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ABSTRACT 

 

This study examines the neural corelates of working memory represented by contralateral 

delay activity (CDA) amplitude modulations associated with the number of remembered 

items. CDA is defined as a sustained negative voltage over the hemisphere that is 

contralateral to the memorized hemifield, its amplitude increases significantly with the 

number of representations being held in the memory and reaches a limit at each individual’s 

memory capacity (Vogel et al., 2005). To achieve maximum usage of working memory 

capacity possible, it is necessary to be able to filter out all irrelevant stimuli efficiently, which 

is a skill that can be improved by training (Luria et al., 2016).  

This thesis is part of a bigger project that hypothesizes that cognitive training in virtual 

reality (VR) can improve behavioural performance in working memory (tested offline in a 

different task outside VR) and that this effect will be visible on its neural correlate - the 

amplitude of CDA. We aim to determine whether performance in visual working memory 

(VWM) task and filtering efficiency itself are trainable and if so, whether this effect is 

observable also by its direct neurophysiological correlate. To be able to evaluate the effect 

of training in VR we need to have a control group without the training but with the same 

repeated measures of CDA. Only if there will be an effect of training (experimental group) 

but not the effect of repeated CDA measures (control group) we can conclude the training 

had the desired effect. We intended to contribute to the main project by carrying out an 

experiment on the control group of healthy participants, recording their EEG while they were 

performing the VWM task, and subsequent thorough analysis of recorded EEG to extract the 

final event-relate potentials (ERPs) in a form of CDA waveforms with the emphasis on the 

careful pre-processing of the data using Brain Vision Analyzer software.  

We successfully collected data of the control group and recorded EEG of sixteen participants 

while they were performing VWM task. In order to prepare the data for further statistical 

analysis and comparison with data of the experimental group, we conducted an EEG 

analysis. Here, we present all the steps of the analysis that have led to the final CDA 

waveform as well as the theoretical background and practical tips suggested by other authors 

that helped us to set the appropriate parameters of pre-processing. In line with previous 

studies on CDA, the analysis of our data showed that number of items to remember affected 

the amplitude of CDA. No interaction of the number of distractor and session suggests that 



 

 

repeated measures of CDA do not have an effect on filtering ability. Whether the training in 

VR environment has an effect on filtering could and should be tested in subsequent steps. 

Keywords: working memory, contralateral delay activity, electroencephalography, event-

related potentials, EEG analysis, artifact rejection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ABSTRAKT 

 

Práca skúma neurálne koreláty pracovnej pamäte, ktoré sú prezentované amplitúdovými 

moduláciami kontralaterálnej aktivity oneskorenia (contralateral delay activity, CDA) 

spojenej s počtom zapamätaných položiek. CDA je definovaná ako vytrvalé záporné napätie 

na hemisfére, ktorá je kontralaterálna k zapamätanej strane a jeho amplitúda sa významne 

zvyšuje s počtom položiek v  pamäti a dosahuje limit na základe individuálnej kapacity 

jednotlivca (Vogel et al., 2005). Pre docielenie maximálneho možného využitia kapacity 

pracovnej pamäte, je potrebné mať schopnosť efektívne odfiltrovať irelevantné podnety, čo 

je schopnosť, ktorá môže byť vylepšená prostredníctvom tréningu (Luria et al., 2016).  

Táto práca je súčasťou väčšieho projektu, ktorý predpokladá, že kognitívny tréning vo 

virtuálnej realite (VR) môže vylepšiť behaviorálny výkon pracovnej pamäte (testované 

nezávisle v inej úlohe mimo VR) a že tento efekt bude viditeľný na jeho neurálnom koreláte 

– CDA amplitúde. Naším cieľom je zistiť, či je výkon v úlohe vizuálnej pracovnej pamäte 

(visual working memory, VWM) a samotná účinnosť filtrovania trénovateľná, a ak áno, či 

je tento efekt pozorovateľný aj prostredníctvom jeho priameho neurofyziologického 

korelátu. Aby sme mohli vyhodnotiť efekt tréningu vo VR, musíme mať kontrolnú skupinu 

bez tréningu, ale zároveň s rovnakými opakovanými mierami CDA.  Iba v prípade, že dôjde 

k efektu tréningu (experimentálna skupina), ale nie k efektu opakovaných meraní CDA 

(kontrolná skupina), môžeme dospieť k záveru, že tréning mal požadovaný účinok. Naším 

zámerom bolo prispieť do hlavného projektu uskutočnením experimentu na kontrolnej 

skupine zdravých participantov, zaznamenať ich EEG počas vykonávania VWM úlohy a 

následne dôkladne analyzovať zaznamenané EEG dáta s cieľom extrahovať finálne, na 

udalosť viazané potenciály (event-related potentials, ERP) vo forme kriviek CDA s dôrazom 

na precízne predbežné spracovanie nazbieraných dát pomocou softvéru Brain Vision 

Analyzer. 

Úspešne sme nazbierali dáta kontrolnej skupiny a zaznamenali EEG šestnástich účastníkov, 

ktorí vykonávali VWM úlohu. Aby sme dáta pripravili na následnú štatistickú analýzu 

a porovnanie s dátami experimentálnej skupiny, vykonali sme EEG analýzu. V tejto práci 

prezentujeme všetky kroky analýzy, ktoré viedli k finálnym CDA krivkám, ako aj teoretické 

východiská a praktické tipy, ktoré navrhli iní autori a ktoré nám pomohli nastaviť príslušné 

parametre predspracovania dát. V súlade s predchádzajúcimi štúdiami o CDA, analýza 



 

 

našich údajov ukázala, že počet položiek, ktoré si jedinec musel pamätať, ovplyvnil 

amplitúdu CDA. Žiadna interakcia počtu distraktorov a sedení nenaznačuje, že opakované 

merania CDA by mali vplyv na schopnosť filtrovania. To, či má výcvik vo VR prostredí 

vplyv na filtrovanie sa bude testovať v ďalších krokoch projektu. 

Kľúčové slová: pracovná pamäť, CDA,  elektroencefalografia, ERP, EEG analýza, 

odmietnutie artefaktov 
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Introduction 

 Working memory has been a point of interest in psychology and neurology research for 

a long time, since this executive function is involved in various types of cognition and in 

everyday life, too. The particular aspects of working memory have been broadly examined 

with the goal to define its main characteristics. One of the unanswered questions of working 

memory is whether it can be improved by a training and if so, what is the appropriate training. 

There have been many attempts to determine the trainability of working memory that have 

not resulted in a clear answer yet. Nevertheless, behavioural performance was usually 

considered in the evaluation of trainability of working memory. In this thesis, we present a 

study examining a phenomenon called contralateral delay activity (CDA). It is a direct 

correlate of visuospatial working memory defined as sustained negative voltage over the 

hemisphere, that is contralateral to the memorized and based on the number of items that are 

held in one’s working memory. It is a relatively new concept that has been broadly 

investigated mostly in recent years but represents many unanswered questions in regard to 

its character and form.  

This thesis represents a contribution to the project that tries to examine a direct 

neurophysiological correlate of working memory and to determine whether it can be affected 

and enhanced by a training in virtual reality (VR) environment. The aim of this study is to 

carry out an experiment on the control group of healthy participants and record the EEG 

while performing visual working memory tasks and to conduct an EEG analysis of the 

collected data in terms of final event-related potentials (ERP) of contralateral delay activity, 

emphasizing the precise use of a combination of automatic and manual artifact rejection in 

Brain Vision Analyzer. Furthermore, we intent to present guidelines and practical tips of 

how EEG experiment should be conducted, what are the pitfalls and strengths of such an 

experiment and what are the main rules to be followed in later analysis of the collected 

neurophysiological data.  

First, we present a short general introduction into the issue of working memory to explain 

its main characteristics and hypnotized theories. Afterwards, we describe the 

neurophysiology behind visual working memory and the issue of CDA. The theoretical 

background is followed by an outline of the current research. The crucial part of the thesis 

is the section, where we talk about the specific aspects of EEG experiment and later analysis. 

The outcome of this study will be passed to the main project to be used as data of control 

group and to be compared with experimental group to make further statements.  



 

2 
 

1 Working Memory 

Human cognition is a complex system involving various structures that help people to 

solve everyday problems and to adapt to dynamically changing environment. Memory is one 

of the crucial cognitive structures, it works in a collaboration with other functions that 

together create an effectively working cognitive system. By definition, memory presents a 

faculty of encoding, storing and retrieving information (Squire, 2009), divided into four 

basic types: sensory, short-term, long-term and working memory (WM) (Nelson Cowan, 

2008). WM, a subsystem essential for our research, constitutes an ability to memorize 

information and to adaptively change it (Christophel et al., 2017), being in close connection 

with short-term memory. Cowan (2008) describes their relationship, claiming that WM 

includes short-term memory together with other additional processing mechanisms that help 

to make use of it. WM is defined as a limited capacity system that temporarily stores 

information in an accessible state and allows one to work on a complex task while holding 

this information in mind, and thereby supports human thought processes (Adams et al., 2018; 

Alan Baddeley, 2003). The limitation refers to the maximum number of objects that one can 

hold in WM, however, there are more opinions on the extent of this limitation. Miller (1956) 

interpreted it as a capacity of seven plus or minus two items (“magical number seven plus or 

minus two”). Number seven as an approximate capacity of WM was also supported later by 

Luck & Vogel (1997). Cowan opposed this assumption claiming that Miller’s number seven 

was only rough estimate and suggests that number four is a more accurate number presenting 

the capacity of WM. 

WM is often conceptualized as comprising two basic functions: short-term storage of 

information and executive processes that control what is retained (A Baddeley, 1992; 

D’Esposito & Postle, 2015).  Hence, current conceptions understand WM as a dynamic 

system that includes both maintaining and manipulating information processes (Wingfield, 

2016). Although it is certain that WM is limited, as also mentioned in the definition of WM 

(Alan Baddeley, 2003), Ma and collaborates (2014) argue that the WM definition becomes 

incomplete by ignoring quality of representations as an important factor of WM and 

considering only quantity of items to be maintained. Since the main concentration in 

investigating the capacity of WM is in its limitation and the quantity of representation that 

can be held, they highlighted the significance of the complexity of items affecting the WM 

capacity. 
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1.1 Working Memory and Attention 

WM works in a close connection with other systems that allow it to operate effectively in 

a real world. There is a broad agreement that it is in close relationship and highly depends 

on attention (Awh et al., 1998; Nelson Cowan & Oxford University Press, 1997; Kiyonaga 

& Egner, 2013; Oberauer, 2009). Some believe that the nature of this cooperation lies in the 

attention’s role in controlling the activation, maintenance, and manipulation of 

representations in WM (Kiyonaga & Egner, 2013). It is now considered a fact that a 

connection exists between WM and attention, however, what is not determined yet is to what 

extent one cannot operate without the other. The first problem is in the interpretation of 

attention itself, since it can be understood either as a limited resource, or as selective 

information processing (Oberauer, 2009). Attention as a resource assumes that this resource 

is responsible for the limited capacity of WM. In contrast, attention as a selection mechanism 

sees connection with WM in cognitive control and mechanisms that control its contents (e.g. 

filtering ability). 

Chun & Turk-Browne (2007) agree with the view of the existing relationship between 

WM and attention, but they claim that with growing neuroimaging evidence the distinction 

between them becomes increasingly less clear. Teng & Kravitz (2019) agree that WM, 

specifically visual WM (VWM), is based on directing attention, and also argue that its impact 

extends to the levels of perceptual processing. Therefore, they see a strong connection 

between WM and perception as well, since their claims are based on neurophysiological 

evidence of overlapping of neuronal populations supporting VWM and perceptual 

processing.  

 

1.2 Models of Working Memory 

To understand the complex processes of WM, there have been many attempts to create a 

model to describe a series of its interactive components (short-term memory model [Bower, 

1968], long-term working memory [Ericsson & Kintsch, 1995]). One of the most established 

models of WM was proposed by A. D. Baddeley & Hitch (1974) called multi-component 

model of WM (demonstrated in Figure 1). It was created by expanding the notion of passive 

short-term memory to an active, dynamic system that provides a basis for complex cognitive 

abilities (RepovŠ & Baddeley, 2006). The original model encompassed three components, 
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including one central system, called central executive, and two unimodal storage systems - 

phonological loop and visuospatial sketchpad (A. D. Baddeley & Hitch, 1974; RepovŠ & 

Baddeley, 2006). For a long time, these three components were successful in giving 

integrated data from humans, but also neurophysiological, developmental and neuroimaging 

data. However, there are several phenomena (e.g. WM span task 1 [A. D. Baddeley et al., 

2019]) that are not easily captured by the original model (Alan Baddeley, 2000). For that 

reason, a further component, termed episodic buffer, was added into the model (Alan 

Baddeley, 2000), representing a multimodal store capable of integration of the information 

into unitary episodic representations (RepovŠ & Baddeley, 2006). Each module in the model 

has its own specific function. The visuospatial sketchpad presents a temporary storage for 

visual and spatial input, the phonological loop represents a buffer of more immediate interest 

for spoken input (Wingfield, 2016) and the central executive serves as a control system of 

limited attentional capacity (Alan Baddeley, 2003).  

 

Figure 1 – Scheme of multi-component model of WM by Baddeley and Hitch (1974). 

  

1.3 Visual Working Memory 

Visual working memory (VWM), concerning central executive, episodic buffer and 

visuospatial sketchpad from the model previously described (phonological loop excluded), 

can be understood as an active maintenance of attention to the visual items important for the 

ongoing task or behaviour (Chun, 2011). It allows the visual information to be extended over 

time without the presence of the sensory input (N. Cowan, 2001). Similarly to WM in 

 
1 WM span task is used to measure WM capacity. The most used are counting span, operation span 
and reading span task (Conway et al., 2005). 
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general, VWM is limited as well. The ongoing question remains whether VWM is limited 

by fixed number of objects, or whether its capacity is reduced as object complexity rises? 

The answer to this question is still not completely clear since there is growing research and 

evidence on both sides of this open issue. 

The first point of view suggests that fixed number of objects are presented in VWM, 

regardless of the complexity of them (Adam et al., 2017; Awh et al., 2007; S. J. Luck & 

Vogel, 1997; Vogel et al., 2001; Vogel & Machizawa, 2004; Xu & Chun, 2006). Although 

this opinion has a relatively strong support base in the general discussion about this topic, 

there is also evidence that supports the other point of view by reporting marked reductions 

in capacity as item complexity increased (Alvarez & Cavanagh, 2004; Eng et al., 2005). In 

the context of this issue, it might seem that both, number of items to be remembered and the 

complexity of them, play an important role in behavioural and neurophysiological 

performance in the VWM task. Xu and Chun (2006) support this notion, claiming that both, 

fixed number of objects and object complexity, determine VWM. 

  

1.4 Neural Mechanisms of Visuospatial Working Memory 

In this chapter, we are going to describe the neurophysiology of the processes described 

in the previous chapter. Visuospatial WM is a complex, highly organized system and there 

are several neural structures related to it. First, as it was already briefly outlined above, WM 

is not an individual separate unit but is tightly intertwined with other cognitive functions, 

therefore we cannot find its origin in a single brain area or specific neural circuit. As Logie 

et al. (2020) stated, whether considered from a cognitive or neural perspective, WM may not 

involve any discrete systems, but it may rather be understood as a functionality resulting 

from the control of sensorimotor and representational systems. 

Neuroimaging studies suggest that prefrontal cortical areas show activation during the 

time when information is manipulated in memory (WM) (together with other executive 

functions like planning, emotional responses, etc.) (Gutierrez-Colina et al., 2021). The 

ongoing research regarding this topic still investigates neural responses during WM 

performance focusing on finding more information about which brain areas underlie its 

complicated processes. It is believed that a better understanding of WM as a cognitive 

process might lead to more accurate knowledge about its neural origin. Since from the 
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neurological perspective, the concept of memory in general (mostly long-term memory 

[explicit and implicit]) is much better understood, the question remains to what extent WM 

is linked to processes of memory as such, or whether these are similar at all. A recent study 

indicates that the behavioural aspect of (V)WM does not make overt demands on memory, 

but it rather requires guidance from a priority map that is instantiated in the recurrent activity 

between the intraparietal sulcus and frontal eye fields (in humans located in the superior 

frontal cortex) (Bisley & Mirpour, 2019). Although neurons of frontal eye fields are known 

to be responsible for encoding information about recent saccade targets during free viewing 

behaviour in nonhuman primates (unspecific viewing target) (Mirpour et al., 2019), multi-

voxel pattern analysis2 (MVPA) of fMRI activity from the superior frontal cortex and 

intraparietal sulcus in humans suggests that the neural encoding of egocentric location is 

highly similar (Logie et al., 2020). This assumption also applies during WM performance 

with viewing targets when a person is preparing a delayed response to the same location 

when it must be remembered across a delay (retention interval in change detection task, Jerde 

et al., 2012). Significance of the frontal eye fields in VWM performance is also supported 

by Mackey et al., (2016), claiming that in case of prefrontal cortex damage, visuospatial WM 

is only disrupted if frontal eye fields are affected by this damage as well. 

Moreover, recent MVPA studies have shown that during VWM performance with 

participants needing to maintain and manipulate stimulus-specific information, this process 

must not necessarily show elevated activity in the relevant brain area. This phenomenon was 

observed in the primary visual cortex that is believed to play an important role in 

remembering specific features of items in the VWM task. Serences and collegues (2009) 

investigated delayed period in VWM performance using fMRI and observed limited 

evidence of increases in mean activation in the primary visual cortex. Harrison and Tong 

(2009) also claim that overall levels of activity in the primary visual cortex are low, however, 

specific features (e.g. an orientation of items) can still be decoded from this low activity 

 
2 Multi-voxel pattern analysis (MVPA) is a method of determining how mental representations map 
onto patterns of neural activity by applying pattern-classification algorithms to multi-voxel patterns 
of fMRI or EEG data with the goal of decoding brain activity that presents some specific information 
at particular point of time (Norman et al., 2006). Recently famous inverted encoding modelling 
(IEM) (MVPA and IEM both types of multivariate analysis methods) presents a forward modelling 
approach that runs a dimensionality reduction on neural data to track population level representation 
of stimulus characteristics, model in IEM is trained by regressing against neural data, usually used 
with fMRI or EEG data (Logie et al., 2020). 
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patterns. This assumption was also supported by Emrich and colleagues (2013), who added 

that contents of VWM can be decoded from transient response to visual stimuli in visual 

cortex but not from regions with elevated, sustained activity during delay period.  

We cannot forget the crucial attribute of VWM – vision. As mentioned above, VWM is 

based on the complex cognitive processes that are believed to occur mostly in prefrontal 

cortex, therefore in the visuospatial task, brain areas responsible for vision must be included 

in the processes too. Visual stimuli are processed through many separate maps, creating a 

visual pathway. There are two well-known visual pathways: “what” (ventral) visual pathway 

responsible for object identification and “where” (dorsal) visual pathway responsible for 

detecting spatial aspects of stimuli. Neurons in occipitotemporal cortical areas respond to 

the specific visual cues such as the colour and shape (“what”), whereas neurons in 

occipitoparietal, temporal and posterior parietal areas respond to the spatial information 

about the object (“where”) (de Haan & Cowey, 2011; Ungerleider, 1994). Mentioned 

pathways contribute on executing the transfer of visual information from the senses to 

relevant parts of the brain which then further process the information. The “what” (VWM) 

and the “where” (spatial WM) pathways work together in parallel during WM performance.  

The role of the prefrontal cortex in VWM processes is undeniable but the specifics of it 

are debated to this day. Since posterior regions are considered to stand in the centre of these 

processes (visual brain areas), a general role of the prefrontal cortex may be to provide top-

down control to posterior regions (Curtis & D’Esposito, 2003; Gazzaley et al., 2007). 

Gazzaley with collaborators (2007) agree with this notion, claiming there is accumulating 

evidence that prefrontal cortex modulates the magnitude of neural activity in distant sensory 

regions via long-range projections, i.e. the mechanism of top-down control. Top-down 

modulation might play the role of the common link accounting for functional involvement 

of prefrontal cortex and posterior areas during selective attention and VWM task (Gazzaley 

et al., 2007). This process might be essential for both establishing high fidelity 

representations of task-relevant stimuli when they are perceived, as well as facilitating their 

internal maintenance when they are no longer accessible. Given the fact that representations 

that are supposed to be maintained are susceptible to interference by many types of 

distractions (either distractors present in the task or distractors from the environment) (E. K. 

Miller et al., 1996), top-down processing (comprising selective attention) is necessary for 

successful WM performance by restricting the contents of capacity-limited memory to task-
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relevant representations (Ploner et al., 2001; Vogel et al., 2005), which gives it an integral 

role.   

VWM is highly researched through various neuroimaging methods that can best reflect 

its mechanisms. It is believed that more brain regions are involved in WM processing, 

however, they need to be joint together and somehow collaborate to achieve effective WM 

performance. Many authors believe that this is accomplished by neuronal phase-locking 

synchronization that binds together those neurons that present the same perceptual objects 

(A. Engel, 1997; A. K. Engel et al., 2001; Fries, 2005; Haenschel et al., 2007; Pina et al., 

2018; Singer, 1999; Yu et al., 2008) while this binding tag would be a flexible code for 

linking neurons into assemblies (known as binding-by-synchronization hypothesis) (Fries, 

2005). It was found that all frequencies of firing neurons3  are involved in WM, however, it 

is believed that synchronization of these oscillations is essential for WM functioning (Daume 

et al., 2017). 

As already specified, WM is highly based on prefrontal cortex, top-down processing, and 

persistent activity during delayed response, yet there are some initiating modulators needed 

to regulate and bind these processes. Several investigations have proved that WM 

performance is influenced by hormones acetylcholine, dopamine and norepinephrine 

(particularly during delayed response tasks) (Motley, 2018), each having a unique role. 

Acetylcholine is known to be critical for attention, hence it is important for WM because it 

supports increased attention to maintain persistent firing related to targets in the face of 

distractions (Decker & Duncan, 2020; Motley, 2018). The research indicates that dopamine 

is significant not only for WM functioning but also in improving WM capacity and 

performance (Söderqvist et al., 2012). Norepinephrine is thought to be improving the spatial 

tuning of delay cell firing, and thereby decreasing distractibility and improving behavioural 

performance in WM task (Arnsten, 2006). Clarke and colleagues (2006) found out there was 

 

3 The roles of frequencies in WM are only proposals of what function each of them might take. Those 
functions are suggested to be following: alpha-band as inhibition of task irrelevant information (Roux 
& Uhlhaas, 2014) , beta-band reflecting a default state interrupted by encoding and decoding 
(Lundqvist et al., 2016), theta-band underlying organization of sequentially ordered WM items (Roux 
& Uhlhaas, 2014), gamma-band standing behind encoding, decoding, WM load and generally active 
maintenance of WM (Lundqvist et al., 2016). 
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an increase of errors in WM tasks after serotonin depletion in the orbitofrontal cortex4 which 

supports the motion that serotonin plays a role in WM, although this role is still unclear.  

To summarise the operations described in this chapter, current research assumes there are 

5 main neural processes that are involved in VWM: prefrontal cortex processing, top-down 

modulators, persistent neural activity, long-range synchronized oscillations and 

connectivity, and brainstem neuromodulators. 

  

1.4.1 Contralateral Delay Activity and Filtering Ability 

In the previous chapter, we talked about persistent neural activity as one of the crucial 

neural processes standing behind VWM. It occurs during delay response tasks when one is 

holding (or manipulating) information that is no longer available but is needed to be 

maintained. This neural process was first detected in studies with monkeys (Fuster & 

Alexander, 1971), later it was also attributed to humans and is still a great item in ongoing 

research. Contralateral delay activity (CDA) is a neural phenomenon (which falls under the 

category of persistent neural activity) that was detected later on and is considered to be a 

direct correlate of VWM. 

The history of CDA goes back to the 90s when Ruchkin with colleagues (Ruchkin et al., 

1990, 1992) first detected sustained EEG activity during VWM performance. Only since 

2004, when Vogel & Machizawa (2004) first highlighted the uniqueness of CDA, there has 

been a constant increase in studies investigating it in a relationship with various visual tasks. 

In the last twenty years, CDA was broadly studied from two main perspectives: measuring 

CDA in order to investigate how VWM representations are affected by particular 

manipulation or in order to associate them with numerous individual characteristics (Luria 

et al., 2016). 

In 2004, Vogel & Machizawa presented an amplitude with a strong activity modulated by 

the number of objects being held in memory. In this research, they measured event-related 

 

4 Orbitofrontal cortex is a ventral part of the prefrontal cortex involved in sensory integration, 
modulation of autonomic reactions, learning, prediction and decision making for emotional and 
reward-related behaviours (Kringelbach, 2005). 
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potentials of participants during a bilateral VWM task, focusing on retention interval 

(interval when participants hold given information in memory in order to correctly 

accomplish the task) and examining lateralized effects of the task. During this interval (200 

ms after memory array) they observed large negative voltage over posterior parietal and 

lateral occipital parts of the brain, contralateral to the memorized hemifield with a growing 

tendency – contralateral delay activity. Considering it was not yet determined to which 

processes the CDA could be attributed, they tried to find out whether complexity of the task 

or number of representations affected its character. They excluded the possibility that CDA 

as an amplitude grows with the complexity of the task since they observed that it does not 

grow infinitely but reaches its asymptotic limit at each individual’s memory capacity (3-4 

items according to Cowan, 2001; Luck & Vogel [2013]).  

CDA can be defined as a sustained negative voltage over the hemisphere contralateral to 

the memorized hemifield, persisting throughout the memory retention interval (Vogel et al., 

2005). The term contralateral means the activity of the hemisphere opposite to the relevant 

hemifield, while ipsilateral activity means the activity of the hemisphere equivalent to the 

relevant hemifield. It is based on the activation of the posterior visual areas whereas this 

activation is thought to be maintained and coordinated by the top-down signals modulated 

from multisensory executive brain areas, such as prefrontal cortex (Awh & Jonides, 2001; 

Curtis & D’Esposito, 2003; Gutierrez-Colina et al., 2021; Miller et al., 1993). CDA directly 

correlates with VWM capacity which means that CDA demonstrates larger increase in 

amplitude in high capacity individuals when more items are encoded (Luria et al., 2016; 

Vogel et al., 2005). To validate this, Luria et al. (2016) carried out a meta-analysis of 11 

studies investigating CDA (Diamantopoulou et al., 2011; Drew & Vogel, 2008; Jost et al., 

2011; Kang & Woodman, 2014; Kundu et al., 2013; Kuo et al., 2012; Lefebvre et al., 2013; 

Leonard et al., 2013; Störmer et al., 2013; Umemoto et al., 2010; Vogel & Machizawa, 2004) 

and determined that these studies provide a strong evidence  indicating that the CDA is 

sensitive to the number of objects maintained in VWM. Importantly, even though most high 

capacity individuals are considered to represent an evidence, not only their CDA supports 

this assumption but also its lesser occurrence in low capacity individuals (Luria et al., 2016). 

When Vogel & Machizawa (2004) first found and described CDA, they tried to eliminate 

the possibility of CDA being a result of some aspects of WM other than the representation 

of items held in WM. In their experiment, they found out that increasing the number of items 
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to be remembered (from one to two items and from two to three items) leads to a substantial 

increase of CDA amplitude. However, when they compared the answers from correct and 

incorrect trials, they observed that amplitude for incorrect trials was significantly smaller 

than the correct trials. This suggests that CDA specifically reflects the maintenance of 

successful representation in VWM. This assumption is also supported by  McCollough et al. 

(2007) who demonstrated that CDA amplitude was significantly reduced on trials with 

incorrect answer in oppose to trials with correct responses, which is also in the line with the 

assumption that errors occur due to the loss of relevant information from VWM (Luria et al., 

2016). 

To obtain the CDA event-related potential waveform we need to use a special visual task. 

Fortunately, thanks to the separate visual pathways for left and right visual hemifields, an 

easy trick with the same visual information going to both hemispheres but only one of them 

to be remembered can be used. Two experiments, representing a breaking point for research 

of CDA (Vogel et al., 2005; Vogel & Machizawa, 2004) both used change detection task 

(CDT). Studies in later years were investigating CDA through different variations of this 

task (Adam et al., 2018; Feldmann-Wüstefeld et al., 2018; Ikkai et al., 2010; Peterson et al., 

2015; Rajsic et al., 2019; Sander et al., 2011). The main difference between basic CDT and 

CDT to evoke CDA is its lateralized character. Every CDT requires an ability to detect 

change or lack of similarity over a specific time period (Rensink, 2002). In lateralized CDT, 

two hemifields containing various items appear, divided in time by a retention interval. The 

participant needs to detect potential change in colour or orientation of items in the relevant 

hemifield.  

In previously mentioned studies investigating CDA, CDT was enriched by a cue – an 

arrow indicating the array to be remembered (left or right). Various types of items have been 

used in different studies: squares of various colours (Adam et al., 2018; Ikkai et al., 2010; 

Peterson et al., 2015; Rajsic et al., 2019; Vogel & Machizawa, 2004), colourful rectangles 

(Vogel et al., 2005), colourful circles (Feldmann-Wüstefeld et al., 2018) or black and white 

squares of different textures (Sander et al., 2011). Even though the shape of the items is not 

important, the lateralized character of the task must be maintained. The parts of CDT are cue 

(arrow pointing either to the right or to the left), memory array (presentation of targets and 

distractors), retention interval (representations disappear, usually involves only fixation 

point) and test array (presentation of targets and distractors with or without change), usually 
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completed by inter-trial interval (fixation point, preparation for the next trial) (Vogel et al., 

2005; Vogel & Machizawa, 2004). To make the task more complex, distractors are 

sometimes added to compete for participant’s attention with targets. The goal is for the 

participant to ignore the distractors and focus only on the targets. The targets are usually 

distinguished from the distractors by colour, change in the task refers to change in 

orientation, position, or colour. 

In their research, Vogel et al. (2005) highlighted another important aspect of CDA, an 

ability to filter out irrelevant items – so called filtering ability. They investigated CDA 

between two conditions: first condition included only relevant items (two or four targets), 

second condition included two targets and two distractors. They compared the CDA of two 

groups of participants and found out that CDA of high capacity individuals in conditions 

with two targets had very similar character as CDA in the condition with four items of which 

two were targets and two were distractors. This means that high capacity individuals were 

very efficient in filtering out irrelevant information. In contrast, CDA of low capacity 

individuals in condition with two targets was significantly different from the condition with 

two targets and two distractors, which was more similar to CDA in condition with four 

targets. Low capacity individuals had difficulties filtering out irrelevant information. 

 These findings suggest that people who could remember the correct objects from a spatial 

array and therefore were more successful in the task, also more efficiently excluded 

irrelevant objects. According to Nelson Cowan & Morey (2006) these results raise an 

important question about WM:  why do high capacity individuals remember more and why 

do low capacity individuals fail? The first question might have more possible answers. 

Irrelevant items in the task work as a distractor (Vogel et al., 2005; Vogel & Machizawa, 

2004) therefore they might affect the scope and control of attention (Nelson Cowan et al., 

2006). To achieve the most successful performance possible, one’s focus must efficiently 

zoom out to apprehend the most items or zoom in to maintain the task goal despite 

distractors. Nelson Cowan & Morey (2006) claim that if the same resources are needed for 

apprehending relevant items and filtering out irrelevant items, then filtering can come at cost. 

Regarding the second question, the answer might be that low capacity individuals 

strategically forego some extra processing or rely on pre-consolidation and sensory memory 

rather than taking the task as attention-demanding (Nelson Cowan & Morey, 2006). These 

are just theories and more research is needed to efficiently answer the questions about 
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filtering ability. However, the fact remains that filtering ability plays an important role in 

determining the individual VWM capacity which was confirmed in a meta-analysis by Luria 

et al. (2016) in which the authors tracked 8 studies investigating these variables in relation 

and found strong overall correlation. Nonetheless, there is still one unanswered question 

regarding the character of CDA, and that is whether it is trainable or not. Many authors 

investigated if a training can improve behavioural performance in WM tasks and the 

conclusions of these studies were diverse5. Trainability of CDA as a direct correlate of VWM 

was not investigated before and such findings would present a great addition to the 

information we already know about CDA. 

 

1.4.2 Calculation of CDA 

In the previous chapter we introduced a definition of CDA with an emphasis on its main 

characteristics and specifics that are reflecting the capacity of VWM. However, the process 

of gaining the final CDA amplitude requires several necessary steps that need to be taken. 

First, participants need to complete a proper lateralized CDT while the EEG signal is being 

recorded. Then, EEG data must be analysed in terms of final ERPs to extract the CDA 

waveforms. 

CDA amplitude is a wave observed during the retention interval on the posterior parts 

of the brain (Ikkai et al., 2010). After a precise pre-processing of EEG data, CDA can be 

extracted by subtraction of ipsilateral activity from the contralateral activity (mean 

difference waves averaged over the posterior sites) (Ikkai et al., 2010; Peterson et al., 2015; 

Vogel & Machizawa, 2004). As declared before, contralateral activity is the activity of the 

hemisphere opposite to the relevant hemifield, while ipsilateral activity is the activity of the 

hemisphere equivalent to the relevant hemifield. This activity in the form of an ERP 

waveform is time-locked to the memory array averaged across the lateral occipital and 

 
5  In 2012, Shipstead and collaborators performed a literature review and concluded that there is more 
research needed to directly demonstrate that WM capacity increases in response to training. Similar 
meta-analytic review was done a year later where the authors concluded that a memory training 
appear to produce short-term, specific training effects that do not generalize (Melby-Lervåg & 
Hulme, 2013). Another study (T. L. Harrison et al., 2013) demonstrated that training on complex 
WM span tasks led to improvement on similar tasks with different materials but that such training 
did not generalize to measures of fluid intelligence. Recent meta-analysis (Melby-Lervåg & Hulme, 
2016) concluded that there is no convincing evidence that WM training produces general cognitive 
benefits. 
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posterior parietal electrode sites (Vogel et al., 2005). Considering the lateralization of the 

brain (right hemifield processed by left hemisphere and vice versa) a question might arise 

why ipsilateral activity is even taken under consideration in generating CDA? Authors have 

presented more opinions on this. According to Arend & Zimmer (2011), ipsilateral activity 

might reflect either a bilateral processing of relevant items or a lateralized processing of 

irrelevant, to-be-filtered-out items. Since in CDT the number of items on both sides is 

typically identical, authors could not determine which alternative was true. In general, 

authors agree on the assumption that ipsilateral activity reflects nonspecific, bilateral ERP 

activity and by its subtraction from contralateral activity, the waveform is cleaned from low 

level processes and local noise (Luria et al., 2016). Although the subtraction is universally 

used in CDA studies, many aspects of it are still not clear (e.g. it is not clear when the 

contralateral and the ipsilateral activities are negative or positive, since CDA only indicated 

the contralateral is more negative than the ipsilateral, but both could be positive [Luria et al., 

2016]) and more research is needed in order to fully understand it. 

 

 2  Electroencephalography 

Electroencephalography (EEG) is a non-invasive measurement of the brain's electrical 

activity. It uses electrodes placed on the scalp that record voltage potentials resulting from 

current flow in and around neurons (Biasiucci et al., 2019). For a long time, EEG has been 

used in a range of psychological and neurophysiological experiments investigating various 

aspects of cognitive processes. However, it is very difficult to use raw, continuous EEG data 

to examine the specific neural activity as a function of certain cognitive processes, by cause 

of the large amount of ongoing activity that is irrelevant to the studied phenomenon but 

inseparable at the same time. For that reason, this data is usually analysed in terms of event-

related potentials (ERP) (Beres, 2017). The ERP technique provides a powerful method for 

exploring neural processes. ERPs are understood as small parts of continuous EEG recording 

which are evoked in response to stimuli, whereas this evoked activity is both time-locked 

and phase-locked to an event (Beres, 2017; Biasiucci et al., 2019). Most studies of evoked 

activity perform signal averaging by taking many trials of the same event to increase the 
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signal-to-noise ratio6 , ERP being an output of this operation (Biasiucci et al., 2019). The 

resulting averaged ERP waveforms consist of a sequence of positive and negative voltage 

deflections, called peaks, waves or components (Luck, 2014). An ERP component is defined 

by its latency (relative to the stimulus) and topography.  However, they are often defined by 

their latency, amplitude and polarity at a given scalp location (Biasiucci et al., 2019). The 

sequence of ERP peaks reflects the flow of information throughout the brain, the voltage at 

each time point in the ERP waveform reflects brain activity at the precise moment in time 

(Luck, 2014). 

        An EEG device must have several necessary components to achieve a successful EEG 

recording resulting in usable data: a differential amplifier that measures potential between 

two electrodes, analogue filters, an amplifier that prepares the signal for analog-digital 

conversion and storage (Blinowska & Durka, 2006). An EEG must also involve a 

combination of electrodes composed of conductive materials, the contact between them and 

the scalp is improved with electrolytic gel (Biasiucci et al., 2019). The EEG cap might 

contain various numbers of active electrodes plus one reference (unipolar recording) and one 

ground electrode – these are combined to provide a single channel of EEG. The bipolar 

recording estimates the potential differences between two adjacent electrodes and therefore 

a reference electrode is not needed in the cap (Yao et al., 2019). The amplifier records the 

potential between the active and the ground electrode and the potential between the ground 

and the reference (signal noise is eliminated by subtraction of reference-ground potential 

from active-ground potential) (Luck, 2014). 

 

3 Cognition in Virtual Reality  
 

Virtual reality (VR) has been increasingly investigated in last years. The search for its 

proper definition though goes back to the nineties when Cruz-Neira et al. (1992) described 

the components of a VR experience in purporting that visualisation components, immersion 

 

6 Signal-to-noise ratio generally refers to the dimensionless ratio of the signal power to the 
noise power contained in a recording (Johnson, 2006) which simply means the size of the 
signal divided by the size of the noise (Luck, 2014). 
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and interactivity are central (Augmented Reality and Virtual Reality, 2017). VR presents an 

advanced technology with a form of user-computer interface involving real-time simulation 

of an environment that allows a user to interact via multiple sensory channels (Burdea, 2003) 

and is rapidly expanding across a variety of disciplines (Adamovich et al., 2009).  

 VR, as a digital mirror of a real world, is believed to have a great influence on human 

cognition. Ricci and colleagues (2015) emphasize the effects of VR and claim that vision of 

a virtual world might have a profound impact on human cognitive systems. The main 

argument lies in human imagination, the tendency of the brain to augment the reality without 

intentional stimuli. Thanks to this tendency and the known effect of VR consistent with real 

experience, it is believed that it can be used in various fields to affect (enhance, improve) 

human cognition. Also, VR might be used to design therapies that target neuroplastic 

mechanisms in the nervous system that would provide a training in complex environments 

which are impractical or impossible to create in the real world (Adamovich et al., 2009). 

 Various event-related potential (ERP) methods are used to detect possible neural effects 

and brain changes as a result of VR impact, EEG being the most common. Pugnetti et al. 

(2001) provided an overview of some studies investigating VR through EEG, however, this 

overview only served to analyse and review the usage of these methods in combination. 

Studying cognitive processing in the human brain during VR experience is still very 

challenging considering the vagueness of ERP signals and their tendency to aggravate with 

muscle movement.  

Since our brain serves as an integration of our current perception of the physical world 

and our top-down memory based prediction, we actually see much more than what impinges 

on our retina (Ricci et al., 2015), therefore VR might affect our cognition, neural correlates 

or behavioural performance subconsciously in a very effective way. The research in this field 

is still very limited and full of unanswered questions but provides a great potential of 

revealing modern methods of influencing human cognition.  
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4 The Current Research  

 

4.1 General objective 
 

Previous research has shown that a CDA waveform presents a direct neurophysiological 

correlate of memory capacity and the number of visual objects that are held in one’s memory 

while performing a VWM task. As mentioned earlier, this effect was investigated on various 

types of VWM tasks and conditions, however, not so much on the procedures that can affect 

and improve it.  

This thesis is a part of a bigger project (Enhancing Cognition and Motor Rehabilitation 

in Mixed Reality, APVV-16-0202). It involves carrying out EEG measures on 16 

participants and following fine analysis of recorded EEG data in terms of final ERPs to 

extract the CDA waveforms with the emphasis in the punctual pre-processing of the data 

using the Brain Vision Analyzer software. Performed measures will contribute as EEG data 

of control group in the main project. In the main project the authors hypothesize that 

cognitive training in virtual reality (VR) can improve behavioural performance in working 

memory (tested offline in a different task outside VR) and that this effect will be visible on 

its neural correlate - the amplitude of CDA. The main project has the following hypotheses:  

 

 H1: Cognitive training using virtual reality will affect (enhance, improve or speed 

up) perceptual and cognitive performance in healthy subjects.  

 H2: Experience with training in virtual reality will affect and enhance oscillatory 

sensory-motor rhythms. 

 

This thesis has two main objectives: 

1. To carry out an experiment on the control group of healthy participants and record 

the EEG while they will be performing visual working memory tasks. 

2. To analyze collected EEG data in terms of final event-related potentials (ERP) of 

contralateral delay activity, emphasizing the precise use of a combination of 

automatic and manual artifact rejection in Brain Vision Analyzer. 
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4.2 Methodological Approach 
 

The main aim of this thesis was to conduct an experiment on the control group and 

to further examine the effects of a training on neurophysiological correlates and behavioral 

performance of participants. Furthermore, it intended to objectively review the efficiency of 

a training in VR with an emphasis on precise EEG data processing. We conducted two 

experiments where participants were performing CDT while their brain activity was 

measured by EEG. One of them was conducted with training in VR, the other was without 

the training. Crucial aspect of the research aim was to conduct detailed and precise EEG data 

analyses to effectively evaluate the efficiency of the VR training. So far as known, CDA has 

not been investigated before in combination with VR training.  

 In the analysis, we applied several processes on raw EEG data to generate a CDA 

waveform. Particularly, we focused on precise semi-automatic artifact rejection to clean the 

signal from all undesired elements that could mask the target activity.  

 

4.3 Hypotheses 
 

 H1: The number of items to be remembered in CDT will be reflected in the 

amplitude of the CDA waveform.  

 H2: Filtering ability of participants in the control group will not be improved by 

repeated measurement of CDT across three sessions within four weeks without an additional 

training. 
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5 Methods 
 

5.1 Research sample 
 

We recruited 30 participants (Table 1) of which 14 for the experimental and 16 for the 

control group. Participants were all healthy, neurologically normal university students with 

technical focus (informatics, mathematics, physics). All participants signed an informed 

consent and agreed with the procedures and conditions of their participation in the 

experiment. Furthermore, they understood their right to withdraw from the experiment at 

any time. The participants were all right-handed and had normal or corrected to normal 

vision, had no head injury and were not under strong medications that could influence their 

performance in the task.  

Because of the videogame-like character of the CAVE training, we were looking for 

participants familiar with videogames, in order to avoid the interference of ‘gaming’ skills 

(otherwise it would be necessary to add an entry course to teach the less skilled participants 

how to use game controller and how to precisely follow the rules of the training. Also, 

participants with advanced ‘gaming’ skills have different cognitive skills in general, 

therefore inconsistency of the sample would make it impossible to correctly compare the 

data). This condition was mostly crucial in the experimental group with the training, 

however, we set the same conditions on the control group to preserve the consistency of the 

sample. The sex ratio in the experimental group was 4F/10M, 3F/13M in the control group. 

All participants who finished the whole course of the experiment (four sessions in control 

group + ten sessions of training in the experimental group) received a monetary reward.  

 

Group 
Number of 

participants 
Age Range Mean Age Gender 

Experimental 14 19-23 21.1 4 F/10 M 

Control 16 21-25 22 3 F/13 M 

 

Table 1 – Demographic data of the Participants 
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5.2 Stimuli 
 

 The stimuli were displayed on HP ProDesk personal computer, with 3.00 GHz CPU, 

running Windows 10 Pro. Stimuli were presented on a BenQ monitor with a refresh rate 60 

Hz and a resolution 2560 x 1440. Participants viewed the screen from a distance of 70 cm. 

Responses were collected from two buttons (connected to trigger box) placed in front of a 

participant.  Behavioural responses were transported to the computer via trigger box that was 

connected to the two response buttons placed in front of participants.  

 The change detection task (CDT) that we used in this experiment challenges 

participant’s attention and WM, focusing mostly on spatial orientation and visual WM.  The 

stimuli were implemented and presented to participants using PsychoPy software. The 

stimuli consisted of 40 blocks, each block presenting 16 trials. Each trial comprised six 

sections: Cue, Fixation, Memory Array, Retention, Test Array and Inter Trial Interval. The 

sequence and timing of the stimuli within one trial is shown in Figure 2. At the beginning of 

each trial, a black cross is presented to the participant as a fixation point. Then,  a black 

arrow, pointing either to the right or to the left, appears in the middle of the screen and 

provides information on where the target will occur (Cue, 200 ms) (the cue has a great 

significance in an experiment intending to generate CDA in participants to lateralize their 

attention [Griffin & Nobre, 2003; Kuo et al., 2012; Nobre, 2008]). Next, there is a short 

period of fixation time consisting of black cross in the middle of the screen (Fixation, 300-

500 ms). The fixation part is followed by a display of various number of rectangles on both 

sides, right and left; this is the crucial part of the experiment when the subject is instructed 

to remember a relevant side of the field (Memory Array, 200 ms). Then, a black cross in the 

middle of the screen appears again (Retention, 900 ms), followed by another display, either 

with or without a change of orientation of the rectangles (Test Array, 3000 ms). Finally, a 

black cross appears, giving the subject time to press a button and get ready for the next trial 

(Inter Trial Interval, 750 ms). The duration of one trial is 5350-5550 ms. 
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Figure 2 – Time sequence of CDT used in experiments. 

 

 Each trail of CDT and its display duration are based on the function they hold and the 

reaction they should evoke in participants. We decided that 200 ms is an appropriate time 

for the Cue, Fixation and Memory Array in order for the participants to be able to notice the 

direction of the arrow (Cue), fixate their gaze on the black cross (Fixation) and register the 

orientation and colour of rectangles (Memory Array). We set the duration of Retention on 

900 ms, similarly as in previous research investigating CDA during retention interval (Vogel 

et al., 2004, 2005). 

During Memory Array, a set of rectangles were presented on both sides of the screen. 

These rectangles were of three colours – red, green and blue, in which red rectangles 

represented targets, whereas green and blue rectangles represented distractors. The blocks 

of the task consist of four possible set size configurations of rectangles: 1. two targets and 

zero distractors, 2. two targets and two distractors, 3. four targets and zero distractors, 4. four 

targets and two distractors. Each trial, one of these sets appears on both sides of the screen, 

despite the lateralized relevance. Overall, each set size configuration appears 175 times 

during one session in randomized order. Each Memory array consisted of one of the four 

sets, selected from a set of four possible orientations (vertical, horizontal, left 45° and right 

45°). The positions of the rectangles were randomly distributed around the screen on both 
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hemifields (CDA amplitude is believed to be insensitive to low level visual attributes such 

as the distance between objects [McCollough et al., 2007]). 

 

5.2.1 CDT Instruction 
 

In the first entry session, participants received all the instructions concerning the CDT 

and they were told about the procedure, contents and timeline of the experiment. Participants 

were instructed to pay attention only to the red rectangles of the relevant hemifield and to 

press the right (green) button if there was a change and the left (red) button if there was no 

change in their orientation.  They have been notified about the importance of the eye fixation 

on the black dot during the whole experiment. Participants were allowed to blink normally. 

However, they were reminded to try blinking during the Inter Trial Interval – this instruction 

had two main intentions. First, it allowed the participant to blink regularly and prevent them 

from eye fatigue. Second, the amount of potential blinking during Memory Array, Test Array 

and Retention that could damage the CDA waveform in the EEG signal and negatively affect 

the behavioural performance was reduced. Participants were instructed to press one of the 

buttons during Inter Trial Interval and were told about the chance of correcting themselves 

until the start of the next block. They were allowed to have as many breaks as they needed 

between blocks in order for them to be rested and ready for the next trial. Approximate 

number of breaks during one session was four. After each block, experimenter waited for 

the participant’s signal that they are ready to move to the next block.  

 

5.3 Training 
 

 In the experimental part of the research we used a collaborative automatic virtual 

environment (CAVE) system as a training. Experimental conditions required sufficient 

training that could effectively imitate components of CDT and positively stimulate 

visuospatial cognition, having this positive effect on both, behavioural and 

neurophysiological levels. We decided that a cognitively stimulating VR experience might 

match these conditions because of its authenticity and ability to creatively replicate CDT. 

 The VR system we used for the experiment is called LIRKIS CAVE. It was implemented 

and is now located at the Technical University of Košice, LIRKIS laboratory (Hudák et al., 
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2017). It is a transportable VR environment with 2.5x2.5x3 meters display area. Its visual 

output is presented on twenty 55-inch stereoscopic LCD screens, fourteen of which are 

positioned vertically along seven sides of a decagon and remaining six positioned 

horizontally forming the ceiling (three screens) and floor (three screens). CAVE therefore 

provides a 250-degree panoramic space. The CAVE can be connected to a range of user 

control devices, in our research we use mouse and keyboard through gaming devices 

(joystick, gamepad). An adequate representation of the scenes on the screens is achieved by 

a cluster of seven computers, equipped with the NVIDIA Quadro graphic cards.  

 Game played by the participants of the experimental group in CAVE is called Tower 

Defence. The essential visual component of this game is a fixed location with a form of 

defence turret that rotates to the right and left. This visual object is an alternative to the 

fixation cross in CDT. The tower has a function to shoot a line of fire that can be vertically 

adjusted. Attackers of the tower are represented by drones that are approaching it from the 

front, they can attack the tower or the city behind it. The player is in the role of the defence 

tower and their task is to defend it. The player can shoot on the drone only until it passes the 

tower position further towards the city, otherwise the drone bombs the city. The player wins 

if they can defend the city in given time. Described drones represent the red rectangles of 

CDT, however, there are also distractors in this game, so-called friendly drones that carry 

supplies necessary for survival of the tower and the city.  The player needs to distinguish 

these two types of drones according to their shape, colour and behavioural differences. 

 

5.4 Procedure and Data Collection 
 

Participants were tested individually in a small, darkened, acoustically attenuated EEG 

recording room. Experiments were running in solitude in the presence of an experimenter 

(experimenter was sitting behind the participant out of their peripheral view, controlling the 

EEG signal, taking care of the blocks switching and correcting the EEG cap and electrodes 

if necessary).  

Participants were seated in a comfortable chair in front of the monitor where the stimuli 

were presented. They were holding two buttons, one in the right and another in the left hand, 

with both hands placed on the desk. Participants were connected to the EOG and EEG while 

performing CDT. If the EEG signal was breaking, experimenter manipulated the electrodes 
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and corrected the signal during the breaks between blocks. One experimental session lasted 

approximately for 75 minutes. Data collection was conducted in three time-segments which 

followed an introductory entry session. The scheme of the whole procedure of the 

experimental group can be found in the Figure 3). 

 

 

Figure 3 – Procedure of the experiment. Experimental group performed all stages, participants in 

control group performed all stages except from CAVE, which represents training in the VR 

environment. Day 2 was optional; it is a repeat of the first session with CDT - occurred when a 

participant had low performance in the first session.  

 

5.5 First Session 
 

 The first session of the experiment was essential, as we explained the whole procedure 

of the experiment to each participant and accordingly considered their participation in it. The 

main purpose of this session was to determine the suitability of the participant for the 

purposes of the study and to give them a chance to learn and practise the CDT. The 

introductory meeting had three main objectives: 1. introduce the participants to outline of 

the experiment, 2.determine whether the participants could follow the instructions and 
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perform the task correctly, 3. teach them, how to perform the CDT, explain all the rules of 

the task and let them learn how to do the task efficiently.  

 The entry session started with a questionnaire that contained questions about 

demographic data of the participants, hand laterality, smoking habits, neurological 

anamneses, and frequency of playing video games. We also wanted to avoid an interference 

of caffeine affecting the performance, therefore we also included a question about the last 

time a participant drank coffee. Later during the experiment, they were instructed not to 

drink anything with caffeine at least three hours before the experimental sessions.  We 

accepted only right-handed participants with no neurological problems. To preserve similar 

average age as in the experimental group, we accepted participant with age of 19-25.  

 Subsequently, participants were seated and connected to electrooculography (EOG). 

They had to perform a signal test that was based on a simple figure that consisted of fixation 

point and several objects placed around it (with the same distance as the distance of the 

rectangles from the fixation point in CDT) and served to calibrate blinks and horizontal eye 

movements of an individual participant. During the signal test, the participant performed 

approximately twenty eye movements from a fixation point to objects around it (in the signal 

test, the fixation point had a form of a head of a soccer player, objects placed around it had 

a form of soccer balls). EOG amplitudes and latency of blinks and horizontal eye movements 

are not the same for everyone, they differ and are defined by various values.  

During the Signal test, we detected particular values of these eye movements to set the 

thresholds for EOG artefact detection and used them in the next part of the entry session and 

in later EEG analysis, too. This kind of entry test was also proposed by Luck (2014) who 

suggests to ask the subject to do some eye movements and blinks at the beginning of the 

session to see what the subject’s artifacts look like. Nonetheless, he emphasizes to keep in 

mind that voluntarily produced blinks are usually larger than spontaneous blinks. In the 

signal test, participants’ eye movements were task-based, however, they were instructed to 

also blink after each saccade, which makes these blinks triggered, or voluntarily produced. 

For that reason, we tried to be very careful in calibrating parameters for blinks and we tried 

to choose an average number among all the blinks (approximately twenty blinks in one signal 

test).  

As mentioned before, since the laterality is a crucial factor of CDA, the CDA waveform 

could not be obtained if a participant doesn’t gaze in the middle of the screen and instead 
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looks to the sides during the VWM task. Although this part of the CDA instruction seems 

straight-forward enough, to perform it the correct way might be much more challenging than 

expected. In CDT, there is a cue pointing to the side at the beginning of each trial. This cue, 

in a form of a black arrow, automatically tempts the participant to look to a given side. For 

that reason, participants had to undergo practice consisting of longer blocks (one block lasted 

five minutes) of CDT in the entry session. This section served as a criterion of the 

participant’s ability to fixate their eye gaze to the black dot and not move their eyes to sides 

during the experiment. They were connected to EOG while they performed the pilot CDT. 

This pilot trial served as a training of CDT task for participants and as a detection of their 

eye movements. After a participant finished, we used MATLAB to detect all trials in which 

participant blinked or looked to the relevant hemifield (EOG detection) using the values 

acquired in the signal test. If more than 20% of the trials were to be rejected, the participant 

was considered as not capable of performing the task and therefore not suitable for the 

experiment and was excluded from the experiment. If the participant succeeded, they could 

proceed to the experimental part.  

 

5.6 Experimental Part of Data Collection 
 

The experimental part of the procedure consisted of three parts: pre-, mid- and post- test. 

In the experimental group, these tests were divided by two-week-long breaks, each filled 

with four sessions of training. In the control group, these breaks remained empty. Each one 

of these three sessions had the same procedure. First, participants had to fill out a 

short questionnaire (questions about the last time that participant had caffeine, alcohol, 

nicotine; amount of sleep during last night; perceived concentration, enjoyment of the task, 

fatigue and motivation to do the task correctly) which was followed by performing the CDT, 

as described in the section Stimuli (p. 20). Before and after the CDT, two periods of rest were 

added to measure the baseline resting EEG (one rest period lasted for four minutes, two 

minutes with closed and two minutes with open eyes). Each session was closed with 

a questionnaire (questions about perceived concentration, enjoyment of the task, fatigue and 

motivation to do the task correctly). In the control group, all three sessions had the same 

proceedings, while in the experimental group, pre-test and mid-test were followed by 

a session of training and additional questionnaire.  
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5.7 EEG Recordings 
 

 During the pre-, mid- and post- test, EEG recordings were conducted while participants 

were performing CDT. Prior to the presenting of the stimuli, four disposable EOG electrodes 

have been attached to the face of the participant, two electrodes at the temples (as close to 

the outer canthi as possible, while trying to avoid any discomfort or disruption of 

participant’s sight) to detect horizontal eye movements, and two electrodes above and below 

the right eye to detect blinks. Next, an elastic EEG cap was placed on the participant’s head 

following the International 10/20 system, using 11 silver/silver chloride (Ag/AgCl) 

electrodes. The placement of the electrodes that was used is shown in Figure 4. The 

positioning of the electrodes was densest on the occipital and parietal parts of the brain which 

are the relevant parts for CDA detection. The ground electrode was placed on the forehead 

above the nasion and the reference electrode was placed at the earlobe. We were using a 16-

channel amplifier g.USBamp 3.0 (from g.tec).  

 

 

Figure 4 – Schema of EEG cap that we used in the experiment. Even numbers present right 

hemisphere, odd numbers present left hemisphere. Letters refer to brain areas: F – frontal, C -

central, P – parietal, PO – parietal-occipital, O – occipital. Electrode AFZ is ground electrode, A1 

presents a place of reference electrode. Orange labels are electrodes that were placed according to 

10-20 electrode placement system. 
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We used a dedicated software g.RECORDER (from g.tec company) to record the EEG 

data and to visualize the signal. When the EEG cap was set and all channels connected to 

the amplifier, we started the g.RECORDER and calibrated the amplifier. We used the 

visualization tool to see the quality of the signal of each channel and accordingly we adjusted 

the signal by adding more gel or repeated scratching of the skin under the electrode to 

improve the connection between the scalp and the electrode. Sometimes none of the 

mentioned approaches helped to improve the signal, which was a sign of other issues that 

could be sweating, stress, or another psychophysiological factor. After achieving quality of 

the signal as good as possible, we turned on the notch filter, low-pass filter and high-pass 

filter. If the signal got worse during the experiment, we adjusted the EEG cap and the 

channels again. Additionally, we checked the signal and observed the occurrence of eye 

blinks during retention interval. To avoid rejection of more than 20% of the trails, we 

reminded the participants to blink in the inter-trial interval as was acknowledged during the 

entry session.  

 

5.8 EEG Analysis 
 

After conducting all EEG recordings, we first needed to pre-process the acquired data and 

prepare them for the later analysis. We used MATLAB programming software for majority 

of required operations and corrections. Neurophysiological and behavioural data were 

recorded in parallel and resulted in two separate files that we then merged into one. The 

resulting file contained markers representing correct/incorrect answer in eight types of 

conditions of the experiment. Furthermore, we created markers based on the detected eye 

movements (blinks and horizontal eye movements) that were later used in the analysis as 

labels of invalid trial/segment. We detected blinks and horizontal eye movements to see the 

number of invalid trials before the analysis. If the percentage of invalid trials was lower than 

20%, we transformed the files into EDF format in order to provide compatibility with the 

Brain Vision Analyzer (BVA) software.  

We used BVA to analyse the acquired EEG data. We chose this particular analysis-tool 

for its complexity and straight-forward character, to achieve effective and high-quality EEG 

data processing. BVA allowed us to create a workspace of operations that were applied to 

raw data. Given the number of operations needed to be applied to the raw data to get the 

clean EEG signal, it is important to carefully decide the order of their application and fine-
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tune all of the possible parameters. BVA is an EEG software whose biggest advantage is that 

history pipelines (work-trees of operations) log every operation applied to the data and based 

on them, templates can be created and then applied to other data. After the primary pre-

processing in MATLAB, we imported the data into BVA and started to perform EEG 

analysis by applying series of operations on each of them.  

It is necessary to mention that since there are no two identical EEG recordings, there are 

no general guidelines or a manual of how exactly the EEG analysis should be performed. It 

is a complex process of applying the appropriate operations, persevering desired signal, and 

rejecting what is contaminating it.   

 

5.8.1 Artefacts of non-cerebral origin in the EEG recording 
 

In the first step, we needed to use appropriate filters to get rid of non-cerebral artefacts 

that are present in the EEG recorded signal. EEG data can be contaminated by more types 

of noise that can mask the target signal, most common are physiological electrical activity 

and environmental noise (Biasiucci et al., 2019). Physiological noise is produced by cardiac, 

ocular, and muscular activity, and environmental noise includes noise from electric 

equipment and power lines. It is important to distinguish various types of noise and use an 

appropriate process to remove it from the signal.  

Regarding muscular contamination, the most common of them are artifacts in EEG signal, 

we had to remove all muscle activity done mostly by facial muscle movements during the 

performance of CDT. This is also the reason why the breaks in experiments while EEG is 

recorded are essential. Even though participants are instructed not to make any muscle 

movements during the performance of the task, the signal can be also contaminated by 

increased muscle tension. Therefore, it is important for the participants to relax and release 

the muscle tension during the breaks.  

Since any muscular activity strongly disturbs EEG signal and complicates data analysis, 

we needed to remove muscle artifacts from the signal, which might be challenging. The main 

reason for the unique challenges associated with removal of muscular activity lies in the fact 

that it contains high amplitudes in the signal, a wide frequency spectrum and broad 

anatomical distribution (Chen et al., 2016), which usually affects all channels. These artifacts 

are easily visually detected, however, there might be a problem removing them in the 
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analysis when this activity overlaps with the target signal. Muscle activity shows a 

bandwidth of 20-300 Hz (Muthukumaraswamy, 2013) (frequency bandwidth of muscle 

activity is not  a fixed value, Greco and colleagues [2007] say that muscle activity can reach 

frequency of  0.5-35-50 Hz, based on the source of the muscle contamination) and a voltage 

of ±75 µV (Nolan et al., 2010). Since our target signal usually does not occur in these 

frequencies, we could use filters to remove it.  

Cardiac activity is defined by a bandwidth of approximately 0.6-1.7 Hz (Tamburro et al., 

2019), in our recordings, we did not have problems with this type of EEG noise. Several 

times, electrocardiography (ECG) signal appeared at channel A2 that was attached to the 

right earlobe. As Tatum (2013) declared, pulse artifact usually appears in a single channel 

as a periodic slow wave, occurring when electrode is in the position that is near, or at the 

artery, which was also our case. During our experiments, this happened when the electrode 

was directly touching a place of blood vessel and therefore it detected ECG signal, however, 

this was usually easily observed and corrected using the EEG visualization during recording. 

The rest of ECG artifacts that remained in the signal were removed by filtering and later 

averaging.  

Regarding environmental noise from electric equipment and power lines (50 or 60 Hz, 

depends on a geographical place where EEG is recorded, in our case line frequency was 50 

Hz), it is possible to use a notch filter that filters out a narrow frequency band and passes 

everything else (Steven J. Luck, 2014). Since we used low-pass filters that also included this 

range, it was not necessary to use notch filters in our case.  

 

5.8.2 Filters 
 

Filters in EEG data analysis are tools for reducing sources of noise that can be well 

approximated by sine waves (Steven J. Luck, 2014). Filters are very useful in EEG 

processing, nevertheless, they need to be handled carefully because they can significantly 

distort the data. The most common classes of filters are  low-pass filters (passes low-

frequency signals and attenuates high-frequency signal), high-pass filters (passes high-

frequency signals and attenuates low-frequency signal), band-pass filters (attenuate both 

high and low frequencies, passing only specific range of frequencies according to given 

parameters) and notch filters (attenuate narrow band of frequencies and passes everything 
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else) (Niedermeyer et al., 2011). Analog filters are integrated in the amplifier, filters that we 

use in EEG analysis are digital filters that can be only used after the data are stored. 

To clean the data from noise, we used two types of butterworth infinite impulse response7 

(IIR) filters in the processing: high-pass filter and low-pass filter. We removed slow 

fluctuations and DC shifts8 using a high-pass filter that is needed for reducing low 

frequencies coming from bioelectric flowing potentials (e.g. breathing) that remain in the 

signal after subtracting voltages toward ground electrode (Teplan, 2002). There are no 

agreed parameters that define the high pass filter. Luck (2014) describes parameters between 

0.01 Hz, 0.1 Hz or 0.5 Hz in relation to this filter, suggesting mostly 0.01 or 0.1 to minimize 

offsets and drifts. However, he points out that this suggestion is only a guess and this 

parameter should be set according to the goal of the analysis. On the contrary, Teplan (2002) 

defines the high-pass filter as a cut-off frequency usually lying in the range of 0.1-0.7 Hz. 

We decided to use the high-pass filter set on 0.1 Hz because by using the lower parameter 

(e.g. 0.01 Hz) we would lose our signal of interest, since CDA is a slow deflection that could 

be mistakenly filtered out using a low cut-off frequency for high-pass filter. At the same 

time, we used low-pass filters set on 25 Hz to ‘smooth’ high-frequency components and to 

attenuate noise, caused mostly by muscular activity. 

While setting up criteria for filtering, there was another important parameter needed to be 

selected – the order of the filter. The order determines the steepness of the amplitude cut-

off, or in other words, determines how much of the past information is included after filters 

are applied (de Cheveigné & Nelken, 2019; Steven J. Luck, 2014). In both, high-pass and 

low-pass filters, we used the order 8 as the greatest possible steepness of the cut-off. 

During the recordings, we observed common occurrence of the dominant alpha activity 

in the visualization displaying the EEG signal in the real time, which was later confirmed 

after the data was stored and pre-processed. Alpha-band oscillations (an example is 

displayed on Figure 5) are thought to have mostly inhibitory function, also playing an active 

 
7 Filters may be designed according to Butterworth or Chebyshev topologies, three most common 
methods for digital filtering are finite impulse response (FIR), infinite impulse response (IIR) and 
one frequency domain method – fast Fourier transform. The biggest advantages of IIR filter is that it 
is computationally cheaper, can obtain good performance with low order and can simply reproduce 
analogue filters (Niedermeyer et al., 2011). 
8 Direct current drifts, known as deviation from the surface levels that are thought to be 
caused by tonic depolarization of the apical dendrites of cortical pyramidal neurons (Voipio 
et al., 2003). 
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role in information processing and timing (Klimesch, 2012). In our case, alpha oscillations 

could reflect the fact, that participants were in a state of fatigue caused by a long duration of 

the experiment in a silence with only small changes in visual inputs. Furthermore, it could 

represent suppression and selection, as two fundamental functions crucial during attentional 

and WM performance. However, since alpha frequencies (8-13 Hz, mainly around 10 Hz 

[Niedermeyer et al., 2011; Teplan, 2002]) could contaminate final ERP by its high 

amplitudes, we decided to remove it from the data using appropriate filters. We conducted 

band rejection using finite impulse response (FIR) filter of fourth order with the main 

frequency of 10 Hz and bandwidth 4 Hz, therefore we filtered out the frequencies in a range 

of 8-12 Hz. We selected all EEG channels for this operation, EOG channels were not 

included. 

 

 
 

Figure 5 – Alpha oscillations present in the recording on eight channels. 

 

5.8.3 Segmentation 
 

EEG signal is very complex and cannot be easily interpreted without prior decomposition. 

First, it needs to be broken down into smaller pieces that we can make sense of. In EEG 

signals, these small pieces can take more forms. One form of them is characterized by ERPs, 

parts of continuous EEG recording which are evoked in response to stimuli (Beres, 2017). 
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ERP analysis is one of the most common method for investigating EEG signals, mostly by 

averaging of repeated time-locked recordings of the same event.  These time-locked 

segments are obtained in the process of this decomposition called segmentation.  

In the process of segmentation, we can also apply different inclusion and exclusion 

criteria for our recorded data based on which only clean desired trials become part of further 

analysis. This gives us a great freedom in detecting ERPs using BVA, however, there are 

some basic rules that should be followed to do the segmentation effectively. To extract trails 

for ERPs, we needed to generate epochs of the same length, relative to a reference marker. 

Such a marker could be any timestamp added during the recording or during later processing 

of the data and its function is to label a particular time event. By these markers we can define 

the beginning of a segment, its end or just a reference point to define the length and position 

of segments.  

During EEG recordings, markers in the signal were created every time a significant event 

occurred (all markers were defined in the script). This was enabled thanks to an additional 

device called trigger.box that was connected to the amplifier. The trigger.box received 

signals from the computer via parallel port, from the additional photo-diode attached to the 

computer screen, and both response buttons. The program for the task presentation generated 

two types of these signals. A small square in the corner of the screen changed colour every 

time a new event occurred, which was detected by the photo-diode. This enabled perfect 

time synchronization of the events. Information about the type of the event (e.g. number of 

stimuli presented) was sent via the parallel port, recorded to the raw signal and later 

synchronized with corresponding timestamps – marker generated by the photo-diode. 

In order to obtain clean segments without previously detected eye movements, the process 

of segmentation was applied in two steps. In the first step of segmentation, longer epochs 

containing almost the whole trial were extracted. The epochs were defined by a marker 

representing an onset of the cue (left or right arrow) that ends with a marker representing the 

onset of the test array. After the first step of segmentation, we obtained 320 segments for 

every recording - one recording included 40 blocks, one block having 16 trials (640 segments 

in total for one participant, 320 segments separately for one visual field). An excerpt of the 

first segmentation is displayed in the Figure 6.  
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Figure 6 – Result of multi-channels segmentation based on defined start-marker and end-marker. 

 

 Subsequently, we applied the second step of the data segmentation. We set the criteria 

to reject segments where eye movements occurred in target moments of the experiment. To 

make this happen, we used an Advanced Boolean Expression to specify reference markers 

to isolate clean data from segments with eye movements in the segments obtained in the 

previous step. After this step, only segments (containing both, correct and incorrect 

behavioural responses) without blinks or saccades that would appear in a range from -700 

ms before Memory Array to 1100 ms after Memory Array were maintained, the rest was 

rejected.  

Boolean Expression applied in second segmentation:  

not(EOG_saccade1(-700,1100) or EOG_saccade2(-700,1100) or EOG_blink2(-700,1100) 

or EOG_blink1(-700,1100) or EOG_blink(-700,1100) or EOG_saccade(-700,1100)). 

The expression refers to the markers created during the recordings, based on eye 

movement calibration performed during the entry session by a signal test. Markers 

EOG_saccade1 and EOG_saccade2 refer to horizontal eye movements. Markers 

EOG_blink1 and EOG_blink2 mean blinks during retention interval. Through the process of 

second segmentation, we cleaned the data from sections where participants made eye 

movements - which suggest they looked on the target array of the screen and therefore no 

CDA would be generated. Segments with blinks were also rejected because blinks usually 

affect signal in all channels and the high amplitude of an eye blink artefact could contaminate 
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the resulting CDA waveform leading to false results. However, as will be declared later, 

even after the calibration of eye movements of individual participants, some ocular artifacts 

might not have been detected because of their different character. To include only epochs of 

interest, after checking for artefacts in the longer segments, we shortened the trials for our 

needs too. The beginning of new epochs was set to 200 ms before the onset of a memory 

array and the end was 1100 ms later, which corresponded to the time of the onset of a test 

array. Therefore, it covered the whole retention interval, what was necessary to obtain the 

CDA ERPs. The result of the second segmentation is displayed in the Figure 7.  

 

 
 

Figure 7 - Result of multi-channel segmentation according to Boolean expression based on eye 

movement markers detected in the experiment. 

 

5.8.4 Baseline Correction 
 

To correct the baseline of each segment we performed a baseline correction. This process 

creates an average of all points in the defined interval (in our case in a range from -100 to 0 

ms before Memory Array) which is then subtracted from all points in the entire waveform 

(Steven J. Luck, 2014). Although this operation may sound simple, its effects can be complex 

and might lead to misinterpretation of the results, Hence, we needed to be careful with 

choosing the appropriate parameters for baseline correction.  
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 Luck (2014) explains the pitfalls of baseline correction and claims it has a great effect 

on the amplitude measurements, since the baseline correction is based on subtracting the 

mean baseline voltage from the entire waveform, therefore, it affects the amplitude at each 

point in the waveform. Thus, after the subtraction, the voltage at each time point in the 

waveform represents the difference between that point and the average baseline voltage, 

which means that anything that has an impact on the baseline and influences post stimulus 

amplitude. For instance, any potential noise in the baseline could create a noise in the 

amplitude measurements, which is something we wanted to avoid. For this reason, the order 

of the operations is very important as well Accordingly, we applied a baseline correction 

after we applied filters and made epochs out of the signal.  

Baseline correction is essential to prevent the data from temporal drifts and offsets and as 

mentioned above, it is crucial to set it up correctly using the appropriate parameters. More 

authors (Adams et al., 2018; Feldmann-Wüstefeld et al., 2018; Williams & Drew, 2021) 

suggest using baseline correction set up on -200 ms. Luck (2014) in general suggests using 

20% of overall epoch duration for baseline correction, however, he also highlights that this 

parameter depends on the target of interest (whether we focus on early or late post stimulus 

components). He suggests using -100 if focusing on early components and -200 (or more) if 

focusing on late components. Our overall epoch duration is 1000 ms which leads to baseline 

correction set on -200. First, we used parameter -200, then we tried -100 and afterwards we 

compared the overall results of the analysis (after all operations were applied). These results 

suggested that parameter -100 would be more efficient in generating CDA. We determined 

that averaging by an interval of -100 – 0 ms sufficiently clears the waveform from all the 

drifts and prevents it from losing target signal.  

 

5.8.5 Artifact Rejection 
 

All operations applied to the data needed to be done in the right order. It was essential to 

perform baseline correction prior to artifact rejection, otherwise the drifts in the data might 

have led to poor detection of various kinds of artifacts (Luck, 2014) . In our analysis, artifact 

rejection was one of the most important parts of the whole process because it had to be done 

with a great thoroughness and precision. Even though other operations were automatic (we 

set up the parameters and the rest was done by the software automatically), we chose to do 

artifact rejection semi-automatically. In semi-automatic artifact rejection, we set up the 
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parameters of artifacts that we wanted to remove from the signal. However, this was 

followed by our review of the selected artifacts and the review of the whole recording, where 

we were manually looking for other artifacts, undetected by the software.  

Artifact rejection is a critical part of the EEG analysis, not only because artifacts 

negatively affect individual epochs, but also because an artifact present on one channel can 

spread to other channels easily (Jas et al., 2017). By artifacts, we understand all signals in 

the EEG recording which do not come from the brain (GuruvaReddy & Narava, 2013). EEG 

signal is almost always contaminated by artifacts. Those can have many characters, such as 

electrode impedance changes caused by headset motion, eye blink, eye movement, neck 

muscle movement, scalp muscle activities (Chang et al., 2020), bad electrode location, not 

clean or hairy skin, physiological artifacts or bioelectrical signals from other parts of the 

body (GuruvaReddy & Narava, 2013). In the past, noise removal from recorded EEG was 

done mainly by manual visual inspection, which could be time-consuming, laborious and 

subjective (Chang et al., 2020). However, this method of noise removal also has some 

advantages. In automatic artifact rejection, artifacts are detected according to some specific 

parameters set by the user. These values need to be adjusted in a way that most of the artifacts 

will be found in the signal whereas this process will not affect the target signal. 

Notwithstanding, some of the artifacts do not fit into the norm with the parameters and 

therefore cannot be detected by automatic rejection process.  

We need to acknowledge that excluding subjects of EEG data due to contamination is 

highly subjective, as was also declared by Pedroni and collaborators (2019). However, not 

only manual artifact rejection can be understood as subjective. In automatic rejection, 

parameter selection is also quite subjective and depends on the discretion of the researcher.  

We decided to use semi-automatic artifact rejection to employ an accurate automatic artifact 

rejection together with subjective consideration and visual inspection.  

In BVA, semi-automatic artifact rejection is a process that allows a user to specify 

parameters of signal that should be rejected, however, before the rejection, a whole recording 

is displayed with all the automatically detected artifacts highlighted. The user may then go 

through the whole recording and do an additional manual visual inspection by editing and 

modifying the recording. By this method, we wanted to remove those features of the data 

that were associated with “stereotypical” artifacts and were not removed in previous steps 

of analysis. Generally, we distinguish externally generated experimental artifacts (electrical 
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interference) and subject-generated artifacts (blinks, saccades, muscle activity) (Bigdely-

Shamlo et al., 2015). One of the most alarming artifacts in our recordings were blinks and 

eye movements.  

Eye blinks are large voltage deflections observed over much of the head, usually much 

larger than ERP signal (Steven J. Luck, 2014). We removed most of the blinks in the second 

segmentation according to markers, yet, some of them remained in the recording. The same 

applies for horizontal eye movements - saccades, that are defined also as large voltage 

activity, usually with a frequency of range of 1-3 Hz (Mammone et al., 2012). Muscle 

artifacts were sufficiently removed in the filtering and therefore they were not present in this 

step of the analysis anymore. Electrical line artifacts (50 or 60 Hz) were also removed in the 

filtering, using low-pass filters. Bigdely-Shamlo and collaborators (2015) claim that also 

other undefined discontinuities may occur in the signal. For that reason, visual inspection is 

often required to improve the process of artifact removal.  

In semi-automatic artifact rejection in BVA, we are able to define following parameters: 

maximal allowed voltage step, maximal allowed difference of values in the intervals, 

maximal allowed amplitude and lowest allowed activity. With every parameter, we can also 

set a time interval around the detection that should be, in other words, how many 

milliseconds before and after the event should be considered as an artifact. BVA provides a 

valuable and adequate number of parameters that need to be set. Thanks to their variability, 

the user is free to use as many criteria as necessary for detecting most of the artifacts that 

might have occurred in the recording. However, choosing the correct ones is quite a complex 

task. All parameters used in our analysis are summarized in Table 2. 
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 Channels 

Max 

Allowed  

Voltage 

Step 

Max 

Allowed 

Diff. of 

Values 

Max 

Allowed     

Amplitude 

Lowest 

Allowed  

Activity 

Parameter All 50 µV 100 µV 100 µV 0.5 µV 

Time Sequence to 
be marked as 

incorrect 
(before and after 

the event) 

- 200 ms 200 ms 200 ms 200 ms 

 

Table 2 – Summarization of all parameters used in semi-automatic artifact rejection in BVA. 

 

When we compare each parameter that needs to be set in artifact rejection, some of them 

provide more effective artifact detecting than others. Maximal allowed amplitude is a 

parameter that rejects an artifact if the voltage during epoch exceeds a user-defined 

threshold. This criterion is the vaguest in comparison with the rest, since generating a simple 

threshold which cannot be exceed is not very suitable for complex EEG data. This method 

can work well for blink rejections under some conditions because those are very large, 

however, as Luck (2014) declared, it is absolutely inadequate for detecting and rejecting 

more subtle artifacts, such as eye movements. It is also important to distinguish blinks and 

saccades in EEG analysis. Eye blinks are vertical eye movements usually marked as VEOG 

channels, the electrodes detecting them were placed above and below the left eye. Saccades 

are horizontal eye movements usually marked as HEOG channels, the electrodes were placed 

at the temples, as close to canthi as possible. These two kinds of EEG artifacts were the most 

common and they had to be treated individually in the analysis.  

As mentioned before, there are no general rules or guidelines for proper EEG analysis. 

Nonetheless, Luck (2014) proposes several recommendations how to treat particular artifacts 

and how to effectively remove them using the appropriate parameters. Since blinks (usually 

reaching 50-100 µV, lasting 200-400 ms) could be effectively removed using maximal 

allowed amplitude parameter, we set this criterion on 100 µV, 200 ms before and after the 

event. Regarding saccades, using only the mentioned parameter would not be much 

effective. As Luck claims, saccade usually consists of a sudden step from one voltage level 

to another voltage level, where it would remain until the eyes moved again (in most of the 
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experiments, participants make a saccade from the fixation point to some other location and 

then make another saccade to return to the fixation point). Since a simple voltage threshold 

to detect and reject eye movement artifacts is usually set on 100 µV (as also in our case), 

eye movement as large as 10° would escape the detection (e.g. if the voltage step would start 

at -80 µV, a 10° eye movement would cause a transition to +80 µV, which would be within 

the window of ± 100 µV). For that reason, Luck recommends using step function to remove 

the saccades, particularly small eye saccades. In our case, the step function is defined as the 

maximal allowed voltage step. Luck defines this function as a flat period of one voltage level 

followed immediately by another flat period at a lower or higher level. What this function 

does is that it finds the difference in the mean amplitude between the first and the second 

half of the epoch (e.g. between first and second 100 ms in 200 ms window). We used 

following criteria for maximal allowed voltage step: 50 µV/ms, 200 ms before and after the 

event. We used half the value in comparison to maximum allowed amplitude which was 

based on two main assumptions: 1. maximum allowed amplitude was set on 100 µV. By 

setting the maximum allowed voltage step on 50 µV, we prevented the function to exclude 

some lower blinks from artifact rejection; 2. we wanted to make sure that also smaller eye 

movements will be detected and removed. Figure 8 shows what blinks and saccades look 

like after filters are applied.  
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Figure 8 – Combination of blinks (red) and saccades (blue) present on channels HEOGL, HEOG, 

VEOGup and VEOG. 

 

We also set up the maximal allowed difference of values in intervals (100 ms). This 

function is useful to detect most skin potentials artifacts, which would not be detected by 

step function because they usually grow gradually, therefore limit of 50 µV step would not 

meet the criteria. Skin potentials usually arise when sweat begins to accumulate in sweat 

glands, changing the impedance of the skin and therefore causing a change in the standing 

electrical potential of the skin over a period of many seconds (Steven J. Luck, 2014). These 

shifts can be also caused by a change of electrode position which is mostly produced by 

movements of the participant. For that reason, it is always important to make sure that the 

participant feels comfortable and prevent them from moving too much during the 

experiment. Skin potentials were the most common artifacts in our recordings, they might 

have been caused by the hot weather and high temperatures which lead to higher sweating 

of the participant. During the experiment, every time we noticed that signal is getting worse, 

we tried to add more gel into the electrode and scratched the skin below it. Sometimes this 

strategy did not help either and therefore it caused many skin potentials artifacts in the 

recordings. We set the parameter of maximal allowed difference of values in interval on 100 

µV, 200 ms before and after the event. 
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Finally, regarding lowest allowed activity in intervals (100ms), we set the parameter on 

0.5 µV, 200 ms before and after the event. Such a low continuous voltage in the signal might 

be cause by amplifier saturation, which causes the EEG to be flat for some period (Steven J. 

Luck, 2014). However, this is much rarer than the artifacts mentioned before. We set this 

parameter on 0.5 in order to prevent losing target signal occurring in even lower voltage.  

The automated process of artifact rejection in BVA took all the parameters we set and 

highlighted the features in the recording that met the criteria. Then, we performed an 

additional manual visual inspection. We reviewed the artifacts detected by BVA and looked 

for others, undetected by the software. In case we found another component that we 

considered to be an artifact, we manually highlighted it and it was then added to the list of 

artifacts under a name user-defined artifact. After we went through all segments of the 

recording, we finished the process and all chosen artifacts were rejected. It is suggested to 

be careful with artifact removal and it is proposed to reject not more than 20% of the 

recording (Steven J. Luck, 2014), however, we also tried to be strict in the artifact detection 

and tried to clean the recordings from all big deflections. The main goal was to find a 

compromise between two goals – find the artifacts and clean the recording from all 

deflections, and not to reject too large proportions of the recording.  

 

 
 

Figure 9 – Artifacts highlighted after semi-automatic artifact rejection was applied to the data. 

Blue and green artifacts represent an eye blink, yellow artifact shows a deviation caused probably 

by skin potentials. 
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Figure 10 – Lines highlighted by yellow colour represents a skin potential artifact on two posterior 

channels. It was detected automatically by BVA according to set parameters. 

 

 

Figure 11 – Artifacts chosen and highlighted by the user in the manual inspection. 

 

5.8.6 Averaging and CDA Extraction  
 

In the next steps we needed to transform the pre-processed data into the form of CDA, 

which took several steps. First, we extracted all segments of one out of the four conditions 
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(2 targets, 0 distractors; 2 targets, 2 distractors; 4 targets, 0 distractors; 4 targets, 2 

distractors), we did this separately for each condition. This process was quite easy and 

straight-forward. We used previously set markers to detect the relevant condition and 

rejected the rest (markers were created during the experiment). After specifying the 

condition, we conducted averaging of all electrodes of parietal occipital parts for the given 

hemifield, having the same weight (0.25). Averaging is a common technique in ERP 

analysis, it reduces the background EEG noise and irrelevant brain activity (Blinowska & 

Durka, 2006; Kotowski et al., 2019). Hence, in our analysis the averaging was mostly based 

on the intention to extract the CDA. We needed to average the activity from left and right 

posterior channels to get one waveform which can be then included into the final subtraction 

that leads to CDA. By using the described operations, we got to the root of the processing 

by counting the ipsilateral and contralateral activity. To get ipsilateral activity, we created 

an average of an activity in all ipsilateral segments (right hemifields + right cue and left 

hemifield + left cue). Afterwards, to gain contralateral activity, we applied the same process 

only by submitting opposite criteria (right hemifield + left cue and left hemifield + right cue). 

Finally, we subtracted the ipsilateral activity from the contralateral activity by applying a 

simple difference function in BVA to generate the final CDA waveform. Figure 12 presents 

a combination of four final CDA waveforms – each presenting one condition in the 

experiment.  
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Figure 12 – Final CDA waveforms representing one hemifield of one participant. Colours 

distinguish the conditions of the experiment: black – 2 targets, 0 distractors, red – 2 targets, 2 

distractors, blue – 4 targets, 0 distractors, green – 4 targets, 2 distractors. 

 

All described processes were done in duplicate, separately for right and left visual fields 

(both having two main “branches” for right and left set size of electrodes).  
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6 Results 
 

 The resulting grand averages of CDA ERPs for the control group of participants are 

presented on Figure 13, Figure 14 and Figure 15 separately for three days of measurement 

(corresponding to three sessions of CDA recording for the experimental group: before the 

training, in the middle of the training and after the training). On each figure, four lines 

represent the four conditions of trials with different set sizes (black – 2 targets, 0 distractors, 

red – 2 targets, 2 distractors, blue – 4 targets, 0 distractors, green – 4 targets, 2 distractors). 

We can clearly see the CDA – slow negative deflection with maximal amplitude in the 

interval from approximately 400 ms to 900 ms after the stimulus onset – is present on each 

of the ERP curves. Please notice that the negativity is plotted upward for voltages (vertical 

axis) according to historical convention in the ERP research. We can conclude the second 

goal of this thesis – to perform the EEG analysis to obtain clear CDA waveform was 

achieved successfully. 

 

 

 

 

Figure 13 – Averaged CDA waveforms of sixteen participants performing the CDT in pre 

experiment. 
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Figure 14 – Averaged CDA waveforms of sixteen participants performing the CDT in mid 

experiment.  
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Figure 15 – Averaged CDA waveforms of sixteen participants performing the CDT in post 

experiment.  

 

To be able to perform statistical analysis, it is necessary to transform graphical 

representations to numbers. For CDAs, this is usually achieved by calculating the area under 

the curve for a specific time interval – in our case and in line with recommendations from 

original studies of CDAs we extracted the area under the curves from the interval 400 ms to 

900 ms, separately for each condition of the trial with different set size (2 or 4 targets x 0 or 

2 distractors) and for each day of measurement. Extracted data were used for further analysis. 

To further evaluate the obtained results in terms of different conditions and sessions in 

the control group, we conducted the statistical analysis using three way ANOVA with factors 

Targets (two vs. four), Distractors (zero vs. two) and Day (corresponding to three sessions: 

pre-, mid-, and post- training in the experimental group). We found a statistically significant 

main effect of Target, F(1,14) = 33.565, p < 0.001 and a significant main effect of Day, 

F(2,28) = 7.939, p < 0.005. Figure 14 shows the CDA amplitudes were higher (more 

negative) for four targets in comparison to two targets that participants had to remember for 

a prolonged period of time. Neither the main effect of Distractors nor any interaction 

between factors reached statistical significance, meaning the number of distractors did not 
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have a consistent effect on CDA curves and that the found main effects were the same across 

conditions. 

 

Figure 16 – Averaged area under the curves for CDAs from the range. Each line represents a group 

average for one of three sessions. The effect of Day was significant as well as the effect of number 

of Targets. As expected, the amplitude of CDA was higher (more negative) for more targets to be 

remembered (four compared to two). Interestingly, the amplitude was not stable across days. 
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7 Discussion  
 

This thesis was a part of a bigger project and by its actions and outcomes it contributed 

to the main project called Enhancing Cognition and Motor Rehabilitation in Mixed Reality. 

As in many studies before, the project aimed to deeply investigate the presence of CDA in 

EEG signal, however, as one of the first studies also tried to train this neurophysiological 

correlate of spatial WM. In the experimental group of the main project, we wanted to see the 

effects of training in VR. EEG pre-processing needed to be done precisely and effectively in 

both groups in order to detect possible effects. In the final step of the big project, 

neurophysiological results of the control and experimental group will be compared and 

finalised to accept or reject the previously set hypotheses. Statistical analysis of amplitudes 

is different than analysis of behavioural performance; there are strict rules that need to be 

followed in both, but the character of the data differs. Behavioural performance returns a 

fixed value that cannot be transformed or updated anymore and is then treated like that in 

later analysis. In general, neurophysiological methods usually result in data that are rather 

fluctuable, their ambiguity is mostly observable when compared to behavioural data. The 

values of amplitude in the EEG signal are transforming according to the operations applied 

to the raw data during processing. Each step of the processing is slightly changing and 

adjusting the curves, and directly affects the form of the final amplitude and its values. Due 

to this fact, a proper EEG analysis is essential to acquire a valid final value that can be used 

in statistical analysis. 

As mentioned in the theoretical overview (p. 9), in the past fifteen years there was a great 

interest in studying CDA and its various characteristics. Nonetheless, there are still some 

open questions in relation to its form and properties. One of them is the question of CDA 

being or not being trainable, and if so, what kind of training is the most efficient. The issue 

of trainability of neurophysiological corelates has been very popular in recent years.  Its 

effectiveness is mostly showed in biofeedback9 research. However, it is much more 

complicated to study trainability of neural correlate than behavioural performance. In 

behavioural performance we know exactly what to measure and how (e.g. if we measure 

reaction time, we know the stimulus causes the subject to take action, and that the reaction 

 
9 Biofeedback is a method that enables individuals to learn how to regulate their physiological 
activities in order to restore or maintain autonomic balance, mostly used in therapy and rehabilitation 
(Yu et al., 2018). 
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time is the value by which we can determine the response on given stimuli). With 

neurological correlates this process is more complicated, since neurophysiology works all 

the time, whether there is stimulus or not. It is challenging to determine whether an activity 

is a result of some specific stimuli or environmental effects. Since many authors confirmed 

that CDA is defined by the number of items a subject hold in a VWM, we find its character 

rather clear. The effect of the training has not been confirmed in behavioural performance 

yet, however, since its neurophysiological correlates have rather different character, we 

assume that the training might influence them.  

If the results of the main project analysis show no significant effects of the training in the 

VR in the experimental group, it might be due to following reasons: 1. Filtering ability is not 

trainable, 2. The character of the training in VR was not appropriate and not effective enough 

to train the filtering ability and WM capacity, 3. There were some limitations in the way of 

the experiment was carried out that has made the training less effective. Nevertheless, to 

fully investigate a phenomenon that is still unknown, even negative results or refutation of 

hypotheses is a conclusion that leads to a better understanding.  The reason for the effect of 

training not to be fully detected in behavioural performance in the past research might be 

due to the already mentioned character of the data. The effect of the training might be minor 

and therefore not observable in behavioural performance. However, CDA might demonstrate 

also such minor effects which will be determined after the final analysis.  

Since Vogel & Machizawa (2004) investigated CDA in relationship with WM capacity 

and filtering ability, many others attempted to explore the phenomenon. Despite the great 

interest in this topic, clarifying the individual aspects and pitfalls of the analysis that leads 

to the final amplitudes have not been presented so far. By the experiment we carried out, we 

wanted not only to contribute to the main project by providing the data of the control group, 

but also to illustrate what an EEG experiment requires and to provide an overview of the 

necessary steps in the pre-processing and the analysis. Research usually contains many 

aspects that are never presented to the reader, like the considerations, practical challenges 

and decisions that need to be made. With this thesis, we wanted to share the experience we 

acquired during the research about various aspects of an EEG experiment, because actions 

taken during the experiment and parameters set during the analysis have led to the final 

results that will be used further in the main project.   
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We can conclude we successfully achieved the goals that we set at the beginning of the 

study. The main objectives of this thesis were: 1. to carry out an experiment on the control 

group of healthy participants and to record the EEG while they were performing visual 

working memory tasks, 2. To analyse collected EEG data in terms of final event-related 

potentials (ERP) of contralateral delay activity, emphasizing the precise use of a combination 

of automatic and manual artifact rejection in Brain Vision Analyzer. In order to achieve the 

first goal, we first had to find an appropriate number of healthy subjects who would 

participate in the experiment. This was quite challenging considering the length of the 

experiment, since one session lasted approximately two hours and particular sessions had to 

be separated by two weeks, therefore the whole procedure took almost 4-5 weeks. We 

wanted to get at least fifteen participants to have a similar sample as in the experimental 

group. A monetary reward was also motivation for potential subjects to consider the 

participation.  At the end, we had to refuse some of them because they did not meet the 

conditions (e.g. left-handed participants). Moreover, some of the participants started the 

experiment but had to terminated it prematurely. Finally, we recruited twenty participants 

using online advertisement on various social media platforms, sixteen of them successfully 

finished the experiment. 

It was challenging for us to carry out the EEG recordings considering the complicated 

global situation due to the COVID pandemic. This also resulted in some limitations of our 

performed experiment. We needed to be very careful during the experiment to minimize all 

possible risks. The experimenter wore a face mask during the whole process, participants 

were without masks since those could greatly affect their performance in CDT. Wearing the 

EEG cap itself was distressing to some of the participants and movement restrictions led 

them to feel stress and discomfort, face masks could increase these feelings even more. 

Another consequence of the COVID situation resulted in the disruptions of timeline of the 

experiment. Two participants had longer than two-week breaks between the sessions due to 

pandemic reasons, both participants successfully finished the whole procedure.  

The procedure protocol of the main project was set before the start of the experimental 

recordings. Although we followed the steps precisely, some aspects of the procedure needed 

to be adjusted during the course of the experiment. According to the protocol, more than 

80% of the trials had to be without saccades and blinks during retention interval, otherwise, 

if more than 20% of the trials were rejected, participant could not proceed in the experiment. 

However, we considered that the entry session might not have been enough time of training 
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for some of the subjects who needed more time to train and learn how to do the task correctly. 

We added one additional session where they performed CDT with EOG again. If they 

achieved more than 80% of correct trials, they could proceed to the next stage. We performed 

this additional session in four cases.  

Regarding the second goal of the thesis, it was directly related to the first one, therefore, 

the quality and precision of the recording affected the difficulty and outcomes of the analysis. 

For that reason, we tried to be very careful during the recordings to detect all the 

abnormalities in the signal that might have occurred (e.g. muscle activity during retention 

interval that would lead to rejection of many intervals, fluctuating signal on one or more 

channels that would affect the averaging of the posterior channels, etc.).  

The analysis of the EEG and the detailed overview of all steps taken, represent not only 

a description of how such an analysis should look like, but could serve also as guidelines of 

what needs to be considered while choosing the appropriate parameters. As declared before, 

there are no general rules about how exactly the EEG analysis should be carried out. 

Researchers always need to take into consideration the goal of the research, hypotheses, and 

the qualitative aspect of the data. During the analysis, we tried to compare various 

approaches that were suggested by authors investigating similar phenomena. There were not 

many of them, therefore, we had to try various parameters and proceeded all steps to see the 

final CDA and compare it with another that resulted from the same data, only using different 

parameters. This process was quite time-consuming considering that the analysis consisted 

of many operational steps.  

After many variations of the parameters and their order, we figured out what a final 

version of the analysis pipeline should look like. We tried to combine the knowledge 

acquired from the theoretical investigation with the outcomes of the practical inspection. 

Similarly, as many authors before, we started the analysis with filtering, followed by 

segmentation, artifact rejection and other required mathematical processes (averages and 

linear derivations). We needed to be careful mostly during segmentation and artifact 

rejection in order to persevere at least 80% of the data. As was also declared by Luck (2014), 

the researcher must be thoughtful during EEG analysis and rejecting more than 20% of the 

data is not recommended. Segments of EEG data were mostly rejected because they were 

contaminated by the presence of artifacts (or other qualitative reasons). Rejecting segments 

due to noise contamination is the correct action. However, too common occurrence of 
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artifacts and their potential rejection leads to lower quality and validity of the data. This 

presents another general dilemma while conducting EEG analysis – whether to be rather 

strict during EEG analysis and reject everything that seem to be out of normal or being rather 

careful in the analysis, preventing of losing too much of the signal. The problem is that there 

is not fixed definition of what an artifact or EEG noise looks like and there is not a line that 

divides an artifact from a clean signal. Sometimes it is on the subjective consideration of the 

researcher whether to keep or reject a given segment. It is important to keep a balance 

between strictness and cautiousness during artifact rejection. Someone might argue that 

automatized processes of artifact rejection are much more accurate than manual visual 

inspection. To some level, this assumption might be true, but the question remains how a 

computer can efficiently detect an unclear artifact when even an experienced researcher 

needs to highly consider whether to reject it or keep it? To make our analysis as effective as 

possible, we decided to conduct semi-automatic EEG analysis. Although it is more time-

consuming than automatic artifact rejection, we considered that additional visual inspection 

will make the artifact rejection more accurate.  

Before we started the EEG analysis, we wanted to make sure that we have all necessary 

knowledge about what was done in the past studies and suggested by other authors. Although 

there are no general rules that can be followed, practical tips might always help, even by 

defining the problem that we can then find our specific solution for. This thesis also provides 

an overview of theoretical aspects of an EEG experiment and analysis. We investigated not 

only studies that focused on CDA itself, we tried to explore EEG papers that studied various 

aspects of human cognition and focused on different phenomena. This helped us to determine 

individual steps of the analysis and the whole course of the processing. Many studies 

performed the experiment and the analysis aiming to detect rather different phenomenon 

than we did, but provided some helpful tips, difficulties, and risks for such a project. Even 

though none of these studies explained the particular steps taken in EEG analysis, the more 

general description was beneficial in terms of determining various aspects of the processing.  

We consider mostly Luck's (2014) overview of ERPs and EEG very valuable and although 

he did not address CDA itself, he proposed many practical tips of how to proceed in the 

analysis. His rich and straight-forward explanations and suggestions helped us to better 

understand various aspects of the strategy in an EEG experiment and later analysis. 

Complexity of the final CDA curves makes it somewhat difficult to summarize the data, 

however, we achieved to get waveforms that are quite similar than those presented by Vogel 



 

55 
 

and colleagues in 2005. We can see that CDA waveforms are present in our data, which was 

achieved by a proper EEG processing. As displayed in Figure 11, Figure 12 and Figure 13, 

curves representing higher number of targets demonstrate higher negativity (black and red 

curves represent two targets, green and blue curves represent four targets). Since mostly in 

mid and post experiment the blue and green curve were still quite different, it seems that 

most of the participants were not efficient in excluding the distractors. Black and red curves 

are different mostly in the pre experiment; mid and post experiment suggest that participants 

might have been more efficient in excluding distractors than in third and fourth condition (4 

targets, 0 distractors and 4 targets, 2 distractors). To elucidate the exact reasons of such 

findings, further analysis on CDA from individual participants would be necessary. 

 The second goal of the thesis was achieved successfully, since the statistical analysis 

showed that the number of items to remember affected the amplitude of CDA. Hence, the 

amplitude displayed more negativity in the condition when participants needed to remember 

4 items than in the condition with 2 items to remember. Generated waveforms confirmed the 

statement that the negativity of the amplitude is higher with rising number of items to be 

remembered, which was true for the whole group of participants, each day of the experiment 

outline (pre-, mid-, post-). 

The CDA waveform was fluctuating across the individual sessions which was probably 

caused by the intraindividual variability that is a common phenomenon occurring in EEG 

recordings. It reflects the individual differences of participants’ physical and mental state in 

each day (e.g. physical or mental fatigue). Intraindividual variability is based mostly on the 

biorhythm of each participant, therefore the fact that it affected the CDA is quite reasonable. 

Due to aforementioned limitations, our results should be taken with caution.  

The main effect of distractors – to divert attention from the targets - was not detected in 

the analysis. One explanation might be that distractors influenced only some of the 

participants, which could have been caused by discrepancies in the filtering ability of 

individual participants. To successfully identify the effects of distractors in the final CDA 

waveforms, future research should individually analyse the data of the participants with low 

filtering ability and high filtering ability. 

In line with our hypothesis we find no interaction of distractors and session in the control 

group. This suggest the pure repetition of the CDT measurement without additional training 

does not affect participants filtering ability, what was our main objective. Therefore, we can 
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conclude that if there will be an improvement detected in experimental group between 

particular sessions, it will be presumably caused by the training, not the repeated 

performance of CDT.   

 

7.1 Limitations 
 

 We need to acknowledge that this thesis has some limitations that should be improved 

in the future research. First, as mentioned before, to detect CDA in the signal and determine 

whether there were some improvements based on the training, the sample needs to be 

representative and big enough. In the future research, more subjects should participate in the 

experiment to see potential changes and trends in CDA. We managed to recruit sixteen 

participants (fourteen in the experimental group). This number was highly determined by the 

COVID situation which has led to lower number of participants who were willing to 

participate and also led to limited time when the experiment could run due to quarantine 

restrictions.  

 Another limitation might be found in the length of the experiment itself. Since we do not 

know whether CDA is trainable by VR training, we cannot be certain that two weeks of 

training is an appropriate time for improvements to occur. Potential future research could 

invest more time into the whole procedure of the training.  

 There are some limitations in relation to the EEG character of the experiment. First, EEG 

as a tool for measuring neural activity greatly affects subject’s comfort with wires and 

electrodes attached to their body, as was also declared by Ganglbauer and colleagues (2009). 

According to the authors, it restricts the participants in terms of moving. This is a problem 

that we observed during the recordings when participants were complaining about stiff 

muscles and other discomforts resulting from the restriction of movements. Since in EEG, 

every slight movement of muscles and eye movements result in signal noise, mentioned 

aspects of EEG as a tool could also affect the signal, and therefore the results. Similarly as 

Bell & Cuevas (2012), we see artifact rejection as one of the main challenges, even though 

it was the main operation of the analysis. This claim is based mostly on the subjectivity and 

the duration of manual inspection of artifacts, although we facilitated the process by 

recording the EOG too, which helped with the detection of eye blinks and saccades.  
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Conclusion 
 

We can conclude that we have successfully performed an EEG analysis and identified the 

CDA in the signal. After conducting a proper EEG recording and the analysis of the signal 

including multiple steps of data pre-processing we were able to show the final CDA 

waveforms. The processing itself was essential, however, also EEG recording must have 

been conducted correctly to achieve the desired quality of the signal.  Final CDA amplitudes 

demonstrate an expected decrease in voltage with increased number of items to be 

remembered. In line with our hypotheses, we did not find an effect of distractors that would 

change across the three recording sessions in the control group. This suggests that 

performing a successful training of filtering ability in the experimental group in VR 

environment could be examined by repeated assessment of CDT. 

Even though we already know that preliminary results did not show any significant 

difference in behavioural performance in the experimental group, we can still expect to see 

some effects visible in the neural correlates (CDA waveforms) that will be detected after the 

final analysis. Even though the effect of the VR training was not detected in behavioural 

data, neurophysiological data tend to demonstrate more subtle effects that could potentially 

provide some evidence of improvement.  Nonetheless, even if this assumption will not be 

confirmed, the results of this thesis can still be considered as beneficial. First, as defined in 

our goals, we successfully performed the experiment followed by an EEG analysis. In this 

work we also provide an overview of the necessary practical steps together with the 

theoretical investigation which shows how a proper EEG study should be performed. This 

acquired knowledge can be used in following research in the future. Second, the results, 

either confirming or refusing the given hypotheses, will shed new light onto the topic of 

trainability of the filtering ability and WM capacity. We carried out an experiment on the 

control group and conducted EEG analysis, and by doing so, we contributed to the research 

of CDA and trainability of WM in general. In order to answer the question whether filtering 

ability is trainable and whether individuals’ WM capacity can be improved, we think that 

future research should be designed within already acknowledged theoretical frameworks and 

try to set a question whether VWM is trainable and if so, what is the appropriate training and 

if its effects can be observable by CDA.   
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