0.92, 0.08 

α:0.1, β:0.1 0.96, 0.66 

α:0.2, β:0.2 0.94, 0.07 

α:0.2, β:0.1 0.92, 0.11 

 

A one-way ANOVA was performed to test whether there is a statistically significant 

difference between means of the learning rates. The results show there was no statistically 

significant difference between the means with F(3, 116) = 1.65, p > .05. Since the means 

were not significantly different, the configuration with learning rate 0.1 was chosen because 

of its higher accuracy (M = 0.96, SD = 0.66). 

With the results gathered on the merged dataset, the same configuration, with the second 

variant of He et al. (2015) weight initialization, and learning rate 0.1 was used to test how 

well can the imitation system associate the emotions in FER-2013 dataset. The results show 

that the imitation system achieves a mean accuracy of 92% (M = 0.92, SD = 0.08). 

When the imitation system was tested, on both datasets they occurred instances when a 

weight was initialized with a too small value, and the model would fail to associate an 

emotion even after many epochs. In Figure 4.1 and Figure 4.2 we can see the mean accuracy 

and the range of values of accuracy in 30 epochs for 30 runs, which clearly shows that even 

after 13 epochs, they were instances where the imitation system would not be able to 

associate all emotions. Nevertheless, there were very few of these instances as shown by the 

mean accuracy (Figure 4.1, Figure 4.2) of the imitation system. 
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Figure 4.2. Mean accuracy of the association of emotions on the merged dataset with the 

range between minimum and maximum values per epoch. 

 

Figure 4.3. Mean accuracy of the association of emotions on FER-2013 dataset with the 

range between minimum and maximum values per epoch. 
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4.3 Integrated system 

The integrated system composed of the emotion recognition and imitation systems, could be 

used in a robotic system; in Figure 4.4 a mockup of the interface is shown. The system was 

intended to be used with NICO robot (Kerzel et al., 2017). NICO is able to produce 7 facial 

expressions (neutral, happiness, sadness, anger, surprise, fear, and disgust) as seen in Figure 

2.8, through a set of three LED arrays corresponding to the mouth and the eyebrows. In 

Figure 4.5 the scheme of the entire system is shown. 

 

Figure 4.4. Mockup of the interface, which would test the recognition and imitation 

capabilities of the system. The user would cycle through the images located in a folder with 

next image, and would receive the results from the integrated system with the process image 

button. The results would be printed in the log area, the recognized emotion would be printed 

in the text box in the recognized emotion area and the imitated expression would appear at 

the imitation area. 
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Figure 4.5. Integrated system scheme. The input image gets processed by the CNN (Kim et 

al., 2016) model, which outputs a probability value for emotion classification; then, the 

probability value gets processed with the weights matrix to output an emotion association; 

if the emotion imitated is correct a reward is sent to update the weights; otherwise, a penalty 

is sent to update the weights. 

The overall emotion imitation accuracy of the system was, on average, 80% combining the 

imitation system average accuracy of 96%, with the recognition system average accuracy of 

83%, based on the ground truth of the testing set from the images of the merged dataset. 

And, on FER-2013, the imitation accuracy of the system was, on average, 57% combining 

the imitation system average accuracy of 91%, with the recognition system average accuracy 

of 63%. 
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5 Discussion 

The emotion imitation system associates emotions from the emotion recognition system with 

high accuracy on the merged dataset (96%) and on FER-2013 dataset (91%); however, 

imitation accuracy is highly dependent on the capabilities of the CNN model implemented 

in the recognition system; from the results on emotion recognition of 83% on the merged 

dataset, and 62% on FER-2013 dataset, the final accuracy of the integrated system is 80% 

and 57% respectively. 

The big difference in accuracy between datasets can be attributed to the complexity of the 

images in FER-2013 compared to the merged dataset. Comparing Figure 3.7 with Figure 

3.15 we can see that FER-2013 dataset is more challenging for Kim et al. (2016) model, as 

well as for Pramerdorfer and Kampel (2016) model (Figure 3.11 and Figure 3.19). This is 

understandable even for the large amount of data (28709 training images) in FER-2013, 

since the dataset has many pose variations, different illumination conditions, and occlusion 

across the data (Figure 2.1). On the other hand, the merged dataset (JAFFE and CK+) with 

less data (461 training images) only differs slightly in illumination conditions between 

images across data, and the faces are centered without any occlusion (Figures 2.4, 2.5). 

Comparing the adapted models to the original implementations by Kim et al. (2016) and 

Pramerdorfer and Kampel (2016), they did not achieve the original models accuracy of 70% 

and 72% respectively on FER-2013 dataset. There are two possible factors that generated 

lower accuracy on the recognition of emotions: some parameters were not described in Kim 

et al. (2016) and Pramerdorfer and Kampel (2016), like learning rate initialization, weight 

initialization, and dropout regularization, which made more difficult to replicate the results; 

and data augmentation was not performed in this research, to represent a more natural-like 

input of data. 

Initial tests with regularization methods on the merged dataset with Kim et al. (2016) model 

had approximately 3 mislabeled images within each group of emotions. Even with these 

labeling mistakes on a relatively small dataset (639 images), both models were able to 

achieve accuracies of 77% compared to the final tests with 83% accuracy, which implies 

that the networks are robust to some amount of mislabeled data. In the case of FER-2013 

dataset, Goodfellow et al. (2013) mention that labelling mistakes were present; however, 
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since the amount of data in the dataset is greater, they considered that these labeling mistakes 

should not be a problem, also because human accuracy did not seemed hindered by the 

labeling mistakes. On the final tests with regularization methods, we would expect that the 

regularization methods would improve accuracies as mentioned by Srivastava et al. (2014) 

from 1% to 2%. However, the differences were not significant, probably because individual 

experiments were run only 5 times and more tests would be necessary to increase the power 

of the test. For this reason, we used dropout regularization which yielded the best results. 

A significant difference between Pramerdorfer and Kampel (2016) implementation and this 

research was present in the number of training epochs needed to reach a plateau in training 

accuracy in the recognition system. The use of cyclical learning rates (CLR) in the models 

did reduce the training of the model from 300 epochs in Pramerdorfer and Kampel (2016) to 

64 epochs (see Figure 3.19). Kim et al. (2016). did not specify the number of epochs trained, 

as they use validation data as a stopping mechanism; therefore, training epochs cannot be 

compared with this research. Nevertheless, comparing both Kim et al. (2016) and 

Pramerdorfer and Kampel (2016) model, Kim et al. (2016) model needed the double of 

training epochs to reach a plateau compared to Pramerdorfer and Kampel (2016) model (see 

Table 3.4); this could be because of the architecture, which has less layers and parameters. 

The main objective for reducing training epochs was to allow shorter training times, and 

possibly make more evaluations in less time, which was very convenient. According to 

Smith (2017), it even can improve the accuracy of the model by 1%, aside from reducing the 

training time considerably. In this research statistical tests were not performed to examine 

the difference in accuracy between CLR and common methods like learning rate decay, 

because the initial results with CLR were similar to previous tests with other methods. We 

ultimately chose CLR for the reduced training times of the models. 

On a different note, about the accuracy of the imitation recognition system, when the weights 

were randomly initialized with a standard normal distribution with He et al. (2015) weight 

initialization, the imitation system would fail to associate most of the emotions, which 

occurred because some weights would grow negatively when applying Oja's (1982) rule. 

Because of this issue, a uniform distribution in a range of 0 to 1 was applied to He et al. 

(2015) initialization, and this improved the mean accuracy up to 96%; they still were 

instances when the system would fail to associate an emotion, which occurred approximately 

33% of the time. Analyzing the trained weights of the imitation system, we found that a 
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problem would arise if the weight initialization was too small (less than 0.05) for a specific 

emotion. This low initialization value of the weight results in failure at learning association 

of that emotion. Additional tests with an initialization method that generates a different range 

of values, preferably higher than 0.05, would be necessary to evaluate if the problem lays on 

the close to zero value of the weight, or if it is more related to the classification accuracy 

from the emotion recognition system. 

Also, the emotion imitation system learns what emotions to express based on association 

through rewards and penalties; however, humans, depending on the culture are heavily 

influenced by the context in which emotions are perceived to react to them in a specific 

manner, the so-called display rules (Ekman & Friesen, 2003); for future work, it would be 

interesting to expand the system and add a contextual system that defines contexts that 

require the expression of a different emotion from the one being recognized, interacting with 

the imitation recognition system. An example would be a human-robot interactive system in 

the healthcare services, where if fear or anger is perceived from a patient or staff, the system 

takes into account contextual information to keep a neutral expression or to show a happy 

expression; naturally, this would be part of a complete multimodal system, that would also 

react verbally, trying to show empathy or appease the affected person. 

5.1 Limitations 

To evaluate the accuracy of the emotion recognition system, we performed only 5 runs for 

each parameter configuration. For the experiment to have a higher statistical validity, many 

more tests would be necessary, which would be intensely time consuming. With more tests, 

it would probably be possible to find differences between the different regularization 

methods, and learning rates optimizations like CLR; nevertheless, the extensive research that 

was done on these parameters by other researchers, aided in the decision making when 

choosing the final parameters for the recognition system. 

Also, the recognition system was trained on static images because of the greater availability 

of this kind of datasets. Currently, there are datasets that provide dynamic data with several 

sequences from neutral to peak emotional expression, which provide more information about 

the produced facial expression; however, these datasets are usually small, under 30 

participants. If datasets of this kind were bigger and publicly available, there would be a 
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possibility to create a more robust system that could include time as another dimension in its 

analysis of emotions.  

Inferior performance on emotion recognition compared to humans was expected; however, 

according to research on human accuracy on FER-2013 dataset (Goodfellow et al., 2013) the 

accuracy of the recognition system did get close with 62% compared to human 65% 

accuracy. Still, the recognition system did not achieve the accuracy (72%) of state-of-the-art 

solutions (Kim et al., 2016; Pramerdorfer & Kampel, 2016). 

Finally, NICO robot expressions are limited by the LED arrays which correspond to its 

mouth (16×16 pixels arrays) and eyebrows (two 8×8 pixels arrays). In research by 

Churamani et al. (2017), they found that people would not recognize disgust and fear easily, 

so they excluded those two emotions from their experiments. In this research all 6 emotions 

and a neutral expression were used, and the integrated system manages to recognize and 

imitate them to a certain extent; however, the integrated system was not tested on NICO 

directly and experiments were humans would recognize emotions imitated by the system 

were not performed. 

5.2 Ethical considerations 

We used publicly available datasets referencing indicated research as solicited by the 

authors. Since the datasets contain faces of the participants, it was important to show only 

images from participants who agreed for their information to be public. In the case of FER-

2013 dataset, this was not possible because the dataset was generated from the internet; 

however, the images were in public domain. 

In addition to ethical issues related to data acquisition, there should be considerations related 

to the operation of the robotic system; humans could wrongly perceive that the robot has 

emotions as humans do while this is not true, the expression of emotion aids in the 

communication with the robot and enriches the human-robot interaction (Cowie, 2015). It is 

important to familiarize people who meet the robot about general notions of how it operates 

and how it is expected to behave. 
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Conclusion 

We implemented facial expression recognition with the use of convolutional neural networks 

and emotion imitation with associative learning to produce a computational system that 

imitates facial expressions that can be embedded into a robotic system. 

The emotion recognition system achieves an accuracy of 83% on laboratory settings datasets 

JAFFE and CK+ and 62% on the more challenging natural setting FER-2013 dataset. Albeit 

not enough to reach the results achieved by Pramerdorfer and Kampel (2016) and Kim et al. 

(2016) with 72% and 70% accuracy respectively, tested on FER-2013 dataset, the emotion 

imitation system associates the emotions from merged and FER-2013 datasets with its 

internal representation of emotions. The final accuracy of the integrated system is 80% on 

JAFFE and CK+ datasets, and 57% on FER-2013 dataset. We can see that the accuracy of 

the integrated system is highly dependent on the accuracy of the emotion recognition system, 

which means that the focus of research should be in improving emotion recognition systems. 

However, it is important to choose between two main paths for emotion recognition research: 

pursue recognition and processing of emotions in robotic systems as close to how humans 

do it to understand and implement human behavior in robots, or choose to implement 

systems that top emotion recognition accuracy regardless of how they are implemented, fully 

focusing on performance and providing certainty in their results. Both paths have ethical 

issues that should be considered when creating systems that recognize emotions and interact 

with humans. 
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