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Abstract 

This study examines how agents operating under the Active Inference framework can 

autonomously develop cooperative behavior in the Iterated Prisoner’s Dilemma through 

purely inferential processes, without recourse to pre‐programmed strategies or externally 

imposed reward functions. Each agent maintains a probabilistic generative model of state 

transitions, refines its beliefs by accumulating Dirichlet pseudo‐counts, and selects actions 

by minimizing Expected Free Energy, a principled trade‐off between pursuing preferred 

outcomes and reducing uncertainty about the environment. 

In two‐agent simulations, belief updates drive a characteristic progression: early trials are 

marked by an irregular alternation of cooperation and defection, followed by a transient 

dominance of unilateral defection, culminating in a stable regime of mutual cooperation. 

Systematic parameter sweeps reveal that neither very slow nor overly rapid learning fosters 

robust coordination; instead, an intermediate learning rate combined with moderate 

decision noise and minimal emphasis on epistemic gain yields the highest cooperation 

rates. Under these balanced conditions, agents spontaneously exhibit Win–Stay tendencies 

as a natural outgrowth of their free‐energy minimization, while Lose–Shift patterns only 

emerge under slower learning dynamics, demonstrating how familiar heuristic motifs can 

arise without explicit coding. 

When extended to a three‐agent environment, introducing an additional player increases 

strategic complexity and initially undermines cooperation. Nevertheless, by suitably 

adjusting learning rates, triads of Active Inference agents can regain high levels of joint 

cooperation, underscoring the framework's scalability and capacity to accommodate greater 

social uncertainty through adaptive belief updating. 

Across both two‐ and three‐agent scenarios, our results illustrate that sophisticated 

cooperative behaviors and elements of classical strategies emerge organically from the 

interaction of generative modeling, Bayesian belief updating, and free‐energy‐based 

action selection. These findings position Active Inference as a compelling alternative to 

traditional reinforcement learning and fixed‐rule approaches for modeling adaptive, 

socially intelligent agents in dynamic and uncertain multi‐agent environments. 

Keywords: Active Inference; Iterated Prisoner’s Dilemma; cooperation; Expected Free 

Energy; Dirichlet learning; multi-agent adaptation. 

 



 

Abstrakt  

Táto práca skúma, ako sa môže u agentov používajúcich aktívnu inferenciu samostatne 

vyvinúť kooperatívne správanie v Iterovanej väzeňskej dileme prostredníctvom čisto 

inferenčných procesov bez použitia vopred naprogramovaných stratégií alebo externe 

zavedených funkcií odmeňovania. Každý agent si udržiava pravdepodobnostný 

generatívny model prechodov medzi stavmi, spresňuje svoje presvedčenia akumuláciou 

Dirichletových pseudo-počtov a vyberá akcie minimalizáciou očakávanej voľnej energie, 

čo je kompromis medzi sledovaním preferovaných cieľov a znižovaním neistoty o 

prostredí. 

V simuláciách s dvoma agentmi vidíme charakteristický priebeh aktualizácie presvedčení: 

prvé pokusy sa vyznačujú nepravidelným striedaním spolupráce a zrádzania, po ktorom 

nasleduje prechodná prevaha jednostranného zrádzania, ktorá vyvrcholí stabilným 

režimom vzájomnej spolupráce. Systematický výber parametrov odhalil, že ani veľmi 

pomalé, ani príliš rýchle učenie nepodporuje stabilnú koordináciu; stredná rýchlosť učenia 

v kombinácii s miernym rozhodovacím šumom a minimálnym dôrazom na epistemický 

zisk prináša najvyššiu mieru spolupráce. Za týchto vyvážených podmienok agenty 

spontánne prejavujú tendencie Win-Stay ako prirodzený výsledok minimalizácie voľnej 

energie, zatiaľ čo vzory Lose-Shift sa objavujú len pri pomalšej dynamike učenia. To 

ukazuje, ako môžu známe heuristické motívy vzniknúť bez explicitného kódovania. 

Po rozšírení na prostredie troch agentov sa zavedením ďalšieho hráča zvyšuje strategická 

zložitosť a spočiatku sa oslabuje spolupráca. Vhodným nastavením miery učenia však 

môžu trojice agentov s aktívnou inferenciou opäť dosiahnuť vysokú úroveň vzájomnej 

spolupráce, čo zdôrazňuje škálovateľnosť aktívnej inferencie a schopnosť prispôsobiť sa 

väčšej sociálnej neistote prostredníctvom adaptívnej aktualizácie presvedčení. 

Naše výsledky v scenároch s dvoma aj tromi agentmi ukazujú, že sofistikované 

kooperatívne správanie a prvky klasických stratégií vznikajú organicky z interakcie 

generatívneho modelovania, bayesovskej aktualizácie presvedčení a výberu akcií na 

základe voľnej energie. Tieto zistenia stavajú aktívnu inferenciu do pozície presvedčivej 

alternatívy k tradičnému učeniu posilňovaním a k prístupom s pevnými pravidlami na 

modelovanie adaptívnych, sociálne inteligentných agentov v dynamických a neistých 

multiagentových prostrediach. 
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1. Introduction 

1.1 Motivation 

Cooperation plays a crucial role in the organization of both human and animal societies. 

However, explaining why individuals choose to cooperate, especially in situations where 

self-interested behavior would lead to better immediate rewards, remains a central 

challenge in behavioral science. The Iterated Prisoner’s Dilemma (IPD) offers a 

well-known framework for exploring this problem. While classical approaches based on 

game theory and reinforcement learning (e.g., Axelrod, 1984; Sandholm & Crites, 1996) 

have provided useful insights, they often rely on unrealistic assumptions such as perfect 

rationality, complete information, or fixed strategy sets. In reality, cooperative behavior 

emerges under uncertainty, through limited information, and in dynamic environments. As 

Raihani and Bshary (2011) noted, these real-world conditions require models that better 

account for bounded rationality, context sensitivity, and learning over time. 

Active Inference Framework (AIF) offers a compelling alternative grounded in theoretical 

neuroscience and statistical physics. It provides a unifying framework in which agents act 

to minimize variational free energy, thereby aligning their beliefs, actions, and 

observations over time (Friston et al., 2016; Parr et al., 2022). Rather than relying on 

external reward signals or rigid heuristics, AIF enables adaptive behavior through 

continual Bayesian inference under a generative model. This perspective allows for 

goal-directed exploration (Parr et al., 2022), Theory of Mind modeling (Kaufmann et al., 

2021), belief-driven learning (Demekas et al., 2023), and emergent coordination, all of 

which are critical in dynamic multi-agent environments like the IPD. Notably, AIF agents 

can encode preferences, uncertainty, and social constraints in their beliefs, making the 

framework especially suited for modeling strategic social interaction (Demekas et al., 

2023). 

Recent experimental and theoretical work has further shown that long-term cooperative 

behavior in the IPD is best understood not through fixed strategies, but through evolving 

probabilistic tendencies modulated by context and interaction structure (Montero-Porras et 

al., 2022; Martínez-Martínez & Normann, 2022). These insights position AIF as a 
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promising computational substrate for modeling cooperation that emerges organically from 

continual belief updates rather than prescriptive rules. Furthermore, AIF’s roots in 

thermodynamics and variational inference provide a principled foundation for unifying 

perception, action, learning, and planning (Friston et al., 2006). 

Cooperation is fundamental to emerging complex social, economic, and biological 

behavior. However, explaining how cooperative behavior arises and stabilizes remains a 

central challenge across cognitive science, artificial intelligence, and evolutionary biology 

(Raihani & Bshary, 2011; Grujić et al., 2012; Galesic et al., 2023). This puzzle is 

exemplified by the Iterated Prisoner's Dilemma (IPD), a strategic game in which agents 

repeatedly decide whether to cooperate or defect, with outcomes shaped by the joint action 

of all players. 

IPD reveals a fundamental tension, although mutual cooperation can maximize group 

outcomes, short-term incentives often favor unilateral defection. Classical strategies such 

as Tit-for-Tat (Axelrod, 1984), Grim Trigger (Nowak & Sigmund, 1990), and Win-Stay, 

Lose-Shift (Nowak & Sigmund, 1993) have been proposed to resolve this dilemma by 

promoting reciprocity and contingent behavior. These strategies offer strong performance 

under idealized conditions but assume perfect rationality, fixed strategy rules, and full 

observability of other agents’ behavior. 

As Akin (2015) emphasizes, many classical strategies depend on unrealistic assumptions 

such as the agent’s ability to identify game structure and apply backward reasoning 

perfectly. These assumptions limit their applicability to real-world social scenarios, where 

noise, ambiguity, and bounded rationality are the norm. Baek and Kim (2008) further show 

that traditional strategies can be highly fragile under even minor disturbances, failing to 

sustain cooperation when agents are uncertain or probabilistic in their responses. 

1.2 Limitations of Reinforcement Learning in IPD 

Reinforcement learning (RL) offers a data-driven alternative but faces challenges in 

dynamic, non-stationary multi-agent settings. For example, Sandholm and Crites (1996) 

found that Q-learning agents frequently fail to reach cooperative equilibria, especially 

when paired with other learners. Without centralized coordination or aligned priors, RL 

agents may oscillate between suboptimal outcomes or converge to mutual defection. 
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Moreover, reinforcement learning (RL) often lacks principled mechanisms for 

uncertainty-aware exploration, relying instead on heuristic approaches such as ε-greedy or 

softmax action selection. This limitation has been noted in multi-agent IPD contexts, where 

heuristic-driven exploration can fail to capture the uncertainty inherent in strategic 

adaptation (Sandholm & Crites, 1996; Gergely, 2022). 

1.3 Ecological and Empirical Complexity 

Natural cooperation among animals, humans, or artificial agents often unfolds under partial 

observability, incomplete information, and diverse social norms. Raihani and Bshary 

(2011) argue that ecological realism is rarely captured by classical IPD models, which 

assume strict reciprocity and infinite memory. In contrast, real-world agents must infer 

intentions, estimate trustworthiness, and adapt to changing social landscapes. 

Empirical studies reinforce this complexity. For example, Grujić et al. (2012) show that 

human participants in multiplayer IPD settings exhibit heterogeneous, context-sensitive 

strategies. Their behavior is not governed by strict rules but is modulated by prior 

outcomes, emotional states, and social framing. Fogel (1993) further emphasizes that 

evolutionary dynamics and adaptive exploration, not hard-coded strategies, better explain 

the emergence of stable cooperation in nature. 

1.4 Active Inference as an Alternative 

The Active Inference provides a promising framework for modeling adaptive, belief-driven 

cooperation. Rooted in the Free Energy Principle (Friston, 2010), AIF frames perception, 

action, and learning as processes of Bayesian inference under a generative model. Rather 

than maximizing extrinsic rewards, AIF agents minimize variational free energy, aligning 

internal beliefs with observations and preferences. 

Expected Free Energy (EFE) plays a central role in Active Inference: it combines risk 

minimization, favoring outcomes aligned with prior preferences, and epistemic value, 

seeking actions that reduce uncertainty about the environment or other agents. This dual 

structure enables agents to integrate exploration and exploitation in a principled manner, 

without the need for externally imposed heuristics (Parr et al., 2022, Ch. 2; Demekas et al., 

2023). 
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1.5 Research Questions 

This thesis investigates the potential of Active Inference as a robust, belief-based 

framework for modeling cooperation in repeated social dilemmas, with a primary focus on 

the Iterated Prisoner’s Dilemma. At its core lies the question of whether agents that 

minimize variational free energy, rather than follow explicitly coded rules, can develop 

robust cooperative behavior akin to classical strategies such as Tit-for-Tat (Axelrod & 

Hamilton, 1981) or Pavlov/Win-Stay-Lose-Shift (Nowak & Sigmund, 1993). By replacing 

hard-wired heuristics with continual belief updating and policy evaluation, we seek to 

determine if Active Inference agents can adapt flexibly to changing circumstances and 

generate cooperation through purely inferential means. 

A second dimension of this work examines how cooperation emerges and endures within 

groups of interacting agents. Drawing on empirical and theoretical insights suggesting that 

factors such as group size, the structure of interactions critically shape cooperative 

dynamics (Grujić et al., 2012; Martinez-Martinez & Normann, 2022), we ask: under what 

combinations of internal cognitive parameters (epistemic‐weight parameter, inverse precision, 

learning rate), Active Inference agents converge on stable cooperative equilibria? To address this, 

we systematically vary parameters governing belief updating, such as asymmetric learning 

rates that capture differences in how agents weigh new versus prior information. Through 

these multi-agent simulations, we aim to map the regions of parameter space where 

cooperation flourishes and identify thresholds beyond which defection becomes the 

dominant strategy. 

Another specific cognitive parameter, policy precision (α), modulates the stochasticity of 

action selection, and epistemic weighting (γ), which governs the balance between 

goal-directed planning and information-seeking exploration. Building on the computational 

framework established by Demekas et al. (2023), we explore how variations in these 

parameters influence both the speed and robustness of cooperative convergence. Recent 

experimental work by Galesic et al. (2023) highlights that individuals’ choices in social 

dilemmas are driven as much by their social expectations and personal norms as by 

material payoffs, pointing to the importance of modeling cognitive dissonance and 

projection processes. By embedding these insights into our simulations, we investigate 
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how agents’ prior beliefs about others and their willingness to revise those beliefs when 

faced with contradictory evidence shape the evolution of cooperation over repeated 

interactions. 

In a complementary investigation, we probe whether the inferential machinery 

underpinning Active Inference can give rise to well-known cooperative heuristics without 

direct encoding. Inspired by earlier evolutionary studies (Baek & Kim, 2008; Fogel, 1993), 

we examine whether agents engaging in Dirichlet learning over policy priors can implicitly 

discover patterns analogous to Tit-for-Tat or Win-Stay-Lose-Shift. This approach treats 

classical strategies not as prescriptions but as emergent regularities of the underlying 

inference process: if cooperation consistently maximizes expected free energy under 

certain conditions, will the resulting policy posterior mirror these canonical strategies? 

Verifying this hypothesis would lend credence to Active Inference as a unifying theory 

capable of reproducing a broad repertoire of social behaviors. 

Finally, we extend the standard two-player IPD to scenarios involving three interacting 

agents to bridge our modeling efforts with real-world complexity. Building on the 

empirical finding that cooperation rates decline as the number of participants increases is 

attributed to heightened strategic uncertainty and coordination challenges 

(Martinez-Martinez & Normann, 2022). We simulate incremental expansions from dyadic 

to triadic settings. Our goal is to determine whether adding a third player introduces 

sufficient inferential ambiguity to destabilize cooperative regimes, and if so, to characterize 

the mechanisms by which belief updating and policy selection falter under multi-party 

uncertainty. In doing so, this thesis provides both a rigorous computational account of 

cooperative dynamics and novel predictions about the cognitive and environmental 

prerequisites for sustained cooperation in complex social systems. 

1.6  Contributions 

This thesis makes several key contributions to the intersection of probabilistic inference, 

social decision-making, and strategic interaction. First, it introduces a novel multi-agent 

Active Inference framework for simulating the Iterated Prisoner’s Dilemma. This 

framework is grounded in full Expected Free Energy-based action selection and 

incorporates Dirichlet learning over transition dynamics, extending the analytical 

foundation laid out by Demekas et al. (2023). Second, through a series of simulation 
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studies, it demonstrates that robust cooperation can arise purely from probabilistic belief 

updating, without any reliance on hard-coded strategies, scalar reward signals, or explicit 

equilibrium-seeking routines, a finding consistent with the patterns of adaptive social 

behavior reported by Montero-Porras et al. (2022) and Grujić et al. (2012). Finally, by 

showing that Active Inference can successfully model cooperation under conditions of 

uncertainty and partner heterogeneity, this work positions Active Inference as a compelling 

alternative to traditional reinforcement learning approaches in contexts where ecological 

validity and dynamic partner modeling are paramount (Sandholm & Crites, 1996; Gergely, 

2022). 

1.7 Significance of the Study 

This study makes a substantive contribution to the evolving dialogue at the crossroads of 

cognitive modeling, social decision-making, and computational neuroscience by bringing 

the Active Inference Framework to bear on the Iterated Prisoner’s Dilemma, a prototypical 

model of cooperation and conflict. Rather than relying on static heuristics or externally 

imposed value functions, Active Inference offers a fully generative, belief-driven account 

of decision-making under uncertainty. By constructing a multi-agent simulation, 

cooperation must arise through agents’ inferential processes rather than through 

pre-programmed strategies. This work deepens our understanding of how adaptive 

behavior can emerge organically in dynamic, partially observable environments. 

One of the primary theoretical advances of this thesis is its extension of Demekas et al.’s 

(2023) analytical model into a scalable simulation platform capable of handling multiple 

interacting agents. This innovation tests the limits of active inference in increasingly 

complex settings and enriches the theoretical toolkit available for studying the emergence 

and stability of cooperation through updating probabilistic beliefs. In bridging disciplines, 

the thesis weaves together social science, game theory, and artificial intelligence 

perspectives, demonstrating that Active Inference can serve as a unified lens for examining 

strategic behavior, belief revision, and social learning across these fields. 

Methodologically, the study offers a flexible simulation framework that makes it possible 

to probe the impact of key cognitive parameters such as learning rates, Policy precision, 

and the weight placed on epistemic exploration on collective outcomes. By systematically 

varying these parameters and observing the resulting shifts in cooperation and defection 
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patterns, the research provides new tools for probing adaptation and coordination in 

complex social systems. 

Ultimately, the findings establish Active Inference not just as a conceptually elegant 

theory, but as a practically powerful approach for modeling how agents form and adjust 

beliefs, select strategies, and sustain cooperative relationships. This work lays the 

groundwork for future applications in artificial multi-agent systems and the study of 

human-centered social interactions. 

2. Literature Review 

2.1 Active Inference Framework 

AIF is a theoretical framework based on the Free Energy Principle (FEP), which says that 

all living or self-organizing systems try to avoid being surprised by what they sense in the 

world (Friston et al., 2006; Parr et al., 2022). Surprise means getting sensory input that 

doesn’t match the system's expectations. For example, if an agent expects to feel warm but 

suddenly feels cold, that’s surprising. To avoid this, the agent either updates its beliefs to 

better match reality or takes action to make the world more like what it expected, like 

putting on a jacket. This constant adjustment helps the agent stay in a safe and stable state. 

Since computing genuine surprise is generally intractable, agents minimize a tractable 

upper bound; variational free energy, which integrates both model accuracy and 

complexity in a principled way (Parr et al., 2022, Ch. 2). 

From a computational standpoint, Active Inference agents infer hidden states of the 

environment and act to realize preferred observations by performing approximate Bayesian 

inference (K. Friston et al., 2015). Perception, action, and learning are unified to minimize 

variational free energy. Perception updates beliefs to explain incoming sensory data better, 

while action changes the external world to bring about expected (i.e., less surprising) 

sensory outcomes. Learning entails updating the agent’s generative model itself to improve 

future inference and control. These processes collectively yield a closed 

action–perception–learning loop grounded in Bayesian and information-theoretic 

principles (Parr et al., 2022). 
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Crucially, AIF introduces EFE as a forward-looking objective function that agents use to 

evaluate policies. EFE decomposes into epistemic value, which motivates actions that 

resolve uncertainty, and pragmatic value, which favors outcomes consistent with prior 

preferences (Parr et al., 2022, Ch. 2). This formulation allows AIF to reconcile exploration 

and exploitation naturally. This integration is critical in the context of strategic interactions 

like the IPD. Traditional models often rely on fixed strategies such as Tit-for-Tat (Axelrod 

& Hamilton, 1981) or Pavlov (Nowak & Sigmund, 1993), which respond deterministically 

to an opponent’s past actions. However, real agents frequently adjust their behavior based 

on patterns in ongoing interaction (Wedekind & Milinski, 1996). Stewart and Plotkin 

(2012) showed that the strategy space in IPD is more complex and responsive than such 

fixed rules imply. Although the agents in this thesis do not explicitly model others’ 

intentions, they do adapt their behavior through belief updates about state transitions, 

allowing them to implicitly track and respond to regularities in their partner’s behavior. 

This belief-based adaptation supports a more flexible and probabilistic form of strategy 

selection, which aligns with the richer behavioral patterns observed in empirical studies 

(Montero-Porras et al., 2022; Grujić et al., 2012). 

Active Inference models allow agents to learn how to cooperate over time without being 

given fixed rules. This idea fits well with Akin’s (2015) argument that good strategies in 

the IPD come from adapting and learning, not from following hardcoded instructions. 

There, Akin emphasizes that cooperation in IPD emerges when players know transition 

dynamics and strategy spaces, not from rigid rules. AIF agents implement this insight 

directly, as their generative models enable them to learn and internalize transition 

probabilities without predefined scripts. 

Active Inference can be seen as an advanced version of reinforcement learning, but it 

doesn’t rely on value functions to work. In reinforcement learning, value functions 

estimate how much reward an agent can expect in the future if it takes a specific action in a 

particular state. These functions guide the agent to choose actions that maximize long-term 

rewards. However, in Active Inference, agents don’t need to calculate future rewards this 

way. Instead, they make decisions by minimizing expected free energy, which naturally 

combines their preferences and the need to reduce uncertainty. This allows AIF agents to 

act adaptively without explicitly defining or learning value functions (Friston et al., 2020). 

Baek & Kim (2008) criticize classical RL strategies in IPD as overly rigid and suggest the 

necessity of flexible, inference-based approaches to cooperation. They argue that 
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intelligent strategies must adapt to changing interaction histories, a property that AIF 

provides inherently through continuous belief updating. 

Demekas et al. (2023) implement this framework in the context of the IPD, showing how 

agents initialized with symmetrical generative models transition from defection to 

cooperation purely through inference-based learning of transition structures. Their agents 

achieve coordination through belief convergence, not payoff maximization, reinforcing the 

utility of Active Inference for modeling social behavior under uncertainty. 

Taken together, AIF offers a comprehensive, unified account of generative, recursive, and 

adaptive behavior. AIF is uniquely suited for modeling cooperation in uncertain and 

dynamic multi-agent contexts like the Iterated Prisoner’s Dilemma by grounding action 

selection in variational inference and enabling belief-based reasoning over hidden social 

dynamics. 

2.2 Reinforcement Learning and IPD 

Reinforcement learning offers a robust, data-driven approach to strategy discovery in the 

Iterated Prisoner’s Dilemma (IPD). However, when agents learn independently in this 

multi-agent setting, they routinely encounter deep-seated obstacles to cooperation. One of 

the most fundamental is environmental non-stationarity: as each agent updates its policy, 

the effective “game” faced by its counterpart shifts, violating the stationary Markov 

assumptions that underlie classical RL convergence proofs. Early work by Tan (1993) 

demonstrated that treating co-learners as part of a static environment “generally encounters 

convergence issues,” a point echoed by Sandholm and Crites (1996), who observed that 

while a Q-learning agent can learn to exploit a fixed Tit-for-Tat opponent, two Q-learners 

playing each other almost immediately collapse to mutual defection rather than discovering 

a cooperative equilibrium (Sandholm & Crites, 1996; Tan, 1993). Foerster et al. (2017) 

later showed that deep Q-learning with naive experience replay exacerbates this 

moving-target problem, requiring elaborate stabilization techniques merely to achieve 

convergence in simple multi-agent benchmarks (Foerster et al., 2017). 

Even when independent RL converges, it typically settles on the risk-dominant Nash 

equilibrium of mutual defection rather than the cooperative outcome. This coordination 

failure arises because defecting is a safe best response to defection, whereas cooperation 

exposes the agent to potentially irreversible “sucker” penalties if the partner deviates. 
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Claus and Boutilier (1998) characterized the resulting equilibrium-selection challenge, 

noting that standard RL carries no intrinsic bias toward the cooperative basin of attraction. 

They showed that whether Q-learning agents converge to cooperation or defection hinges 

sensitively on hyperparameters like memory depth, discount factor, and exploration 

schedule—parameters that must be painstakingly tuned to promote reciprocity (Claus & 

Boutilier, 1998). Without centralized critics, aligned priors, or specialized opponent 

models, independent learners gravitate toward the safer but socially suboptimal 

defect-defect outcome. 

Compounding these difficulties is the reliance of RL on undirected, heuristic exploration 

schemes—ε-greedy randomness or softmax action selection—that treat exploration as mere 

noise. In the IPD, uncoordinated exploratory cooperations often backfire: one agent’s 

chance cooperation may be met with defection by an exploiting partner, yielding a low 

payoff that reinforces further defection. Sandholm and Crites (1996) observed that unless ε 

remains high for many thousands of episodes, Q-learners “converge prematurely to mutual 

defection,” effectively locking in the very outcome that exploration was meant to 

overcome (Sandholm & Crites, 1996). 

Finally, traditional RL’s reactive, model-free policies lack foresight and theory of mind. 

Without an explicit generative model of how one’s current actions will influence the other 

agent’s future behavior, RL agents cannot plan through the opponent’s adaptation or 

deliberately signal cooperative intent. They simply reinforce actions that yielded high 

immediate rewards, blind to longer-term strategic gains that would follow from initial 

sacrifices. Advanced extensions such as Learning with Opponent Learning Awareness 

(LOLA) partly address this by anticipating the opponent’s learning updates. Still, they 

represent significant algorithmic add-ons beyond the vanilla independent RL paradigm 

(Jaques et al., 2019). The need for such extensions underscores the inadequacy of 

fundamental RL when agents must shape each other’s behavior to foster cooperation. 

These intertwined limitations, environmental non-stationarity, suboptimal equilibrium 

selection, heuristic exploration, and lack of opponent modeling, explain why independent 

RL agents in IPD often oscillate between transient strategies or converge to persistent 

defection unless augmented with centralized coordination, aligned priors, or bespoke 

exploration heuristics. Understanding and overcoming these barriers remains a central 

challenge in multi-agent learning and motivates the exploration of alternative frameworks, 
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such as active inference, which embeds uncertainty modeling, epistemic exploration, and 

planning as inference directly into the decision-making process. 

 

2.3 Existing Applications 

Applications of Active Inference to multi-agent and game-theoretic contexts have 

expanded in recent years, particularly in modeling social dilemmas like the Iterated 

Prisoner’s Dilemma. One of the most analytically rigorous contributions is from Demekas 

et al. (2023) in their paper "An Analytical Model of Active Inference in the Iterated 

Prisoner’s Dilemma". Their model demonstrates how two AIF agents configured with 

symmetric generative models and learning rates can transition from initial defection to 

mutual cooperation through iterative free energy minimization. Crucially, cooperation 

arises not from explicitly encoded strategies but through belief updating over transition 

dynamics. This progression is mathematically tied to the agents' learning rate (η), which 

controls the speed of Dirichlet learning over the agent's beliefs about how hidden states 

transition over time. The simulations presented by Demekas et al. (2023) demonstrate that 

when two Active Inference agents are configured with symmetric preferences and 

deterministic learning (i.e., no action stochasticity and identical learning rates), their 

behavior naturally converges to a pattern that is behaviorally equivalent to the classical 

Win-Stay, Lose-Shift (WSLS) strategy. This convergence is not due to any hardcoded 

heuristic or rule-following mechanism. Still, it arises organically from the agents’ continual 

minimization of expected free energy and belief updating via Dirichlet learning. In this 

setup, agents are more likely to repeat actions that previously led to preferred outcomes 

(i.e., "win"), and to switch actions when outcomes violate their expectations (i.e., "lose"). 

Importantly, this alignment with WSLS arises purely from the generative model's structure 

and the learning's statistical dynamics. The analytical clarity of this model, along with its 

ability to reproduce well-known cooperative strategies, makes it a foundational reference 

for the present thesis. It is a critical benchmark for exploring how Active Inference can be 

extended to more complex, multi-agent scenarios. 

Together, these studies reveal a converging trajectory: whether grounded in Active 

Inference or not, successful models of long-term cooperation increasingly depend on 

probabilistic reasoning, dynamic structure, and adaptive response to uncertainty. The 
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current thesis builds on ideas of Demekas et al. (2023 ) by extending their AIF model to 

multi-agent simulations, additionally by adding several controllable parameters, 

investigating how cooperation emerges, stabilizes, or collapses when belief-driven agents 

interact in structured or stochastic environments. This expands the scope of Active 

Inference in social modeling, highlighting its capacity to unify learning and perception. 

3. Theoretical Framework 

3.1 Generative Models 

In Active Inference, generative models are internal probabilistic structures that an agent 

uses to predict its environment, anticipate outcomes of actions, and update beliefs. These 

models specify the joint probability distribution over hidden states, observations, and 

actions. By encoding prior beliefs, transition dynamics, and expected observations, 

generative models allow agents to infer hidden causes of sensory inputs and select actions 

expected to fulfill their prior preferences (Parr et al., 2022, Ch. 2 & 4). 

In the Iterated Prisoner’s Dilemma, generative models become essential for capturing the 

latent dynamics of social interaction. Rather than relying on fixed strategy tables like 

Tit-for-Tat or WSLS, an Active Inference agent uses its generative model to infer whether 

its opponent will likely cooperate probabilistically and selects actions accordingly by 

minimizing expected free energy. This entails balancing epistemic value (resolving 

uncertainty) and pragmatic value (realizing preferred outcomes). 

The analytical model introduced by Demekas and colleagues casts each participant in the 

two-agent Iterated Prisoner’s Dilemma as an Active Inference–driven decision-maker 

employing a discrete-time Partially Observable Markov Decision Process (POMDP). In 

this setup, every agent maintains a generative model of its environment composed of 

several key components. First, an A-matrix captures how likely each possible sensory 

observation is, given the true hidden state of the world. Agents then rely on a B-matrix to 

represent the probabilities of transitioning from one hidden state to another; these transition 

beliefs are not fixed but are continually refined via Dirichlet learning as agents accumulate 

experience over successive rounds. Prior preferences over outcomes that the agent hopes or 

fears to observe are encoded in a C-vector, while the D-vector encodes the agent’s beliefs 

about the hidden state at the very start of each trial. Initially, agents have uninformative, 
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uniformly biased priors across all hidden states and observations. As play unfolds, the 

learning rate parameter η governs how quickly and decisively those priors are adjusted. It 

determines the timing and the granularity with which agents update their transition beliefs 

and shape their emerging cooperative or competitive strategies. 

Notably, the model uses a "memory-one" setup, meaning agents base their decisions 

mostly on the last round. This is similar to what Baek & Kim (2008) found; many 

successful strategies in the Prisoner’s Dilemma rely on short-term memory. However, 

active inference agents don't stick to one rule, unlike strategies that always follow the same 

rule (like ‘if they cooperate, then I cooperate’). Instead, they learn by estimating how likely 

different outcomes are based on their past experiences. This means they can make more 

flexible decisions instead of always doing the same thing. This helps them switch between 

cooperating and defecting more smoothly, depending on what they believe is best. 

Akin (2015) emphasizes that strategic success in IPD requires more than mimicking 

surface behavior; it demands internal consistency and understanding of reciprocal 

structure. Generative models in AIF provide such structure, embedding expectations about 

reciprocity, transitions, and uncertainty into a coherent inferential system. 

3.2 Learning Mechanisms 

In Active Inference (AIF), learning is defined as the process of updating the parameters of 

the generative model such as those governing transition and observation probabilities, to 

reduce free energy across time (Parr et al., 2022, Ch. 6). More specifically, learning 

involves changing the agent’s beliefs about how things change over time (the B matrix) 

and how observations are linked to hidden causes (the A matrix), based on new 

experiences. This process helps the agent reduce free energy over time, making its 

predictions more accurate and less surprising. As the agent gathers more evidence, its 

model improves, allowing it to adapt to new situations, plan better, and act more 

effectively in uncertain environments. 

A key feature of AIF learning is its integration with perception and action, all following the 

same basic idea: reducing surprise. This means that when an agent updates what it believes 

about the world (perception), chooses what to do next (action), or changes how its model 

works (learning), it’s all part of the same process. The agent adjusts its internal model 
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based on what it sees to stay better prepared for the future. Instead of using fixed rules or 

strategies, it keeps learning and adapting from experience (Parr et al., 2022). 

This approach diverges sharply from reinforcement learning (RL), which typically relies 

on scalar reward signals and Q-value updates, without representing structural uncertainty. 

Sandholm and Crites (1996) and Gergely (2022) show that reinforcement learning (RL) 

agents often struggle in multi-agent settings like the IPD because other agents are also 

learning and changing, which makes the environment unstable and hard to predict. In 

contrast, Active Inference handles this challenge by allowing agents to represent and 

update their uncertainty about how the world works and which actions are best. This makes 

their behavior more stable, adaptive, and easier to understand over time. 

In the analytical AIF model of the IPD by Demekas et al. (2023), learning is implemented 

via Dirichlet updates to the B matrix. Each agent maintains a probabilistic belief over state 

transitions conditioned on its own and its partner’s previous actions. As the game 

progresses, the agent refines its model of the opponent’s behavior not via trial-and-error 

optimization, but by accumulating evidence and updating beliefs about transition 

contingencies. 

4. Methodology 

4.1 Overview of Methodology  

This chapter outlines the computational methodology used to simulate and analyze 

emergent cooperation in the Iterated Prisoner's Dilemma using the Active Inference 

framework. The simulations investigate how agents, equipped with generative models and 

driven by EFE minimization, can learn to cooperate over time without relying on fixed 

strategies or externally imposed reinforcement schedules. 

Two simulation environments are implemented: two agents (2A-IPD) and three agents 

(3A-IPD). In both settings, agents repeatedly interact, observe outcomes, update their 

internal beliefs about hidden states, and select actions that minimize expected free energy. 

Each agent maintains a belief over hidden states, predicts the consequences of actions 

using a transition model, and encodes preferences over outcomes as softmax-normalized 

prior distributions. Agents select actions by applying a softmax over the negative expected 
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free energy (EFE), which combines a pragmatic risk term reflecting preference alignment 

and an epistemic term that promotes uncertainty reduction. This formulation follows the 

general Active Inference framework and its formal development in Parr et al. (2022).  

Learning occurs through Dirichlet-based updates to the agent’s transition model, allowing 

each agent to adapt its expectations over time. By systematically varying internal 

parameters such as learning rate, policy precision, and epistemic weighting, the simulations 

explore how different cognitive profiles and group sizes influence the emergence and 

stability of cooperation. Insights from prior work shape this chapter, Demekas et al. (2023), 

which explored Active Inference in the context of the Iterated Prisoner’s Dilemma. The 

modeling approach also reflects core principles of the Active Inference framework (Friston 

et al., 2010; Parr et al., 2022). These works provided valuable context and inspiration.  

4.2 Computational Modeling Approach 

The computational approach employed in this study is based on modeling agents as active 

inference systems embedded within a repeated social dilemma framework, here the IPD. 

Two separate simulation environments were implemented: one with two interacting agents 

(2A-IPD) and one with three interacting agents (3A-IPD). In both cases, agents interact 

synchronously across discrete trials, selecting actions to minimize expected free energy 

(EFE) and updating their internal generative models based on experience. 

 

4.2.1 Generative Model Components 

Each agent in the simulation maintains an internal generative model that it uses to predict 

environmental dynamics, evaluate the consequences of actions, and guide behavior. This 

generative model is structured into four core components: the observation model (A), the 

transition model (B), the preference model (C), and the initial state prior (D). This section 

describes each component in detail. more details along with the matrix dimensions etc. can 

be found in Appendix B. 

Observation Model (A): The observation model defines the likelihood of observing a 

particular sensory outcome given the hidden state. In these simulations, observations are 

assumed to be perfect and noiseless, meaning the observed outcome corresponds precisely 
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to the actual environmental state. Therefore, the A-matrix is implemented as an identity 

matrix. This setup ensures that the agent’s posterior belief over hidden states (qs) collapses 

to a one-hot distribution after each observation, simplifying the inference process. 

Transition model (B):  The transition model in an Active Inference agent is captured by 

the B-matrix, which formalizes the agent’s probabilistic understanding of how the hidden 

state of the environment evolves as a consequence of its own choices. In practical terms, 

for each combination of a current state (s) and an action (a) that the agent might take, the 

B-matrix provides a categorical distribution over the possible following states s′, written 

B(s′∣s, a). This compact representation is the basis of the agent’s capacity to predict the 

environment's future course and evaluate the expected consequences of different policies. 

The B-matrix is initialized with uniform probabilities across all admissible transitions to 

avoid imparting any unwarranted bias at the outset. In other words, before any experience 

is acquired, the agent treats each potential next state as equally likely for every state–action 

pair, reflecting maximal epistemic uncertainty. As the agent engages in repeated 

interactions, selecting actions according to its current policy, observing the resulting state 

transitions, and then looping back to update its beliefs, data gradually erodes this initial 

ignorance. The mechanism for belief revision is Dirichlet learning: each time the agent 

observes a transition from state s to state s′ under action a, it increments an associated 

pseudo-count for that particular transition. After adjusting these counts, it renormalizes 

them to yield a new categorical distribution. Thanks to the conjugacy between Dirichlet 

priors and the categorical likelihood, the posterior distribution over transition probabilities 

after each update remains Dirichlet, ensuring mathematical tractability and interpretability 

(Parr et al., 2022). 

Throughout many rounds of interaction, this process sculpts the B-matrix into a structured 

map that accurately reflects the actual statistics of the environment’s dynamics. Early on, 

when pseudo-counts are low, the agent’s model remains diffuse, favoring exploration and 

epistemic actions. However, as more data accumulate, particularly if transitions follow 

consistent patterns, the pseudo-counts for frequently observed transitions grow, sharpening 

the agent’s predictions and making its policy more exploitative. In effect, Dirichlet learning 

endows the Active Inference agent with a self-calibrating model of the world: one that 

begins in a state of deliberate ignorance, and then, through continual Bayesian updating, 
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transforms into an increasingly precise guide for both action planning and cooperative 

coordination. 

 

Preference Model (C): The preference model, represented by the C-vector, encodes the 

agent’s subjective evaluation of different hidden states regarding desirability or utility. 

Each entry in the C-vector reflects a raw scalar reward associated with a particular state, 

capturing the agent's internal valuation of possible outcomes (e.g., mutual cooperation 

versus unilateral defection). When designing payoff vectors for the Prisoner’s Dilemma, 

one must respect the canonical ordering of rewards: temptation (T) > reward (R) > 

punishment (P) > sucker’s payoff (S), and the additional “mutual‐cooperation bonus” 

condition, 2R > T + S, which ensures that two cooperators fare better overall than an 

alternating sequence of exploitative moves (Lin et al., 2020). For both the two- and 

three-agent simulations, we fixed  payoffs Reward Punishment so that they satisfy: T > R > 

P > S and 2 R > T + S: 

In our two-agent runs, we chose: R, S, T, P = 3.0, 0.5, 4.0, 1.0, so that defecting against a 

cooperator (T=4) beats cooperation (R=3), which in turn beats mutual defection (P=1), 

which itself beats being exploited (S=0.5), and 2×3.0=6.0 is greater than T+S=4.5. 

In our three-agent setup, every possible combination of cooperations and defections is 

scored so that the classic Prisoner’s Dilemma ordering (T > R > P > S) and the 

mutual‐cooperation bonus (2R > T + S) still hold. Cooperation by all three players yields a 

reward of R = 3, while mutual defection gives P = 1. Whenever exactly one player defects 

against two cooperators, that lone defector earns the temptation payoff T = 4, and the 

solitary cooperator in the opposite scenario receives the sucker’s payoff S = 0.5. Every 

other mixed outcome—where two players’ choices differ but there isn’t a single clear 

exploiter or sole “sucker” is assigned an intermediate value of 2.5. This interpolation 

ensures that each agent’s payoff vector across the eight joint‐action profiles faithfully 

generalizes the two-player PD structure to three participants. 

For the two-agent simulations, we collapsed the classic Prisoner’s Dilemma payoffs into a 

simple four-entry vector [R,S,T,P] = [3.0, 0.5, 4.0, 1.0], where each entry corresponds 

respectively to the joint outcomes CC, CD, DC, and DD. In this scheme, defecting against 

a cooperator (T = 4.0) strictly dominates mutual cooperation (R = 3.0), which in turn beats 
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mutual defection (P = 1.0), which itself beats being exploited (S = 0.5). Moreover, the 

requirement 2R>T+S2R > T+S2R>T+S (i.e. 6.0 > 4.5) guarantees that sustained 

cooperation yields higher cumulative payoffs than an alternating exploiter–sucker 

sequence. By encoding preferences in this way, each agent’s generative model naturally 

drives it toward cooperative choices once its beliefs over transitions become sufficiently 

confident. 

Extending to three players introduces eight joint outcomes, but we preserve the same PD 

logic by assigning each agent a payoff of 3.0 when all three cooperate and 1.0 when all 

three defect. A lone defector facing two cooperators earns the temptation payoff of 4.0, 

while a single cooperator among defectors suffers the sucker’s payoff of 0.5. All remaining 

mixed profiles, those without a unique exploiter or sole sucker, are given an intermediate 

reward of 2.5. These assignments yield each agent’s C-vector across the eight states (CCC, 

CCD, CDC, CDD, DCC, DCD, DDC, DDD), for example Agent 1’s preferences are: [3.0, 

0.5, 0.5, 0.5, 4.0, 2.5, 2.5, 1.0], and analogous permutations for Agents 2 and 3. This 

construction ensures the canonical ordering T> R> P> S and the mutual-cooperation bonus 

2R> T+S hold in every player’s payoff structure, seamlessly generalizing the two-player 

PD to our three-agent setting. 

To integrate these preferences into the probabilistic machinery of Active Inference, 

particularly in the computation of expected free energy, these raw values are transformed 

into a normalized probability distribution using a softmax function: 

         (4.1) 

This transformation yields a differentiable and normalized prior distribution over states, 

called Pref(s), which serves as the reference distribution in the Kullback–Leibler (KL) 

divergence term of expected free energy. The KL divergence measures how much the 

predicted future state distribution p(s'|a) diverges from the agent’s preferred distribution 

Pref(s): 

  (4.2) 

This term penalizes actions expected to lead to outcomes that differ from the agent’s 

internal preferences. When p(s'|a) closely matches Pref(s), the KL divergence is low; when 
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they differ significantly, the divergence increases. This way, the agent is incentivized to 

choose actions that steer expected outcomes toward subjectively valued states. 

In this way, the C-vector shapes behavior by encoding what the agent expects or wants to 

experience, influencing action selection through anticipated outcomes rather than direct 

reward feedback. Different agents are assigned distinct C-vectors to reflect asymmetries in 

preference, which is significant in multi-agent settings like the Iterated Prisoner’s 

Dilemma. For example, the states “cooperate-defect” (CD) and “defect-cooperate” (DC) 

may have opposite subjective values for each player, depending on their perspective in the 

interaction. These preference asymmetries are crucial for modeling role-specific strategic 

behavior and social dynamics. 

Prior Belief (D): The prior belief over initial states is represented by the D-vector, which 

specifies the agent’s assumptions about the probability of being in each possible hidden 

state before any observations are made. This prior is initialized as a uniform distribution 

across all states in the present simulations. 

This setting reflects a state of maximal uncertainty, assuming all initial states are equally 

likely without prior evidence. The uniform prior ensures that no bias is introduced at the 

outset of inference, and that observed outcomes from the first trial entirely shape the 

agent’s beliefs. 

Although the D-vector is only used during the initial timestep before any observations, it 

plays a key role in the agent’s Bayesian inference by combining with the observation 

model to yield posterior state beliefs: 

  (4.3) 

In this formulation, the D-vector acts as the prior in Bayes’ rule, while the observation 

model  is the likelihood. In future work or simulations with noisy or ambiguous 

observations (i.e., non-identity A-matrices), the D-vector could be adapted to encode 

informative priors or historical expectations about the environment’s initial configuration. 

  

Agents update their beliefs about the current state based on the most recent observation and 

their D-vector. Given the assumption of perfect observations (identity A-matrix), the 
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posterior belief collapses into a one-hot distribution centered on the observed state at each 

timestep. 

4.3 Agent Behavior and Learning Algorithm 

Each agent in the simulation operates as a belief-driven decision-making system. It selects 

actions by minimizing expected free energy (EFE) and updates its internal generative 

model based on observed outcomes. This section details the agent's inference, action 

selection, and learning processes.. 

4.3.1 State Inference 

At each timestep, the environment observes the current game state (e.g., CC, CD, DC, or 

DD). The environment initializes the game on the first trial by randomly selecting a joint 

outcome from all possible states. This reflects the agent's initial uncertainty and 

corresponds to a uniform prior over states. 

Upon receiving the observation, each agent updates its belief over hidden states using its 

prior (D-vector) and the observation model (A-matrix). Because we assume perfect 

perception, every observation tells the agent which state occurred. When the agent applies 

Bayes’ rule using its uniform prior and an identity‐matrix likelihood, all the probability 

mass collapses onto the observed state. In other words, the agent’s belief vector becomes 

“one-hot”: it assigns probability one to the observed state and zero to all others. This 

ensures that, before planning or learning, there is no ambiguity about which joint action 

just took place. From the second time step onward, the environment’s state is entirely 

determined by the actions taken by both agents (or all three in the 3A-IPD). The belief 

update remains deterministic: each observation directly specifies the new state, and the 

agent’s belief is updated using Bayes’ rule. 

 

4.3.2 Action Selection via Expected Free Energy 

The agent evaluates each possible option by computing its expected free energy (EFE) to 

choose an action. The EFE associated with an action a comprises two terms: a risk term 

and an epistemic value term. 
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The risk term is the KL divergence between the predicted future state distribution p(s′∣a) 

and the agent’s preferred distribution Pref(s). This term penalizes actions that are expected 

to lead to undesirable outcomes. 

The epistemic value is the entropy of p(s′∣a), which reflects how much uncertainty the 

action is expected to reduce. 

The expected free energy is calculated as: 

  (4.4) 

Here, γ (gamma) is a positive scalar that controls the influence of the epistemic term. 

The predicted distribution over the following states, p(s′∣a), is computed by marginalizing 

over the agent’s current belief  and its transition model B: 

    (4.5) 

In the two-agent setting,  is a one-hot vector due to perfect observation (since A=I), 

so this reduces to a single column of the B-matrix. The same logic applies in the 

three-agent version, although the state's dimensionality and transition space increases. 

Action selection is implemented by applying a softmax function over the negative expected 

free energy values: 

  (4.6) 

where α (alpha) is the policy precision. A higher value of α results in more deterministic 

behavior, while a lower value increases stochasticity, allowing for more exploratory 

actions. 

4.3.3 Transition Model Learning 

After taking an action and observing the resulting new state, each agent updates its internal 

transition model using a Dirichlet learning rule. The model maintains a pseudo-count 

tensor denoted as B(s', s, a), which stores the agent’s accumulated evidence about 

transitions from state s to state s', conditioned on action a. 
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At each timestep, the agent increments the pseudo-count corresponding to the observed 

transition by a small amount equal to the learning rate η (eta). Each time an agent sees a 

transition, it scales down all its previous transition counts by a factor of (1 – η), adds η to 

the count for the newly observed transition, and finally renormalizes so everything sums to 

one. This makes recent transitions count more while gradually “forgetting” older ones, like 

an exponential moving average over past experiences. 

After updating the pseudo-counts, the agent re-normalizes them to obtain a valid 

probability distribution over future states. This normalized B-matrix represents the agent’s 

learned model of how the environment evolves in response to its actions. 

Using fractional increments instead of full counts allows smoother and more gradual 

adaptation. The learning rate effectively controls how strongly new experiences influence 

the model: lower values lead to slower, more stable learning, while higher values allow 

faster adaptation but may increase overfitting. 

This learning mechanism enables agents to build increasingly accurate transition models 

over time and supports flexible adaptation in uncertain or dynamic environments. 

     

4.4 Experimental Design 

The experimental design aims to systematically explore how different cognitive and 

behavioral parameters affect cooperation's emergence and stability in two-agent (2A-IPD) 

and three-agent (3A-IPD) Active Inference simulations. This section details the parameters 

varied, the structure of the simulation runs, and how cooperation and agent dynamics are 

measured. 

4.4.1 Parameters and Conditions 

Three core parameters control each agent’s behavior: 

● Learning rate (η): Governs the speed of belief updating in the transition model via 

Dirichlet learning. Higher η results in faster adaptation but may overfit to recent 
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transitions. 

 

● Policy precision (α): Controls the determinism of the softmax action policy. Higher 

values make agents more deterministic in selecting actions that minimize EFE. 

 

● Epistemic weighting (γ): Controls the relative influence of entropy (uncertainty 

resolution) in the EFE computation. Higher γ promotes exploratory behavior. 

 

Simulation runs systematically to vary these parameters and investigate how cooperation 

emerges across different cognitive profiles. 

4.4.2 Simulation Setup 

Each simulation consists of repeated trials in which agents observe the current state, infer 

beliefs, select actions, receive the resulting state, and update their models.  

In the two-agent simulation, each agent chooses between “Cooperate” and “Defect.” The 

outcome state depends on the pair of actions. In the three-agent simulation, each agent still 

chooses between the same two actions, but the joint state space grows to 8 possible 

combinations (e.g., CCC, CCD, CDC, etc.). Transition learning and EFE computation are 

extended accordingly. 

 

4.5 Evaluation Criteria and Reproducibility 

This section outlines how the simulation outcomes are evaluated and how reproducibility is 

maintained across experimental runs. 

4.5.1 Evaluation Criteria 

The primary objective of the simulations is to investigate the emergence and stability of 

cooperation among agents under the Active Inference Framework. Quantitative and 

qualitative metrics evaluate agent behavior, internal learning dynamics, and strategic 

tendencies. 
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We assess our simulations through a combination of outcome‐level, behavioral, and 

internal‐state metrics illuminating how cooperation emerges, fluctuates, and stabilizes 

under Active Inference. At the most macroscopic level, we compute the final cooperation 

fraction, the percentage of rounds in which all agents simultaneously choose to cooperate, 

which gives a simple summary of collective success or failure. To unpack individual 

decision tendencies, we examine action‐selection frequencies, plotting how often each 

agent cooperates versus defects; this reveals whether any agent develops a strong bias 

toward one choice over the other. 

Beyond these overt behaviors, we track the evolution of each agent’s expected free energy 

(EFE) for cooperation and defection. By charting EFE as a function of trial number, we 

gain insight into the shifting balance between risk (pragmatic value) and uncertainty 

resolution (epistemic value) that underlies each decision. In parallel, we quantify learning 

progress by measuring the KL divergence between the agent’s learned transition model and 

its initial uniform prior. The rising divergence suggests that an agent’s Dirichlet counts 

converge towards specific state-action contingencies, establishing robust, 

experience-driven expectations. 

Although Active Inference does not directly maximize scalar rewards, we also record the 

cumulative sum of preference values encountered during play to gauge how well agents’ 

experiences align with their encoded utilities. To understand how performance depends on 

our key control parameters, we generate parameter‐sweep heatmaps that show mean 

cooperation rates across grids of learning rates, policy precision, or epistemic weighting; 

these visual summaries reveal the regions of parameter space most conducive to sustained 

cooperation. Finally, to connect our belief‐based framework with classical IPD heuristics, 

we mine agents’ action histories for Win-Stay, Lose-Shift, and Tit-for-Tat–style motifs. 

Identifying these emergent patterns demonstrates whether simple inferential rules can 

reproduce the strategic signatures found in decades of IPD research. These complementary 

measures provide a rich, multi‐level portrait of how belief updating, risk assessment, and 

exploration–exploitation trade-offs conspire to produce cooperative dynamics under Active 

Inference. 
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4.6 Software, Libraries, and Computational Setup 

The entire simulation framework was implemented in Python 3.10 using a modular 

architecture to ensure consistency and reproducibility. Core components such as the 

environment, agent logic, inference, learning, and visualization were organized into clearly 

separated modules. 

All simulations were run on a 2020 Apple MacBook Air with an Apple M1 chip (8-core 

CPU) and 8 GB of unified memory. Due to the efficiency of the model architecture and the 

modest computational demands of the parameter sweeps, all experiments were executed 

using CPU-based computation without the need for high-performance hardware. 

Random number generation was controlled using fixed seeds to ensure deterministic and 

replicable results across repeated runs. All key simulation parameters, including learning 

rates, action precision, epistemic weighting, and episode length, were explicitly defined, 

logged, and varied systematically during experimentation. 

The project used the following open-source libraries: 

● NumPy 1.24 for numerical computation and matrix operations, 

 

● Matplotlib 3.7 for plotting all visual outputs (time series, histograms, heatmaps, 

etc.), 

 

● SciPy 1.10 for computing Kullback–Leibler divergence via scipy.special.rel_entr. 

 

This setup enabled transparent, reproducible exploration of agent behavior under varied 

internal parameter configurations and interaction structures. 

 

 5. Results 
 

This chapter presents the empirical findings from our Active Inference simulations of the 

Iterated Prisoner’s Dilemma, beginning with the simplest two‐agent scenario. We first 
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demonstrate how two identical agents, each endowed only with generic priors and a shared 

learning rate, naturally progress through an “oscillate-defect-cooperate” sequence as they 

update their beliefs and refine their transition models over repeated play. This baseline 

establishes the characteristic learning trajectory that underlies all subsequent analyses. 

Building on the canonical “oscillate-defect-cooperate” trajectory, we next investigate how 

each of our three cognitive parameters, learning rate (η), policy precision (α), and 

epistemic weighting (γ), shapes cooperation. To do so, we vary one parameter at a time 

while holding the other two at reference settings that we determined from pilot sweeps. In 

particular, we fixed η = 0.6 because it produces neither trivial collapse into universal 

defection nor runaway cooperation, but rather a balanced mix of outcomes that makes 

subtler effects visible. With η locked at 0.6, we then explore a range of α values, from low 

to high precision, to see how the noisiness of action selection boosts or suppresses mutual 

cooperation, settling on a default of α = 6 for all subsequent experiments, since it lies in the 

mid‐range where cooperation is neither entirely random nor fully deterministic—finally, 

keeping both η = 0.6 and α = 6. For all our η and α‐sweeps, we hold γ = 0 (i.e., no 

epistemic drive). Then, when it’s time to explore γ itself, we start at γ = 0, corresponding to 

zero explicit curiosity, and increase it stepwise, so we can directly observe how an agent’s 

intrinsic drive to resolve uncertainty promotes cooperation. At each stage, we display 

heatmaps of the mean cooperation rate, overlay one‐sided t-test markers where 

cooperation significantly exceeds our 0.60 threshold, and discuss the resulting patterns in 

depth. 

Finally, we extend this parameter‐sweep protocol to the three‐agent environment, focusing 

exclusively on variations in learning rate. Holding action precision (α) and epistemic 

weighting (γ) at their pilot-justified reference values, we sweep η across the same grid and 

produce a corresponding series of heatmaps. Comparing these three-agent results to their 

two-agent counterparts allows us to isolate how increasing group size interacts with 

learning speed to promote or inhibit cooperation under Active Inference. 

 

 

5.1 Baseline Two-Agent Learning Trajectory 
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Before delving into how particular parameters modulate cooperation, it is crucial to 

establish the canonical learning dynamics that emerge when two otherwise identical Active 

Inference agents play the IPD with no extra randomness or curiosity bonus (here, η = 0.6, α 

= 6, γ = 0). Figure 5.1 presents the cumulative fraction of each joint action state over trials. 

Figure 5.1 Cumulative fractions of CC, CD, DC, DD over trials 

When we plot the cumulative state fractions for η = 0.6, α = 6, and γ = 0, we see that after 

the first random move, the agents settle into an alternating pattern of cooperation and 

defection (“oscillation”) for roughly the first fifty rounds. Following that, defection 

outcomes, especially mutual defection (DD), become more frequent for a time, reflecting 

how both agents’ still‐incomplete transition models briefly over‐weight the safety of 

defection. Only after about 100 trials does the learning signal finally tip the scales: the 

agents’ beliefs converge around the value of mutual cooperation, and CC quickly becomes 

the dominant outcome, climbing steadily to occupy over 50 percent of all plays by the final 

rounds. In other words, instead of a straightforward climb to cooperation, we observe an 

extended oscillatory phase, a secondary defection‐dominant phase, and a final transition 

into sustained cooperation driven by each agent’s ongoing belief updates and free‐energy 

minimization. 

 

It is instructive to examine the agents' expected free energy (EFE) over time for each 

policy to peek inside their reasoning as they learn to cooperate. Figure 5.2 plots, for a 

representative run (η=0.6, α=6, γ=0), the EFE that Agent 1 and Agent 2 assign to 

cooperation (blue) versus defection (red) at each trial. 
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What immediately stands out is the high degree of volatility in both curves during the first 

50–60 trials. Neither agent has much evidence about how their opponent will respond at 

this early stage, so their Dirichlet counts over the transition model remain nearly uniform. 

In this “unknowing” state, defection habitually carries the lower expected free energy, 

reflecting that defecting is the safer, easier way to secure immediate reward with uniform 

priors and no epistemic bonus. 

As play continues, however, each agent’s posterior over transition probabilities sharpens. 

We observe a series of brief inflection points in the blue curve, where the cooperation EFE 

momentarily dips below defection. These transient crossovers correspond exactly to the 

intermittent cooperative moves that give rise to the “oscillate” phase in their behavior. 

Each time an agent tests cooperation and sees it reciprocated, its model gains confidence 

that cooperation is not only possible but preferable, pulling the cooperative EFE 

downward. 

Eventually, around trial 130 in this example, a clear and sustained separation emerges: the 

EFE for cooperation settles firmly below the EFE for defection, and both agents thereafter 

persist in cooperating. From this point onward, the two curves flatten out in parallel, 

illustrating that both agents have reached a stable consensus in their beliefs and, 

consequently, their policy evaluations. 
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Figure 5.2 Expected Free Energy Trajectories for Both Agents 

Having seen how belief updating transforms cooperation from a high-risk gamble into the 

lowest-cost policy, these EFE trajectories reveal the precise inferential mechanics at work: 

first a period of oscillatory “testing,” then a phase dominated by defection as the model 

refines its priors, and finally a sustained turn toward cooperation once the cooperative EFE 

permanently undercuts defection. 

Because we just saw how expected free energy (EFE) trajectories predict when each agent 

settles on cooperation, it’s worth checking that those internal dynamics translate into 

different payoffs. In the first pair of panels, both agents share η = 0.6, α = 6, and γ = 0. 

Their EFE curves swung into alignment simultaneously, and, not surprisingly, their 

cumulative rewards rose in lockstep once CC became dominant. By trial 140, the line 

graphs have straightened into a steady cooperative slope, and the final bar chart shows 
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nearly identical totals (within a few points) for Agent 1 and Agent 2. (Figure 5.3 and 

Figure 5.4) 

 

Figure 5.3 Cumulative Rewards Over Time 

 

 

Figure 5.4 Total Cumulative Rewards per Agent 
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In the second experiment, everything stays the same except that Agent 2 learns more 

slowly (η = 0.2). This advantage for Agent 1 shows up directly in the reward curves: Agent 

1’s total climbs earlier and consistently outpaces Agent 2. The bar chart makes the gap 

plain: Agent 1 ends the run with a noticeably larger haul. (Figure 5.5 and Figure 5.6) 

 

Figure 5.5 Cumulative Rewards Over Time 

 

 

Figure 5.6 Total Cumulative Rewards per Agent 
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Putting these four plots side by side shows that when two agents infer and decide at the 

same speed, they almost earn the same rewards. A difference in learning rate alone, 

without touching any other decision parameters, shows how quickly an agent updates its 

beliefs under Active Inference, which can be just as consequential. 

Both agents’ learning trajectories, as measured by the KL divergence between their 

posterior Dirichlet parameters and the uniform prior, show the same basic pattern. Both 

divergences proliferate in the early rounds, indicating fast updating of expected state 

transitions, and then plateau once the agents have built accurate models of each other’s 

behavior. The near-identical divergence profiles confirm that, under these homogeneous 

settings, both agents converge on the same internal model at approximately the same rate 

(Figure 5.7).  

Figure 5.7 Learning Progress (KL Divergence from Uniform) 
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5.2 Mapping Two-Agent Cooperation Across Cognitive Parameters 

In the next part of our study, we move beyond the single‐run dynamics and ask: How 

robust is cooperation when the agents’ parameters are turned? In the two‐agent settings, 

we know that learning rate, policy precision, and epistemic drive each play a pivotal role, 

but how exactly do they shape the landscape of mutual cooperation? To answer this, we 

adopt a systematic sweep protocol. At each step, we hold two parameters at their 

pilot‐justified reference values (η=0.6, α=6, γ=0) and vary the remaining one across our 

predefined grid. This yields a family of heatmaps showing the mean joint‐cooperate rate 

over the η₁–η₂ plane (or α₁–α₂, γ₁–γ₂), with one‐sided t‐test markers highlighting regions 

where cooperation reliably exceeds our 0.60 threshold. We begin by charting the 

dependence on the learning rate itself, sweeping η₁ and η₂ before turning to policy 

precision and epistemic weighting. Together, these parameter sweeps reveal exactly where 

in parameter space Active Inference agents can sustain, amplify, or lose cooperative 

behavior in the two‐agent Iterated Prisoner’s Dilemma. 

 

5.2.1 Cooperation as a Function of Learning Rate 

To see how robust the cooperation dynamic is when the two agents adapt at different 

speeds, we ran a grid sweep over their learning rates η₁ (along the x-axis) and η₂ (along the 

y-axis), holding both action precision (α=6) and epistemic weight (γ=0) constant,  as 

demonstrated in the Figure 5.8. For each pair (η₁, η₂), we averaged the fraction of CC 

outcomes over 15 independent 500-trial runs. The resulting heatmap reveals a pronounced 

ridge of cooperation centered near the diagonal, indicating that agents who learn at similar 

rates are far more likely to settle into mutual cooperation than those whose learning speeds 

diverge. 

Cooperation remains limited when either agent learns very slowly. In that regime, both 

agents’ transition models linger close to their uninformative priors, making it impossible 

for them to form reliable expectations about one another’s behavior; mutual defection thus 

predominates. 
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As both agents increase their learning rates into the moderate range, roughly between 0.4 

and 0.7, their ability to align expectations improves dramatically. They accumulate enough 

experience to recognize and reinforce cooperative patterns, yet avoid overreacting to 

random fluctuations. At the sweet spot (η₁ = η₂ ≈ 0.6), cooperation peaks, with agents 

sustaining mutual cooperation in nearly eighty percent of interactions. This plateau of high 

cooperation extends across a contiguous band of balanced learning rates, indicating that 

reciprocity and trust can emerge organically when both parties adapt at comparable speeds. 

When learning rates become highly mismatched, the cooperative dynamic falters. A fast 

learner finds itself chasing the slow learner’s outdated beliefs. In contrast, the slow learner 

remains stuck in stale assumptions and asymmetry that erode reciprocal expectations and 

drive cooperation rates back. Interestingly, cooperation partially rebounds when both 

agents adopt high learning rates (around 0.8 to 0.9). 

 

 

Figure 5.8. Cooperation Rate vs. Learning Rates (η₁, η₂). The heatmap illustrates how two Active 

Inference agents, each updating their transition beliefs via Dirichlet learning, negotiate 

34 



 

cooperation in a repeated Prisoner’s Dilemma as a function of their learning rates, η₁ and η₂, 

under conditions of zero epistemic drive and high action‐selection precision. 

 

5.2.2 Cooperation as a Function of Policy Precision 

Precision sweep (Figure 5.9) displays how cooperation rates vary as a function of agents’ 

policy precision parameters (α₁ and α₂), with both agents sharing moderate learning rates 

(η₁ = η₂ = 0.6) and no explicit epistemic drive (γ = 0). Cooperation hovers around sixty to 

seventy percent along the lower edge of the precision spectrum when both α values lie 

around 5 or 6. In this regime, agents’ choices retain a degree of stochasticity that allows 

them to align on cooperative moves occasionally, but the weak precision also leaves them 

vulnerable to occasional defection. 

Cooperation peaks as both agents’ precision parameters rise into the mid‐range 

(approximately between 7 and 11). The single highest cooperation rate, around 0.79, 

occurs when α₁ ≈ 7 and α₂ ≈ 8. When the precision parameters become highly mismatched, 

one agent becomes very deterministic (α ≈ 14 or 15). At the same time, the other remains 

less precise; cooperation rates drop back into the forty‐to‐sixty percent range. The more 

deterministic agent locks in on its policy, leaving little room for responsive adaptation to a 

more exploratory partner. Interestingly, cooperation rebounds somewhat at the top end of 

the precision scale (both α around 14–15), climbing back toward the mid‐sixty percent 

range. Both agents are nearly deterministic, so they tend to persist once a cooperative 

pattern is established. However, the lack of flexibility also leads to stubborn defection 

phases if expectations misalign. 

Overall, these results underscore that Active Inference agents tuned to moderate‐high and 

well‐matched precision parameters can sustain robust cooperation without an explicit drive 

to explore—too little precision yields noisy interactions, while too much or mismatched 

precision risks brittle coordination. The sweet spot lies in the mid‐range, where agents can 

reliably anticipate one another without becoming overly rigid. 
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Figure 5.9 Cooperation Rate vs. Policy Precision (α₁, α₂)  

5.2.3 Epistemic Weighting (γ) Sweep  

The heatmap in Figure 5.10 reveals how agents’ relative balance between goal‐directed 

exploitation and information‐seeking exploration, captured by their epistemic weightings 

γ, shapes cooperative dynamics when both learning rates (η=0.6) and decision precisions 

(α=6) are held constant. When neither agent places value on reducing uncertainty (γ≈0), 

cooperation is already quite strong, with mean rates around seventy percent, as they rely 

purely on updating transition beliefs through Dirichlet learning. Introducing a small dose 

of epistemic drive on one or both sides can further boost cooperation: the highest observed 

rate (~0.76) occurs when one agent’s γ is very low (around 0.1). At the same time, the 

other is modest (around 0.4), and a similarly high plateau emerges for combinations in the 

region γ≈0.1–0.3. In this regime, limited curiosity helps agents refine their models just 

enough to reinforce mutual cooperation without destabilizing established expectations. 

However, as both agents increase their epistemic weighting beyond this sweet spot, 

cooperation begins to wane. When γ climbs above roughly 0.5 for one or both agents, 
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mean cooperation rates drift toward the 0.50–0.60 range, indicating that excessive 

exploration can distract agents from consolidating cooperative norms. At the extreme, 

when both agents assign full weight to reducing uncertainty (γ=1), cooperation drops 

below fifty percent, reflecting a kind of over‐exploration in which agents continually 

probe rather than exploit stable reciprocal strategies. In addition, significant disparities in 

epistemic drive (for instance, an agent with γ≈0.9 paired with another at γ≈0.2) result in 

merely moderate cooperation, since the differing exploratory motivations diminish the 

common understanding expectations. 

Overall, these results suggest that a balanced injection of epistemic value, enough to 

correct false beliefs but not so much as to chase novelty perpetually, can enhance 

cooperative behavior beyond what purely exploitative policies achieve. Too little 

uncertainty reduction prevents agents from discovering nuanced patterns in their partner’s 

behavior, while too much leads to oscillatory dynamics that undermine the trust needed for 

sustained cooperation. 

 

Figure 5.10 Cooperation Rate vs. Epistemic Weighting (γ₁, γ₂) 
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5.3 Emergent Strategy Patterns 

To probe whether agents recover well-known IPD heuristics, such as Pavlov (Win–Stay, 

Lose–Shift) or reciprocal tit-for-tat tendencies, we computed the following conditional 

probabilities over trial sessions: 

● P(C | C): likelihood of cooperating given cooperation in the previous round 

 

● P(D | D): probability of defecting given defection in the previous round 

 

● Win–Stay: probability of repeating the previous action when that action yielded a 

“win” (i.e., highest payoff) 

 

● Lose–Shift: probability of switching actions after a “loss” (i.e., lowest payoff) 

Across the four learning‐rate conditions used in this experiment (η = 0.1, 0.4, 0.6, 0.8), we 

see a clear shift in how agents respond to both cooperative and defective outcomes and 

how reliably they adhere to “win‐stay” and “lose‐shift” heuristics relative to what would 

be expected by chance (0.5) (Table 5.1). 

When learning is very slow (η = 0.1), agents rarely sustain cooperation after a cooperative 

move: the observed probability of cooperating given the partner cooperated sits at just 

0.40, a value significantly below chance (t = –9.36, p < 0.001). By contrast, they are very 

consistent in reciprocating defection, with P(D|D) ≈ 0.65 (t = 10.03, p < 0.001). Likewise, 

“win‐stay” behavior is robust (mean = 0.61, t = 6.48, p < 0.001) and “lose‐shift” remains 

above chance (mean = 0.57, t = 4.26, p < 0.001), suggesting that even sluggish learners 

still adhere to simple outcome‐based rules, but struggle to build cooperative momentum. 

With a moderate learning rate (η = 0.4), the probability of sustaining cooperation climbs to 

0.59 (SEM = 0.047), though it narrowly misses statistical significance (t = 1.90, p = 0.067). 

Defection reciprocity falls slightly below the half‐chance threshold (mean = 0.57, p = 

0.132), indicating a breakdown of predictable punishment. At the same time, “win‐stay” 

remains strong and statistically reliable (mean = 0.67, t = 3.83, p = 0.001), while 

“lose‐shift” dips below chance (mean = 0.46, p = 0.286), suggesting that agents become 

somewhat less inclined to switch strategies following a loss. 

38 



 

When learning accelerates further (η = 0.6), agents begin to lock in on cooperative 

reciprocity once more: P(C|C) reaches 0.64 and just achieves significance (t = 2.05, p = 

0.05), while P(D|D) falls markedly below chance (mean = 0.37, t = –2.68, p = 0.012), 

reflecting a surprising unwillingness to punish defection. Both “win‐stay” (mean = 0.67, t 

= 2.54, p = 0.017) and “lose‐shift” (mean = 0.37, t = –3.18, p = 0.004) are statistically 

significant, but now in opposite directions: agents tend to persist after wins yet are 

exceptionally slow to adapt after losses. 

At the highest learning rate tested (η = 0.8), cooperative stickiness continues to 

strengthen—P(C|C) = 0.68, p = 0.013—while defection reciprocity remains low (P(D|D) = 

0.34, p = 0.005). “Win‐stay” behavior is still above chance (mean = 0.66, p = 0.034), but 

“lose‐shift” shows no reliable deviation from 0.5 (mean = 0.44, p = 0.270). 

 

Metric η = 0.1 η = 0.4 η = 0.6 η = 0.8 

P(C∣C) mean 0.401 0.589 0.639 0.679 

P(C∣C) p-value <0.001 0.067 0.050 0.013 

P(D∣D) mean 0.652 0.573 0.371 0.340 

P(D∣D) p-value <0.001 0.132 0.012 0.005 

Win–Stay mean 0.609 0.666 0.669 0.657 

Win–Stay 
p-value 

<0.001 0.001 0.017 0.034 

Lose–Shift 
mean 

0.573 0.463 0.368 0.437 

Lose–Shift 
p-value 

<0.001 0.286 0.004 0.270 

 

Table 5.1 Mean strategy statistics and one‐sided p‐values for four behavioral metrics across 

learning rates 

Taken together, these findings paint a nuanced picture: slow learners default to defection 

but still follow simple win‐stay/lose‐shift rules, moderate learners begin to cultivate 

cooperation albeit unevenly, and fast learners reinforce cooperation after mutual 
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cooperation yet become highly forgiving of defections persisting in “win‐stay” while 

largely abandoning “lose‐shift.” This suggests that increasing the learning rate enhances 

cooperative stickiness at the expense of punitive consistency, and that the balance of these 

tendencies depends critically on how rapidly agents update their transition beliefs. 

5.4 Three-Agent simulation 

Here, we turn to our three‐agent simulations and begin by examining how often the group 

settles into full cooperation over play. As in the two‐player case (Sect. 5.1), we track the 

“cooperation fraction”, the proportion of trials where all three agents choose cooperation 

across the run. This metric provides a straightforward readout of whether and when the 

network escapes the temptation to defect and converges on the socially optimal outcome. 

(Figure 5.11) 

Because we’ve already seen (in Sect. 5.1) how homogeneous learning rates, high 

action‐precision, and zero epistemic weighting lead two agents to 

oscillate-defect-cooperate, here we ask: under those same parameter settings (η = 0.6, α = 

6, γ = 0), does a trio of identical AIF agents manage to coordinate on CCC (all cooperate) 

state, or does the extra strategic uncertainty introduced by a third player inhibit that 

transition? The plot below shows the trial‐by‐trial cooperation fraction for our canonical 

three‐agent configuration. 

 

Figure 5.11 Cumulative and Rolling Triple Cooperation Dynamics (3-Agent IPD) 

40 



 

When three identical agents (η=0.6, α=6, γ=0) play the iterated dilemma, the early rounds 

are dominated by one‐off mixed outcomes, particularly states where one agent defects 

against two cooperators, but these quickly give way to a slow build‐up of full cooperation 

(CCC). CCC becomes one of the most frequent patterns by mid-experiment, though it 

never completely eclipses the other outcomes. In the latter stages, cooperation gradually 

loses ground as mass defection (DDD) climbs back to prominence. 

CCC's rolling-window view shows this arc: cooperation starts rare, rises to a clear peak in 

the middle trials, and then declines toward the end. In sum, three-way coordination can 

emerge under these parameters, but it remains transient, with collective defection 

ultimately reclaiming dominance. 

With only the inverse‐precision doubled from 6 to 12, the three‐agent system rapidly locks 

into cooperation (Figure 5.12). In the cumulative plot, all eight asymmetric and 

defection‐heavy states that dominated the early trials are swept away by trial 50, and 

“CCC” rises to well over 80 % of all outcomes by mid‐experiment. "DDD" collapses 

towards zero in perfect synchronicity. 

The rolling‐window view makes this even clearer: CCC climbs steeply from its first 

appearances to hit and sustain a perfect 1.0 fraction for long stretches between trials 60 and 

180 (with only a brief dip back to ≈0.85). In short, increasing α made the agents more 

decisive in favor of cooperation, producing a stable, virtually unshakable cooperative 

equilibrium. 

 

Figure 5.12 Cumulative and Rolling Triple Cooperation Dynamics (3-Agent IPD) 
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5.4.1 Learning rate sweep in three-agent simulation 

In the three‐agent extension of our iterated Prisoner’s Dilemma, each player’s ability to 

learn from past outcomes can dramatically reshape the group’s cooperative dynamics. In 

the two‐agent case, cooperation often emerges smoothly, but adding a third learner 

introduces new tensions: one player’s learning speed can either reinforce or undermine the 

others’ inclinations to cooperate. In this section, we explore how varying the learning rate 

η₃ of the third agent modulates the overall cooperation landscape as a function of the first 

two agents’ learning rates (η₁ and η₂). The resulting contour plots provide a clear visual 

map of these spots of cooperation, highlighting how moderate pacing in one learner can 

upset otherwise stable cooperative outcomes. 

As demonstrated in Figure 5.13, you notice that at η₃ low (0.10) the entire plane is pale 

yellow, indicating that when the third agent learns very slowly, triadic cooperation rarely 

takes hold regardless of the other two rates. η₃ modest (0.30): A small patch of 

greenish-blue emerges near the mid-range of η₁ and η₂, showing that moderate learning by 

the third agent lets all three reach cooperation but only in a narrow band of learning-rate 

combinations. η₃ intermediate (0.50): That cooperative patch widens and deepens; now a 

broader swath of η₁ ≈ 0.4–0.6 and η₂ ≈ 0.3–0.7 sustains higher CCC fractions, while edges 

remain yellow. η₃ higher (0.70): Cooperation peaks most sharply: a pronounced dark-blue 

appears at mid-range η₁/η₂, revealing that faster but not too fast learning by the third agent 

optimally aligns all three. η₃ very high (0.90): The blue region disappears once more 

toward just a few areas, indicating that when the third agent learns almost immediately, it 

again disrupts coordination except in limited parameter combinations. 
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Figure 5.13 Three-Agent Cooperation Rate Across Learning‐Rate Anchors 

6.  Discussion 

In this chapter, we interpret our simulation results in the context of Active Inference theory 

and prior work on cooperation in repeated social dilemmas. We first revisit the baseline 

two‐agent dynamics, then unpack how each cognitive parameter, learning rate (η), policy 

precision (α), and epistemic weighting (γ), shapes cooperative outcomes. We examine the 

effects of scaling from two to three agents, and finally reflect on broader implications, 

limitations, and avenues for future research. 

6.1 Revisiting Baseline Two-Agent Dynamics 

Our canonical two-agent simulation under η = 0.6, α = 6, and γ = 0 produced a 

characteristic three-phase progression: an initial oscillatory interplay of cooperation and 

defection, a transient surge in unilateral defection, and finally sustained mutual 

cooperation. In the early trials, agents’ beliefs about the transition model (B-matrix) remain 

near their uniform priors, rendering both “cooperate” and “defect” similarly plausible. As a 

result, CD and DC outcomes alternate under maximally uncertain EFE calculations. As the 

Dirichlet learning continues, agents develop sharper expectations. As the trials progress, 

the risk term of EFE begins to favor cooperation modestly, triggering an increase in CC 

events. Consequently, CC frequency ramps up rapidly. Agents effectively discover that 
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cooperation best satisfies their C-vector preferences while minimizing free energy. The 

cooperation rate fluctuates around a stable level. 

As agents cooperate more often, their total reward (payoffs) rise faster than during the 

earlier, more exploratory phase. At first, mutual cooperation (CC) is rare, so testing 

defection still looks “safe” in the EFE calculation. But once enough CC trials have 

occurred, the extra reward from each new cooperative turn outweighs the occasional 

benefit of exploring defection. From that point onward, the agents’ free-energy 

minimization consistently favors cooperation, and we see their cumulative reward curves 

steepen exactly when CC frequency jumps (Figure 5.3). This positive feedback locks in a 

high‐cooperation regime for the rest of the simulation. 

 

6.2 The Role of Learning-Rate Symmetry 

When we swept η₁ and η₂ jointly, a marked prominence of intensive coordination emerged 

along the diagonal where η₁ ≈ η₂. Outside this band, cooperation collapsed into persistent 

defection, prolonged oscillation. This demonstrates that symmetry in the pace of belief 

updating is critical: if one agent learns much faster, it “gets ahead” of its partner, 

over‐committing to a transition model that the slower learner cannot yet track which 

breaks the conditions for the typical oscillatory period that leads to cooperation (CC), 

which occurs when agents are cooperate simultaneously (Demekas et al., 2023). The result 

is a mismatch in predicted payoffs and an inability to lock into reciprocal CC.  

When one agent learns much faster than its partner, its transition model “outpaces” the 

slower learner’s beliefs, so the two never build a shared expectation of what comes next, 

and cooperation breaks down. In contrast, when both agents update at similar rates, their 

B‐matrices drift together, allowing mutual predictions to align and cooperation to take 

hold. In other words, it isn’t how quickly agents learn in isolation, but how closely their 

learning speeds match that determines whether they can lock into a cooperative 

equilibrium.  
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6.3 Action-Precision and the Exploration–Exploitation Trade-off 

The action‐precision sweep revealed an inverted‐U pattern in mean cooperation rates: 

when α is very low (around 5–6), agents remain overly stochastic, so exploratory behavior 

dominates and there is insufficient exploitation of nascent cooperative cues, keeping CC 

rates near 0.60. As α increases into the mid‐range (7–12), cooperation peaks, mean CC 

rises into the 0.70 – 0.83 band because the softmax becomes sharp enough to capitalize on 

emerging free‐energy gradients while allowing occasional exploration to avoid premature 

lock‐in. However, pushing α beyond about 12 makes action selection overly deterministic: 

agents simply repeat whichever action enjoyed a slight early advantage, losing the 

flexibility needed to adapt to beneficial cooperation norms or to break defection 

stalemates. From an Active Inference standpoint, α scales the influence of negative 

expected free energy on choice probabilities, so that small values flatten the distribution 

(excessive exploration) and large values collapse it (excessive exploitation). Our findings 

align with Parr et al. (2022), who argue that precision tuning is essential for striking the 

right exploration–exploitation balance in uncertain environments. 

 

6.4 Epistemic Weighting: Curiosity Versus Stability 

Varying epistemic weighting (γ) revealed that some epistemic drive (γ≈0.2–0.4) accelerates 

the discovery of CC by favoring uncertainty-reducing actions, leading to higher peak 

cooperation. However, excessive epistemic weight (γ > 0.5) destabilized the cooperative 

regime: agents over-prioritized information gain at the expense of exploiting known 

cooperative payoffs, resulting in renewed oscillation or defection. Conversely, γ = 0 (our 

baseline) yielded slower but more stable cooperation. 

These results underscore the dual role of EFE: balancing pragmatic risk (alignment with 

C-preferences) and epistemic value (uncertainty reduction). Real-world agents likely 

require moderated curiosity; too little and they fail to explore beneficial norms, too much 

and they never settle. 
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6.5 Emergence of Classical Heuristics 

Across the range of learning rates we examined, a clear pattern emerges in how agents 

anchor their simple strategies to the dynamics of cooperation and defection. When learning 

is very slow (η=0.1), agents rarely sustain cooperation, P(C|C) sits well below chance, yet 

they reliably punish defection and adhere firmly to win-stay/lose-shift rules. As the 

learning rate increases to a moderate level (η=0.4), we see a marked increase in 

cooperative reciprocity and continued strength in win-stay behavior, albeit with less 

predictable punishment after defection and a weakening of lose-shift. With elevated 

learning rates (η=0.6 and 0.8), agents exhibit increased "stickiness" in cooperation: P(C|C) 

substantially exceeds chance levels, win-stay remains strong, while P(D|D) drops below 

chance, leading to the near-complete disappearance of lose-shift. In other words, quicker 

updates enhance cooperative inertia, sacrificing consistent retaliation or strategy changes 

following a loss. These results suggest that increasing the speed of belief updating helps 

agents lock in cooperation. Still, it also makes them overly forgiving, reducing the 

effectiveness of punitive or corrective responses. For modeling social dilemmas, this 

implies that tuning the learning rate is crucial: too slow, and cooperation never takes hold; 

too fast, and agents lack the flexibility to correct misunderstandings, potentially leaving 

them vulnerable to exploitation or coordination failures. 

 

6.6 Scaling Up: Three-Agent Dynamics 

Adding a third agent under the same baseline parameters (η=0.6, α=6, γ=0) reduced 

sustained cooperation: CCC fractions peaked briefly mid-run but collapsed to DDD. This 

highlights that larger groups introduce strategic uncertainty that two‐agent pairs can easily 

overcome. 

However, increasing α to 12 reinstated long‐lived CCC coordination: higher decisiveness 

counteracts the combinatorial explosion of state possibilities in three-player IPD. 

Learning-rate sweeps in the three-agent setting showed a narrower η₃ band (≈0.5–0.7) that 

supports cooperation, misaligned η₃ again derails group synchrony. These findings mirror 

empirical observations that cooperation declines with group size (Martínez-Martínez & 

Normann, 2022) unless cognitive parameters are finely tuned. 
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6.7 Broader Implications, Limitations, and Future Directions 

Together, our results demonstrate that Active Inference provides a principled mechanism 

for emergent cooperation: agents need only maintain and update simple generative models, 

with no need for prescriptive strategy tables or external reward shaping. Identifying “sweet 

spots” in η, α, and γ offers actionable guidelines for designing artificial agents in 

cooperative tasks from swarm robotics to decentralized economic models. 

Despite the breadth of our simulations, several vital limitations temper the generality of 

these findings. First, we treated each agent’s C-vector—their payoff preferences—as fixed 

throughout every run. In many real-world dilemmas, however, an individual’s valuation of 

cooperation versus defection can evolve with experience, reputation effects, or changing 

stakes. Allowing preferences to adapt or become state-dependent would more faithfully 

capture the dynamic motivational landscapes that shape social behavior. 

Second, our experiments remain confined to small, homogeneous groups; only two or three 

agents, each sharing the same cognitive parameters. Scaling to larger, heterogeneous 

populations will introduce combinatorial growth in the joint state-action space and more 

complex interaction patterns, demanding more efficient inference algorithms or structured 

approximations. 

Finally, although we swept each cognitive parameter (learning rate, policy precision, 

epistemic weighting) individually and plotted the results, we did not perform full factorial 

sweeps that vary all three simultaneously. Such high-dimensional exploration could reveal 

critical interactions or non-linear regime parameter combinations that encourage 

cooperation only when tuned together and remain hidden under one-at-a-time analyses. 

Addressing these gaps represents a clear path forward for future Active Inference models 

of multi-agent cooperation. 

 

We can simplify our next steps in three ways for future work. First, let agents’ preferences 

change over time instead of staying fixed, so they can learn to value cooperation more after 

good experiences or be punished for defection. Second, move beyond just two or three 

identical agents: try larger groups with different learning speeds and decision noise, using 

more innovative inference methods to keep computation manageable. Third, instead of 
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tweaking one parameter at a time, run full‐grid sweeps over learning rate, precision, and 

curiosity; this will show us how these factors interact to produce cooperation. Finally, 

testing our model against human data would be valuable, linking η, α, and γ to objective 

measures of how fast people learn, how noisy their choices are, and how much they seek 

new information. 

7.  Conclusion 

In this thesis, we set out to explore how agents driven purely by Bayesian belief‐updating 

and free‐energy minimization can learn to cooperate in the Iterated Prisoner’s Dilemma. 

Building a simple Active Inference framework where agents maintain and update a 

transition model (B‐matrix), hold fixed payoff preferences (C‐vector), and select actions 

via a softmax over negative expected free energy. We showed that cooperation can emerge 

without hard‐coded strategies or external reward shaping. 

Our main findings can be summed up as follows. First, two‐agent simulations reveal a 

robust “oscillate–defect–cooperate” progression: early exploration gives way to a 

temporary surge in unilateral defection before agents lock into sustained mutual 

cooperation. Second, sweeping the learning rate reveals that matched learning speeds are 

critical when agents update at similar rates, synchronize their beliefs, and achieve higher 

cooperation; severe mismatches push them into persistent defection. Third, 

action‐precision exhibits an inverted‐U relationship, where intermediate precision best 

balances exploration and exploitation to maximize collaboration. Finally, across our 

sweeps, Pavlovian Win–Stay, Lose–Shift behavior arises organically from Dirichlet 

updating plus softmax choice, but it is strongest in the low-to-moderate learning regime. 

When η is very high, beliefs solidify so quickly that agents stop reacting reliably to losses, 

and the full heuristic fades. Extending our framework to three agents showed that larger 

groups can still cooperate, but only under suitably tuned learning rates, and that 

maintaining belief‐alignment across more players becomes increasingly challenging. 

Together, these results establish Active Inference as a principled, unified approach to 

modeling cooperation under uncertainty. Rather than prescribing behavior, AIF allows 

cooperative norms to self‐organize through continuous inference and preference‐driven 

exploration. This opens up promising avenues for studying social decision‐making in more 

complex or realistic settings by allowing preferences to adapt, scaling to larger and more 
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diverse populations, and jointly tuning multiple cognitive parameters. Grounding these 

simulations in human behavioral data would further bridge theory and experiment. In sum, 

belief‐driven learning under the Free Energy Principle reproduces well‐known strategic 

patterns and offers new insights into how cooperation can emerge and stabilize in dynamic 

social environments. 
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Appendix 

Appendix A: Simulation and Model Details 

All code used for simulation, analysis, and figure generation in this thesis is publicly 

available at: Project files 

This appendix provides the core functions and definitions to simulate the Iterated 

Prisoner’s Dilemma (IPD) under the Active Inference framework for the two-agent 

simulation. The following code snippets define the environment, the agent class, and the 

helper routines needed to run and analyze simulations. Use the GitHub code to access the 

full code for both two- and three-agent simulations. 

A.1 IPD Environment Definition 

import numpy as np 
 
class IPDEnvironment: 
    """ 
    Iterated Prisoner's Dilemma Environment: 
    - States are encoded as integers: 
        0: CC (both cooperate) 
        1: CD (agent1 cooperates, agent2 defects) 
        2: DC (agent1 defects, agent2 cooperates) 
        3: DD (both defect) 
    - The step function updates the state based on the two agents' actions. 
    """ 
    def __init__(self): 
        self.state = None 
        self.reset() 
 
    def reset(self): 
        # Initialize to a random state for the first trial 
        self.state = np.random.choice(4) 
        return self.state 
 
    def step(self, a1, a2): 
        # Map action pair (a1,a2) to next state 
        if   (a1 == 0 and a2 == 0): self.state = 0 
        elif (a1 == 0 and a2 == 1): self.state = 1 
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        elif (a1 == 1 and a2 == 0): self.state = 2 
        else:                       self.state = 3 
        return self.state 

 

A.2 Active Inference Agent Class 

import numpy as np 
from scipy.special import rel_entr  # For KL divergence 
 
class ActiveInferenceAgent: 
    """ 
    Active Inference agent for the IPD. 
    - Learns transition probabilities (B) using Dirichlet pseudo-counts (pB). 
    - Observes states via a deterministic likelihood (A = identity). 
    - Selects actions by minimizing full Expected Free Energy: 
        EFE = Risk - gamma * EpistemicValue 
    """ 
    def __init__(self, name, C, alpha=4.0, eta=0.3, gamma=1.0): 
        self.name = name 
        self.alpha = alpha    # Softmax precision (action-selection sharpness) 
        self.eta = eta        # Learning rate for Dirichlet updates 
        self.gamma = gamma    # Weight on epistemic value 
 
        # Prior preferences over states (softmax-normalized) 
        self.C = C 
        self.Pref = np.exp(self.C) 
        self.Pref /= np.sum(self.Pref) 
 
        # Dirichlet counts and transition model 
        self.pB = np.ones((4, 4, 2))  # Prior pseudo-counts 
        self.B  = np.zeros((4, 4, 2)) # Normalized transition probabilities 
        self._normalize_B() 
 
        # Observation model: perfect mapping from state to observation 
        self.A = np.eye(4) 
 
        # Prior over latent states (uniform) 
        self.D = np.ones(4) / 4 
        self.qs = self.D.copy()  # Posterior belief over states 
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    def _normalize_B(self): 
        # Normalize Dirichlet counts to probabilities 
        for old_s in range(4): 
            for action in range(2): 
                counts = self.pB[:, old_s, action] 
                self.B[:, old_s, action] = counts / (np.sum(counts) + 1e-15) 
 
    def observe_and_infer_state(self, obs_state): 
        # Update beliefs about hidden state given new observation 
        likelihood = self.A[obs_state, :] 
        posterior = likelihood * self.D 
        self.qs = posterior / (np.sum(posterior) + 1e-15) 
 
    def compute_negEFE_for_action(self, a): 
        """ 
        Compute negative Expected Free Energy for action a: 
        negEFE = -(Risk - gamma * EpistemicValue) 
        """ 
        eps = 1e-8 
        # Predict next state distribution 
        pred_states = sum(self.qs[s] * self.B[:, s, a] for s in range(4)) 
        # Risk = KL(pred_states || Pref) 
        risk = np.sum(pred_states * (np.log(pred_states + eps) - np.log(self.Pref + eps))) 
        # Epistemic value = entropy of predicted observations 
        pred_obs = self.A.dot(pred_states) 
        entropy = -np.sum(pred_obs * np.log(pred_obs + eps)) 
        # Return negative EFE for use in softmax 
        return -(risk - self.gamma * entropy) 
 
    def select_action(self): 
        # Softmax decision rule over negative EFE 
        negEFE_C = self.compute_negEFE_for_action(0) 
        negEFE_D = self.compute_negEFE_for_action(1) 
        logits = np.array([negEFE_C, negEFE_D]) * self.alpha 
        probs = np.exp(logits) / np.sum(np.exp(logits)) 
        return np.random.choice([0, 1], p=probs) 
 
    def update_transition_model(self, old_state, action, new_state): 
        # Apply decay to Dirichlet counts 
        self.pB[:, old_state, action] *= (1 - self.eta) 
        # Increment count for observed transition 
        self.pB[new_state, old_state, action] += self.eta 
        # Renormalize to get updated B 
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        self._normalize_B() 

 

A.3 Simulation Helper Functions 

import numpy as np 
 
# Runs one IPD simulation and returns action histories 
# Uses global defaults: default_N, default_alpha1/2, default_gamma 
 
def run_simulation_with_history(eta1, eta2, gamma): 
    agent1 = ActiveInferenceAgent("A1", C=np.array([3,0.5,4,1]), 
                                  alpha=default_alpha1, eta=eta1, gamma=gamma) 
    agent2 = ActiveInferenceAgent("A2", C=np.array([3,4,0.5,1]), 
                                  alpha=default_alpha2, eta=eta2, gamma=gamma) 
    env = IPDEnvironment() 
 
    a1_hist, a2_hist = [], [] 
    s_old = env.reset() 
 
    # Initial random moves 
    for t in range(default_N): 
        if t == 0: 
            a1, a2 = np.random.choice([0,1]), np.random.choice([0,1]) 
        else: 
            agent1.observe_and_infer_state(s_old) 
            agent2.observe_and_infer_state(s_old) 
            a1, a2 = agent1.select_action(), agent2.select_action() 
        s_new = env.step(a1, a2) 
        agent1.update_transition_model(s_old, a1, s_new) 
        agent2.update_transition_model(s_old, a2, s_new) 
        a1_hist.append(a1); a2_hist.append(a2) 
        s_old = s_new 
 
    return np.array(a1_hist), np.array(a2_hist) 
 
# Computes four behavioral metrics from action histories 
 
def compute_tft_wsls(a1, a2): 
    payoff = {(0,0):3, (0,1):1, (1,0):4, (1,1):2} 
    cc, dd = 0, 0 

56 



 

    cc_tot, dd_tot = 0, 0 
    win_stay, lose_shift = 0, 0 
    win_tot, lose_tot = 0, 0 
 
    for t in range(1, len(a1)): 
        prev = (a1[t-1], a2[t-1]) 
        curr = a1[t] 
        # Pavlovian tit-for-tat counts 
        if prev[1] == 0: 
            cc_tot += 1 
            cc += int(curr == 0) 
        else: 
            dd_tot += 1 
            dd += int(curr == 1) 
        # Win-Stay/Lose-Shift counts 
        own_payoff = payoff[prev] 
        alt_payoff = payoff[(prev[1], prev[0])] 
        if own_payoff >= alt_payoff: 
            win_tot += 1 
            win_stay += int(curr == a1[t-1]) 
        else: 
            lose_tot += 1 
            lose_shift += int(curr != a1[t-1]) 
 
    return { 
        "P(C|C)":    cc/cc_tot    if cc_tot    else np.nan, 
        "P(D|D)":    dd/dd_tot    if dd_tot    else np.nan, 
        "Win-Stay":  win_stay/win_tot  if win_tot  else np.nan, 
        "Lose-Shift": lose_shift/lose_tot if lose_tot else np.nan 
    } 

 

Appendix B: Generative Model and Inference Equations 

In this appendix, we present the mathematical foundations of the Active Inference 

simulations used in this thesis, including: 1) the generative POMDP model; 2) Bayesian 

state inference; 3) learning via Dirichlet updates; and 4) action selection via Expected Free 

Energy (EFE). 
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B.1 Generative Model 

Two‐Agent IPD Generative Model 

We model the Iterated Prisoner’s Dilemma (IPD) as a discrete-time observable Markov 

decision process with four latent states  (CC, CD, DC, DD) and two actions 

 (cooperate, defect). The generative model comprises: 

● Observation model : a  likelihood matrix , here taken as 

identity ( ) to reflect perfect observation of the latent state. 

● Transition model , where . 

Here  and , so B has shape . 

● Preference (C-vector) , with one raw “log‐preference” entry per state. 

For two agents we set: 

  

so that  and .  

● Prior over initial states (D-vector) , here uniform: 

 reflecting complete uncertainty at the start of the simulation. 

Three‐Agent IPD Generative Model 

When we extend to three interacting players, there are now  possible joint 

outcomes, which we index in order as: 

 

Each agent still has two actions (cooperate = 0 or defect = 1), but the latent‐state space 

grows to size 8. The generative model for each agent i is: 

● Observation model , again the identity matrix, so .  

● Transition model , with entries 

 so  has shape . 
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● Preference (C-vector) , one scalar per joint outcome. We assigned 

 

so that the single‐defector payoff is , the sole‐sucker S=0.5, mutual 

cooperation , full defection , and all other mixed profiles receive the 

intermediate value 2.5. These choices still respect  and 

. 

● Prior over initial states (D-vector) , uniform: 

  

In both cases, the agent begins with uniform B and D ;maximally uncertain, then refines B 

via Dirichlet updating (with decay) and selects actions by minimizing Expected Free 

Energy under its learned generative model. 

 

 

B.2 Bayesian State Inference 

At each trial, after observing , the agent updates its posterior belief  according 

to Bayes’ rule: 

 

and normalizes so that  

 

B.3 Learning via Dirichlet Updates with Decay 

To learn the transition model, agents maintain a pseudo‐count tensor  and 

update it after each observed transition under action according to: 
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Where: 

● η ∈ [0,1] is the learning rate (controls decay of past counts and incorporation of 

new evidence) 

 

● The factor (1 - η)  implements decay, allowing older counts to fade. 

Afterwards, the transition probabilities are normalized: 

 

Conjugacy ensures the posterior remains Dirichlet after each update. 

 

B.4 Expected Free Energy and Action Selection 

Agents select actions by minimizing the Expected Free Energy (EFE), which trades off 

Risk (preference fulfilment) and Epistemic value (information gain): 

1. Risk: 

 

2. Epistemic value: 

 

Where the predicted next‐state distribution is: 

 

And  

The full EFE is then: 
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with epistemic weighting with  

Finally, a softmax over the negative EFE yields the policy: 

 

Where policy precision α>0 tunes the determinism of action sampling. 

● Higher : more deterministic (greedy) choice of minimal EFE actions. 

● Higher : greater drive for reducing uncertainty (exploration). 

 

 

Appendix C: Use of Artificial Intelligence Tools 

In preparing this thesis, AI-based writing assistants were used in accordance with the 

Rector’s Directive No. 2/2024 on the Responsible Use of AI Tools at Comenius University. 

Below is a summary of the relevant provisions and how they were applied: 

1. Permitted Uses 

 

○ AI tools were employed exclusively to support drafting and editing text 

(e.g., rephrasing, grammar checks), in line with Article II.1 of the Directive. 

 

○ No AI tool was used to compose entire substantive passages, formulate 

original arguments, or replace the author’s independent scholarly work 

(Article II.2). 

 

2. Verification and Transparency 

 

○ The author carefully reviewed and, where necessary, corrected all 

AI-generated suggestions to ensure accuracy and academic integrity, as 

required by Article II.3. 
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3. Ethical and Legal Compliance 

 

○ Usage complied with all applicable laws, university regulations, and respect 

for intellectual property (Articles I.4–I.5). 

 

○ The author maintained a critical stance toward AI outputs, recognizing their 

limitations and potential for error (Directive Preamble). 

 

4. Educational and Research Context 

 

○ This engagement with AI tools reflects our commitment to innovation in 

research methods (Article I.1) while preserving the author’s sole 

responsibility for the thesis’s scientific content and conclusions (Article 

II.2). 

 

○ AI-generated ideas did not substitute for original data analysis, model 

development, or theoretical derivations, which were carried out entirely by 

the author. 

 

.  
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