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Abstract 

 

The topic of visual saliency spreads across numerous disciplines. In this work we focus on 

computational saliency models and their performance in the context of art. We examine how 

saliency models perform on images with specific characteristics. We explore a saliency of 14 

different digitized paintings, all representing a biblical scene of The Last Supper. We process 

the data and evaluate the performance of four saliency models against them. Two of 

the models are using traditional approach and two are based on deep neural networks. For the 

evaluation we use AUC, NSS, and CC metric. As a ground truth we use eye-tracking data 

from 35 participants. Moreover, we incorporate face detection algorithm to one of the models 

and slightly improve its performance. Our analysis shows that deep-learning models predict 

the most salient parts of the paintings closest to real eye fixations. 

 

Keywords: visual attention, saliency, saliency modeling, painting  



 

 

Abstrakt 

 

Téma vizuálnej pozornosti sa rozprestiera mnohými disciplínami. V tejto práci sa 

sústreďujeme na výpočtové modely významných oblastí a ich výkon v kontexte umenia. 

Skúmame aký výkon podávajú modely významných oblastí na obrazoch so špecifickými 

charakteristikami. Skúmame významnosť 14 rôznych zdigitalizovaných malieb 

reprezentujúcich biblickú scénu Poslednej večere. Spracúvávame dáta a vyhodnocujeme 

výkon štyroch modelov významných oblastí na nich. Dva z modelov používajú tradičný 

prístup a dva sú založené na hlbokých neurónových sieťach. Na vyhodnotenie používame 

AUC, NSS a CC metriku. Ako reálne dáta používame eye-trackingové dáta od 35 účastníkov. 

Naviac pripojíme algoritmus detekcie tváre k jednému z modelov a mierne vylepšíme jeho 

výkon. Naša analýza ukazuje, že modely založené na hlbokom učení predpovedajú najviac 

významné oblasti  malieb najbližšie k naozajstným očným fixáciam. 

 

Kľúčové slová: vizuálna pozornosť, významnosť, modelovanie významných oblastí, maľba  
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Introduction 

Visual attention helps us to filter out the unnecessary information from the world. Therefore, 

the visual processing done by our brain, requires less computational power that it otherwise 

would have to spend to process a great amount of data that we observe through our eyes every 

second. Movements of our eyes are guided by visual attention that is drawn to the salient 

stimuli. By recording the eye movements, we can see what attracts our attention. Recent 

developments in visual attention modeling provide many new approaches and architectures, 

while also increase the demand for evaluation. These models try to predict where we will look 

or what the most important parts of visual scene are. Afterwards, these models are usually 

evaluated against the real eye movements recorded by eye tracking. In the history of art, eye 

movements also play an important role as means to describe an artwork. Despite this 

connection, between eye movements and visual attention, there is only few works focusing on 

visual attention modeling in art domain. 

Therefore, in the current work we analyze four saliency models in the context of visual art. 

Saliency models model bottom-up visual attention. Two of the models that we chose are more 

traditional and two are based on deep learning. We evaluate the models against our eye-

tracking data of paintings. For the evaluation we use metrics that are commonly used in 

saliency modeling research. These metrics say to what extent the real eye fixations correspond 

to predictions made by the models. The eye tracking data consist of recordings of 35 people 

viewing 14 paintings of a biblical scene of The Last Supper. Before the evaluation, the data 

have to be pre-processed. This includes selecting only information from the data that are 

important to our evaluation and creating two types of fixation maps: continuous and discrete. 

Moreover, we slightly improve the performance of one of the traditional models by 

incorporating face detection algorithm. Although, the results of the improved traditional model 

were better, it did not achieve the performance of deep-learning models. At the end, the deep-

learning models outperform the traditional models.  

In the first chapter Visual Saliency, we outline the topic of visual saliency from different 

disciplines that are relevant to this work. We follow with the chapter Related Work, where we 

mention similar works to ours and divide them into two general directions. In the third chapter 
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Saliency Models, we introduce four saliency models that we will evaluate, describe them and 

show their architectures. The fourth chapter Evaluation Metrics describes and explains metrics 

that we will use for the evaluation of the models. The next chapter Data, describes the data 

that we will evaluate the models against, and also in detail describes steps of preprocessing of 

this data. In the sixth chapter Analysis and Results, we present the results of our analysis of 

the four models, we discuss the results and factors that may influenced the outcome. In last 

chapter Incorporating Face Detection, we describe how we combined face detection algorithm 

with one of the models. We evaluate this altered model with the same metrics as other models. 

Lastly, we show how the performance improved and compare the results of this altered model 

to the previous results. 
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1 Visual Saliency  

The topic of this work lies on the intersection of different disciplines. This chapter aims to 

highlight how visual saliency is relevant in all these areas. We start by basic psychological 

overview of visual attention. Next, we describe human vision and visual saliency from 

a neuroscientific point of view, followed by an emphasis on the role of eye movements 

through art history. We end this introduction chapter by describing the saliency modelling 

research. 

1.1  Visual Attention and Saliency 

In order to process the large amount of data that are entering our eyes, we have to decide what 

information are the most relevant. Processing every information would be inefficient, since it 

would require enormous computational power that can be spent elsewhere. For example, while 

watching a movie, where just now two main characters are in a battle, it is better to focus on 

the fighting technique of your favorite, than being able to tell exactly how many leaves are on 

the tree in the background. The mechanism that helps us to filter the visual information that 

are important to us, from the enormous amounts of other available information, is visual 

attention. However, the question is how visual attention selects what are the important 

information.  

Usually we differentiate between: 

a) Top-down Attention 

It is goal-directed, we voluntary focus attention according to our intention. It is 

influenced by our knowledge and memories. 

b) Bottom-up Attention 

It is stimulus-driven, involuntary and rapid. Salient stimuli draw our attention. 

 

Visual saliency arises during early bottom-up processing. It characterizes part of a visual scene 

that stands out from the rest. Visual saliency is a characteristic that makes something stand out 

from its surroundings and grab our attention. Bottom-up attention can be overridden by top-

down attention - our goals or intentions. For example, a red apple in the middle of green grass 
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would be highly salient and quickly grab our attention in the bottom-up manner. Yet, if we 

have a goal in mind and are looking for a red apple in the basket of fruits, no particular color 

grabs our attention at first, until the top-down attention makes all red fruits more salient and 

therefore stand out from the rest. [17] 

1.2  Vision 

We are able to see objects thanks to the light that is reflected from their surface and captured 

by visual receptors in our eyes. The light entering our eyes passes through the lens of the eye, 

and focused and inverted is projected onto the retina. The retina is made up of 10 layers of 

neurons, the top layer consists of photoreceptors: rods and cones. They contain protein 

molecules – photopigments, which are sensitive to light and split apart when come into a 

contact with light. This in turn alters their membrane potentials and triggers action potentials 

in subsequent neurons. Rods and cones are connected to bipolar neurons which then synapse 

with ganglion cells. Ganglion cells are the output layer of the retina and their axons form the 

optic nerve. Therefore, the retina transforms the incoming light into an electro-chemical signal 

that is then carried by the optic nerve to the brain.  

However, before the information is sent through the optic nerve, it is processed by the retina. 

It is estimated that humans have approximately 260 million photoreceptors, but only 2 million 

ganglion cells. Therefore, the information coming from the retina have to be compressed in 

some way, in order to be passed by the optic nerve to the brain. This also suggests that higher-

level visual centers are powerful processors that should be capable of unraveling such 

information.  

Information from the right visual field is projected to the left hemisphere, while information 

from the left visual field is projected to the right hemisphere. Every optic nerve is divided into 

multiple pathways. Each of these pathways terminates in different parts of the sub-cortex. The 

most important one is the retinogeniculate pathway, which projects from retina to the lateral 

geniculate nucleus (LGN) of the thalamus. This pathway involves more than 90% of axons in 

the optic nerve, other 10% of axons use pathways that terminate in different structures – like 

pulvinar nucleus of the thalamus, or the superior colliculus of the midbrain. These are very 

important in visual attention. 
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The last projection is from the LGN to the visual cortex. It is done by the geniculocortical 

pathway, which consists of almost all of axons from the LGN, and ends in the primary visual 

cortex (V1) of the occipital lobe as can be seen in Figure 1. 

 

Figure 1 Geniculocortical pathway 

When the information from the visual scene enters the V1, it has been processed by (at least) 

these 4 types of neurons: photoreceptors, bipolar neurons, ganglion cells, and LGN cells. This 

is where the initial stage of visual processing ends. However, after that the signal is carried to 

higher order visual areas (V2 – V4), where it is processed even further and eventually 

interpreted into meaningful percepts. Exact mechanisms of how our brain makes sense of all 

of this information are to a great extent still a mystery. [14] 

Neural correlates of visual saliency are not completely clear, however several brain regions are 

known to be involved from neurophysiological and imaging studies. Several works suggest 

that the bottom-up saliency map is constructed in V1 [38] and top-down saliency is associated 

with V2 and bottom-up and top-down saliency are combined in V4 [24]. Other works showed 

salience is also represented in parietal cortex [15] or frontal eye field [31]. 
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1.3  Eye Movements and Art 

First evidence of describing art in terms of eye movements dates back to the sixth century. The 

eye movements became a language for describing aesthetic and structural qualities of works of 

art. It was at the end of the nineteenth century when first attempts were made to measure them 

empirically. Since then measuring the eye movements became central for psychological and 

neuroscience research. [28] 

The analysis of eye movements distinguishes between fixations and saccades. The act of 

viewing is composed of fixations, when the eye is relatively stable, and saccades, which are 

periods between fixations characterized by a rapid movement with a higher magnitude. 

 

The visual attention is guiding the eye movements, and therefore recording the eye fixations 

can tell us what parts of a painting catch our attention. The first to study eye movement of 

people viewing paintings was psychologist Buswell in 1935 [6], who demonstrated that some 

parts of a painting have a higher quantity of fixations, thus are more interesting than others.  

1.4  Saliency Modeling  

Many attention models derive from the Feature Integration Theory by Treisman and Gelade 

[32], where they studied how visual features are integrated in order to drive visual attention. 

Koch and Ullman [20] were first to propose a feed-forward model, where visual features are 

combined, and processed by winner-take-all neural network, to create a saliency map. First 

complete implementation of this model was proposed by Itti, Koch and Neibur in 1998 [18] 

(IttiKoch). We later describe this model in Chapter. 3. To this day many attention models were 

presented (see [3] for a review). The main distinction is whether a model is modeling the 

bottom-up or the top-down attention. In this work, we focus on computational bottom-up 

attention models that detect visually salient regions independent of a task – further we refer to 

them as “saliency models”.  These models are usually evaluated against ground truth eye-

tracking data acquired during a free viewing. Further, only first few fixations are considered, 

as these are more bottom-up [26]. The most salient regions on the image are expected to have 

the highest density of fixations. A saliency model produces a saliency map, which is a 

topographical representation of visual saliency of the corresponding image [25].  
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2 Related Work 

Multiple works have benefited from applying the visual saliency concept. The relevancy 

of the concept spreads over many disciplines such as neuroscience, psychology and computer 

science. However, in our work we are focusing mostly on the computational approaches to 

visual saliency in the context of art. In this chapter, we describe some of related works. Of 

course, the scope of related works could include many research areas. One of such areas could 

be saliency modeling itself. However, since in this work we are mainly focusing on evaluation 

of models on paintings and not the creation of models, we divide related works into two 

general directions: application of saliency in analysis of art and evaluation of saliency 

approaches. 

2.1  Application of Saliency in Analysis of Art 

Many authors decided to take use of saliency models in order to confirm their theory, enhance 

a technique or simplify an analysis, and the results give a promising direction for further 

research. However, the majority of works focus only one model, in many cases the same one – 

IttiKoch model (described in Chapter.3). Some of such works we mention here.  

In [13] authors investigated an influence of bottom-up attention on eye fixations of paintings. 

In their experiments, they recorded people viewing paintings and photographs in two 

conditions: free viewing and search task. To compute the saliency of images, authors used 

the well-known IttiKoch saliency model that captures bottom-up (stimulus-driven) saliency, 

based on local feature contrasts in color, orientation, and luminance. They were able to 

confirm the effect of visual saliency (bottom-up attention) on eye fixations during both free-

 viewing and search task. 

Whether the artistic complexity can be predicted by saliency decided to explore authors in [8].   

In this study, an artistic complexity measure based on information theory and visual saliency 

(calculated by the IttiKoch saliency model) were computed over paintings, and a comparison 

was performed. The most complex areas of paintings, were shown to be in many cases also 

the most salient locations. Thus, saliency calculation was revealed to be a relevant 

qualification of a paintings’ complexity. 
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Building on the previous study, it was shown that saliency can be a predictor of an artistic 

movement of a painting [29]. Paintings that are characterized by a high level of abstraction 

(e.g. cubism or expressionism) result in higher variability in fixated areas, because it is 

difficult to understand the meaning of a painting right away. On the other hand, art movements 

that are very detailed, propose quite simple interpretation of the painting. 

Further, the saliency detection was even applied in classification of professional photos and 

non-professional snapshots [36]. Authors developed a saliency-enhanced approach to 

predicting an aesthetic class of photographs. They build upon the fact that aesthetic objects are 

interesting and can attract attention. Moreover, aesthetically-pleasing photos – professional 

photos, intentionally direct the attention to the interesting subject. They assume that 

the aesthetic subject corresponds to salient locations, and taking advantage of the IttiKoch 

saliency model, were able to improve classification of professional and non-professional 

photos. 

2.2  Evaluation of Saliency Approaches 

With a rising number of new saliency models’ architectures, a need for evaluation and 

selection process have emerged. Therefore, various evaluation techniques and many studies 

that provide elaborate comparison of multiple models are now available. Yet, very little 

of them specialize on evaluating the performance, or on development of new models, within 

the art domain. We mention some of such works here. 

In [4] authors performed an exhaustive comparison of 35 state-of-the-art saliency models 

using multiple evaluation scores, as well as multiple datasets – synthetic patterns, natural 

images, and video datasets. 

One of the most influential works is [7], where authors proposed a benchmark data set 

containing 300 natural mages with eye tracking data, and provided an online platform where 

new models can be uploaded and evaluated. 

Another large comparison was done in [5], where 32 state-of-the-art saliency models 

underwent extensive analysis with multiple metrics, and were evaluated against numerous 

popular datasets. 
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We see the potential of computational saliency research in the context of art, but not many 

such works try study a variety of saliency models. Further, not many works that focus on 

variety of models, specialize in art. For this reason, we have decided to take an inspiration 

from both of these directions, and compare various saliency models against paintings.   
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3 Saliency Models  

In this chapter we introduce saliency models that we decided to test. They are these 4 saliency 

models: A Model of Saliency-based Visual Attention for Rapid Scene Analysis, 1998 [18]; 

Random Center Surround Saliency, 2012 [34]; Saliency Attentive Model SAM-VGG, 2015 

[10]; and Saliency Attentive Model SAM-ResNet, 2015 [10]. All of them, model the bottom-

up (scene-dependent) visual attention and are task-independent. First two are based on 

traditional approach and last two are based on deep learning. Further, the output of every 

model is a saliency map with the same dimensions as the input image, and the code for their 

implementations is publicly available. 

3.1  A Model of Saliency-based Visual Attention for Rapid Scene 

Analysis 

The IttiKoch model [18] is inspired by the early primate visual system. The image is analyzed 

in terms of color, intensity and orientation, and according to these features it is decomposed 

into topographic feature maps. Every feature is computed in center-surround manner in order 

to simulate the sensitivity of neurons being higher in the center, and lower in the surround. 

One group of feature maps is representing the intensity, inspired by the mammals’ vision 

sensitivity to light center and dark surround, and the opposite. The second group of feature 

maps is for color channels based on the receptive field neurons being excited by one color, and 

inhibited by a different color. Although in the surround - it is the reverse. The last, third group, 

is representing the orientation-sensitive neurons in primary visual cortex. These feature maps 

are then normalized in a way that deals with their initial incomparability, and the problem of 

strong salient regions in few maps, being masked by less salient regions in a larger number of 

maps. After that, they are combined into three conspicuity maps, which at the end are summed 

into the saliency map. At each time, the maximum of saliency map represents the most salient 

region of the image that captures the attention. This is possible thanks to the winner-take-all 

neural network that suppresses all locations except for the most salient one. The general 

architecture of the model is shown in Figure 2. 
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The IttiKoch model has become a basis for later models, and presently is a standard 

benchmark for comparison of saliency models. We chose the implementation by Jonathan 

Harel [16] (part of GBVS toolbox for Matlab).  

 

Figure 2 Architecture of IttiKoch model [18] 

3.2  Random Center Surround Saliency (RCSS) 

Based on findings showing that receptive fields of retina operate randomly at different spatial 

locations and scales [9], authors have proposed this method that computes saliency over 

random rectangular regions of interest. The RCSS model [34] is a center-surround method that 

computes local saliencies at random regions, unlike other models that operate globally. First, 

Gaussian filter is applied to the input image to remove noise and smooth the image. Then, 

the image is converted into the CIELAB color space, because of its similarity to human vision. 

After that, random rectangle windows are generated over L*, a* and b* channels. Local 

saliencies are computed over these rectangle regions of interests and for each channel 
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a saliency map is generated. At the end, the final saliency map is created by fusing these 

channel specific saliency maps using pixel-wise Euclidean norm. The general architecture of 

the model is shown in Figure 3. 

Despite this model being quite simple, it achieves performance comparable to other existing 

methods and does not require any training. The RCSS model was implemented in MATLAB. 

 

Figure 3 Architecture of RCSS model [34] 

3.3  Saliency Attentive Models (SAM-VGG and SAM-ResNet) 

Traditional saliency models incorporate low-level features such as color, contrast, orientation, 

or semantic concepts such as text or faces. These models however, still do not incorporate all 

of the mechanisms that contribute to visual saliency. How many or which mechanisms are 

really involved in saliency prediction is remaining an open question. With developments in 

deep neural networks research and increasing numbers and sizes of datasets, saliency 

predictions are quickly getting better. Yet, the authors of the SAM-VGG and the SAM-ResNet 

deep-learning models, were first in the field that decided to explore a machine attention 

mechanism in the saliency prediction [10].  
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Their model is composed of these three main components: 

a) Dilated Convolutional Network 

Usually deep saliency models are constructed with the pre-trained Convolutional Neural 

Network (CNN) that extracts feature maps from the input image. During this process the 

input is significantly rescaled, what in consequence worsens the prediction. Therefore, the 

authors decided to use a Dilated CNN architecture, instead of the standard CNN, thanks to 

which the predicted saliency maps are less rescaled. They propose two versions of the 

model based on different Dilated CNNs VGG-16 and ResNet-50, we will refer to them as 

SAM-VGG model and SAM-ResNet model respectively. 

b) Attentive Convolutional LSTM 

After the features are extracted from the input image, they are then passed to the Attentive 

Convolutional LSTM. It is composed of the Attentive model and ConvLSTM 

(Convolutional Long Short Term Memory) that are adapted in way, so that the feature 

maps can be processed by the attentive mechanism that at each step, focuses on different 

locations on the image. These feature maps are then iteratively fed as the input to the 

ConvLSTM. The result of this process are refined saliency features. 

c) Learned Priors 

The last component combines the output of the Attentive Convolutional LSTM with 

learned priors to incorporate the center bias. Usually saliency models include predefined 

priors, but in this model, they are automatically learned by the network from data. 

 

 

Figure 4 Architecture of SAM models [11] 
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The SAM model was trained on publicly available saliency prediction dataset SALICON [19] 

containing 20 000 images, and corresponding saliency maps computed from mouse 

movements. The general architecture of the model is shown in Figure 4. The model was 

implemented in Python.  
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4 Evaluation Metrics 

For the evaluation of the saliency models, we decided to use following three metrics: Area 

Under ROC Curve, Normalized Scanpath Saliency, and Pearson’s Correlation Coefficient. All 

of them differ in how they rank the performance of saliency models and how the ground truth 

is represented. Following [7] we can categorize them as location-based (Area Under ROC 

Curve, Normalized Scanpath Saliency), where the ground truth is represented as discrete 

fixation map; and distribution-based (Pearson’s Correlation Coefficient), where the ground 

truth is represented as a continuous fixation map. In this chapter we describe the metrics that 

we chose. 

4.1  Area Under ROC Curve (AUC) 

Is a location-based metric originating from signal detection theory. A Receiver Operating 

Characteristic curve (ROC curve) illustrates the tradeoff between true and false positives at 

different thresholds. The Area Under the ROC curve (AUC) is commonly used evaluation 

metric in the saliency research. Over the years many different implementations of the classical 

approach were developed. We decided to use the Judd implementation [7] adapted to python 

by Dario Zanca et al.  [37]. 

The saliency map is first normalized using Min-Max Feature Scaling: 

 
𝑥′ =  

𝑥 − min (𝑥) 

max(𝑥) − min (𝑥)
 (1) 

where 𝑥′ is a normalized and 𝑥 the original value.  

For each given threshold, the true positive rate (TP rate) and false positive rate (TF rate) is 

calculated. True positives are salient map values above the threshold at locations of fixations, 

and the TP rate is then the ratio of the number of true positives to the number of all fixations. 

False positives are all other saliency map values (not at the locations of the fixations) above 

the threshold, and the FP rate is then the ratio of the number of false positives to the number of 

all saliency map pixels minus the number of fixations. 

Threshold values are the values of the normalized saliency map at fixation locations. 
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Sweeping through all of the threshold values sorted in the ascending order, the TP rate is 

calculated as: 

    𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  

 𝑎𝑙𝑙 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 
 (2) 

and the FP rate is calculated as: 

 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

 𝑎𝑙𝑙 𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦 𝑚𝑎𝑝 𝑝𝑖𝑥𝑒𝑙𝑠 − 𝑎𝑙𝑙 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 
 (3) 

After that the ROC curve can be rendered and the final score is the area under it, computed 

using the Trapezoidal rule which is a technique to approximate the region under the graph 

function.  

Ideally, if the saliency map correctly predicted all of and only the real fixations, the AUC 

score would be 1. The random classification would provide the score of 0.5 (TP rate = FP 

rate). Therefore, a positive saliency model score is above 0.5 and below 1.  

4.2  Normalized Scanpath Saliency (NSS) 

Another location-based metric that we decided to use to compare the accuracy of the models is 

the NSS [27]. It measures the correspondence of a saliency map and fixation map as the 

average saliency, computed from standardized saliency map values at fixation locations along 

a subjects’ scanpath. Same as in the AUC case – many different versions of the NSS are 

available, and we decided to use the Bylinskii implementation [7] adapted to python by Dario 

Zanca et al. [37]. 

First, the saliency values are standardized to have zero mean and unit standard deviation: 

 
𝑌𝑆𝑀(𝑥) =

𝑆𝑀(𝑥) − 𝜇

𝜎
 (4) 

where 𝑆𝑀 is the saliency map, 𝑌𝑆𝑀 is the standardized saliency map, 

𝜇 is the mean expressed as: 

 
μ =

1

|I|
∑ 𝑆𝑀(𝑥𝑡)

𝑡𝜖𝐼
 (5) 
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and 𝜎 is the standard deviation: 

 
σ = √

1

|I|
∑(𝑆𝑀(𝑥𝑡) − μ)

𝑡𝜖𝐼

2

 (6) 

where |I| is the number of pixels of the picture.  

Value  𝑌𝑆𝑀(𝑥𝑖) represents a difference of saliency map value 𝑥𝑖 from the average saliency 

value in units of standard deviation. It is positive when saliency value at fixation location is 

above the mean saliency and negative when it is below the mean saliency. 

The 𝑁𝑆𝑆 score is then given by: 

 
𝑁𝑆𝑆 =

1

𝑁
∑ 𝑌𝑆𝑀(𝑥𝑖) × 𝑄𝑖

𝑖

 (7) 

where 𝑁 is the number of fixations and 𝑄 is binary map of fixations. It is the mean of all 

standardized saliency values at fixation locations. For example, the score of 1 means that the 

saliency values at fixations were 1 unit standard deviation above the average saliency. More 

generally the correspondence between saliency and fixation map at chance is represented as 0 

score, positive score means above chance and negative NSS represents anti-correspondence. 

Lower and upper limits of the NSS are theoretically[−∞, +∞], while empirical limits depend 

on a particular dataset.  

Different from the AUC, the NSS works with the actual saliency values and is more sensitive 

to false positives.  

4.3  Pearson’s Correlation Coefficient (CC) 

This distribution-based metric measures linear correlation between two variables. In our case: 

between a continuous fixation map and a saliency map acquired from a model. For the 

computation of the CC score, we adapted the implementation from [7] to Python. 

The CC score is defined as: 

 
𝐶𝐶(𝑃, 𝑄𝐷) =

𝜎(𝑃, 𝑄𝐷)

𝜎(𝑃) × 𝜎(𝑄𝐷)
 (8) 
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where:  

• 𝑃 is the saliency map; 

• 𝑄𝐷is the continuous fixation map; 

• 𝜎(𝑃, 𝑄𝐷) is the covariance of 𝑃 and 𝑄𝐷; 

• 𝜎(𝑃) is the standard deviation of 𝑃; and 

• 𝜎(𝑄𝐷) is the standard deviation of 𝑄𝐷. 

The CC score ranges between -1 and 1. The CC score of value 1 indicates a perfect linear 

correlation, value 0 indicates that there is no correlation. Values close to zero indicate poor 

correlation and value -1 means there is a perfect negative correlation. 
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5 Data 

In this chapter we describe the data that saliency models will be evaluated against. We explain 

their contents, how they were collected, and in detail the process of preparing the data for 

the evaluation. 

5.1  Data Collection 

Saliency models are usually evaluated against eye tracking data. Eye fixations represent a 

ground truth of which regions of a visual scene grabbed viewers’ attention. Whether the aim is 

to model eye movements during a task or not, the data to which the model will be compared, 

should be recorded during the task or free-viewing respectively. The data we use were 

originally collected for the purpose of a non-related empirical study. Given that the data were 

collected during a free-viewing of images, and we aim to model the visual attention without 

any task involved, we decided to use the data from this experiment.  

5.1.1  The Experiment 

We originally collected the data while collaborating on an experiment at Laboratory for 

Cognitive Research in Art History at university of Vienna. During the experiment participants 

viewed 14 different digitalized paintings, all representing the biblical scene of The Last 

Supper. The aim of the study was to investigate the relationship of eye movements with the 

perspectival space construction, and the plane surface composition of these paintings. 

5.1.2  Participants and Stimuli 

Our data consists of eye tracking recordings from 39 people looking at digitalized paintings. 

Primarily undergraduate students of art history at university of Vienna were recruited for this 

study. For stimuli we used high resolution photographs of 14 different paintings [1, 2] from 

12th to 16th century, all representing the biblical scene of the Last Supper, chronologically 

ordered: 

1. The Last Supper from the Verdun Alter, Nicholas Von Verdun, 1181 (Verdun) 

2. The Last Supper, Giotto, 1306 (Giotto) 

3. The Last Supper, Pietro Lorenzetti, 1320 (Lorenzetti) 
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4. The Last Supper, Andrea del Castagno, 1445-50 (Castagano) 

5. The Last Supper from the Altarpiece of the Holy Sacrament, Dieric Bouts, 1465 

(Bouts) 

6. The Last Supper, Domenico Ghirlandaio, 1480 (Ghirlandaio) 

7. Communion of the Apostles, Luca Signorelli, 1512 (Signorelli) 

8. The Last Supper, Unknown Netherlandish Painter (Netherlandish) 

9. The Last Supper, Lucas Cranach the Elder, 1547 (Cranach) 

10. The Last Supper, Juan de Juanes, 1555 - 1562 (Juanes) 

11. The Last Supper, Jacopo Tintoretto, 1578 (Tintoretto 1578) 

12. The Last Supper, Paolo Veronese, 1585 (Veronese) 

13. The Last Supper, Jacopo Tintoretto, 1592 (Tintoretto 1592) 

14. The Last Supper, Federico Barocci, 1533-1612 (Barocci) 

Participants looked at the paintings displayed on the LCD monitor with 2870 x 2159 pixels 

size screen. Eye-tracking data of the participants’ dominant eyes were recorded on remote eye-

tracker EyeLink 1000 Plus at 1000Hz frequency.  

5.1.3  Experimental Setup and Procedure 

After a colorblindness check, identification of the dominant eye, eyesight check, and 

calibration, participants viewed 14 painting seated 90 cm in front of the LCD screen. Every 

picture was displayed for 1 minute and followed by the displayed question: “How did you like 

this painting?” Participants were asked to answer this question by moving a computer mouse 

on Likert-type scale from 1 to 5 (1 meaning they did not like it at all and 5 meaning they liked 

it very much). The question was added in order to strengthen the aesthetical experience, and 

reinforce the belief that there is no task involved. After the question and before another 

painting was displayed, also another calibration-check was performed. After the viewing task 

participants were given the iPad with the same 14 pictures and asked to draw what in their 

mind are the most important lines of the composition of each painting. At last participants 

were given printed versions of these painting, and were asked to order them on the table 

according to perceived depth - from the least deep to the deepest painting in their opinion. 
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5.2  Data Preprocessing 

After excluding the data that were incorrectly recorded, we ended up with data from 35 

participants. 

The preparation of the data can be divided into these main steps: 

1. Parsing the File 

The data were in a form of ASC file for every participant. This file contains large amounts 

of information about the recording session. The eye tracker identifies different events such 

as fixations, saccades and blinks. Given that we are interested only in fixation events, we 

parsed the files excluding everything else. For each fixation, the file includes information 

such as: hundreds of gaze points corresponding to the particular fixation, start and end 

time, duration, pupil size and coordinates. Again, we excluded all information besides the 

coordinates of each fixation, to which painting they belong, and we also preserved their 

order.  

2. Excluding First Fixation 

Afterwards, we rounded the fixation coordinates to have zero decimal places, and 

excluded the first fixation from each painting. After the pre-image calibration, in the first 

moment when image is displayed on the screen, the first fixation that eye tracker records, 

tends to be still at position of the calibration cross. Therefore it is recommended to ignore 

the first fixation, as it can wrongly indicate the salient location of the image that many 

people looked at.  

3. Choosing First 10 Fixations 

Usually, saliency models are compared against first 3 to 6 fixations, because this amount 

best represents the early, rapid, scene-dependent saliency. The longer people view an 

image, the more their gaze differs, since higher cognitive processes start to get involved. 

We have decided to work with first 3 to 10 fixations from every participant for every 

painting. With higher quantity of fixations, we expect the effect of bottom-up saliency to 

lessen. 
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4. Computing Fixation Maps 

From eye fixations we are able to create fixation maps that can then be compared with 

saliency maps acquired from models. These fixation maps are then taken as an input for 

saliency metrics. We computed two variants of fixation maps according to [23]:  

a) Discrete Maps  

A discrete fixation map 𝑓𝑖 for the 𝑖𝑡ℎ observer is defined as:  

 

𝑓𝑖(𝑥) = ∑ δ(𝑥 − 𝑥
𝑓

(𝑘))

𝑀

𝑘=1

 (9) 

where: 

• 𝑥 is the spatial coordinates vector, 

• 𝑥𝑓(𝑘)  is the spatial coordinates of the 𝑘𝑡ℎ visual fixation, 

• M is the total number of 𝑖𝑡ℎ observers’ fixations and 

• 𝛿(. ) is the Kronecker delta.  

A discrete fixation map 𝑓 for 𝑁 observers is defined as: 

 

𝑓(𝑥) =
1

𝑁
∑ 𝑓𝑖(𝑥).

𝑁

𝑖=1

 (10) 

b) Continuous Maps 

A continuous fixation map is created by convolving Gaussian function over the 

discrete fixation map 𝑓: 

 𝑆(𝑥) = 𝑓(𝑥) ∗ 𝐺𝜎(𝑥) (11) 

where 𝜎 is the standard deviation of the Gaussian. Typically, 𝜎 is set to 1º of the 

observers’ visual angle as this should estimate the size of the fovea [33]. The actual 

value depends on the specific experimental setup and is computed from screen 

dimensions, resolution and the viewing distance.  

To blur the fixations, we used AntonioGaussian filter from [7] with 𝜎 set to 70. In our 

setup we computed the 1º of visual angle to be 70 pixels. We computed the visual 

angle as is purposed in [7].  
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In total we have computed 1 discrete and 1 continuous map for every painting for every 

number of fixations from first 3 to first 10. Or in other words: for every number of 

fixations, we have computed 14 discrete and 14 continuous maps. This has left us with 

122 discrete and 122 continuous maps.  
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6 Analysis and Results 

In this chapter, we in detail describe steps of our analysis and the results. To evaluate how 

well a saliency model is able to predict true eye fixations, we compared previously created 

fixation maps (ground truth) with computed saliency maps. For the purpose of determining 

how much a saliency map and fixation map correspond, we have decided to employ three 

metrics: AUC-Judd, NSS, and CC. Each of them provides a different type of evaluation. We 

will elaborate more on the concrete results of each metric, possible influencing factors, as well 

as their advantages and weaknesses. 

 

Figure 5 Eye fixations (a)) for the painting by Juanes and corresponding saliency map from b) 

IttiKoch model, c) RCSS model, d) SAM-VGG model, and e) SAM-ResNet model 



25 

 

The starting point of our analysis was to compute predictions. Each model takes as an input 

painting and returns prediction in a form of a saliency map. In Figure 5 we can see an example 

of a saliency map from each model for the painting by Juanes. In Figure 5 a) are shown first 7 

eye fixations recorded while viewing the painting, in b) is shown saliency map from IttiKoch 

model, in c) is saliency map from RCSS model, in d) is saliency map from SAM-VGG model, 

and in d) is saliency map from SAM-ResNet model. Light parts represent salient locations. 

The lighter a location is, the more salient it is - the more likely are people to look there 

according to a model. Of course, everyone is different and no two people would look at a 

painting in the same way, nor would anyone twice look at a painting in the same way. 

6.1  AUC Metric Results 

The following section shows detailed results for the AUC metric displayed in separate table 

for each model. Each table shows AUC score for every painting including first 3, 4, 5, 6, 7, 8, 

9, and first 10 participants’ fixations. The highest and the lowest scores for each model are 

marked in green and red respectively. The absolute correspondence between fixations and 

saliency map would mean AUC score of 1 and a chance is at 0.5.  

 Number of first fixations 

Painting 3 4 5 6 7 8 9 10 

Barocci 0.68 0.64 0.61 0.61 0.60 0.61 0.61 0.61 

Bouts 0.79 0.80 0.81 0.82 0.82 0.82 0.82 0.81 

Castagno 0.58 0.58 0.57 0.57 0.55 0.54 0.53 0.53 

Cranach 0.73 0.72 0.71 0.71 0.71 0.71 0.71 0.71 

Ghirlandaio 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.55 

Giotto 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 

Juanes 0.86 0.85 0.84 0.83 0.82 0.82 0.81 0.80 

Lorenzetti 0.62 0.60 0.58 0.56 0.56 0.55 0.55 0.55 

Netherlandish 0.82 0.83 0.83 0.83 0.83 0.83 0.83 0.83 

Signorelli 0.83 0.82 0.81 0.80 0.79 0.78 0.77 0.76 

Tintoretto 1578 0.89 0.87 0.86 0.86 0.85 0.83 0.82 0.82 

Tintoretto 1592 0.78 0.75 0.73 0.72 0.71 0.69 0.67 0.66 

Verdun 0.58 0.58 0.58 0.59 0.59 0.60 0.60 0.60 

Veronese 0.77 0.76 0.74 0.73 0.72 0.71 0.70 0.70 

Table 1 AUC metric results for IttiKoch model  
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In Table 1 we can see that for the IttiKoch model the highest AUC score 0.89 was achieved 

when considering first 3 fixations of viewing the painting by Tintoretto 1578. On the other 

hand, the IttiKoch model obtained the lowest AUC score 0.53 considering first 9 and 10 

fixations of viewing the painting by Castagno. 

 Number of first fixations 

Painting 3 4 5 6 7 8 9 10 

Barocci 0.77 0.73 0.70 0.68 0.66 0.66 0.65 0.64 

Bouts 0.80 0.79 0.79 0.80 0.80 0.80 0.80 0.79 

Castagno 0.68 0.68 0.68 0.68 0.65 0.65 0.64 0.64 

Cranach 0.79 0.80 0.79 0.78 0.78 0.77 0.76 0.76 

Ghirlandaio 0.69 0.70 0.69 0.68 0.67 0.67 0.66 0.65 

Giotto 0.82 0.80 0.80 0.79 0.78 0.78 0.77 0.76 

Juanes 0.72 0.71 0.70 0.69 0.68 0.68 0.67 0.67 

Lorenzetti 0.81 0.77 0.74 0.72 0.71 0.70 0.69 0.69 

Netherlandish 0.83 0.83 0.82 0.81 0.80 0.80 0.80 0.79 

Signorelli 0.75 0.73 0.73 0.72 0.71 0.72 0.72 0.72 

Tintoretto 1578 0.84 0.82 0.81 0.81 0.81 0.80 0.79 0.78 

Tintoretto 1592 0.75 0.73 0.72 0.73 0.73 0.72 0.71 0.71 

Verdun 0.77 0.76 0.76 0.75 0.74 0.74 0.74 0.74 

Veronese 0.71 0.68 0.67 0.64 0.62 0.61 0.60 0.60 

Table 2 AUC metric results for RCSS model  

In Table 2 we can see AUC score for the RCSS model. The highest score it obtained is 0.84 

what is slightly less than 0.89 in the case of IttiKoch model. However, the lowest AUC score 

is 0.60 when considering first 9 and 10 fixations of viewing the painting by Veronese, what is 

a better result than the lowest 0.53 AUC score for IttiKoch model. Both models scored the 

highest for the Tintoretto 1578 painting. 

 Number of first fixations 

Painting 3 4 5 6 7 8 9 10 

Barocci 0.81 0.78 0.76 0.75 0.73 0.73 0.72 0.71 

Bouts 0.95 0.94 0.94 0.94 0.93 0.92 0.92 0.91 

Castagno 0.88 0.88 0.87 0.85 0.84 0.83 0.82 0.81 

Cranach 0.90 0.90 0.91 0.91 0.91 0.91 0.90 0.89 

Ghirlandaio 0.83 0.83 0.82 0.80 0.79 0.78 0.77 0.76 

Giotto 0.92 0.93 0.92 0.92 0.92 0.91 0.91 0.90 
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Juanes 0.95 0.94 0.93 0.92 0.91 0.89 0.87 0.86 

Lorenzetti 0.93 0.91 0.87 0.84 0.81 0.78 0.78 0.76 

Netherlandish 0.94 0.94 0.93 0.93 0.92 0.91 0.91 0.91 

Signorelli 0.95 0.93 0.92 0.91 0.90 0.90 0.89 0.88 

Tintoretto 1578 0.93 0.92 0.91 0.91 0.90 0.89 0.88 0.88 

Tintoretto 1592 0.87 0.85 0.83 0.81 0.79 0.77 0.76 0.75 

Verdun 0.94 0.93 0.92 0.92 0.91 0.91 0.91 0.91 

Veronese 0.87 0.88 0.88 0.87 0.86 0.86 0.85 0.85 

Table 3 AUC-Judd Metric Results for SAM-VGG Model 

In Table 3 we can see that SAM-VGG model obtained the highest score 0.95 when 

considering first 3 fixations of viewing the painting by Bouts, Juanes and Signorelli and the 

lowest score 0.71 when considering first 10 fixations of viewing the painting by Barocci. 

 

 

Number of first fixations 

Painting 3 4 5 6 7 8 9 10 

Barocci 0.84 0.82 0.79 0.77 0.75 0.75 0.74 0.73 

Bouts 0.95 0.94 0.94 0.94 0.93 0.93 0.92 0.91 

Castagno 0.91 0.91 0.90 0.90 0.89 0.89 0.88 0.88 

Cranach 0.90 0.90 0.90 0.90 0.91 0.91 0.90 0.89 

Ghirlandaio 0.87 0.88 0.87 0.86 0.84 0.83 0.81 0.80 

Giotto 0.91 0.92 0.92 0.92 0.91 0.90 0.90 0.89 

Juanes 0.95 0.95 0.94 0.94 0.92 0.90 0.89 0.88 

Lorenzetti 0.94 0.92 0.88 0.86 0.83 0.82 0.80 0.79 

Netherlandish 0.93 0.93 0.92 0.92 0.92 0.91 0.91 0.91 

Signorelli 0.96 0.95 0.94 0.93 0.92 0.91 0.91 0.91 

Tintoretto 1578 0.94 0.93 0.92 0.92 0.91 0.90 0.89 0.89 

Tintoretto 1592 0.89 0.87 0.85 0.84 0.83 0.81 0.80 0.79 

Verdun 0.93 0.92 0.91 0.91 0.90 0.90 0.90 0.89 

Veronese 0.90 0.90 0.90 0.89 0.88 0.87 0.87 0.86 

Table 4 AUC metric results for SAM-ResNet model 

In Table 4 we can see that the SAM-ResNet model obtained the highest AUC score 0.96 when 

considering first 3 fixations of viewing the painting by Signorelli. The lowest score 0.73 this 

model obtained when considering first 10 fixations of viewing the painting by Barocci. On 

average SAM-ResNet model achieved the best results for the AUC metric than all the other 

models. 
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Limitation of the AUC metric is low-valued false positives. During the first few threshold 

values (at the peaks of the saliency map) the false positives are penalized the most, however 

while approaching the lower thresholds they are penalized less.  Models that have a lot of low-

valued false positives are not largely penalized. Therefore, a saliency map with many modest 

predictions and correctly predicting fixation locations with lower certainty, would score 

similarly, as saliency map with less, but more confident predictions in the same number of 

correctly predicted locations. For example, the saliency map in Figure 6 has many false 

positives and AUC score of 0.89. Whereas the saliency map in Figure 7, has considerably less 

false positives, however scores in AUC metric only about 5% better with score of 0.94. For 

comparison, the saliency map in Figure 6 has NSS score of 1.57 and the saliency map in 

Figure 7 scores 2.61, which is a difference of about 39%. 

 

Figure 6 IttiKoch saliency map for painting by Tintoretto 1578 with overlaid first three 

fixations from every participant 

 

Figure 7 SAM-ResNet saliency map for painting by Tintoretto 1578 with overlaid first three 

fixations from every participant 
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Note: fixations shown in images are post-processed for illustration purposes and are not the 

exact data that we worked with. 

6.2  NSS Metric Results 

The following section shows detailed results of the NSS metric displayed in separate tables for 

each model. The highest and the lowest scores of each model are marked in red and green 

respectively. The higher NSS score, the more correspondence is between saliency map and 

ground truth fixations. The score of 0 represents a chance. 

 Number of first fixations 

Painting 3 4 5 6 7 8 9 10 

Barocci 0.66 0.52 0.42 0.39 0.38 0.41 0.41 0.41 

Bouts 0.96 1.04 1.12 1.12 1.14 1.14 1.14 1.10 

Castagno 0.26 0.27 0.24 0.23 0.21 0.18 0.16 0.15 

Cranach 0.63 0.59 0.57 0.54 0.54 0.56 0.55 0.54 

Ghirlandaio 0.02 0.03 0.03 0.03 0.04 0.05 0.07 0.07 

Giotto 0.59 0.60 0.61 0.61 0.61 0.61 0.61 0.61 

Juanes 1.30 1.30 1.27 1.25 1.19 1.16 1.14 1.12 

Lorenzetti 0.30 0.23 0.21 0.16 0.14 0.14 0.13 0.12 

Netherlandish 1.15 1.20 1.23 1.24 1.25 1.25 1.26 1.27 

Signorelli 1.15 1.06 1.01 0.97 0.94 0.92 0.88 0.84 

Tintoretto 1578 1.57 1.46 1.42 1.38 1.34 1.28 1.23 1.20 

Tintoretto 1592 1.44 1.32 1.18 1.12 1.04 0.92 0.82 0.78 

Verdun 0.30 0.29 0.30 0.31 0.33 0.34 0.35 0.34 

Veronese 0.98 0.93 0.85 0.79 0.75 0.73 0.69 0.66 

Table 5 NSS metric results for IttiKoch model 

In Table 5 we can see results for the IttiKoch model. The highest NSS score of 1.57 this model 

obtained when considering first 3 fixations of viewing the painting by Tintoretto 1578. NSS 

score at almost a chance 0.02 obtained the IttiKoch model when considering first 3 fixations of 

viewing the painting by Ghirlandaio. 

 Number of first fixations 

Painting 3 4 5 6 7 8 9 10 

Barocci 1.10 0.87 0.74 0.66 0.63 0.65 0.62 0.59 

Bouts 1.07 1.01 1.03 1.04 1.07 1.07 1.03 1.00 
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Castagno 0.48 0.49 0.48 0.46 0.39 0.38 0.34 0.36 

Cranach 1.09 1.14 1.03 0.98 0.97 0.93 0.90 0.88 

Ghirlandaio 0.57 0.61 0.61 0.55 0.53 0.50 0.48 0.45 

Giotto 1.27 1.18 1.16 1.11 1.06 1.04 1.02 0.95 

Juanes 0.58 0.57 0.54 0.49 0.47 0.47 0.46 0.43 

Lorenzetti 1.15 1.01 0.87 0.80 0.76 0.73 0.69 0.68 

Netherlandish 1.29 1.28 1.30 1.28 1.22 1.24 1.23 1.20 

Signorelli 0.83 0.74 0.75 0.75 0.71 0.75 0.78 0.77 

Tintoretto 1578 1.32 1.27 1.20 1.21 1.24 1.19 1.15 1.12 

Tintoretto 1592 0.91 0.88 0.78 0.81 0.78 0.72 0.68 0.65 

Verdun 0.94 0.89 0.86 0.83 0.79 0.79 0.77 0.77 

Veronese 0.67 0.58 0.52 0.41 0.37 0.34 0.30 0.28 

Table 6 NSS metric results for RCSS model 

In Table 6 we can see results for the RCSS model. The highest NSS score that the model 

obtained is 1.32 what is worse compared to 1.57 for IttiKoch model. However, on average the 

RCSS model achieved better NSS results than the IttiKoch model. The worst this model 

performed when considering first 10 fixations of viewing the painting by Veronese with score 

of 0.28. 

 Number of first fixations 

Painting 3 4 5 6 7 8 9 10 

Barocci 1.28 1.14 1.00 0.96 0.91 0.86 0.80 0.76 

Bouts 2.73 2.66 2.55 2.43 2.37 2.35 2.23 2.10 

Castagno 4.26 3.92 3.43 3.29 3.06 2.86 2.67 2.57 

Cranach 1.23 1.48 1.60 1.59 1.76 1.83 1.70 1.61 

Ghirlandaio 0.81 0.91 0.92 0.86 0.80 0.76 0.70 0.66 

Giotto 2.62 2.67 2.67 2.61 2.48 2.38 2.31 2.24 

Juanes 4.36 3.73 3.53 3.33 3.12 3.03 2.81 2.66 

Lorenzetti 3.88 3.75 3.28 2.94 2.64 2.40 2.25 2.17 

Netherlandish 2.77 2.69 2.66 2.65 2.67 2.60 2.57 2.50 

Signorelli 4.35 3.41 3.03 2.70 2.55 2.53 2.38 2.24 

Tintoretto 1578 2.23 2.07 1.99 1.98 1.95 1.85 1.74 1.69 

Tintoretto 1592 2.08 1.90 1.66 1.58 1.39 1.22 1.11 1.05 

Verdun 2.79 2.63 2.50 2.36 2.24 2.28 2.31 2.22 

Veronese 1.31 1.40 1.49 1.44 1.41 1.36 1.33 1.33 

Table 7 NSS metric results for SAM-VGG model 
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In Table 7 we can see that the best NSS score SAM-VGG model obtained is 4.36 when 

considering first 3 fixations of viewing the painting by Juanes, and the worst NSS score is 0.66 

when considering first 10 fixations of viewing the painting by Ghirlandaio. 

 Number of first fixations 

 

 

Painting 3 4 5 6 7 8 9 10 

Barocci 1.45 1.26 1.11 1.04 0.99 0.98 0.95 0.92 

Bouts 2.70 2.62 2.58 2.55 2.50 2.45 2.36 2.27 

Castagno 3.76 3.64 3.31 3.18 3.03 2.89 2.74 2.66 

Cranach 1.66 1.83 1.93 1.93 2.05 2.06 1.97 1.90 

Ghirlandaio 1.65 1.77 1.74 1.63 1.54 1.46 1.37 1.29 

Giotto 2.33 2.41 2.38 2.35 2.27 2.20 2.13 2.08 

Juanes 3.46 3.24 3.12 2.99 2.84 2.74 2.59 2.47 

Lorenzetti 2.68 2.53 2.27 2.06 1.89 1.75 1.67 1.60 

Netherlandish 2.21 2.22 2.20 2.14 2.12 2.09 2.07 2.04 

Signorelli 3.66 3.18 2.93 2.71 2.63 2.58 2.52 2.43 

Tintoretto 1578 2.61 2.43 2.34 2.32 2.24 2.14 2.06 2.03 

Tintoretto 1592 1.93 1.79 1.66 1.61 1.51 1.37 1.27 1.22 

Verdun 2.01 1.95 1.90 1.86 1.81 1.82 1.82 1.80 

Veronese 1.81 1.90 1.89 1.81 1.74 1.67 1.62 1.58 

Table 8 NSS metric results for SAM-ResNet model 

In Table 8 we can see the results for SAM-ResNet model. The best NSS score that this model 

obtained is 3.76 when considering first 3 fixations of viewing the painting by Castagno and 

the worst is 0.92 when considering first 10 fixations of viewing the painting by Barocci.  

On average SAM-VGG model scored better than SAM-ResNet model and also better than all 

of the other models according to NSS metric. 

One of the advantages of NSS metric is that it is sensitive to false positives. Many low false 

positives in NSS result in lowering the final score, unlike it is in the AUC metric. This is 

reflected in the difference among scores. Models with many false positives like IttiKoch and 

RCSS have an average NSS score of 0.72 and 0.82 respectively. While models with less false 

positives like SAM-VGG and SAM-ResNet have NSS score of 2.13 and 2.18 respectively (as 

can be seen in sTable 14).  
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6.3  CC Metric Results 

The following section shows detailed results for the CC metric displayed in separate tables for 

each model. The highest and the lowest scores of each model are marked in red and green 

respectively. The best score would be 1 and values closer to 0 characterize poor performance. 

 Number of first fixations 

Painting 3 4 5 6 7 8 9 10 

Barocci 0.20 0.17 0.14 0.14 0.15 0.17 0.19 0.19 

Bouts 0.25 0.29 0.32 0.33 0.36 0.38 0.40 0.41 

Castagno 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 

Cranach 0.25 0.26 0.26 0.25 0.25 0.26 0.26 0.27 

Ghirlandaio 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.05 

Giotto 0.15 0.16 0.18 0.20 0.22 0.23 0.23 0.24 

Juanes 0.34 0.37 0.39 0.41 0.41 0.42 0.44 0.44 

Lorenzetti 0.11 0.10 0.10 0.09 0.08 0.08 0.08 0.07 

Netherlandish 0.26 0.28 0.30 0.33 0.35 0.37 0.39 0.41 

Signorelli 0.27 0.28 0.28 0.29 0.29 0.30 0.31 0.31 

Tintoretto 1578 0.50 0.50 0.52 0.51 0.52 0.52 0.52 0.53 

Tintoretto 1592 0.44 0.44 0.43 0.43 0.42 0.40 0.38 0.37 

Verdun 0.12 0.13 0.14 0.15 0.16 0.17 0.17 0.17 

Veronese 0.35 0.35 0.35 0.34 0.34 0.34 0.34 0.34 

Table 9 CC metric results for IttiKoch model 

In Table 9 we can see that the worst CC score for the IttiKoch model is 0.02 when considering 

first 3 to 7 fixations of viewing the painting by Ghirlandaio. As can be seen in Table 5 the 

IttiKoch model scored worst for Ghirlandaio painting also for the NSS metric. The best CC 

score 0.53 this model obtained when considering first 10 fixations of viewing the painting by 

Tintoretto 1578.  

 Number of first fixations 

Painting 3 4 5 6 7 8 9 10 

Barocci 0.32 0.30 0.29 0.29 0.30 0.32 0.33 0.33 

Bouts 0.25 0.28 0.31 0.32 0.34 0.36 0.38 0.39 

Castagno 0.22 0.22 0.24 0.23 0.22 0.22 0.23 0.23 

Cranach 0.51 0.53 0.51 0.49 0.48 0.48 0.49 0.50 

Ghirlandaio 0.31 0.30 0.31 0.31 0.32 0.33 0.34 0.35 
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Giotto 0.36 0.39 0.41 0.42 0.44 0.46 0.46 0.46 

Juanes 0.18 0.18 0.17 0.17 0.16 0.17 0.17 0.18 

Lorenzetti 0.39 0.39 0.40 0.40 0.40 0.41 0.41 0.40 

Netherlandish 0.31 0.32 0.33 0.34 0.36 0.38 0.39 0.40 

Signorelli 0.28 0.29 0.30 0.32 0.34 0.35 0.37 0.38 

Tintoretto 1578 0.43 0.44 0.45 0.45 0.47 0.47 0.48 0.48 

Tintoretto 1592 0.39 0.40 0.42 0.43 0.43 0.44 0.44 0.44 

Verdun 0.28 0.29 0.30 0.32 0.33 0.33 0.33 0.33 

Veronese 0.24 0.23 0.22 0.19 0.18 0.17 0.17 0.17 

Table 10 CC metric results for RCSS model 

In Table 10 we can see results for CC metric for the RCSS model. The worst obtained CC 

score is 0.16 when considering first 7 fixations of viewing the painting by Juanes, and the best 

CC score is 0.53 when considering first 4 fixations of viewing the painting by Cranach. 

 Number of first fixations 

Painting 3 4 5 6 7 8 9 10 

Barocci 0.39 0.36 0.36 0.37 0.37 0.38 0.38 0.37 

Bouts 0.54 0.58 0.60 0.61 0.64 0.67 0.69 0.68 

Castagno 0.83 0.82 0.81 0.82 0.80 0.79 0.78 0.77 

Cranach 0.46 0.56 0.64 0.66 0.70 0.71 0.69 0.68 

Ghirlandaio 0.32 0.35 0.37 0.37 0.37 0.37 0.37 0.38 

Giotto 0.63 0.70 0.77 0.81 0.84 0.86 0.86 0.86 

Juanes 0.81 0.81 0.82 0.82 0.82 0.84 0.83 0.82 

Lorenzetti 0.88 0.88 0.87 0.85 0.83 0.82 0.81 0.80 

Netherlandish 0.56 0.56 0.59 0.62 0.66 0.68 0.69 0.71 

Signorelli 0.79 0.71 0.65 0.63 0.63 0.65 0.65 0.65 

Tintoretto 1578 0.64 0.64 0.64 0.65 0.66 0.65 0.65 0.65 

Tintoretto 1592 0.61 0.61 0.60 0.61 0.58 0.55 0.54 0.53 

Verdun 0.76 0.77 0.77 0.77 0.75 0.78 0.80 0.79 

Veronese 0.48 0.55 0.62 0.63 0.64 0.65 0.67 0.69 

Table 11 CC metric results for SAM-VGG model 

In Table 11 we can see results of the CC metric for the SAM-VGG model. The worst score 

0.32 this model obtained when considering first 3 fixations of viewing the painting by 

Ghirlandaio and the best 0.88 when considering first 3 and 4 fixations of viewing the painting 

by Lorenzetti. 
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 Number of first fixations 

Painting 3 4 5 6 7 8 9 10 

Barocci 0.46 0.42 0.42 0.42 0.43 0.46 0.47 0.47 

Bouts 0.58 0.62 0.66 0.68 0.71 0.73 0.76 0.76 

Castagno 0.83 0.85 0.87 0.89 0.89 0.90 0.91 0.90 

Cranach 0.65 0.74 0.80 0.82 0.84 0.85 0.84 0.84 

Ghirlandaio 0.58 0.61 0.62 0.63 0.63 0.64 0.66 0.66 

Giotto 0.60 0.68 0.74 0.78 0.82 0.84 0.84 0.85 

Juanes 0.76 0.82 0.84 0.86 0.87 0.87 0.88 0.88 

Lorenzetti 0.72 0.72 0.72 0.71 0.71 0.71 0.72 0.71 

Netherlandish 0.51 0.52 0.54 0.57 0.60 0.62 0.64 0.66 

Signorelli 0.75 0.75 0.73 0.73 0.74 0.76 0.78 0.79 

Tintoretto 1578 0.77 0.78 0.79 0.80 0.79 0.79 0.80 0.81 

Tintoretto 1592 0.59 0.61 0.64 0.67 0.68 0.67 0.66 0.67 

Verdun 0.62 0.64 0.66 0.67 0.67 0.69 0.70 0.71 

Veronese 0.65 0.72 0.77 0.77 0.78 0.78 0.8 0.81 

Table 12 CC metric results for SAM-ResNet model 

In Table 12 we can see CC results for the SAM-ResNet model. The worst score is 0.42 when 

considering first 4 to 6 fixations of viewing the painting by Barocci and the best CC sore is 

0.91 when considering first 9 fixations of viewing the painting by Castagno. 

On average the SAM-ResNet model obtained the best results for the CC metric. 

CC penalized false positives and negatives equally. This metric compares a continuous 

fixation map with a saliency map. High positive CC score is at locations where fixation map 

and saliency map have values of a similar intensity. 

On the contrary to AUC and NSS metrics, where the best scores where reached always for 

first 3 fixations and had tendency to decrease with a number of fixations. For CC metric, in 

many cases, score increases with a number of fixations. 

6.4  Summary of Results 

In this section we summarize the results of our analysis and discuss influencing factors. Table 

13 shows the results for the three metrics we used. The table shows scores for the first 3 

fixations of viewing a painting. Colors from the lightest to darkest represent the scores from 

the worst to the best, for the particular metric. The darkest color, representing the best scores, 
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is mostly pointing to the SAM-ResNet for the AUC and CC metrics and to SAM-VGG for the 

NSS metric. 

 AUC NSS CC 

Itti 

Koch 
RCSS 

SAM- 

VGG 

SAM- 

ResNet 

Itti 

Koch 
RCSS 

SAM- 

VGG 

SAM- 

ResNet 

Itti 

Koch 
RCSS 

SAM- 

VGG 

SAM- 

ResNet 

Barocci 0.68 0.77 0.81 0.84 0.66 1.10 1.28 1.45 0.20 0.32 0.39 0.46 

Bouts 0.79 0.80 0.95 0.95 0.96 1.07 2.73 2.70 0.25 0.25 0.54 0.58 

Castagno 0.58 0.68 0.88 0.91 0.26 0.48 4.26 3.76 0.07 0.22 0.83 0.83 

Cranach 0.73 0.79 0.90 0.90 0.63 1.09 1.23 1.66 0.25 0.51 0.46 0.65 

Ghirlandaio 0.54 0.69 0.83 0.87 0.02 0.57 0.81 1.65 0.02 0.31 0.32 0.58 

Giotto 0.71 0.82 0.92 0.91 0.59 1.27 2.62 2.33 0.15 0.36 0.63 0.60 

Juanes 0.86 0.72 0.95 0.95 1.30 0.58 4.36 3.46 0.34 0.18 0.81 0.76 

Lorenzetti 0.62 0.81 0.93 0.94 0.30 1.15 3.88 2.68 0.11 0.39 0.88 0.72 

Netherland. 0.82 0.83 0.94 0.93 1.15 1.29 2.77 2.21 0.26 0.31 0.56 0.51 

Signorelli 0.83 0.75 0.95 0.96 1.15 0.83 4.35 3.66 0.27 0.28 0.79 0.75 

Tint.1578 0.89 0.84 0.93 0.94 1.57 1.32 2.23 2.61 0.50 0.43 0.64 0.77 

Tint. 1592 0.78 0.75 0.87 0.89 1.44 0.91 2.08 1.93 0.44 0.39 0.61 0.59 

Verdun 0.58 0.77 0.94 0.93 0.30 0.94 2.79 2.01 0.12 0.28 0.76 0.62 

Veronese 0.77 0.71 0.87 0.90 0.98 0.67 1.31 1.81 0.35 0.24 0.48 0.65 

 

Low Score   High Score 

Table 13 Summary of results for first three fixations 

Overall our analysis favors the SAM-ResNet saliency model according to AUC and CC 

metric. According to NSS metric the best performing model is SAM-VGG. The worst results 

achieved the IttiKoch saliency model in all metrics (sTable 14).  

 

Model 

AUC NSS   CC 

Average Best Worst Average Best Worst Average Best Worst 

IttiKoch 0.70 0.89 0.53 0.72 1.57 0.02 0.26 0.53 0.02 

RCSS 0.73 0.84 0.60 0.82 1.32 0.28 0.34 0.53 0.16 

VGG 0.87 0.95 0.71 2.18 4.36 0.66 0.66 0.88 0.32 

ResNet 0.89 0.96 0.73 2.13 3.76 0.92 0.71 0.91 0.42 

sTable 14 Average scores of saliency models 
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6.4.1  Other Factors 

It is important to first recognize, and then consider how results could have been influenced by 

various factors that could have affected our findings. Most important factors, that we have 

noticed, we will describe in this section. 

6.4.1.1 Dataset 

Several datasets are publicly available for either a comparison or training of saliency models. 

Most of them consist of natural images, but many of them contain images from various 

different categories such as Cartoon, Sketch, Low Resolution, Object, Pattern or Art. Some of 

the datasets are recorded by an eye tracker and some are computed from mouse movements. 

Depending on a dataset, models provide different results.  

The dataset that we used is also different from the others. Apart from images having the same 

topic – the scene of Last Supper, our dataset consists of images with specific characteristics. 

Paintings are not an accurate representation of the world, rather are a product of painters’ 

skills, painting materials and individual style. This was important to take into consideration. 

None of the models was designed specifically for paintings, however SAM models were 

trained on eye-tracking datasets that contained art stimuli.  

6.4.1.2 Center Bias 

Human fixations are biased to be located near the center of the image [30]. On a center-biased 

dataset a model that for example makes its predictions based only on the center bias, does not 

even have to consider the image content, and will score higher. Our dataset consists of 

paintings with intentional and well-considered compositions designed by the painter. Many of 

the paintings (not all) depict Jesus, as the most important part of the scene, at the center – 

making our dataset quite center biased. In addition, all of our models incorporate center bias in 

their predictions.  

6.4.1.3 Bottom-Up Approach vs. Deep Learning 

As our analysis pointed out, bottom-up models IttiKoch and RCSS performed worse than 

deep-learning SAM models. We will expand more on what are the possible reasons for our 

analysis favoring deep-learning models. 
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Visual attention is a result of combining both bottom-up and top-down information. However, 

the main approach in modelling visual attention, was to implement only bottom-up or only 

top-down information in a model. Bottom-up models, based on features, were extensively 

studied. But there was less research done on top-down models, which are based on learning. 

With an arrival of deep learning, focus shifted to deep-learning saliency models that inherently 

incorporate top-down information. These models in many cases improved saliency detection, 

by using features trained on object recognition, since top-down information as objects or texts, 

are known to be highly salient. Research suggests that objects (top-down) may be even more 

important for saliency detection than bottom-up information [12]. 

Yet, authors in [22] showed that in some cases bottom-up models outperformed deep-learning 

models. Mainly, when pictures consisted of less top-down information, suggesting that deep-

learning models neglect the bottom-up element of visual attention. Maybe these models were 

trained to rather detect objects than the real saliency.  

Whether the deep learning changed saliency models into simple weighted object detectors, 

decided to investigate authors in [21]. They showed that while an importance of objects in 

saliency detection is high, bottom-up information are important too. If deep-learning saliency 

models are very accurate in detecting top-down features, they tend to miss bottom-up 

information that are salient. For example, if the image is crowded and complex, it may be 

difficult to identify top-down information as faces, so bottom-up features become more 

important. 

Thanks to the aforementioned findings, we suspect that one of the reasons for the superior 

performance of the deep-learning models on our dataset, is the high number of objects 

(persons, faces, etc.) in the paintings. None of the paintings is abstract, each one of them 

portray characters and objects. If a strong facet of deep-learning models is object detection, 

then our paintings are a great match.   
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7 Incorporating Face Detection 

We hypothesize that if object detection is a significant part of the reason for SAM models’ 

superior performance, if we add such mechanism to RCSS model, it will improve its results. 

Since, the theme of our images revolves around people, the prevalent objects are faces. 

Therefore, we decided to incorporate a face detection algorithm to the RCSS model. 

7.1  The Viola-Jones Algorithm 

In 2001 Paul Viola and Michael Jones developed a general object detection framework that is 

able to process images very quickly and with high detection rates [35]. Although, it can be 

used to various detection problems, it was motivated by, and demonstrated on, the task of face 

detection. This machine learning approach is to this day one of the most popular face detection 

algorithms. It is based on three kinds of Haar-like features (see Figure 8): two-rectangle (A, 

B), three-rectangle (C) and four-rectangle features (D). The value of a feature is calculated as 

a difference between the sum of all pixels in the dark rectangle and the sum of all pixels in 

the light rectangle. 

 

Figure 8 Types of Haar-like features used in Viola-Jones algorithm [35] 

Moreover, the speed of evaluation of features is improved by converting the image into an 

integral image representation. Given, that the image is converted to integral image, the Haar-

like features can then be evaluated in constant time at any location or scale. The training phase 

consists of a selection of Haar-like features and combining them into a cascade classifier. This 

is done by using AdaBoost algorithm that selects only the most important Haar-like feature 
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from all possible features and creates a strong classifier. This classifier consists of weak 

classifiers that are arranged in a way that many negative computations can be rejected sooner 

with simpler classifiers, and therefore make the algorithm computationally efficient. 

7.2  Integrating Viola-Jones into RCSS 

Firstly, we used the Viola-Jones algorithm to detect faces on paintings. We chose an 

implementation from OpenCV library with pre-trained cascade classifiers from file 

"haarcascade_frontalface_default.xml”. To detect the faces we used function 

detectMultiScale() and we set these parameters: 

• scaleFactor – defines how much is size of an image reduced at each scale. By resizing 

the image, we make the detection scale-invariant and smaller and larger faces can be 

detected by the same detection window. 

We chose a value 1.1, which means the size is reduced by 10% at each step. The higher 

the value, the faster a detection is, but also the chance of matching a face is reduced. 

• minNeighbours –defines a minimal number of neighboring rectangles for a candidate 

rectangle to preserve it. 

We chose a value 5, what results in less but more accurate detections. 

The output of this function is an array of detected rectangles’ coordinates from which we 

created mask image. Afterwards, we blurred the image with Gaussian with kernel size set to 

101x101 and standard deviation in X direction of 70. We created such images for every 

painting. 

Given, that our data are portraying faces slightly different from reality, it was expected that the 

algorithm may give worse results than if would on regular images. Moreover, the classifier we 

used, was designed to detect frontal faces. But of course, our paintings portray faces in many 

different angles.  

The overall accuracy of the face detection can be seen in Table 15. True positives are 

instances when the algorithm correctly detected a face, and false positives are instances when 

the algorithm detected face in a place where there was no face. 
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 Viola-Jones 

Painting True Positives False Positives 

Barocci 4 7 

Bouts 9 11 

Castagno 2 0 

Cranach 3 5 

Ghirlandaio 7 4 

Giotto 4 1 

Juanes 7 5 

Lorenzetti 3 2 

Netherlandish 4 12 

Signorelli 4 9 

Tintoretto 1578 4 5 

Tintoretto 1592 1 7 

Verdun 2 3 

Veronese 2 6 

Table 15 Accuracy of Viola-Jones algorithm on paintings 

In the RCSS model, after local saliencies of random rectangles are computed, channel-specific 

saliency maps are created. These are consequently fused into the final saliency map. At this 

point, we added our mask image with detected faces to the final saliency map. Our image has 

pixel values 255 (white) at rectangles and 0 (black) everywhere else. We added these to pixel 

values of saliency map and at the end normalized values of the saliency map again to be in a 

range from 0 to 255. Example of a final saliency map can be seen in Figure 9. 

 

Figure 9 Example of RCSS-Viola saliency map 
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Afterwards, we evaluated these new saliency maps against the eye-tracking data, the same 

way as we did for other models’ saliency maps. Detailed results for every metric can be seen 

in the next section in Tables 16 to 19. 

7.3  RCSS-Viola Model Results 

This section contains detailed results for the RCSS-Viola model displayed in separate table for 

each metric. Each table shows score for every painting including first 3, 4, 5, 6, 7, 8, 9, and 

first 10 participants’ fixations. The best and the worst scores for each metric are marked in 

green and red respectively. 

In Table 16 we can see AUC results for the RCSS-Viola model. The highest score is 0.87 

when considering first 3 fixations of viewing the painting by Bouts and the lowest AUC sore 

is 0.60 when considering first 10 fixations of viewing the painting by Veronese. 

  

Number of first fixations Painting 3 4 5 6 7 8 9 10 

Barocci 0.81 0.77 0.74 0.72 0.70 0.69 0.68 0.67 

Bouts 0.87 0.86 0.86 0.86 0.86 0.86 0.85 0.84 

Castagno 0.68 0.68 0.69 0.68 0.66 0.65 0.64 0.64 

Cranach 0.78 0.79 0.78 0.77 0.77 0.77 0.76 0.76 

Ghirlandaio 0.72 0.73 0.74 0.73 0.72 0.71 0.70 0.68 

Giotto 0.86 0.84 0.82 0.82 0.80 0.80 0.79 0.78 

Juanes 0.84 0.83 0.82 0.80 0.79 0.78 0.77 0.76 

Lorenzetti 0.78 0.75 0.72 0.70 0.69 0.68 0.67 0.67 

Netherlandish 0.81 0.81 0.80 0.79 0.78 0.79 0.79 0.78 

Signorelli 0.76 0.76 0.76 0.75 0.74 0.75 0.75 0.75 

Tintoretto 1578 0.83 0.81 0.80 0.80 0.81 0.79 0.78 0.78 

Tintoretto 1592 0.76 0.74 0.73 0.74 0.73 0.72 0.72 0.71 

Verdun 0.77 0.77 0.76 0.76 0.75 0.75 0.75 0.75 

Veronese 0.71 0.69 0.67 0.64 0.63 0.62 0.61 0.60 

Table 16 AUC metric results for RCSS-Viola model 

In Table 17 we can see NSS results for the RCSS-Viola model. The highest score is 1.62 when 

considering first 3 fixations of viewing the painting by Giotto and the lowest NSS sore is 0.37 

when considering first 10 fixations of viewing the painting by Veronese. Next, in Table 18 we 

can see that the highest CC score is 0.50 when considering first 10 fixations of viewing the 
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painting by Cranach and the lowest CC sore is 0.19 when considering first 8 to 10 fixations of 

viewing the painting by Veronese. 

 Number of first fixations 

Painting 3 4 5 6 7 8 9 10 

Barocci 1.24 1.10 0.97 0.89 0.85 0.81 0.77 0.72 

Bouts 1.41 1.36 1.35 1.37 1.37 1.34 1.29 1.28 

Castagno 0.63 0.65 0.66 0.63 0.56 0.54 0.51 0.52 

Cranach 0.95 1.02 0.96 0.95 0.95 0.94 0.93 0.93 

Ghirlandaio 0.84 0.87 0.90 0.86 0.82 0.78 0.74 0.70 

Giotto 1.62 1.55 1.46 1.39 1.32 1.30 1.25 1.21 

Juanes 1.52 1.40 1.39 1.34 1.29 1.26 1.2 1.17 

Lorenzetti 0.96 0.86 0.74 0.67 0.65 0.62 0.60 0.60 

Netherlandish 0.98 1.02 1.00 0.97 0.96 0.97 0.98 0.97 

Signorelli 0.94 1.02 1.03 1.01 0.98 0.99 1.02 1.02 

Tintoretto 1578 1.13 1.06 1.04 1.05 1.05 1.01 0.98 0.96 

Tintoretto 1592 0.91 0.84 0.82 0.85 0.83 0.80 0.78 0.75 

Verdun 1.06 1.04 1.04 1.01 0.95 0.98 1.01 1.00 

Veronese 0.74 0.65 0.58 0.49 0.45 0.41 0.38 0.37 

Table 17 NSS metric results for RCSS-Viola model 

 Number of first fixations 

Painting 3 4 5 6 7 8 9 10 

Barocci 0.37 0.36 0.35 0.35 0.35 0.36 0.37 0.38 

Bouts 0.29 0.32 0.34 0.34 0.38 0.40 0.42 0.43 

Castagno 0.23 0.23 0.25 0.25 0.25 0.25 0.25 0.26 

Cranach 0.45 0.48 0.48 0.48 0.47 0.48 0.49 0.50 

Ghirlandaio 0.34 0.33 0.34 0.34 0.37 0.38 0.40 0.41 

Giotto 0.38 0.40 0.43 0.43 0.46 0.47 0.47 0.48 

Juanes 0.36 0.38 0.39 0.39 0.40 0.41 0.42 0.42 

Lorenzetti 0.32 0.32 0.33 0.33 0.33 0.34 0.34 0.34 

Netherlandish 0.24 0.24 0.25 0.25 0.28 0.30 0.31 0.32 

Signorelli 0.27 0.31 0.33 0.33 0.36 0.38 0.40 0.41 

Tintoretto 1578 0.36 0.37 0.38 0.38 0.40 0.41 0.42 0.42 

Tintoretto 1592 0.33 0.35 0.38 0.38 0.41 0.43 0.45 0.46 

Verdun 0.32 0.34 0.36 0.36 0.36 0.38 0.39 0.39 

Veronese 0.25 0.25 0.24 0.24 0.20 0.19 0.19 0.19 

Table 18 CC metric results for RCSS-Viola model 
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Overall, the incorporated face detection improved RCSS models’ results. In some cases, more 

than in others. How much the performance improved depends also on how many faces were 

detected. For example, in the case of Tintoretto 1592 painting, we can see in Table 15, 

that the least number of faces (one) was detected. Moreover, seven false positive faces were 

detected in this painting. This even worsened the results for this painting for the CC metric for 

the first 3 to 8 fixations. Generally, the results were very slightly improved (see Table 19). 

However, the performance of deep-learning models was not reached. 

 

Model 

AUC NSS   CC 

Average Best Worst Average Best Worst Average Best Worst 

IttiKoch 0.70 0.89 0.53 0.72 1.57 0.02 0.26 0.53 0.02 

RCSS 0.73 0.84 0.60 0.82 1.32 0.28 0.34 0.53 0.16 

RCSS-Viola 0.75 0.87 0.60 0.95 1.62 0.37 0.35 0.50 0.19 

VGG 0.87 0.95 0.71 2.18 4.36 0.66 0.66 0.88 0.32 

ResNet 0.89 0.96 0.73 2.13 3.76 0.92 0.71 0.91 0.42 

Table 19 Average scores of saliency models with RCSS-Viola model  
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Conclusion 

Despite the topic of visual saliency being relevant in many different fields of research, in our 

work, we focused mainly on the intersection of the two – saliency modelling and art. Models 

of visual saliency try to predict where people look, or what the most salient parts of a visual 

scene are. In the current work, we outlined the topic of saliency in different disciplines, 

described related works, pre-processed eye-tracking data, explained evaluation metrics, 

analyzed saliency models, and discussed the results. 

We decided to evaluate the performance of these four saliency models: IttiKoch, RCSS, SAM-

VGG and SAM-ResNet. These models take as input an image and return a corresponding 

saliency map with the same dimensions. For the evaluation we used AUC, NSS and CC 

metric. First, we had to pre-process the raw eye-tracking data consisting of eye fixations 

recorded while free-viewing 14 versions of digitized paintings, all portraying the biblical 

scene of The Last Supper. From these data, we created discrete and continuous fixation maps. 

Then, using the metrics we compared the saliency maps obtained from the saliency models 

with fixation maps that we created. Our analysis shows that according to AUC and CC metrics 

the SAM-ResNet model best predicts where people look on paintings in our dataset. 

According to NSS metric, the SAM-VGG model makes the best predictions. Overall, the 

deep-learning models (SAM-VGG and SAM-ResNet) showed better results than models based 

on traditional approach (IttiKoch and RCSS). Moreover, we achieved slightly better 

performance of RCSS model by incorporating Viola-Jones face detection algorithm. Despite 

that our alteration of the RCSS model improved its performance, it did not reach the 

performance of deep-learning models. 

We suspect that one of the reasons for deep-learning models’ superiority might be the implicit 

object detection, and the fact that our dataset consists entirely of figurative art. For further 

research we suggest expanding the dataset to other types of paintings, for example abstract 

paintings. As these tend to contain fewer distinct objects, the deep-learning models may no 

longer be in such an advantage. In addition, dataset with greater variety of paintings and with 

more non-center-biased paintings, could provide different results. 
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We consider research in this direction valuable, as the impact of computational methods 

spreads into every field, providing new perspectives or making tasks easier. Employing 

saliency models in art domain has proven to be beneficial, what we also pointed out by 

mentioning few interesting works. Research in this area will need more datasets with such 

specific images as paintings or in general visual art. Our findings suggest that next direction of 

research could yield interesting results by focusing on deep-learning saliency approaches 

within the art. 
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