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Abstract

Symmetry has been one of the foundational principles of human thought and aesthetics
since ancient times, with its roots tracing back to various civilizations that appreciated
balance, harmony, and order in their art, architecture, and philosophy. The term
‘symmetry’ is derived from the Greek words ‘syn’ (together) and ‘metron’ (measure),
reflecting among others the idea of equal arrangement and proportion (Hon & Goldstein,
2008). However, modern understanding of ‘global’ symmetry is reduced to the set of
transformations that leave the object invariant, as understood by mathematical group
theory.

In this thesis, we investigate the concept of ‘local’ (partial) symmetry, which may
be looked at as a sort of return to the original meaning of the term of symmetry,
stressing the importance of a proportionality but capturing the current meaning of
global symmetry as well. Moreover, we investigate its significance in various disciplines,
including Philosophy, Arts, and Natural sciences.

Furthermore, we argue that the concept of local (partial) symmetry, as opposed to
global (total) symmetry, is more natural, more general, and better describes natural
phenomena and symmetries in abstract structures. The classical concept of global sym-
metry is insufficient to capture the complexity of the world because it is very restrictive
to slight asymmetries, and symmetries hold too much redundant information and so
are extremely simple to generate complexity, while the concept of partial symmetry
provides a more accurate representation. Since the concept of partial symmetry focuses
on proportion, i.e., both on the whole and the parts, therefore it captures what master
tilers do when they tile objects.

In order to build a comprehensive and consistent understanding of partial symmetry,
a rigorous and systematic approach is employed, utilizing algebraic methods from the
field of mathematics. Following Jajcay et al. (2021) and Jajcayova (2022) and Lawson
(1998), the relevant part of the theory of inverse monoids is developed through the
careful formulation of hypotheses and logical reasoning. Furthermore, perspectives
from various disciplines are synthesized to analyze how partial symmetry is treated
in different areas and to identify unifying principles in these approaches. Moreover,
we used many examples and illustrations in order to synthesize a comprehensive and
consistent understanding of the concept of (partial) symmetry.

Keywords: Group, Inverse monoid, Symmetry, Complexity, Structure, Fractal, Infor-
mation, Proportion
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Abstrakt

Symetria je jedným zo základných princípov ľudského myslenia a estetiky už od
staroveku, pričom jej korene siahajú k rôznym civilizáciám, ktoré oceňovali rovnováhu,
harmóniu a poriadok vo svojom umení, architektúre a filozofii. Pojem ‘symetria’ je
odvodený z gréckych slov ‘syn’ (spolu) a ‘metron’ (miera), odrážajúc okrem iného
myšlienku rovnakého usporiadania a pomeru (Hon & Goldstein, 2008). Moderné chápanie
‘globálnej’ symetrie sa však redukuje len na množinu transformácií, ktoré ponechávajú
objekt nemenný, v rámci matematickej teórie grúp.

V našej práci skúmame koncept ‘lokálnej’ (čiastočnej) symetrie, ktorý možno pova-
žovať za akýsi návrat k pôvodnému významu pojmu symetria, zdôrazňujúc dôležitosť
proporcionality, ale zároveň zachytávajúci súčasný význam symetrie. Okrem toho skú-
mame jeho význam v rôznych disciplínach vrátane filozofie, umenia a prírodných vied.

Tvrdíme, že koncept lokálnej (čiastočnej) symetrie je na rozdiel od globálnej (úplnej)
symetrie prirodzenejší, všeobecnejší a lepšie vystihuje prírodné javy a symetrie v
abstraktných štruktúrach. Klasický koncept globálnej symetrie nestačí na zachytenie
zložitosti sveta, pretože je veľmi reštriktívny, čo i len na nepatrné asymetrie. Tiež,
symetrie obsahujú príliš veľa nadbytočných informácií, a preto sú extrémne jednoduché
na vytváranie zložitosti, zatiaľ čo koncept čiastočnej symetrie poskytuje presnejšie
zobrazenie Keďže koncept čiastočnej symetrie sa zameriava na proporcie, t.j. ako na
celok, tak aj časti, preto tento koncept zachytáva, čo robia majstri umelci, keď obkladajú
plochy.

Na vybudovanie komplexného a konzistentného chápania parciálnej symetrie sa v
tejto práci používa rigorózny a systematický prístup využívajúci algebraické metódy z
oblasti matematiky, prebraný z výskumu matematikov. Na základe vedeckých článkov
Jajcay et al. (2021) a Jajcayova (2022) a knihy Lawson (1998), rozvíjame príslušnú
časť teórie inverzných monoidov prostredníctvom formulovania hypotéz a logického
uvažovania. Okrem toho sme zosyntetizovali pohľady z rôznych disciplín, ako sa v
týchto rôznych oblastiach zaobchádza s čiastočnou symetriou, aby sme identifikovali
zjednocujúce princípy v týchto prístupoch. Navyše použili sme veľa príkladov a ilustrácií,
aby sme vytvorili komplexné a konzistentné pochopenie pojmu (čiastočná) lokálna
symetria.

Kľúčové slová: Grupa, Inverzný monoid, Symetria, Zložitosť, Štruktúra, Fraktál,
Informácia, Proporcia
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Introduction

Mirrored steps in chains of order, the colors fade,
But vibrant dance, proportions breathe, persuade.
In chaos’ sweet embrace, we find our fire,
As imperfections dance and hearts aspire.

OpenAI GPT

I have two aims in mind for this thesis. The first is to demonstrate the wide range
of applications of the principle of partial symmetry in a variety of fields, such as the
arts, and nature, and contrast it to the usage of global symmetry. The second aim is to
explain the philosophical and mathematical significance of the idea of partial symmetry
as opposed to the concept of global symmetry in a clear and gradual manner.

Apart from others, these questions are addressed: Is the concept of partial symmetry
more fundamental than global symmetry? In what sense? How does (partial) symmetry
influence perceptual organization, attention, and thought? How does it relate to other
concepts such as complexity?

The main thesis is that the concept of local (partial) as opposed to global (total)
symmetry is more natural, more general, and better describes the natural phenomena as
well as symmetries in abstract structures. Note that we use the terms ‘local’ and ‘partial’
symmetry interchangeably. Similarly, we use the terms ‘total’, ‘global’, and ‘perfect’
symmetry interchangeably. Formal mathematical tools ranging from the classical group
theoretical tools for studying total symmetries to very recent generalizations to inverse
monoid theory to handle partial symmetries will be used in some creative ways to
illustrate their usefulness. Moreover, I use many examples and images in order to
illustrate the argument.

The formalism and roughly the general idea of the argument for the more generalized
concept of symmetries that I present is known at least since the failure of the initial
Klein’s “Erlanger program” in the late 19th century to characterize all kinds of geometries
based on the groups of symmetries (Lawson, 1998). Nevertheless, this thesis aspires
to be the first modern interdisciplinary, systematic, and integrative (and hopefully
consistent) exploration of the concept of partial symmetries, and in this sense similar
to Weyl’s exploration of the concept of global symmetry in 1989. And, to the best of

1



2 Introduction

Figure 1: Interdisciplinary perspectives on the concept of (partial) symmetry

my knowledge, it is the first such exploration.

I intend for this thesis to be accessible to a wider audience than just specialists in
specific fields. And, this is my biggest challenge, to be both precise and stay accessible.
Thus, while the thesis does not avoid using mathematics, it is not intended to provide a
detailed mathematical treatment of all the problems it covers. Such an approach would
be outside the thesis’ scope and defeat its purpose.

The structure of the thesis follows the same two paths that we describe in the
description of the history of the concept of symmetry in Section 0.1: phenomenologi-
cal/aesthetic in Chapter 1 and Chapter 2 and mathematical/formal in Chapter 3. We
choose this division because it follows the historical evolution of the concept and because
in phenomenology and aesthetics, the concept of partial symmetry may not always be
as precise as in the formal approach. Moreover, that is how we tend to approach the
world around us – from examples to abstractions.

I synthesize these two paths in Chapter 4 which deals with the whole argument for
the concept of partial symmetry, and therefore cross-references to other chapters where
the particularities are described. Moreover, we treat the concept of (partial) symmetry in
various areas: Philosophy & History, Cognitive psychology & Neuroaesthetics, Aesthetics
& Arts, Nature & Natural Sciences, and Mathematics & Computer Science (illustratively
shown in Fig. 1). Moreover, I want to find and emphasize the unifying principles in
these different approaches to partial symmetry.

We arranged the thesis in natural order from particularities to abstraction. However,
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there are some exceptional sections, such as in Chapter 4 which cross-reference a lot
to other chapters for a more detailed understanding of the argument. Thus, at times,
the reader may find it more useful to jump back into these sections for more details.
The reader with an understanding of abstract algebra may omit at least the initial
definitions and proofs in Chapter 3.

0.1 Evolution of the concept of (partial) symmetry

The key question that we are trying to explore in this section is how the meaning of
the concept of (partial) symmetry has evolved over time. Hon and Goldstein (2008)
challenged the received view that symmetry is a concept that has always been available to
human thought in its modern meaning. Their research reveals that the term symmetry

did not carry its modern meanings until the 18th century. They identify two different
trajectories for the evolution of the meaning of the term symmetry: the mathematical
path and the aesthetic path. In this section, we summarize the results of historical
analysis, mostly based on reviews of Brading et al. (2003), Hon and Goldstein (2008),
and Nagy (2022). For more details, see these references. We also roughly outline the
evolution of the term in Fig. 2. As you will see, the concept gradually lost its previous
meanings for the sake of being formalizable from a rather vague notion that relates to
many ideas such as proportion, harmony, and commensurability, into a mathematically
precise explicit concept as defined by group theory emphasizing the ideas of inverse
order and relation as opposed to the ideas of a whole, proportionality, and property.

0.1.1 Aesthetic path

In the realm of aesthetics, Plato and his pupil Aristotle considered a living creature
to be beautiful if it was symmetrical, or well-proportioned in between the 5th and 4th
century BC. For instance, in his work Poetics Aristotle says that “to be beautiful, a
living creature, and every whole made up of parts, must . . . [be] present a certain order
in its arrangement of parts.” Aristotle also identified order, symmetry, and definiteness
as chief forms of beauty. In his work Metaphysics, he states, “The chief forms of beauty
are order and symmetry and definiteness, which the mathematical sciences demonstrate
in a special degree” (Aristotle, 2016).

In the realm of morality, in his work Laws, Plato used the term summetros to
mean also suitable or appropriate (Plato, 1962). Aristotle also used the term in moral
context. For him, suitability or moderation was considered the guiding principle for
good conduct. Recall that his heuristic towards leading a good life was golden mean,
the principle roughly saying that to lead a good life you should avoid the extreme states
of excess and deficiency. For instance, avoid foolhardiness, and also avoid cowardice.
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Moreover, Ptolemy referred to symmetry in the Almagest as suitable in size.
Later in the 1st century BC, Vitruvius, a Roman architect, employed symmetry in

the ancient sense in the design of buildings and machines. For Vitruvius, symmetry was
an attribute of a whole object, such as a human body, building, or machine, when the
parts were joined in a way that formed a beautiful and well-coordinated entity. Virtuvius
added to the meaning a certain subjective flexible evaluation since the proportionality
was oriented towards attaining some perceptional or functional value. As we will see,
Vitruvius’s work De architectura had a significant impact on European thought and
practice, shaping studies in art and engineering for almost two millennia.

Albrecht Dürer (1471–1528), a German artist, extended and elaborated on Vitruvius’s
concept of symmetry in his work Vier Bücher von menschlicher Proportion, which
especially focused on human proportion. Otherwise, early modern times saw the
acceptance of Vitruvius’s concept of symmetry with little change.

It was until 15th century that the meaning stayed relatively the same in aesthetic path.
Symmetry played a central role in architecture, linking harmony and beauty through
specific proportions for parts of a structure in relation to each other and the whole.
The significance of symmetry in architecture is highlighted in Renaissance architect
Leon Battista Alberti’s (1404–1472) own words: “Beauty is that reasoned harmony of
all the parts within a body, so that nothing may be added, taken away, or altered, but
for the worse.” In this way, Alberti moved the meaning of the term symmetry towards
harmony of parts and whole, despite the fact that the word harmony was only used in
the domain of music at that time. This approach supported the use of scale modeling

in architecture, with the idea that what works on a small scale will also work on a large
scale.

However, Hon and Goldstein (2008) argue that the term correspondence facilitated
a shift away from Vitruvian concept of symmetry, as the Alberti introduced it as a
methodological principle. Although Aristotle and Augustine discussed the arrangement
of identical parts in living creatures, they did not use the term correspondence in the
same way as Alberti. In Alberti, “correspondence is not a relation between the part
and the whole; rather, it is a relation between one part and another part of a single
edifice, and the relation is fixed, namely, the two parts are identical” (Hon & Goldstein,
2008). Thus, he distinguished the concept of symmetry as proportion from the idea of
correspondence. Nevertheless, Alberti still recognized the original Vitruvian meaning
of the term but chose to introduce the correspondence into the meaning, differentiating
between the two meanings. Thus, Alberti appealed to direct observation of nature and
ancient artifacts, emphasizing the relationship between correspondent parts of an edifice
rather than the part-whole relation.

Then between 1673 and 1683, in the French tradition, Perrault explicitly distin-
guished the French usage of symmetrie from the ancient usage of symmetria to avoid
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ambiguity. He defined symmetry as a relationship of parity and equality of left and

right, which was distinct from the classical meanings. Hon and Goldstein (2008) argue
that this definition and distinction represented a crucial turning point in the emergence
of the modern concept of symmetry.

In 1757, Montesquieu combined two opposing sources of pleasure — order and
variety/chaos — to argue that a pleasing object must possess both simplicity and
diversity in a balance. He conceptualized symmetry as an ordering principle or balance
that followed Perrault’s concept, rather than Vitruvian symmetry. As opposed to
Perrault’s use of parity and equality of left and right, Montesquieu stressed the balance

between the two opposing sides. Interestingly, the proportion, which is at the root
of Vitruvian symmetry, was not even mentioned in Montesquieu’s work, indicating a
gradual shift from the meaning of symmetry as proportion.

Moreover, in 1757, Burke criticized the theory of proportion as the source of beauty
in art and architecture, arguing that mathematical ideas are not the true measures
of beauty. He claimed that proportion in art was derived from transferring artificial
ideas to nature, rather than borrowing these ideas from nature. As we can observe,
symmetry as proportion gradually shifted from this meaning of the term, which was
heavily opposed in the work of Burke.

Carl Linnaeus (1707–1778), considered one of the fathers of modern biology, in-
troduced a system of classification and nomenclature in the field. Returning to the
previous meaning of the word, he recognized plant symmetry as a whole resulting from
the relative disposition of interacting parts, which were not necessarily mathematical or
aesthetically based. This concept of symmetry was built upon Vitruvius’ discussion
of symmetry in machines, where symmetry referred to the proper functioning of parts
working smoothly together.

In 1777, the concept of invariability was introduced in natural history and later
linked to symmetry. Antoine Laurent de Jussieu expanded Linnaeus’s system by
adding secondary characters and seeking invariability in essential plant parts. Although
botanists of the time did not see a formal connection between symmetry and invariability,
the idea was there to be explored further.

De Candolle (1778–1841) further developed Linnaeus’s principle of symmetry and
conducted a subtle analysis of plant structures based on relative disposition and the
tendency of plants toward symmetrical wholes. He defined symmetry as the particular
arrangement of parts resulting from their relative position and forms, such as the
insertion of stamens, the structure of the fruit, and the organization of seed parts.

Haüy (1743–1822) made a significant move toward the modern meaning of rotational
and bilateral symmetry in mineralogy and crystallography. He sought an analog to
botanical regularities of form and considered symmetry a geometrical property of a
single object. Haüy’s concept of symmetry expressed a kind of rotational symmetry, and
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the term axis was introduced as an imaginary line linking diametrically opposite parts
of a crystal’s surface. While viewing Haüy’s definition from a modern perspective, might
suggest that he was the first one to actually capture the modern meaning, however,
Haüy was not explicit and abstract enough about his concept of symmetry and did not
use the concept of axis in the context of symmetry. Despite this, these ideas of rotation
are incorporated into the modern concept of symmetry.

Lamarck (1744–1829) also invoked the term symmetry in his discussion of worms,
stating that their general form consisted of a symmetrical opposition in its parts, with
each part being completely similar to the opposite one.

0.1.2 Mathematical path

In the mathematical path, the meaning of symmetry remained stable for centuries,
but eventually fell out of active use. Initially, in the 4th and 3rd century BC, Euclid
and Archimedes, and other mathematicians and philosophers of antiquity used the
terms summetra and asummetra in Greek. At that time, the mathematical sense of
symmetry roughly focused on commensurability, i.e., two quantities are commensurable
if they have a common measure, and so the terms were later translated into Latin
as commensurabiles and incommensurabiles by Boethius between the 5th and 6th
century AD. However, Euclid initially meant by commensurability even continuous
commensurability, i.e., two quantities can have a common measure even if this common
measure is a rational number, later, only integers were understood as common measures.

Copernicus (1473–1543) believed that God, as the most orderly Artisan, would
create a universe with compatible elements, thus, he was appealing to some underlying
assumption of the orderliness of nature. He also alluded to three aspects of symmetry as
well-proportioned feature of an object, proportioned structure and proper functioning
of a machine that were mentioned by Vitruvius separately. Copernicus applied them in
new ways while still retaining the same meaning. He linked these aspects of symmetry
and even harmony (before used only in the consideration of sound) on a cosmic scale,
arguing that the parts of the cosmos fit together to form a well-proportioned harmony,
a perfect functioning and structured whole. This combination of concepts was likely
Copernicus’ own creativity, as there is no evidence of these ideas being linked in any
source available to him.

Further on, Galileo (1564–1642) touched upon the concept of scaling (the idea that
what works on a small scale will also work on a large scale), which was not found in
ancient literature, perhaps only in Alberti’s own work. He also used symmetry as a
scientific criterion of truth, stating that a system without symmetry must be faulty. For
instance, he argued against the Ptolemaic system, which did not exhibit symmetry, and
therefore could not be a true description of the world. However, Galileo only referred
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to symmetry, not harmony, unlike Copernicus.

Kepler (1571–1630), on the other hand, did not appeal to symmetry in his work.
Instead, he focused on cosmic harmony, ignoring Copernicus’s invocation of symmetry.
He believed that “the archetype of the movable world was constituted not only by the
five [Platonic] regular [solid] figures... but also by the harmonic proportions with which
the courses themselves were attuned.” Moreover, Kepler paid enormous attention to
the idea of divine proportion / golden ratio.

Leibniz (1646–1716), like Kepler, chose to place harmony at the foundation of his
thinking. His concept of universal harmony is considered one of the most central features
of his thought. Harmony, in Leibniz’s view, encompasses both unity and multiplicity.
To the best of our knowledge, what he meant by these terms is yet unclear. However,
he did not use the term symmetry. Instead, he saw harmony as connected with order,
regularity, and uniformity. This is demonstrated in one of his remarks: “Rules are the
expression of general will: the more one observes rules, the more regularity there is;
simplicity and productivity are the aim of rules. I shall be met with the objection
that a uniform system will be free from irregularities. I answer that it would be an
irregularity to be too uniform, that would offend against the rules of harmony.”

Moreover, Leibniz’s metaphysical system was built upon the idea that the universe
exhibits a pre-established harmony, which allows for a coordinated functioning of all
its parts. This harmony is essential for the existence of the world and serves as the
foundation for the interconnectedness and order found within the universe. Leibniz
believed that God, as the perfect creator, had designed the world in such a way that it
exhibits this harmonious balance between unity and multiplicity, thus, he was appealing
to pre-established order as Copernicus. We can conclude that his idea of harmony is a
sort of balance between order and chaos.

While Copernicus and Galileo used the term in a manner consistent with the
Vitruvian tradition, Leibniz chose not to link symmetry to harmony. His focus on
harmony, rather than symmetry, highlights the importance he placed on the balance
between unity and multiplicity in the universe, reflecting his belief that rather than
symmetry in whichever sense, harmony is essential for a well-ordered and interconnected
world.

Later on, in 1750, Euler, a renowned mathematician, received an anonymous question
regarding the preference of drawing a star constellation on a celestial globe, which was
a huge rotating imitation of the seen star constellation on the globe. The query he
received was this:

One imagines the constellations on the inner surface of the sky either as
real bodies or as bodies that were painted with transparent colors. They
are painted on the globe from the outside, quite the way they would appear
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to us if we could look at the starry sky from the outside at a great distance.
It is clear that, with this position of the eye, we would see the constellations
from behind [von hinten], if they were real bodies. [On the other hand], we
would see them from the front [von vorne], but reversed [verkehrt], if they
were drawn with transparent colors. Which of the two is to be preferred,
and which is the most convenient [bequemste] for forming a conception of
the location of the stars and for recognizing those [constellations] that were
described for us by the ancients? Deciding this question will be left to Mr.
Euler (Hon & Goldstein, 2008)

The meaning of the question is roughly this: Imagine you have a transparent ball (the
celestial globe) with stars and constellations painted on its surface. There are two ways
to paint the constellations:

The first, paint the constellations on the inside of the ball, treating them as real
3D objects seen from the earth. If you were to look at the ball from the outside, the
constellations would appear as if you were looking at the back of 3D objects.

For the second, paint the constellations on the outside of the ball, treating them
as 2D drawings in front of you. If you were to look at the ball from the outside, the
constellations would appear as if you were looking at the front of 2D drawings, but they
would appear reversed (mirrored) from the inside of the globe.

While Euler spotted the equivalence of these two mirror solutions and responded to
this query as such saying that from a mathematical perspective, the distinction between
the left and the right is indifferent, nevertheless, he did not generalize this problem, nor
spot its potential importance for geometry.

Further, in 1768, Kant explored the concept of incongruent counterparts, such as
left and right hands, as a means to understand the nature of space. He observed how
these counterparts could be equal in magnitude and equal in form, yet non-superposable
due to their differing directionality, where superposability means the possibility of one
object being transported onto another so that they coincide. He was trying to use this
concept to demonstrate the real existence of the quality of directionality of absolute
space. Today, we call such non-superposable objects, chiral.

However, Kant’s initial attempt to use mathematics to capture the essence of space
was unsuccessful, leading him to abandon the concept of incongruent counterparts in
favor of a metaphysical analysis of space as pure intuition (Kant, 2004). This shift is
evident in his Prolegomena from 1783.

In retrospect, Kant’s approach involved abstracting objects and considering their
form, regardless of the specific object in question, in order to study the problem of form
and its directionality in space. He recognized that all these objects posed the same
problem of non-superposability.
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Moreover, Kant’s concept of incongruent counterparts transcended the aesthetic
component and was not limited to human bodies or architectural structures, unlike
the French tradition of usages of symmetry. His focus was on the mutual relation of
objects in space, rather than the relation between two halves of a single object, as in
the French usage of the concept.

Kant aimed to establish an inner spatial property by defining an absolute distinction,
such as an object being a right-hand in reference to a universal absolute space. However,
when he could not establish this, he abandoned this approach in favor of a metaphysical
one, where space could be apprehended via intuition (Hon & Goldstein, 2008).

Hon and Goldstein (2008) argue that Kant and Euler were actually the closest
toward the revolutionary modern meaning of symmetry since they both understood
mirror-image. However, it was a mathematician Adrien-Marie Legendre who in 1794
introduced a radical new mathematical meaning for the term symmetry, defining it as
a relation rather than a property of an object. Legendre, like other mathematicians
in the 18th century, was interested in solid geometry, and mathematicians at that
time had to address ways to change Euclidean definitions of similarity and equality to
work properly in a three-dimensional framework. Legendre overcame the difficulties
in Euclid’s formulations and introduced symmetry into geometry as a relation of
equality/congruence between two solids that are non-superposable, thus he reintroduced
it into Euclidean geometry as a precise mathematical concept that differs radically from
its previous usage by Euclid. He defines symmetrical solid angles as equal solid angles
formed by the same plane angles but in inverse order.

Legendre’s innovative definition of symmetry demonstrates that his new concept is
unrelated to the proportionality of parts with respect to a whole, which is the defining
characteristic of the ancient concept of symmetry. The innovativeness in his definition
that shifts it close to the modern meaning can be roughly summarized:

1. The term symmetry is mathematically precisely formulated in the geometrical
sense of solid geometry, thus, Legendre’s definition of symmetry is categorical and
explicit.

2. “Symmetry becomes a relation between two solid figures, irrespective of their
arrangement in space,” and not just a property of a single object.

3. He recognizes the significance of inverting the order of angles that nevertheless
preserve equality.

4. He drops the relation of parts to a whole. Brading (2010) thinks that this
relationship is actually part of the modern concept, and so he does not agree on
this with Hon and Goldstein (2008). As we will see in Chapter 3, this is true to a
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certain degree – the modern concept captures only a global perspective on the
parts, not the local perspective of parts to the whole.

Therefore, his definition significantly differs from the used meaning of symmetry in
architecture, where the whole plays an essential role and the parts must be arranged in
some manner. Moreover, this novel concept of symmetry became a powerful concept
in scientific domains, proving to be fruitful for subsequent work in many scientific
disciplines, as shown by a subsequent growing usage of the term in the work of Cauchy
(1813) and other mathematicians, and applications in physics.

Later, the concept was further generalized into the modern group theory which
was developed by mathematician Galois in the early 19th century, but the central
meaning remained roughly the same. In its modern sense, it is usually stated that
symmetry denotes the set of all transformations that leave the object invariant/the
same. However, the modern concept encompasses not only usual or geometrical objects
but is also frequently applied to laws and equations. If you compare it to Legendre’s def-
inition, it is a much broader concept, since it also encompasses rotational symmetry and
identity/doing nothing. We will walk through this modern formalization in Chapter 3,
and as the reader will see, the inverse order is essential for the modern concept.

There were multiple cross-talks between the two evolutionary trajectories of the concept
of symmetry as indicated in the Fig. 2. Galileo and Copernicus were inspired by the
concept of harmony which they transferred into the mathematics of the cosmos. Perhaps
the most significant cross-talk was the contribution of Alberti who distinguished and
separated the meaning of symmetry in terms of proportionality from the meaning of
correspondence between opposites, since it allowed subsequent separate development of
the two distinguished concepts.

In summary, research of Hon and Goldstein (2008) shows that the concept of
symmetry has evolved significantly over time, with partially distinct mathematical and
aesthetic trajectories shaping its development. The modern understanding of symmetry
as a scientific concept emerged only in the 18th century in the work of Legendre. Before
the 18th century, there is no evidence that the modern concept of symmetry was used.

Moreover, I will show that we can look at the concept of partial (local) symmetry as
a sort of return to the original meaning of the term symmetry, stressing the importance
of proportionality and locality while capturing the modern meaning of symmetry as
well. I will demonstrate this in Section 3.3.
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0.2 Symmetry and symmetry breaking

In physics, symmetry principles have played a crucial role in our understanding of the
fundamental forces and particles in the universe. For example, the laws of physics are
symmetric under translations in space and time, known as Noether’s laws (Brading
et al., 2003; Noether, 1971). The fundamental goal of physics is to unify these laws
using a single superprinciple of symmetry (Mainzer, 2005).

Figure 3: Narrative of symmetry breaking with corresponding ontology of underlying
symmetries that is supposed to generate all complexity. After Mainzer (2005)

However, various types of symmetry breaking have been observed in physical systems.
These types can be classified in the following way:
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Spontaneous Symmetry Breaking: This occurs when a system moves from a sym-
metric state to a lower-energy, asymmetric state without any external influence. A
well-known example is the Higgs mechanism, which explains the origin of mass for
fundamental particles (Brading et al., 2003). According to this mechanism, there is
a field called the Higgs field that permeates all of space. As particles move through
this field, they ‘experience’ resistance, much like moving through a viscous fluid. This
resistance results in particles acquiring mass. The Higgs field is associated with a
particle called the Higgs boson, which was discovered in 2012. As such, the concept
of spontaneous symmetry breaking is a hybrid narrative explaining how asymmetry
arises from symmetry without the symmetry being lost, but only somehow hidden at
a more fundamental level of reality. Although it might be practical to start from an
asymmetric model and never consider hidden symmetries, doing so would eliminate the
explanatory potential displayed by spontaneous symmetry breaking in current scientific
practice and that is why physicists rather rely on the story of hidden deeper symmetries
(Borrelli, 2019).

Explicit Symmetry Breaking: This happens when a system’s symmetry is broken
due to external factors, such as the weak nuclear force’s violation of parity symmetry
in particle interactions. Parity symmetry was the prediction that the particles’ nucleus
behaves in the same way if its spatial configuration is reversed. We now know that this
is not true in all cases (Aubrecht, 2003; Brading et al., 2003).

From a philosophical perspective, symmetry breaking raises questions about the
nature of symmetry itself. If perfect symmetry exists in nature, why do systems and
laws frequently exhibit symmetry breaking? The common narrative is that symmetry
breaking just shows a need to look for deeper symmetries, and is related to phase
transitions which lead to emergence (Borrelli, 2019; Mainzer, 1996, 2005) This view
that symmetry and symmetry breaking can explain all the phenomena is prevalent in
modern science, especially in physics, and can be roughly illustrated as in Fig. 3.

However, we argue that the very idea of perfect symmetry might be an idealization
that does not have to exist in nature. Instead, imperfection and slight asymmetry might
be inherent properties of the universe, with symmetry breaking serving as an indication
of this fundamental aspect.

Moreover, symmetry breaking is often linked to the emergence of complex structures
and patterns in nature, such as the formation of crystals, the development of organisms,
or the evolution of galaxies (Mainzer, 1996, 2005). This suggests that the lack of perfect
symmetry is necessary for the richness and diversity we observe in the natural world.
We will further explore this different narrative.
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0.3 Partial symmetry and nature

It was Schrödinger who first pointed out that the structure of living matter is much more
complex beyond anything studied in physics and chemists at that time. He thought
that living matter is non-periodic (its structure is not like a lattice that repeats the
same pattern again and again in all directions), and thus, not easily describable by the
laws that describe classical physics. In his own words,

structure of the vital parts of living organisms differs so entirely from that
of any piece of matter that we physicists and chemists have ever handled
physically in our laboratories or mentally at our writing desks. It is [almost]
unthinkable that the laws and regularities thus discovered should happen
to apply immediately to the behaviour of systems which do not exhibit the
structure on which those laws and regularities are based. The non-physicist
cannot be expected even to grasp let alone to appreciate the relevance
of the difference in ‘statistical structure’ stated in terms so abstract as I
have just used. To give the statement life and colour, let me anticipate
what will be explained in much more detail later, namely, that the most
essential part of a living cell – the chromosome fibre may suitably be called
an aperiodic crystal. In physics, we have dealt hitherto only with periodic
crystals (Schrodinger, 1951).

Interestingly, this hypothesis has been confirmed since Watson and Crick (1953) observed
the structure of the DNA.

Furthermore, later on, it was shown that quasicrystals occur in nature. They have a
much more irregular structure as opposed to just simple crystals with regular structure
and can be described using Penrose’s hierarchical pentagonal structure that he used to
tile a plane non-periodically (without global symmetry that repeats the same patterns
again and again with a regular period), see Fig. 4.

Furthermore, many structures in nature exhibit fractal behavior that is impossible
to describe with the classical tools of the mathematical theory of symmetry. For
instance, see Fig. 5. Fractals are objects characterized by self-similar patterns that
repeat at different scales. The concept of fractal, first introduced by Mandelbrot (1982),
has revolutionized our understanding of natural patterns and structures. Since then,
fractals have been found in various natural phenomena, from coastlines and mountains
to plants and biological systems. Examples include the branching patterns of river
systems, the distribution of earthquakes, the formation of coastlines, and the jagged
profiles of mountain ranges, branching patterns of blood vessels, the organization of
neural networks, and the growth patterns of plants. These examples are described
in 3Blue1Brown (2017), Bassett and Bullmore (2006), Bullmore and Sporns (2009),
Falconer (1985), and Mandelbrot (1982).
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Figure 4: Diffraction pattern of quasicrystal that has both global symmetries and local
symmetries (see various sizes of pentagons all around). After Senechal (1989).

Figure 5: Examples of structures (a shell and a plant) that have fractal proportionate
structure as opposed to global symmetry.





Chapter 1

Art & Morality

Symmetry, although mathematically fascinating, also has a coldness, a
rigidity, a fixity, a sense of stasis, which is less interesting, less attractive,
indeed less beautiful than asymmetry. Too much asymmetry is however
mere chaos.

McManus

Although symmetry is an appealing concept, there is evidence that asymmetry exists
not only in the subatomic world of physics (see Section 0.2) and evidently throughout
the biological world, but is also utilized and developed in the arts and even in religiosity
and morality.

In this chapter, we argue that from the perspective of arts and aesthetics, symmetry
is cold, rigid, and static, whereas the concept of partial symmetry in the sense of
proportion and local symmetries, brings life and an acceptable rate of chaos. This idea
has been known to artists for a long time, see review in al-Rifaie et al. (2017) and
Brandmüller and Claus (1982).

1.1 Art’s structure

In this section, we explore how the concept of (partial) symmetry and asymmetry arise
in the structure of art pieces.

Artists and writers may intentionally use symmetry breaking, and break or disrupt
the symmetry to highlight contrasts, provoke thought, and emphasize the complexity
and diversity of human experience (N. Bebiano, 2022). For instance, during my high
school, I read parts of William Blake’s Songs of Innocence and of Experience and O.
Henry’s short story The Gift of the Magi, which are prime examples of how symmetry
mirroring can be employed in literature to evoke powerful effects.

O. Henry’s short story The Gift of the Magi, published in 1905, centers on a young
couple, Jim and Della, who each make a significant personal sacrifice to buy a Christmas
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gift for the other. The narrative structure of the story is partially symmetrical, as both
characters’ storylines follow a similar structure, selling something of worth to themselves
to buy a gift for the other. This culminates in the revelation of their respective sacrifices.
However, at last, it is revealed that their sacrifices have inadvertently rendered each
other’s gifts useless – Jim sells his watch to buy combs for Della’s hair, while Della
sells her hair to buy a chain for Jim’s watch. This irony of the situation emphasizes
the selflessness and love that motivated their actions. It is this irony that invites us to
consider the true value of sacrifice and the deeper meaning of gift-giving, transcending
the material objects exchanged. We might say that the valuable part of symmetry was
not in the exchange of material objects but in their deeds of love.

In William Blake’s Songs of Innocence and of Experience, published in 1794, Blake
presents a series of paired poems that juxtapose innocence and experience, exploring
the dual nature of human existence. One of the most famous poems in this collection is
The Tiger, which is often read in conjunction with its counterpart, The Lamb. Each
poem consists of a series of rhetorical questions about the nature of their respective
subjects, i.e., the Tiger and the Lamb. The Lamb represents innocence, gentleness, and
divine creation, while the Tiger explores the darker aspects of experience, power, and
the potential for destruction. These dual sides of existence seem to indicate a sort of
balance and complexity of the world. It is this complete inverse symmetry between dual
sides, that creates a nice sense of balance and relation to the whole. Each of the poems
separately also shows another obvious inner symmetry once we look at the rhymes and
repetitions, which show a kind of translational approximate symmetry and unison (N.
Bebiano, 2022).

Note that, in both of these stories, symmetry is just a mean towards the end. The
authors used symmetry to arrive at the unification of the whole. Now, imagine having
just the Tigers or just the Lambs, the authors would be unable to make contrasts, and
it would tend to be boring. It is this inverse contrast that creates change and meaning.
Nevertheless, even this inverse tends to be repetitive, and after one reads several stories
and sees some pieces of art that have this feature, it seems boring. See for instance
Fig. 1.1, while initially, these simple patterns might be nice, they are simple and static.
Weyl (1989) provides many similar examples.

Figure 1.1: Crossing the Aegean, we find these floor patterns at the Megaron in Tiryns,
late Helladic about 1200 B.C. After Weyl (1989).
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With the addition of proportionality, the art becomes more complex and living.
Interestingly, western Muslim art already utilized a version of Penrose tilings in the
Middle Ages (Makovicky, 2021). We describe these Penrose tilings in Section 3.4.2.
These tilings are known as Girith tiles and are found in various mosques in Portugal,
Spain, and Morocco, see for instance Fig. 1.2. These tilings usually incorporate both
hierarchical structures of local symmetries and global symmetries. Obviously, fractals are
another step that shows that the art that incorporates self-similarity and proportionality
is much more living, and aesthetically enjoyable.

Figure 1.2: Western Muslim art utilized Penrose tilings in the Middle Ages. Source:
Wikipedia contributors. (2008). Girith Tiles. In Wikipedia, Retrieved 5/19/2023,
from https://upload.wikimedia.org/wikipedia/commons/thumb/6/60/Roof_hafez_
tomb.jpg/1912px-Roof_hafez_tomb.jpg.

In music, Sylvestre and Costa (2010) argued that musical genius Johannes Sebastian
Bach might have intentionally utilized the idea of Golden ratio, which is the definition
of perfect self-similarity and proportionality, to create his The Art of Fugue in 1740s.
They conducted an analysis of The Art of Fugue, revealing an architecture based on
the golden ratios among the combinations of counterpoints and canons, see Fig. 1.3 and
Fig. 1.4. The researchers examined the number of bars1 in each piece at three known

1A bar is a segment of time in a piece of music that encompasses a specific number of beats. In

https://upload.wikimedia.org/wikipedia/commons/thumb/6/60/Roof_hafez_tomb.jpg/1912px-Roof_hafez_tomb.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/6/60/Roof_hafez_tomb.jpg/1912px-Roof_hafez_tomb.jpg
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levels, noting a fractal property of self-similarity at varying degrees of detail due of
Golden ratio proportions.

Figure 1.3: Details from the analysis of Bach’s The Art of Fugue. After Sylvestre and
Costa (2010).

Johannes Kepler’s book Harmonious world, Harmonices mundi (1619) provides
potential evidence that Bach might have been well familiar with the Fibonacci series and
the golden ratio since Kepler’s book discusses harmonic proportions in music, cosmology,
and planetary motion, with multiple references to the divine proportion of golden ratio
and Kepler was already well known at Bach’s time.

Sylvestre and Costa (2010) argue that the precision of the ratios and the role of

musical notation, bars are separated by vertical lines called bar lines that you can usually see in musical
notation.
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Figure 1.4: The analysis of the structure of Bach’s The Art of Fugue. The edges link
the parts of the whole whose ratio is close to the Golden ratio. After Sylvestre and
Costa (2010).

Fibonacci numbers in The Art of Fugue suggest that Bach intentionally incorporated
these mathematical relationships as enigmas or puzzles to convey a hidden meaning,
maybe reflecting Pythagorean philosophy2. Obviously, the exact numeric proportions
found in the work are not perceptible to listeners. Thus, if the proportions were
intentional, it might likely indicate an ideological or philosophical rationale behind its
mathematical architecture.

1.2 Partial symmetry and beauty

From the perspective of art, perfect lawfulness (symmetry) is “the death of man”,
ultimate boredom.

Fyodor Dostoevsky explores, in his work Notes from the Underground, the inherent
limitations of rationalism and the risks associated with reducing human behavior to a
set of predictable, deterministic laws through the lens of the protagonist, a man living
in the underground. This work, published in 1864, has been seen as an early example
of existentialist thought, critiquing the idea that human beings can be governed solely
by reason and logic (Dostojevskij, 1998).

Dostoevsky’s central argument is that complete perfect laws (symmetries in the
modern sense), or a fully deterministic understanding of human behavior, would
ultimately rob individuals of their freedom and humanity. He suggests that if human
actions could be accurately predicted and governed by a strict set of rational principles,
people would lose their capacity for free will and self-determination. This loss, in turn,
would lead to the “death of man” in a metaphorical sense, as individuals would be
reduced to mere automatons, stripped of their ability to make meaningful choices or

2Pythagoreans used to see a secret meaning in the numbers and proportions (Vernant, 1984).
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express their unique individuality.
The Underground Man’s disdain for this deterministic vision of society is also evident

in his exploration of the metaphor of “the Crystal Palace,” a place for the idealized,
completely rational (deterministic) society envisioned by some 19th-century utopian
thinkers. To him, the Crystal Palace represents a prison, as it would ultimately limit
human freedom and creativity, and would be incapable of accommodating the diverse
and unpredictable nature of human desires and aspirations.

We argue that it is this extreme lawfulness that our strife for perfect symmetry
actually brings. Modern science is built on this search for fully deterministic laws,
and thus perfect symmetries. Nevertheless, the research clearly shows that such a
search might be futile. Modern quantum physics seems to indicate a kind of intrinsic
random choice of nature. Recall that Einstein persistently disagreed with this intrinsic
randomness of nature, and he famously said that “God does not play dice” (Zeilinger,
2005). Furthermore, we have accumulated various kinds of indications that nature tends
to break these perfect symmetries, and ‘utilizes’ phase transitions, chaos, and fractality
to produce complexity.

As opposed to classical symmetry, we rather suggest that the detection and appreci-
ation of partial symmetries may contribute to the aesthetic experience. Penrose (1974)
discussed the idea that partial symmetries bring unexpectedness, and yet local order
that causes aesthetic experience. He examines various patterns and their aesthetic
appeal (structurally similar to patterns in Fig. 4.1 in Chapter 4 and his tilings), noting
that the unexpected simplicity might contribute to the aesthetic value of a pattern.
He thinks that the idea of beauty is not in perfect symmetry which is boring since it
is fully predictable, but rather the idea of beauty is in unexpected simplicity, where
something that appears complicated turns out to be much simpler than anticipated,
and it is this realization that leads to a sense of pleasure.

While I agree with Penrose that the emergence of unexpected simplicity can indeed
bring about a sense of pleasure in some cases, I would argue that beauty is more
intrinsically connected to dynamic interplay between unpredictability/chaos and pre-

dictability/order, rather than solely relying on the element of unforeseen simplicity. For
instance, I am thinking of any simple math problem that I struggled to solve when I was
young, and I suddenly realized how simple it was, does not mean that the problem was
beautiful. Now, think of any interesting fractal objects, which are commonly referred
to as beautiful. What makes them beautiful is the dynamic interplay between order
and chaos on the border, where one wants to zoom in and look for ever-changing, yet
familiar patterns. Recall, that something similar was claimed by Montesquieu, who
considered beauty a balance between order and chaos.

For instance, let me appeal to the beauty of human faces, see Fig. 1.5. It is commonly
said that the more symmetrical faces are more attractive, but is it that way? I argue



1.3. SYMMETRY, TRANSCENDENCE, AND MORALITY 23

that the picture of the face of a young lady in the middle is much more attractive since
it is much more natural and interesting than either the last or the first picture. The
generated picture on the left is just too much asymmetric, and therefore strange in the
negative sense. The face on the right is perhaps nice, but it is just too much bilaterally
symmetric (the left side of the face is the perfect copy of the right side), and therefore
artificial. As opposed to the face in the middle, the right one does not have some kind
of unique symmetry-breaking point and therefore does not provide any kind of focal
point for attention. The face in the middle has a birthmark and slight asymmetry in
the hair, which brings a sort of life, uniqueness, and beauty as opposed to the right one.
On the other hand, the left one has just too many of these asymmetries. Generalizing,
we would expect existence of both lower and upper thresholds on subjective evaluation
of beauty in terms of symmetry and asymmetry.

chaos order

Figure 1.5: The faces of a young woman ordered in the sequence from the asymmetric
face on the left to perfectly symmetric on the right. All of these images were generated
with the help of Stable Diffusion, an AI technique.

1.3 Symmetry, transcendence, and morality

In this section, we predominantly follow reviews of McManus (2005) and Weyl (1989),
who analyzed the completely inverse symmetric symbolic meaning of left and right.

While the origins of symbolic meanings associated with left and right are not entirely
understood, they likely possess a universal human aspect. We already find an indication
of this universality in the Metaphysics, where Aristotle discusses the Pythagoreans’
identification of ten first principles (Aristotle, 2016), which include right and left, see
Fig. 1.6. This suggests that this distinction was already well-known at that time.
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Figure 1.6: The ten Pythagorean principles of opposites described by Aristotle according
to McManus (2005)

Moreover, the Purum, a tribe residing on the Indo-Burmese border, also exhibit a
variety of left-right symbolism connected to transcendence and morality (McManus,
2005), see their dualistic symbolic representation in Fig. 1.7.

Figure 1.7: “The dual symbolic classification of the Purums in relation to right and left”
(McManus, 2005)

Furthermore, McManus (2005) shows consensus about the phenomenological prop-
erties of the concepts of symmetry and asymmetry (right and left) according to art
historians and philosophers where symmetry is associated with order, but boredom,
and asymmetry with life, freedom, complexity, surprise, and chaos, see Fig. 1.8.

Interestingly, this consensus well agrees with our modern understanding of morality,
religiosity, and mythology. Eliade (2022) and Peterson (2002) argue that ancient myths,
moralities, and religions roughly follow this distinction between left and right, chaos
and order. However, myths even provide a universal way how to lead a life by uniting
these opposite forces. Recall the middle way of Buddhists, Chinese Ying and Yang,
virtuous mean of ancient Greeks such as in Aristotle and Christianity, etc.
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Figure 1.8: This image summarizes the aesthetic and psychological properties associated
with symmetry and asymmetry according to art historians and philosophers. After
McManus (2005)

A similar meaning of balance between left and right is even incorporated in the medieval
architectural and symbolic design of churches (see Fig. 1.9) where church was seen as a
meeting of eternal and mortal, and art (Michelangelo’s The creation of Adam, and see
also Fig. 1.10).

Figure 1.9: This picture shows a symbolic understanding of the orientation of churches
in Christian architectural symbolicism. After McManus (2005).

This universality of the tendency towards inverse symmetrical balance between left
and right might be driven by brain/body symmetries (McManus, 2005; Peterson, 2002;
Wagemans, 1997), see Fig. 1.11. This hypothesis makes sense, since even our brain is
inverse symmetrical in terms of both structure and function (Gazzaniga, 2000; Peterson,
2002). We explore this tendency from a cognitive perspective in the next chapter.
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Figure 1.10: This picture, Broncelli Polyptych by Giotto and his school (1334), shows a
tendency of arts to utilize the symmetry breaking and mirror images between left and
right to signal a religious message in Christian medieval art. After McManus (2005).

Figure 1.11: This picture shows a common way of looking at the asymmetry of brain
structure and function among cognitive scientists and psychologists. While holistically,
the structure seems highly symmetrical, the functions tend to be highly asymmetrical,
inverse. After Peterson (2002).
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Many examples in this chapter suggest that the concept of perfect bilateral sym-
metry and mirror-image balance might indeed rather be an artifact of our minds that we
use in art and our mythological descriptions of reality rather than the intrinsic feature
of nature.





Chapter 2

Cognition

What opposes unites, and that the finest attunement stems from things
bearing in opposite directions.

Heracleitus

The concept of symmetry is related to cognition in several ways, as we will show
in the following sections. Moreover, we will further try to demonstrate that perhaps
the concept of perfect symmetry is an idealization and construct of our minds than the
essential feature of nature, as was indicated in the previous chapter.

2.1 Symmetry detection

Bornstein et al. (1981) investigated infants’ perception of symmetry, finding that
“younger infants habituate fastest and most to vertical symmetry” but do not show
a preference for it until they are older. Measurements were done on 4-months old
infants and 12-months old infants. For infants as old as 4 months, the preference
for detecting symmetry in terms of mean looking time was not detected. However,
it was detected for the 12-months old infants, see Fig. 2.2. Interestingly, infants
habituated faster to bilateral symmetries already when they were 4-months, but only
to bilateral symmetry, not to horizontal symmetry, see Fig. 2.1. This is possibly due to
the bilateral symmetry of the visual system, as speculated by Mach (1959), or their
innate tendency to treat symmetric patterns about the vertical axis as equivalent. The
later development of a preference for vertical symmetry may stem from maturation,
exposure to a symmetry-dominated visual environment, or an appreciation of the
benefits of information redundancy provided by symmetry earlier in life. In either of
these explanations, these experiments support the idea that bilateral symmetry has a
special status in perceptual development (Bornstein et al., 1981).

29
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Figure 2.1: “Mean number of 10-sec segments prior to reaching criterion for habituation
to the vertically symmetrical, horizontally symmetrical, and asymmetrical stimuli.
(The asterisk indicates that the 4-month-olds habituated significantly faster to vertical
symmetry than to horizontal symmetry and asymmetry)” (Bornstein et al., 1981).

Figure 2.2: “Mean looking time of 4-month-old and 12 month-old infants at vertically
symmetrical, horizontally symmetrical, and asymmetrical stimuli. (The asterisk indi-
cates that the 12-month-olds significantly preferred vertical symmetry to horizontal
symmetry and asymmetry” (Bornstein et al., 1981).
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Further, Wagemans (1997) reviewed the state of knowledge of symmetry detection.
He confirms that people have a preference for mirror symmetry (reflection) over other
types of symmetries like translation or rotation, as mirror symmetry detection is
relatively effortless, supporting findings in infants that we discussed above. Further, he
highlights that mirror symmetry can be detected preattentively, meaning it does not
always require focused attention.

Moreover, Wagemans (1997) discusses the possibility of a connection between the
preference for mirror symmetry and the mirror symmetry of the brain itself. However,
this hypothesis has not yet been confirmed, and it is probably false since from the
neuroscientific point of view symmetry detection tends to be lateralized to the right
brain lobe (Bertamini et al., 2018; Cattaneo, 2017).

Furthermore, Wagemans (1997) suggests that various factors, such as the orientation
of the symmetry axis, proximity to the axis, and pattern density, impact the detection
process. Nevertheless, symmetry detection is found to be both robust, allowing for the
categorization of less than perfectly symmetrical patterns as symmetrical, and sensitive,
capable of discerning minute perturbations from perfect symmetry if asked for.

From the neuroscientific point of view, our ability to perceive symmetries is facilitated
by a combination of low-level visual processes and higher-order cognitive processes such
as the right occipital face area (OFA) and lateral occipital (LO) complex (Bertamini et al.,
2018; Cattaneo, 2017). Early visual processing stages detects basic symmetrical features
in the environment, while higher-order cognitive processes integrate this information
and generate mental representations of the symmetrical structures.

Interestingly, possibly distinct cortical networks are involved in processing different
types of visual symmetry. Cattaneo et al. (2017) found that the ability to detect vertical
symmetry was negatively affected by TMS applied to both LO and OFA brain regions,
while the detection of horizontal symmetry was only delayed when LO was stimulated.

From the point of view of machine learning, as of 2017, symmetry detection is not
yet a solved problem. Ke et al. (2017) highlight that symmetry detection can improve
various computer vision tasks, such as image segmentation, or foreground extraction.
They introduce a new benchmark with complex backgrounds and an end-to-end deep
symmetry detection approach for processing photos. In Fig. 2.3, we can see that their
SRN outperforms other models. However, as the authors note, this problem of symmetry
detection of real images is far from being solved since even the best models achieve
maximally around 0.6− 0.7 F-measure1 on most of the datasets (Ke et al., 2017).

1The F-measure is used to evaluate the performance of neural networks in classification tasks.
Higher F-measure score indicates better performance of the neural network. Using harmonic mean, it
combines precision and recall into a single score, which ranges from 0 to 1. Precision is the ratio of
true positive predictions to the total number of positive predictions, while recall is the ratio of true
positive predictions to the total number of positive predictions in the dataset.
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2.2 Perceptual organization

Symmetry is a fundamental concept in the theory of perception. Perceptual constancy
refers to the fact that the perceived geometrical and physical characteristics of objects
remain constant despite transformations of the objects, such as rigid motion (Friedenberg
& Silverman, 2006). Formally, perceptual constancy and permanence of objects are
invariants.

However, this perceptual constancy relates not only to the one that we would
describe using formalization of the modern concept of symmetry in group theory2.
Consider that objects are perceived as invariant if you gradually increase the distance
between the observer and the objects, and the object is proportional to the original one.
This is the constancy of the proportions of the objects. However, while the perspective
of group theory would assign the same global symmetry to the object, it would not be
able to completely capture this process of change, and proportion between the original
object, and the one moved into the distance.

Moreover, the Gestalt principle of symmetry is one of the core Gestalt principles that
describe how humans tend to organize visual information. According to this principle,
elements that are symmetrical to each other tend to be perceived as a unified whole
(Koffka, 1936; Todorovic, 2008; Wertheimer, 1938). This means that when we see
objects that are symmetrical with each other, we are more likely to group them in our
minds than objects that are not symmetrical with each other. The principle is related
to our tendency to look for order and balance in visual compositions. Symmetry is one
way of achieving this balance.

Recall that Wagemans (1997) reviewed the symmetry detection research and noted
that the symmetry detection is however robust to slight asymmetries. This suggests
that the Gestalt principle of symmetry is robust as well. Moreover, this indicates that
the principle is perhaps better described using approximate partial symmetries than
perfect global symmetries.

Furthermore, I think that there might be a possibility of the existence of the
‘principle of Gestalt fractality’. See, for instance, Fig. 3.15 in Section 3.4.2, if the dots
are well proportioned, the figure seems to organize as a whole depending partly on
global features, but on proportion as well. The proposed principle of Gestalt fractality
could be conceived as a phenomenon where the Gestalt principles apply at various levels
of perceptual processing, creating a kind of ‘nested’ perception. This implies that a
complex perceptual whole can be perceived similarly at different levels of resolution or
scale, akin to a fractal’s self-similarity across scales. Such an idea would extend the
applicability of Gestalt principles beyond immediate perceptual wholes, suggesting that

2We suggest the reader return to this point later, once the formal aspects of group theory and
inverse semigroups are described.
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these principles are deeply ingrained in our perceptual systems, operating consistently
at various levels of perceptual processing. Moreover, Friedenberg et al. (2022) in their
experimental study suggest that people may have a preference for complex fractal
patterning, likely due to evolution in a natural world full of such patterns. They also
introduce the idea that this preference could be due to the efficient neural computation
these patterns allow, or the pleasurable sensation they may create through neural
synchrony. However, they do not yet call it a new Gestalt principle. We are not sure
whether such a new Gestalt principle would be useful. It might be reducible to other
Gestalt principles, but it might be worth looking into.

Finally, neuroaesthetics provides a bridge between psychology, neuroscience, and
art that we already crossed. Neuroaesthetics is an emerging field within cognitive
neuroscience focused on understanding the biological basis of aesthetic experiences,
which involve appraisals of natural objects, artifacts, and environments (Chatterjee &
Vartanian, 2014).

In their study, Ishizu and Zeki (2011) hypothesized that a single brain area or set
of areas would correlate with the experience of beauty, regardless of the source. They
explored the neurobiological basis of beauty perception through functional magnetic
resonance imaging (fMRI) and conducted experiments with 21 healthy right-handed
volunteers, who were asked to rate the beauty of visual and auditory stimuli.

Their findings revealed that the experience of beauty correlates with activity in the
medial orbitofrontal cortex (mOFC), specifically in field A1. Thus, the authors propose
a neurobiological definition of beauty that shifts the focus from the perceiving object.
Such a definition has the benefit of being indifferent to what is considered art or not
art.

The authors acknowledge that activity in the mOFC has been associated with
pleasure and reward experiences in other domains. However, they argue that the
co-activation of field A1 in mOFC with specialized sensory and perceptive areas is the
determinant of beauty. This broader definition includes both the activation of mOFC
and its co-activation with sensory areas that feed it.

Interestingly, these identified brain areas associated with beauty do not match the
areas associated with symmetry detection that were reviewed in the previous section,
except perhaps for the low-level visual processing. This suggests we should question
the common narrative saying that symmetry is a marker of beauty.

2.3 Symmetry and thought

Our affinity for perfect symmetry has been observed in many aspects of human life,
including science, art, and architecture. Perhaps, this tendency to look preferentially for
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perfect symmetry and balance in the world around us is a fundamental aspect of human
cognition, not of the world itself. This tendency is reflected in many areas of human
thought and behavior, including our perception of visual information, understanding
of the physical world, and even our social interactions. Recall, for instance, the
concept of the “Law of Good Gestalt” in Gestalt psychology stating that humans have
a natural tendency to organize complex visual stimuli in the simplest, most coherent,
and symmetrical manner possible (Koffka, 1936). Our cognitive processes aim to
generate a good gestalt or a well-organized, harmonious, and balanced perception of
the world. Mach (1959) had a similar idea when it comes to thought. He proposed a
principle of “economy of thought,” a principle that suggests that our cognitive processes,
including perception, thinking, and problem-solving, naturally seek the most efficient
and straightforward ways to process and organize information similar to the medieval
principle of “Ockham’s razor”. Symmetries may play a crucial role in the mental
representations that our minds create to understand and navigate the world. By
simplifying complex patterns and structures, symmetries enable us to process and
categorize information more efficiently.

Even though, our preference for symmetry may have evolved as a result of various
adaptive advantages. It is commonly stated that symmetry is an indicator of health
and genetic fitness in potential mates, as well as a sign of stability and strength in the
natural environment. This evolutionary pressure may have led to the development of
cognitive mechanisms that specifically process and appreciate symmetry.

Alternatively, it might have simply spontaneously emerged from the algorithmic
nature of evolution in the sense of efficient information encoding. Johnston et al. (2022)
investigate this alternative hypothesis and they found that

symmetric structures preferentially arise not just due to natural selection
but also because they require less specific information to encode and are
therefore much more likely to appear as phenotypic variation through random
mutations. Arguments from algorithmic information theory can formalize
this intuition, leading to the prediction that many genotype–phenotype
maps are exponentially biased toward phenotypes with low descriptional
complexity. A preference for symmetry is a special case of this bias toward
compressible descriptions. We test these predictions with extensive biological
data, showing that protein complexes, RNA secondary structures, and a
model gene regulatory network all exhibit the expected exponential bias
toward simpler (and more symmetric) phenotypes. Lower descriptional
complexity also correlates with higher mutational robustness, which may
aid the evolution of complex modular assemblies of multiple components.

This is an interesting hypothesis which they robustly back up by analysing huge parts of
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various phenotype databases. I find this as another indication that there is a tendency
in living organisms for perfect symmetries.

Despite this preferential evolving towards symmetrical shapes, our brains not only
have approximate bilateral symmetry, but also have scale-free/fractal-like proportionate
structure, i.e., neural networks have big well-interconnected hubs, and there is a short
average distance between nodes to transmit information (Bassett & Bullmore, 2006).
Bullmore and Sporns (2009) review the exploration of structural and functional brain
networks using graph theory, which involves four main steps: 1) defining network nodes
(for instance, individual electrodes/pixels might correspond to nodes), 2) estimating
continuous measures of association between nodes, 3) generating an association matrix
and applying a threshold to create a binary adjacency matrix or undirected graph, and
4) calculating network parameters and comparing them to random network parameters,
see all these steps illustrated in Fig. 2.4. Each step entails choices that must be carefully
informed by the experimental question. Despite the difficulties, they review several
studies and identify scale-free fractal-like structures of both structural and functional
neural networks.

Figure 2.4: Illustration of the process of translating neuroscientific recordings into
networks for further graph analysis. After Bullmore and Sporns (2009).

Bassett and Bullmore (2006) and Bullmore and Sporns (2009) suggest that spatially
embedded complex (neural) networks may have evolved to optimize information transfer
efficiency at low connection cost or achieve an optimal balance between functional
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segregation and integration for high complexity dynamics. They argue that if wiring
cost was exclusively prioritized, the network would be close to a regular lattice, whereas
if efficiency was the only criterion, the network would be random. A key issue for future
research in this area is to understand how functional networks interact with structural
substrates and how functional network topology changes over time.

These considerations about the self-similar nature of our brains suggest that pro-
portional self-similarity, which might be capturable by the concept of partial symmetry
as we argue in the next chapter, might have to do something with our brains, even
though, our minds tend to idealize things towards perfect symmetry.





Chapter 3

Mathematics

The chief forms of beauty are order and symmetry [summetria] and
definiteness, which the mathematical sciences demonstrate in a special
degree.

Aristotle

Interestingly, Hargittai (1989) compiled one of the most extensive volumes written
to synthesize knowledge on global symmetries as used in various sciences, and the
compilation starts with an article criticizing the concept of the global symmetry as
captured by classical group theory, and the need for a new mathematical tool and
generalized concept of symmetry. Why is this the case, and what might be a suitable
candidate for the substitution of the original concept?

In this section, we formalize the notion of global symmetries in Section 3.2 and
partial symmetries in Section 3.3. The primary motivation and takeaway for this chapter
is to contrast these two concepts in formalism, and to show why the modern meaning
of global symmetry is very restrictive as opposed to partial/local symmetry.

We will demonstrate these concepts on the graphs. We choose graphs because they
are widely used in all areas of science, from the study of the structure of molecules
made up of atoms to the research on neuronal networks and more. Graphs are used to
represent these structures. Thus, the study of symmetries and their properties in graph
theory is vital for scientific progress.

Firstly, let us summarize the most important preliminaries that will re-occur in
most of the proofs for the sake of completeness. Since this thesis is intended for a wider
audience, we omit all the unnecessary algebraic mastery details of proofs, and we only
assume that the reader is aware of high-school algebra, mostly the idea of permutation,
basic algebraic manipulations and that the reader has no problem with formalizations
and standard mathematical notations. It is possible to simply skip the proofs and try
to grasp the general idea through the comments that we leave at the beginning and end
of each section. We strongly suggest the reader with an undergraduate math course
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dealing with discrete math skip straight to the Definition 14 of a group.

3.1 Graph theory

In this section, we follow the classical textbook of Diestel (2017). Typically, a network
of relations among items is represented by a graph. They are made up of edges and
vertices. A vertex, also known as a node, symbolizes an object or a point (for example
on a map). A connected pair of vertices is referred to as an edge. Edges depict the
connections between the two vertices and are often shown as lines connecting points,
while vertices are typically shown as points/circles.

Definition 1 (Graph). A graph Γ is an ordered pair (V (Γ), E(Γ)) consisting of a
nonempty set V (Γ) of vertices, a set E(Γ), disjoint from V (Γ), of edges, i.e., a set of
unordered pairs {u, v}, where u, v ∈ V . See examples in Fig. 3.1 and Fig. 3.3.

1

2

3

4

5

6

Figure 3.1: Example of graph with 6 vertices and 8 edges.

Definition 2 (Subgraph). Graph Γ̄ is a subgraph of graph Γ(Γ̄ ⊆ Γ) when graph Γ̄

consists of vertices and edges, which are in graph Γ. In other words, a vertex set of
graph Γ̄ is a subset of a vertex set of graph Γ and an edge set of graph Γ̄ is a subset of
an edge set of graph Γ such that the edges contain the only vertices from the vertex set
of subgraph Γ̄. See example in Fig. 3.3

Definition 3 (Induced subgraph). Let Γ̄ be a subgraph of graph Γ(Γ̄ ⊆ Γ). If graph Γ̄

is a subgraph of graph Γ and graph Γ̄ also contains all edges from graph Γ connecting
the vertices of graph Γ̄, then graph Γ̄ is called an induced subgraph. In other words,
induced subgraph is the same graph with the same edges if we do not consider the
deleted nodes. See the difference between the examples in Fig. 3.2 and Fig. 3.3.
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1 2

3

{1,2}

{2,3}

Figure 3.2: Example of subgraph of graph in Fig. 3.1 that is not induced.

1 2

3

{1,2}

{2,3}{3,1}

Figure 3.3: Example of a simple graph with 3 vertices that is an induced subgraph of
graph in Fig. 3.1.

There are some graphs that share the same set of edges and vertices. We call them
identical graphs. Let Γ = (V,E) and Γ̄ = (V ′, E ′), for instance. Graphs Γ and Γ̄ are
the same if V = V ′ and E = E ′. There are other graphs, nevertheless, that share a
structure but differ in their vertices and edges. We say that these graphs are isomorphic.

Definition 4 (Graph isomorphism). Two graphs Γ and Γ̄ are isomorphic (written
Γ ∼= Γ̄ ) if there exists a bijection1 θ : V (Γ) → V (Γ̄) such that {u, v} ∈ E(Γ) if and
only if (iff is shortcut for double-sided implication) {θ(u), θ(v)} ∈ E(Γ̄).

In simpler terms, two graphs, Γ and Γ̄, are isomorphic if there is a way to match the
points (vertices) and lines (edges) of graph Γ with those of graph Γ̄ while keeping their
overall structure the same. Obviously, identical graphs are isomorphic. Sometimes,
though, you can match the points (nodes) and lines (edges) of a graph to itself.

Definition 5 (Graph automorphism). This is called graph automorphism, and there
is an example in the Fig. 3.4. Formally, graph automorphism means that a graph is
isomorphic to itself. All graphs have also trivial automorphism, a map that maps the
graph identically to itself. Any other automorphisms are non-trivial. The group of all
automorphisms of a graph Γ is denoted as Aut(Γ).

We can imagine a graph as a neural network of neurons (vertices) connected by
synapses and dendrites (edges). An automorphism of a graph is a way to rearrange

1The definition of a bijection is in the next section.
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the neurons while keeping all the connections the same. In other words, the structure
remains the same.

1 2

3

{1,2}

{2,3}{3,1}

2 1

3

{2,1}

{2,3} {3,1}

1 → 2

2 → 1

3 → 3

Original Transformed Mapping

Figure 3.4: Example of a graph automorphism

Definition 6 (Partial graph automorphism). A partial automorphism of a graph Γ is
an isomorphism between two induced subgraphs of Γ. In other words, it is a bijection
φ : V1 → V2 between two sets of vertices V1, V2 ⊆ V (Γ) such that any pair of vertices
u, v ∈ Vl satisfies the condition {u, v} ∈ E iff {φ(u), φ(v)} ∈ E. Similarly, all partial
automorphisms of any graph Γ together are denoted as PAut(Γ).

Partial graph automorphism is similar to graph automorphism, but it does not have
to involve all the vertices. As opposed to graph automorphism, it preserves only part
of the whole structure. Imagine if we only rearranged (renamed) some neurons in our
network, but we still kept all the connections between those neurons structurally the
same, irrespective of what happens with the other neurons. This would be a partial
automorphism of the graph.

Finally, let us mention the theorem of Erdős and Rényi (1963) who proved that the
probability of selecting an asymmetric graph from the set of all graphs is almost 1, thus,
almost all finite graphs are asymmetric, i.e., they have only a trivial automorphism.
This further motivates our study of partial automorphisms of graphs.

3.2 Symmetry and group theory

It is a well-established fact that the modern concept of symmetry can be formalized
using the theory of groups. In this section, for the sake of completeness, we provide
basic preliminaries and a summary of the fundamental results of group theory following
the classical textbook on abstract algebra Gallian (2021). We will provide some useful
commentaries on each of these theorems and definitions to set them in context to study
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symmetries. The primary takeaway messages of this section are: the understanding
that the concept of group covers the set of all global transformations that leave the
object invariant, and that the abstract concept of a group can be represented as a
permutation of the set. Let us begin with the preliminaries:

Preliminaries

Definition 7 (Mapping). A mapping f : A→ B is a function that assigns each element
a ∈ A to a unique element b ∈ B. Then, we call A the domain of the function f , and
B the range/image of the function f .

A function is a mathematical relationship between two sets, where each input value
(from the first set) corresponds to exactly one output value (from the second set). It
can be represented using a graph, table, or equation.

Definition 8 (Composition of Functions). Let f : A → B and g : B → C. The
composition g◦f or simply gf is the mapping from A to C defined by (gf)(a) = g(f(a))

for all a in A. The composition of function gf can be visualized as in Fig. 3.5.

Composition of functions is a mathematical operation that combines two or more
functions to create a new function. It is defined as the application of one function to
the result of another function. In the definition above, this means that the output of
any function denoted as f is used as the input of any function g.

A B C

f g

gf

Figure 3.5: Composition of functions.

Definition 9 (Injective Function). A function f : A→ B is injective if for all a1, a2 ∈ X,
f(a1) = f(a2) =⇒ a1 = a2.

An injective function is a function in which each element in the domain is paired
with exactly at most one element in the range. This means that no two elements in the
domain are mapped to the same element in the range. Note that not every element in
the range has to have some element in the domain.
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Definition 10 (Function from A onto B (surjective)). Let A and B be sets. A function
f : A → B is a surjective function from A onto B if for every b ∈ B there exists a
a ∈ A such that f(a) = b.

Surjectivity simply says that each element of the set B in the image of the function
has to have at least one corresponding element mapped onto it from the domain of the
function.

Definition 11 (Bijection from A to B)). Let A and B be sets. A function f : A→ B

is a bijective function iff it is both injective and surjective.

That is, each element from the domain has precisely one corresponding element in
the image, and vice versa.

Definition 12 (Permutation). A permutation of a set A is defined as a function that
maps A to A, possessing both injective and surjective properties, thus, a bijection.

Definition 13 (Binary Operation). Let A be a set. A binary operation on A is a
function f : A× A → A, i.e., a function that assigns each pair of elements of A, one
element of A

Examples of binary operations include addition, subtraction, multiplication, division,
exponentiation, etc.

Group theory

Now, we are ready to review the results from group theory. Recall that group theory was
developed as a formal abstraction of what we would conceptualize as global symmetry,
a set of all transformations under which an object is invariant as discovered in the 19th
century. Formally:

Definition 14 (Group). A group is a set G together with a binary operation · that
satisfies four axioms: closure, associativity, identity, and inverse. That is, for any
a, b, c ∈ G, we have:

1. Closure: a · b ∈ G (we usually omit ·)

2. Associativity: (a · b) · c = a · (b · c)

3. Identity: There exists an element id ∈ G such that a · id = id · a = a for all a ∈ G

4. Inverse: For each a ∈ G, there exists an element a−1 ∈ G such that a · a−1 =

a−1 · a = id
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We will work with the graph in Fig. 3.3 to illustrate D3 group, dihedral symmetry
for a regular triangle. The D3 group has six possible transformations that leave the
object invariant: 0◦ rotation which is called identity, 120◦ rotation, 240◦, and three
different involutions that reverse the order. (geometrically, inverting image across axis
going through nodes and the middle of the opposing sides, which are shown in Fig. 3.6).

1 2

3

{1,2}

{2,3}{3,1}

Figure 3.6: Example of a triangular graph that has the D3 symmetry. The image
highlights three possible axes for inversion of image bilaterally. 3D analogue of this
graph is a tetrahedron, which is the general form of many molecules such as methane
(CH4).

These transformations can be written as permutation mappings:

• The identity permutation (no change):

1 7→ 1

2 7→ 2

3 7→ 3

• Rotation by 120 degrees counterclockwise:

1 7→ 2

2 7→ 3

3 7→ 1

• Rotation by 240 degrees counterclockwise:

1 7→ 3

2 7→ 1

3 7→ 2
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• Reflection across the axis passing through vertex 1:

1 7→ 1

2 7→ 3

3 7→ 2

• Reflection across the axis passing through vertex 2:

1 7→ 3

2 7→ 2

3 7→ 1

• Reflection across the axis passing through vertex 3:

1 7→ 2

2 7→ 1

3 7→ 3

Now, consider a simple intuition for each of the axiomatic properties of a group:

1. Closure: This property means that if you take any two elements from the group
and combine them using the group operation, the result will always be another
element in the group. This ensures that the group is closed under its operation
and that you can keep combining elements without ever leaving the group. Take
for instance a regular triangle in Fig. 3.6 which has a D3 symmetry. When you
rotate this object by 240◦ counterclockwise and then make a mirror image of it
across 2, these transformations taken together make the same transformation as
if you would make an inversion across 3 instead.

2. Associativity: This property means that when you combine three or more elements
using the group operation, it does not matter how you group them. This allows
us to manipulate expressions involving the group operation without having to
worry about the order in which we perform the operations.

3. Identity Property: This property means that there is a special element in the
group called the identity element such that when you combine any element with
the identity element using the group operation, you get the same element back.
The identity element acts as a neutral element that does not change other elements
when combined with them. It is the same as doing nothing / 0◦ rotation.
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4. Inverse Property: This property means that for every element in the group, there
is another element called its inverse such that when you combine an element with
its inverse using the group operation, you get the identity element. The inverse of
an element ‘undoes’ the effect of combining with that element. Observe this on
the triangle, if you make a rotation to the right, there is a rotation to the left. If
you make a mirror transformation, there is another mirror transformation that
takes the first transformation back to the original one.

Definition 15 (Order of a group). Let G be a group. The order of G, denoted by |G|,
is the number of elements in G.

Now, we list some of the most essential but simple theorems. We also include proofs
for the reader to see the basic algebraic manipulations in the group theory.

Theorem 1 (Uniqueness of the identity of a group). Let G be a group. Then there
exists a unique identity element id ∈ G such that for all a ∈ G, id · a = a · id = a.

Proof. Let id1, id2 ∈ G be two elements such that for all a ∈ G, we get two equations
id1 · a = a · id1 = a and id2 · a = a · id2 = a. Then, if we choose a = id2 in the first
equation, we get (by definition of identity in the group)

id1 · id2 = id2 · id1 = id2

If we choose a = id1 in the second equation, we get

id2 · id1 = id1 · id2 = id1

Therefore, id1 = id2, and the element id ∈ G is unique.

This property of uniqueness allows us to speak of only one unique identity transfor-
mation, id, that maps an element to itself.

Theorem 2 (Cancellation Property of a Group). Let G be a group and a, b, c ∈ G. If
a · b = a · c, then b = c.

Proof. Let G be a group and a, b, c ∈ G. Assume a · b = a · c. Then, by multiplying
both sides of the equation by a−1 on the left, we get

b = a−1 · a · b = a−1 · a · c = c

Therefore, b = c.

See that cancellation property allows us to cancel the same elements on both sides
of the equation, and thus it is essential for manipulating equations.

Now, hypothetically one element could have more than one inverse that would satisfy
the definition of a group, however, the next theorem shows that is not the case.
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Theorem 3 (Uniqueness of Inverses of a Group). Let G be a group and a ∈ G. Then
a−1 is unique in G.

Proof. Let a−1 and b−1 be two inverses of a in G. Then using definition of a group
a−1a = b−1a = id, where id is the identity element of G. Thus, (using cancelation
property), a−1 = b−1.

Theorem 4 (Socks-Shoes Property). For group elements a and b, (ab)−1 = b−1a−1.

Proof. Let G be a group and a, b ∈ G. Then, (recall that from definition of a group
(ab)(ab)−1 = id)

(ab)(b−1a−1) = a(bb−1)a−1

= a · id · a−1 = aa−1 = id

= (ab)(ab)−1.

Using the left cancelation property, we get

(ab)(b−1a−1) = (ab)(ab)−1.

(b−1a−1) = (ab)−1.

We will use only the definitions and theorems listed in this section in the following
proofs.

Now, let us go back to the permutations. The dihedral group D3 represents the
symmetries of an equilateral triangle. It has six elements: three rotations and three
reflections. Is there a more compact way to represent the permutation of its vertices, as
opposed to the mappings that we used in Definition 14?

Cycle notation offers a compact and efficient method for expressing permutations.
It represents permutations as a product of disjoint cycles (without intersections), where
each cycle is a sequence of elements that are cyclically permuted via transformation. This
notation is particularly helpful when dealing with symmetric groups and investigating
their properties.

Here are the same six elements/transformations of D3 represented in cycle notation:

• The identity permutation (no change / 0 degree rotation): (1)(2)(3)

• Rotation by 120 degrees counterclockwise: (1 2 3)

• Rotation by 240 degrees counterclockwise: (1 3 2)

• Reflection across the axis passing through vertex 1: (1) (2 3)
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• Reflection across the axis passing through vertex 2: (2) (1 3)

• Reflection across the axis passing through vertex 3: (3) (1 2)

For the sake of illustration, let us take the graph in Fig. 3.3, and apply the trans-
formation of this graph using the reflection across the axis passing through vertex 3.
What happens is this:

1 7→ 2

2 7→ 1

3 7→ 3

Thus, the order of vertices is the same as in the transform automorphism of graph in
Fig. 3.4.

If we apply the same reflection again, we are back again with the initial order of
vertices in the graph because of the cycle (1 2), i.e., by the first reflection 1 mapped to
2, by the second reflection 2 mapped back to 1.

Now, we want to understand when two groups are structurally the same. For this
goal, we will define what is an isomorphism.

Definition 16 (Group isomorphism). A group isomorphism ϕ from a group G to a
group Ḡ is a bijective mapping (or function) from G onto Ḡ that preserves the group
operation. That is,

ϕ(ab) = ϕ(a)ϕ(b) for all a, b in G.

If there is an isomorphism from G onto Ḡ, we say that G and Ḡ are isomorphic and
write G ≈ Ḡ.

Definition 17 (Symmetric Group). Let A = {1, 2, . . . , n}. The set of all permutations
of A is called the symmetric group of degree n and is denoted by Sym(n). Elements
of Sym(n) can be phrased in the form of a mapping α where each element from A is
permuted via a permutation function α:

1 7→ α(1)

2 7→ α(2)

3 7→ α(3)

...

n 7→ α(n)

It is easy to compute the order of Sym(n). There are n choices of α(1). Once α(1) has
been determined, there are n− 1 possibilities for α(2) (since α is an injective mapping,
we must have α(1) ̸= α(2)). After choosing α(2), there are exactly n− 2 possibilities for
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α(3). Continuing along in this fashion, we see that Sym(n) has n(n− 1) · · · 3 · 2 · 1 = n!

elements.

The symmetric groups are rich in subgroups, where subgroups are subsets of
transformations of a group that again satisfy the definition of a group. The group
Sym(4) has 30 subgroups, and Sym(5) has well over 100 subgroups.

Theorem 5 (Cayley’s Theorem). Let G be a group. We show that G is isomorphic to
a group of permutations (and subgroup of the symmetric group Sym(n)).

Proof. To prove this theorem, we divide the work into these steps:

1. Define the mapping ϕa: Let G be any group. We must find a group Ḡ of
permutations that we believe is isomorphic to G. Since G is all we have to work
with, we will have to use it to construct Ḡ. For any a in G, define a function ϕa

from G to G by
ϕa(x) = ax for all x in G.

(In words, ϕa is just multiplication by some a ∈ G on the left.)

2. Prove that ϕa is a permutation on the set of element of G: ϕa(x) = ϕa(y) iff
ax = ay or x = y. This shows that ϕa is an injective function. Let y ∈ G. Then
ϕa

(
a−1y

)
= (aa−1)y = y, so that ϕa is onto. Thus, ϕa is a bijection from the set

G onto itself, i.e., permutation.

3. Define the representation of G: Now, let Ḡ =
{
ϕa | a∈G

}
. Further, we want to

prove that Ḡ is a group.

4. Observe the properties of ϕa to prove that Ḡ is a group: To verify this, we
need to show that Ḡ satisfies all the properties of a group. Its elements are
functions, thus we need to show that function composition holds. We first observe
that for any a and b in G we have ϕaϕb(x) = ϕa

(
ϕb(x)

)
= ϕa(bx) = a(bx) =

(ab)x = ϕab(x), so that ϕaϕb = ϕab. From this it follows that ϕid is the identity
since ϕid(x) = id · x = x and (ϕa)

−1 = ϕa−1 since ϕa ◦ (ϕa)
−1 = ϕid = ϕaa−1 =

aa−1(x) = a(a−1(x)) = ϕa ◦ ϕa−1 and cancel ϕa on both sides. Since function
composition is associative by definition, we have verified all the conditions for Ḡ
to be a group. Ḡ is a group under the operation of function composition, called
the left regular representation of G.

5. Show that G is isomorphic to a group of permutations Ḡ: The isomorphism ϕ

between G and Ḡ is now ready-made. For every a in G, define ϕ(a) = ϕa. If
ϕa = ϕb, then ϕa(id) = ϕb(id) or a · id = b · id. Thus, a = b and ϕ is injective
function. By the way Ḡ was constructed, we see that ϕ is onto. The only condition
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that remains to be checked is that ϕ is operation-preserving. To this end, let a
and b belong to G. Then

ϕ(ab) = ϕab = ϕaϕb = ϕ(a)ϕ(b).

6. Show that the group of permutations Ḡ is a subgroup of the symmetric group
Sym(n): If G is a finite group with n elements, then the left regular representation
of G is a subgroup of the symmetric group Sym(n), as each permutation in Ḡ

is a bijection on the set G so it satisfies the definition of a symmetric group.
Consequently, Cayley’s Theorem indicates that every finite group of order n can
be considered as a subgroup of the symmetric group of degree n. That is why we
usually denote the symmetric group of any group set X simply as Sym(X).

Cayley’s Theorem is important for two contrasting reasons. One is that it allows
us to represent an abstract group in the area of permutations that is much more
tangible. Secondly, it demonstrates that the contemporary set of axioms selected for
a group accurately abstracts its earlier permutation group counterpart developed by
Galois. Indeed, Cayley’s Theorem tells us that abstract groups are not different from
permutation groups (Gallian, 2021).

We started this chapter with the promise to study symmetries on graphs. Is there a
connection between graphs and groups? Indeed, the next theorem shows that there is a
deep connection.

Theorem 6 (Frucht’s theorem). For any finite group G there exists a graph Γ such
that Aut(Γ) ∼= G

This is essential because not only groups (global symmetries) can be studied using
permutations, but also using graph automorphisms without destroying the underlying
structure. We do not provide a procedure to generate a graph for each group, since
that would be beyond the scope of this thesis.

3.3 Partial symmetry and inverse monoids

In this section, we formalize the notion of partial symmetry in the mathematically
precise framework of inverse monoids. We follow the classical textbook of Lawson (1998)
and papers of Jajcay et al. (2021) and Jajcayova (2022). The primary motivation is
to contrast and parallel the group theory with the inverse monoid theory. Note that
sometimes one can see inverse semigroups being referred to as the formalization of
partial symmetry. However, inverse monoids are just inverse semigroups with identity
property (without any huge structural change), thus, for many purposes, these terms
are interchanged.
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Preliminaries

Definition 18 (Partial function (mapping)). Let A and B be any two sets. A partial

function f from A to B, f : A −⇀ B, is a function from a subset of A to a subset of
B. The subset of A consisting of all those elements a ∈ A for which f(a) is defined is
called the domain (of definition) of f , which we denote by dom f . The image / range
of f is the subset ran(f) = f(dom(f)) of B. See Fig. 3.7.

Two special classes of partial functions are particularly important. For any two sets
A and B there is a unique empty partial function from A to B which we denote by id∅.
For every subset A1 of A the identity function on A, denoted idA1 , is a partial function
from A to itself. Such partial functions are termed partial identities.

Definition 19 (Composition of Partial Functions). Let f be a partial function from A

to B and g a partial function from B to C. Then the composition of partial functions

is a partial function g ◦ f from A to C, where the domain of g ◦ f is given by

dom(g ◦ f) = f−1(dom g ∩ im f)

and if x ∈ dom(g ◦ f) then (g ◦ f)(x) = g(f(x)). The image of g ◦ f is g(dom g ∩ im f).
The case where dom g and im f have empty intersection causes no problems: g ◦ f is
just the empty function. We usually write gf rather than g ◦ f .

A B C

Ā B̄1 C̄

B̄2

f g

gf

Figure 3.7: Composition of partial functions. As you can see in the picture, fg
composition will only map to a subset of C̄ in orange despite the fact that B̄2 maps to
the whole subset C̄. This is because the range of f overlap with g only in the small
subset in red, thus their composition will only map this small subset in red to the one
in orange. Note that both of these can be empty.

Note that the important message is that (composition of) partial functions may not
be defined for all elements in the domain. Thence the use of the words locality and
partiality. If (the composition is) defined for all elements, it becomes a total function
that we defined in the previous section.

We shall concentrate on those partial functions which induce bijections between
their domains and images; we call such partial functions partial bijections. All partial
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identities and empty functions are partial bijections. If f is a partial bijection from A

to B then we denote by f−1 the partial bijection from B to A which is the inverse of f .
Thus, the domain of f−1 is ran(f) and its range is dom(f). The composition of partial
bijections is again a partial bijection. Some important properties of partial bijections
are described below.

Definition 20 (Partial bijection). Given sets A and B, and subsets A′ ⊆ A and B′ ⊆ B,
a partial bijection f : A −⇀ B satisfies the following two conditions:

1. Partial injection: For every a1, a2 ∈ A′, if f(a1) = f(a2), then a1 = a2.

2. Partial surjection: For every b ∈ B′, there exists a ∈ A′ such that f(a) = b.

In other words, a partial bijection is a partial mapping from a set A to a set B,
f : A −⇀ B with bijective properties. Or, equivalently, it is a mapping from a subset of
a set A to a subset of a set B, f : A′ → B′, with a bijective one-to-one correspondence
between the elements of the subsets. The common size | dom(f)| = | ran(f)| of the
dom(f) and ran(f) is called the rank of f .

The following proposition lists several essential properties of partial bijections.

Proposition 1 (Properties of partial bijections). Let A,B and C be sets, and let
f : A −⇀ B be a partial bijection. Then:

1. f−1f = iddom f , a partial identity on A, and ff−1 = idranf , a partial identity on
B.

2. For a partial bijection g : B −⇀ A, the equations f = fgf and g = gfg hold if,
and only if, g = f−1.

3.
(
f−1

)−1
= f

4. idA1idA2 = idA1∩A2 = idA2idA1 for all partial identities idA1 and idA2 where
A1, A2 ⊆ A.

5. (gf)−1 = f−1g−1 for any partial bijection g : B −⇀ C.

Inverse monoid theory

Finally, we are ready to review the results of inverse monoid theory which is a represen-
tation of the concept of partial symmetry.

Definition 21 (inverse monoid). An inverse monoid is a set S together with a binary
operation · that satisfies four axioms: closure, associativity, generalized inverse, and
identity. That is, for any a, b, c ∈ S, we have:
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1. Closure: a · b ∈ S

2. Associativity: (a · b) · c = a · (b · c)

3. Generalized Inverse: For each a ∈ S, there exists an element a−1 ∈ S such that
a−1 · a · a−1 = a−1

4. Identity: For each a ∈ S, there exists an element id ∈ S such that id ·a = a ·id = a

The main difference between groups and inverse monoids is in the nature of the
inverse elements. Groups capture global symmetry, as applying the inverse operation
undoes the original operation for the entire set (aa−1 = id). However, in inverse monoids,
the inverses (aa−1a = a) only partially undo the original operation, which is why the
structure of inverse monoids is said to capture local symmetry.

Theorem 7 (Every group is inverse monoid).

Proof. See that only thing that has to be proved is that inverse of group satisfies the
generalized inverse of inverse monoids, other criteria in the definitions of group and
inverse monoid are the same.

Let S be any inverse monoid. For each a ∈ S, there exists an element a−1 ∈ S such
that a−1 · a · a−1 = a−1. Now substitute a−1 · a for the identity from the Definition 14
of the group. id · a−1 = a−1, and this is equal to a−1 = a−1.

Inverse monoids

Groups

Figure 3.8: The concept of group is a subconcept of inverse monoid.

From now on, it should be clear that the concept of partial symmetry is not in
opposition to the concept of symmetry, but it is rather its generalization, and so the
concept of partial symmetry encompasses the concept of global symmetry which can
be nicely illustrated using Venn’s diagrams in Fig. 3.8. Despite this closeness between
the concepts, there are also structures such as those in Fig. 3.9 which do not have any
of the global symmetries, but if you delete just one node, all of its induced subgraphs
have global symmetries.
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Figure 3.9: These graphs are minimally asymmetric, i.e., there is a single vertex that
you can delete, and you will get a structure that does not have any induced subgraph
that is asymmetric (Schweitzer, 2017).



56 CHAPTER 3. MATHEMATICS

Now let us define natural partial order on the inverse monoids.

Definition 22. Let s, t ∈ S, then, s ≤ t <=> s = te for some idempotent e, where
idempotency is this property: ee = e. Idempotency is a kind of redundancy that does
not change anything if applied multiple times in a consecutive sequence.

Lemma 1. Let S be an inverse monoid. Then the following are equivalent:

1. s ≤ t.

2. s = ft for some idempotent f .

3. s−1 ≤ t−1.

4. s = ss−1t.

5. s = ts−1s.

Proposition 2. Let S be an inverse monoid, then the relation ≤ is a partial order on
S.

This proposition shows that our definition of partial order on inverse monoids is
indeed partial order, as we would want it to be.

Proof. We need to prove that ≤ is a reflexive, antisymmetric, and transitive operation
on S.

Since s ≤ s is (according to (4/5) of Lemma 1) equal to s = s(s−1s), and so s = s

because of the inverse property of semigroups, the relation is reflexive. Now, we show
that ≤ is antisymmetric. Let s ≤ t and t ≤ s Then, using (5) in Lemma 1, we have
s = ts−1s and t = st−1t . So,

s = ts−1s Initial equation using (5) in Lemma 1 for s

= st−1ts−1s Using the same Lemma for t.

= tt−1ss−1s Subtituting st−1t for tt−1s (Lemma 1 (4) applied for t.)

= tt−1s using inverse property

= t Using (4) in Lemma 1

Lastly, let us show that it is transitive. Let s ≤ t and t ≤ u . We have to show
from these that s ≤ u. By definition of a partial order, s = te and t = uf . Make a
substitution of the second equation into the first one, and we get s = u(fe) where both
f and e are idempotents (and composition of idempotents is idempotent), therefore,
s ≤ u.
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This proposition is crucial: if an inverse monoid that has an equivalence relation
instead of a partial order, it turns into a group (Lawson, 1998).

Now, let us focus on what makes two inverse monoids structurally the same.

Definition 23 (Injective homomorphism). An homomorphism ϕ from an inverse
monoid S to an inverse monoid S̄ is a mapping (or function) from S onto S̄ that
preserves the inverse monoid operation. That is,

ϕ(ab) = ϕ(a)ϕ(b) for all a, b in S.

If there is a homomorphism from S onto S̄, we say that S and S̄ are homomorphic.
Injective homomorphism is an injective mapping from S onto S̄ that preserves the
inverse monoid operation.

See that injective homomorphism is very similar to isomorphism used in group
theory, but as opposed to isomorphism, injective homomorphism is not surjective, thus
some elements in the range might not have corresponding elements in the domain.

Definition 24 (Symmetric inverse monoid PSym(X)). The collection of all partial
bijections from a set to itself forms a symmetric inverse monoid on X, usually denoted
as PSym(X).

Theorem 8 (Wagner-Preston representation theorem). Let S be an inverse monoid.
Then there is a set X and an injective homomorphism Θ: S → PSym(X) such that
a ≤ b =⇒ Θ(a) ⊆ Θ(b), where a, b ∈ S.

Proof. Note that this theorem is an analogue to the Cayley’s theorem for group theory.
We provide the outline of the proof so that the reader can contrast it to Cayley’s
theorem.

1. Define the mapping Θa.

2. Observe its (bijective) properties.

3. Define the (representational) mapping Θ: S → PSym(X).

4. Show that Θ is a homomorphism.

5. Show that Θ is injective.

This theorem demonstrates that every inverse monoid can be embedded into a
symmetric inverse monoid (of partial permutations), providing a powerful tool to study
inverse monoids through the lens of partial bijections on some set X.
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Further, recall cycle notation in the group theory – A cycle represents a permutation
that cyclically rearranges all the elements within its domain. However, it is essential
to differentiate this notion in partial permutations. The cycle notation of partial
permutations is a generalization and allows also a path, which (unlike a cycle) ends
when it reaches the undefined element: dom (xk, . . . x2, x1] = {xk−1, . . . , x2, x1} and
ran (xk, . . . x2, x1] = {xk, . . . , x3, x2} (Jajcayova, 2022). Every partial permutation in
PSym(X) is the union of pairwise disjoint (non-overlapping) paths and cycles. For
example, consider a partial permutation on the set 1, 2, 3, 4 that maps 1 to 3, 3 to 4,
and 2 to 2. This partial permutation can be uniquely written as (1 3 4] (2) (Jajcay
et al., 2021).

As an example, we will show the application of inverse monoids and partial symme-
tries to graphs.

Firstly, note that all partial automorphism of any graph Γ are partial permutations
of its vertices V (Γ), therefore PAut(Γ) actually belongs to PSym(V (Γ)), PAut(Γ) ⊆
PSym(V (Γ)), since it satisfies the definition of inverse monoid.

In examining the structure of inverse monoids, four key equivalence relations are
essential. These are called Green’s relations. Let φ1 and φ2 be partial permutations.
Then Green’s relations are:

φ1Lφ2 ⇔ domφ1 = domφ2

φ1Rφ2 ⇔ ranφ1 = ranφ2

φ1Hφ2 ⇔ φ1Lφ2 and φ1Rφ2

Thus, we can say that H is an intersection of L and R classes.

φ1Dφ2 ⇔ φ1 and φ2 have the same rank.

That is why we can say that D is a disjoint union of L, and R classes where both φ1

and φ2 are partial permutations ∈ PSym(X) for some set X.

Each R class and each L-class contain precisely one idempotent, and the H-classes
containing these idempotents are the maximal/the biggest subgroups of the inverse
monoid since they both preserve domains and ranges.

In simpler words,

1. L-class relation relates two partial permutations iff they have the same domain
(the set of vertices they act on).
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2. R-class relation relates two partial permutations iff they have the same range
(the set of vertices they map to).

3. H-class relation relates two partial permutations iff they have both the same
range and domain.

4. D-class relation relates two partial permutations iff φ1 and φ2 have the same rank.

Let us give an example from Jajcay et al. (2021). The R-class of the partial
automorphism (1) ∨ (2) consists of all partial automorphisms of range {1, 2}, that is,
of {(1) ∨ (2), (12), [123), (2) ∨[13)}. Similarly, the L-class of ⌊1) ∨ (2) consists of all
partial automorphisms with domain {1, 2}, that is, of {(1) ∨ (2), (12), [321), (2) ∨ [31)}.
Note that the L-class of (1) ∨(2) contains exactly the inverses of the elements in its
R-class. This is no coincidence: In any inverse monoid, aRb iff a−1Lb−1.

The H-class of (1) (2) in PAut (Γ0) is {(1)∨(2), (12)}. Note that it forms a subgroup.

Figure 3.10: Example of a graph Γ0 with four vertices.

For the D-class consider graph Γ0 in Fig. 3.10 and the partial automorphisms (12),
(34) ∈ PAut (Γ0) again. Both have rank 2, but there is no partial graph automorphism
ψ ∈ PAut (Γ0) with domψ = {1, 2} and ran ψ = {3, 4}, as {1, 2} is an edge while {3, 4}
is not. As it turns out in partial automorphism monoids, the D relation corresponds to
isomorphism classes of induced subgraphs, as formulated in the following propositions
which answer what is the structure of PAut(Γ) for some graph Γ. The details are
provided in Jajcay et al. (2021).

Proposition 3 (Jajcay et al. (2021)). For any graph Γ, the D-classes of PAut(Γ)
correspond to the isomorphism classes of induced subgraphs of Γ, that is, two elements
are D-related iff the subgraphs induced by their respective domains (or ranges) are
isomorphic.

This means, that the partial order for D-classes corresponds to induced subgraph
relation. This fact is used heavily when finding inverse monoids of partial automorphisms
for particular graphs. It also indicates that computationally this problem is hard, as we
have to go through all induced subgraphs of a given graph.
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Figure 3.11: Egg-box diagram of the D-class of the edges in PAut(Γ0) corresponding
to graph in Fig. 3.10. After Jajcay et al. (2021).

In an inverse monoid, each D-class is a disjoint union of R-classes, and a disjoint
union of L-classes, and any R - and L-class of a D-class intersect in an H-class.
Moreover, every D-class contains the same number of R-classes as L-classes. A D-class
is therefore usually depicted in what is called an egg-box diagram: The whole rows
are the R-classes, the whole columns are the L-classes, the small rectangles are the
H-classes. These egg-boxes are arranged in such a way that the H-classes containing
idempotents are on the main diagonal.

For an example, see Fig. 3.11 which depicts the D-class of PAut (Γ0) corresponding
to the edges of the graph. The first row (column) corresponds to the range (domain)
{1, 2}, and the second row (column) corresponds to the range (domain) {2, 3}. These
belong to the same D-class since both {1, 2} and {2, 3} represent edges of PAut (Γ0),
and therefore, there exists a partial automorphism of rank 2 mapping {1, 2} to {2, 3}.
The idempotents are colored gray.

In the case of finite inverse monoids, the D-classes form a partially ordered set: If we
denote the D-class of a by Da, we put Da ≤ Db if a = xby for some x, y ∈ S, that is, if b
can be multiplied into a. In the case of PSym(X), this is just the ordering of D-classes
according to their rank so that the D-classes form a chain of egg-box diagrams visible in
Fig. 3.12. The minimum element is the D-class of partial permutations of rank 0, which
is just {id∅}. The maximum element is the D-class of rank |X| partial permutations,
which are the permutations of X. This maximal D-class, therefore, consists of a single
H-class, which is the symmetric group Sym(X).

In the case of partial automorphism monoids, this partial order corresponds to the
induced subgraph relation between the isomorphism classes of graphs, as implied by
the following proposition.

Finally, we are ready to answer the question formulated in Jajcayova (2021): “When
is an inverse monoid of partial permutations the partial automorphism monoid of a
graph?”
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Figure 3.12: Example of partial symmetries of a graph (partial graph automorphisms
that satisfy the conditions for inverse monoid that admits graph) represented by inverse
monoids, and contrast to what is captured by the group theory. Figure adapted from
Jajcay et al. (2021).
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Theorem 9 (Jajcay et al. (2021)). Given an inverse submonoid S ≤ P Sym(X), where
X is a finite set, there exists a graph with vertex set X whose partial automorphism
monoid is S iff the following conditions hold:

1. S is a full inverse submonoid of PSym(X),

2. for any compatible subset A ⊆ S of rank 1 partial permutations, if S contains the
join of any two elements of A, then S contains the join of the set A,

3. the rank 2 elements of S form at most two D-classes,

4. the H-classes of rank 2 elements are nontrivial.

Moreover, the next theorem describes “when is an inverse monoid isomorphic to the
partial automorphism monoid of a graph” (Jajcayova, 2021)?

Theorem 10 (Jajcay et al. (2021)). Given a finite inverse monoid S, there exists a
finite graph whose partial automorphism monoid is isomorphic to S iff the following
conditions hold:

1. S is Boolean,

2. S is fundamental,

3. for any subset A ⊆ S of compatible 0-minimal elements, if all 2-element subsets
of A have a join in S, then the set A has a join in S,

4. the 0-minimal elements of S are D-equivalent,

5. S has at most two D-classes of height 2,

6. the H-classes of the height 2D-classes of S are nontrivial.

The partial automorphism monoid PAut(Γ) of a graph Γ is a rich and complex
structure, more so than the classical automorphism group Aut(Γ). The number of local
identities in PAut(Γ) is exponential with respect to the order of the graph.

Computing PAut(Γ) for a graph Γ involves repeatedly computing automorphism
groups in multiple stages. The classical Aut(Γ) must be found as a final top D-class,
along with automorphism groups of all induced subgraphs. Generally, constructing the
automorphism group is at least as difficult as solving the graph isomorphism problem.
There are |P Sym({1, 2, . . . n})| = Σn

i=0

(
n
i

)2
i! elements in PAut(Γ). However, it can be

done effectively for many graph classes.
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3.3.1 Quantification of (partial) symmetry

In this section, we shortly propose how partial symmetry can be quantified. Since this
question is not yet fully resolved, we will shortly list possible ways that first came to
one’s mind:

1. (top-down) approach would be to use a depth of partial symmetry, i.e., the minimal
number of decomposition steps until we come to the underlying full non-trivial
symmetry layers. This approach was already described in Erdős and Rényi (1963).

2. I also suggest (bottom-up) approach, i.e., define a distance function based on
the minimal number of steps that one must take to create a non-trivial group of
symmetries out of partial symmetry.

From the point of view of phenomenology, the second approach seems more suitable.
Take, for instance, some slightly asymmetrical faces such as those in Fig. 1.5, then it
would be more reasonable to count the number of changes that would ’repair’ the full
symmetry.

3.4 Contrast between symmetries and partial symme-

tries (groups and inverse monoids)

3.4.1 Formal differences and similarities

These are the main takeaways from the previous sections:

1. We have seen that the essential difference between the two theories is how they
define the inverse property. Inverse monoids have inverses that allow substructures.

2. We have proved that group theory is a subtheory of inverse monoid theory, and
thus these concepts are not in opposition, but rather in subconcept relation.

3. Interestingly, in some cases, such as in the minimally asymmetric graphs shown in
Fig. 3.9, the transition from local symmetries to full global symmetries is literally
just one vertex away.

4. Both Cayley’s theorem and the Wagner-Preston representation theorem establish
the existence of an isomorphism (or an injective homomorphism in the case of the
Wagner-Preston theorem) between a given algebraic structure (group or inverse
monoid) and a permutation structure (partial permutations or permutations).
Cayley’s theorem states that every group is isomorphic to a symmetric group of
permutations, while the Wagner-Preston representation theorem states that every
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inverse monoid can be embedded into a symmetric inverse monoid semigroup of
partial permutations. Thus, both of these abstract concepts can be studied using
easier combinatorial structures – (partial) permutations.

5. When we apply both of these concepts to graphs, partial symmetries of graphs
are about finding induced subgraphs that have partial symmetries. An example
and contrast of (partial) symmetries of a graph as represented by inverse monoids
are provided in Fig. 3.12. It clearly shows that group theory is just the tip of the
iceberg.

6. Computing partial symmetries is at least as hard as computing symmetries, and
computing symmetries has an exponential difficulty (Jajcayova, 2022). Despite
this, there are classes of graphs where computing partial symmetries is doable.

3.4.2 Partial symmetry, fractals, and complexity

In this section, our primary motivation is to further demonstrate the obvious restrictivity
of the concept of global symmetry as opposed to local symmetry.

Sierpinski triangle

Figure 3.13: Generation of Sierpenski triangle for demonstration of simple fractal
self-similarity that is not capturable by the concept of group.

Sierpinski triangle is a triangular iteratively generated fractal, shown in Fig. 3.13.
To generate the Sierpinski triangle, start with a single equilateral triangle. Divide this
triangle into four smaller equilateral triangles by connecting the midpoints of each side.
Then, remove the central triangle formed by these midpoints. Repeat this process
with each remaining smaller triangle, dividing it into four even smaller triangles and
removing the central one. Continue this iteration infinitely many times, resulting in the
fractal Sierpinski triangle. From the point of view of group theory, all of these steps
of creating an infinite Sierpinski triangle are summarized by D3 group, which can be
covered by the graph shown in Fig. 3.3. The problem is that the concept of a group does
not capture all the obvious wealth of its self-similar substructure. From the perspective
of groups theory, all of these steps in Fig. 3.13 are the same D3 group with the same
number of global transformations and the identical graph representation, despite their
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rich recursive substructure which can be captured using inverse semigroups (Lawson,
1998).

Whether all the fractals could be captured by the theory of inverse semigroups
or inverse monoids remains to be seen. Nevertheless, Lawson (1998) indicates that
various kinds of fractal can be captured by inverse monoids much better than using the
standard groups.

Penrose tilings

Figure 3.14: Penrose tiling that resembles quasicrystal shown in Fig. 4 in the Section 0.3.
Generated using web application developed by Bhatia (2023).

Secondly, let us introduce Penrose tilings which can be understood as an instantiation
of inverse semigroups precisely because they do not have some properties of the global
symmetries (translational symmetry, and some do not have to have even rotational
symmetry, and global inverses), they still have very rich underlying local symmetries,
hierarchical structure and proportion as can be seen in Fig. 3.14.

In plain language, tilings are coverings of a plane with a set of tiles. We can see such
tilings on the streets, where pavements are frequently tiled with hexagons or squares.
Penrose tilings are a type of non-periodic tiling generated by an aperiodic set of prototiles
(basic tiles from which you start) named after Sir Roger Penrose, who investigated these
tilings in the 1970s (Penrose, 1974, 1979a, 1979b). The tilings are non-periodic because
they lack translational symmetry, meaning that a shifted copy will never match the
original exactly (minutephysics, 2022). As we will show, these non-periodic tilings lead
toward the golden ratio, which is the definition of proportionality.

Tilings in general are interesting and useful for a variety of reasons, some being:

1. Combinatorics and counting: Tiling problems often involve counting the number
of ways a particular shape can be arranged or combined to cover a region. This
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engages the field of combinatorics, the study of counting and arranging objects,
which has applications in many areas of mathematics, including probability theory,
graph theory, and algebra.

2. Geometric properties: Tiling problems can help us understand and explore the
geometric properties of shapes, such as their area, perimeter, symmetry, and
tessellation patterns. Studying these properties can lead to discoveries about the
relationships between different shapes and can inform the design of new geometric
structures.

3. Optimization: Tiling problems often involve finding the most efficient or optimal
way to cover a given area. This can be applied to real-world problems, such as
optimizing resource allocation.

4. Algorithm development: Tiling problems frequently require the development of
new algorithms and computational methods to solve them such as the one described
in Section 3.4.2, which can then be applied to other problems in computer science,
and related fields.

5. Recreational mathematics: Tiling problems have long been a popular topic in
recreational mathematics, as they can be both visually appealing and intellectually
challenging. They often involve elegant and intricate patterns, which can lead to
the creation of puzzles, games, and artwork.

6. Connections to other disciplines: Tiling problems are connected to various branches
of science, such as crystallography (the study of atomic and molecular structures),
materials science (designing materials with specific properties), and even biol-
ogy (understanding the arrangement of cells in tissues or the structure of virus
capsids). Specifically, Penrose tilings have been successfully applied to study the
quasicrystals, i.e., crystals whose structure does not have translational symmetry.

7. Aesthetic appeal: The study of tiling problems can lead to the creation of visually
appealing designs and patterns. This has applications in architecture, design, and
art, where an understanding of tiling patterns can inspire new creative works.
For instance, Penrose argued that these non-periodic are appealing as opposed to
simple periodic tilings (Penrose, 1974).

It has been a longstanding problem in mathematics for centuries whether one
can cover the whole infinite plane without gaps and overlaps non-periodically, i.e.,
without a repetition, with some set of basic tiles. This problem of covering a plane
(tessellation/tiling) is trivial (and boring) for periodic tilings using regular polygons
such as squares, rectangles, hexagons, and triangles.
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Despite this difficulty of non-periodic tilings, Penrose has managed to cover the
whole plane non-periodically with just two basic tiles such as thin and thick rhombuses
(see Section 3.4.2), since then the search for a single tile that can cover the plane began.
In the words of Penrose - “It is not known whether there is a single shape that can
tile the Euclidean plane only non-periodically. For the hyperbolic (Lobachevski) plane
a single shape can be provided which, in a certain sense, tiles only non-periodically -
but in another sense a periodicity (in one direction only) can occur” (Penrose, 1979b).
What about the classical plane?

Surprisingly, as of lately, such a monotile has been found in Smith et al. (2023).
They call this monotile Einstein’s hat.

De Bruijn method

Figure 3.15: Process of generating pentagrid and quasi-periodic tiling using van de
Bruijn method using web application programmed by Bhatia (2023). The ratio of thin
and thick rhombuses approaches the golden ratio on each line, such as the one marked
by green.

In this section, we follow de Bruijn multigrid method of generating tilings as described
in Bhatia (2023).

1. Firstly, de Bruijn observed that every set of intersecting lines will generate a
complete tiling. To see this, start with a set of lines (each set will correspond to
1-fold, i.e., to have 5-fold tilings start with 5 sets of parallel lines) and find the
points where they intersect. See Fig. 3.16.

2. Secondly, at each intersection, draw equilateral polygons (tiles) whose sides are
perpendicular to the lines. Notice that the shape of the tile will be determined by
the angle of the intersecting lines. See Fig. 3.17.

3. Squeeze the tiles on each line and match them.
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Figure 3.16: Any intersecting lines will form a tiling.

Figure 3.17: Any intersecting lines will form a tiling.
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Figure 3.18: The whole process of constructing an arbitrary tiling of a plane.

The whole process is depicted in Fig. 3.18

To construct Penrose tilings, we need one additional condition, to perform the first
step draw five collections of equally-spaced parallel lines so that each collection set is
tilted 360◦/5 = 72◦ from the previously drawn collection (obviously except the first
collection). This grid of parallel lines is called pentagrid.

Now, apply de Bruijn method, i.e. at each intersection draw equilateral polygons
(tiles) whose sides are perpendicular to the lines. Since a set of lines in the pentagrid
can intersect at two possible angles (72◦ and 36◦ and their corresponding remainders to
the sum of 180◦, see a zoom of Fig. 3.15 in Fig. 3.19), this pattern will have only two
possible basic elemental tiles known as thin and thick rhombuses.

You can shift the lines around (since shift preserves the angle) and create infinitely
many Penrose tilings, see one case in Fig. 3.15.

Proof of non-periodicity via Golden ratio ϕ

We provide intuitive arguments to believe the fact that Penrose tilings are non-periodic.
The details of the proof are outside the scope and purpose of this thesis. The interested
reader can find several references in the bibliography.

The whole idea behind the non-periodicity is that if Penrose tilings were periodic,
then there would exist a certain period p after which the whole pattern would repeat
itself.

If there would exist a certain period p after which the patterns would repeat, we
would obviously expect after each period a stable ratio of different tiles out of which the
tiling is made. However, the ratio of thin and thick rhombuses approaches the golden
ratio on each line, such as the green line in Fig. 3.15). Since the golden ratio is an
irrational number (by definition without decimal termination and repeatability), there
is not any period of repetition.
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Figure 3.19: Zoomed in grid of Fig. 3.15. The only possible angles of intersection in
pentagrid are 72◦ in green and 36◦ in blue (and their remainder to sum of 180◦) with
their corresponding distances between the intersections with 72◦ in green and 36◦ in
blue. The green arrow line is the distance between subsequent intersections with 72◦

angles, and the blue line is the distance between subsequent intersections with 36◦

angles.

Let us explain why this ratio approaches the golden ratio. There are multiple
methods how to show this.

The first method is related to the Bruijn method of construction that we utilized
above. The idea is that since a set of lines in the pentagrid can intersect at only two
possible angles (72◦and 36◦), it is obvious that thin rhombuses will be at the intersection
with 36◦, and thick rhombuses at the intersection with 72◦. Given that the gap between
each parallel line in a set is equal to 1, the ratio of the frequency of thin and thick
rhombuses will correspond to the ratio of intersections with 36◦, and intersections with
72◦.

Let N36 represent the number of intersections with 36°, and N72 represent the number
of intersections with 72°. The ratio of thin and thick rhombuses, x, can be represented
as:

x =
N36

N72

(3.1)

This ratio can be further reduced to the ratio of the distance between intersections
with 36° and intersections with 72°. A little trigonometry, using the green and blue
lines in Fig. 3.19 and perpendicular lines, will yield us:
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x =
N36

N72

=

1
sin(36◦)

1
sin(72◦)

= ϕ (3.2)

However, this proves only that the ratio on one line is ϕ, in one direction. The whole
proof is longer and more complicated, but this gives us an intuition of how it works.
Therefore, let us rather explore another way of looking at this non-preriodicity.

The second method will utilize an idea recursion (function calls itself repeatedly
until it reaches a base case). The tiling can be constructed by recursively applying
substitution rules to the tiles (Penrose, 1979a, 1979b). For a tiling using rhombuses,
the substitution rules can be defined as follows:

1. Subdivide a thick rhombus into two smaller thin and one smaller thick rhombuses.

2. Subdivide a thin rhombus into one smaller thick and one smaller thin rhombuses.

See Penrose (n.d.) for how this subdivision works visually.
Let T (n) and t(n) denote the number of thick and thin rhombuses at the nth

iteration, respectively. As a correspondence to the substitution rules, we can write the
following recurrence relations:

T (n+ 1) = 2t(n) + T (n)

t(n+ 1) = t(n) + T (n)

Now, let’s find the ratio of thick and thin rhombuses at the (n+ 1)th iteration:

T (n+ 1)

t(n+ 1)
=

2t(n) + T (n)

t(n) + T (n)

To show that this ratio approaches the golden ratio, consider the limit of this ratio
as n approaches infinity:

lim
n→∞

T (n+ 1)

t(n+ 1)
= lim

n→∞

2t(n) + T (n)

t(n) + T (n)

= lim
n→∞

2 t(n)
T (n)

+ 1

t(n)
T (n)

+ 1

Note that we just multiplied by 1, 1
T (n)

, both the numerator and denominator. Now,
let x = limn→∞

t(n)
T (n)

. As n approaches infinity, the ratio of consecutive terms in the
sequence converges, so we have:

x =
2x+ 1

x+ 1

Now multiply both sides by the denominator, (x+ 1), to eliminate the fractions:
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x2 + x = 2x+ 1

This simplifies to:

x2 − x− 1 = 0

The quadratic formula states that for a quadratic equation of the form ax2+bx+c = 0,
the solutions for x are given by:

x =
−b±

√
b2 − 4ac

2a

In this case, a = 1, b = −1, and c = −1. Plugging these values into the quadratic
formula, we get:

x =
−(−1)±

√
(−1)2 − 4(1)(−1)

2(1)

Simplifying this expression, we get:

x =
1±

√
5

2

This gives us two solutions for x: 1+
√
5

2
and 1−

√
5

2
. The first solution, 1+

√
5

2
, is known

as the golden ratio and is commonly denoted by the Greek letter phi (ϕ). The first
solution is the one that we were looking for, since it is the only positive solution (the
ratio of those rhombuses must be positive) to this equation:

x =
1 +

√
5

2
≈ 1.6180339887

This shows that the ratio of thin and thick rhombuses in Penrose tilings approaches
the golden ratio as the tiling is iteratively inflated/deflated. Indeed, if one would count
the ratio of those rhombuses on each line generated by de Bruijn method (see the green
line on Fig. 3.15), the ratio of thin and thick rhombuses approaches the golden ratio.

Golden ratio and Fibonacci numbers

I feel obliged to leave a few comments on the nature of the Golden ratio since it occurs
in many examples that we provided in this thesis. Originally, Penrose started where
Kepler ended – by considering the impossibility of covering the plane with regular
pentagons, whose diagonals have golden ratio if sides are of the length of 1 such as
the one in Fig. 3.20. He then observed that if one would try to cover the plane with
pentagons, there would be holes that one would need to cover with different tiles from
the pentagon such as half stars, rhombuses, etc. However, then he found that these
could be subdivided into only two even more basic tiles (for instance, the ones that we
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used above – thin and thick rhombuses). From these basic tiles, he was able to prove
their non-periodicity and relation to the Golden ratio.

Figure 3.20: Regular pentagon with sides of length equal to one. Penrose analyzed
such pentagons before he discovered the non-periodic set of basic tiles (Penrose, 1979a,
1979b). Note that in the picture they use φ instead of ϕ for the golden ratio, Source of
the image: Wikipedia contributors. (2023). Penrose tiling. Retrieved 5/19/2023, from
https://commons.wikimedia.org/w/index.php?curid=120315440.

The golden ratio can be defined as the ratio between the whole and part which is
the same for all the scales (see Fig. 3.21), thus:

ϕ =
a+ b

a
=
a

b

Figure 3.21: Golden ratio definition portrayal

Now, to see why this equation approaches the golden ratio, rearrange the equation
to express b in terms of a and substitute the expression for b into the equation in the
middle.

ϕ =
a+ b

a
=
a+ a

ϕ

a

Simplify the equation and isolate ϕ:

ϕ2 = ϕ+ 1

https://commons.wikimedia.org/w/index.php?curid=120315440
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Rearrange the equation to form a quadratic equation:

ϕ2 − ϕ− 1 = 0

Use the quadratic formula to solve for ϕ:

ϕ =
−(−1)±

√
(−1)2 − 4(1)(−1)

2(1)

Simplify the expression:

ϕ =
1±

√
5

2

Choose the positive solution as the golden ratio:

ϕ =
1 +

√
5

2

The golden ratio famously occurs in Fibonacci sequence as a ratio between the
neighboring numbers:

Fn = Fn−1 + Fn−2

with F0 = 0, F1 = 1

The claim is that
lim
n→∞

Fn+1

Fn

= ϕ

Call the ratio between consecutive numbers

Rn =
Fn+1

Fn

Inductive step: Assume that ratios Rn and Rn−1 converge to ϕ as n→ ∞.
We need to show that Rn+1 also converges to ϕ.

From the Fibonacci sequence:

Fn+2 = Fn+1 + Fn

Define Rn+1 =
Fn+2

Fn+1

Rn+1 =
Fn+1 + Fn

Fn+1

Now, express Rn+1 in terms of Rn:

Rn+1 =
Fn+1

Fn

· Fn

Fn+1

+
Fn

Fn+1

=
1

Rn

+ 1

Taking the limit as n→ ∞:

lim
n→∞

Rn+1 = lim
n→∞

(
1

Rn

+ 1

)
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Since we assumed Rn → ϕ, as n→ ∞:

lim
n→∞

Rn+1 =
1

ϕ
+ 1

From the definition of the golden ratio, we know that:

1

ϕ
+ 1 = ϕ

Therefore,

lim
n→∞

Rn+1 = ϕ

Thus, the ratio between neighboring Fibonacci numbers converges to the golden ratio as
n → ∞.

This divine proportion along with Fibonacci numbers is approximately found in
various objects in nature and art. Interestingly, the Golden ratio has been called
the Divina proportione since the 15th century, when Pacioli delved into the Fibonacci
sequence and found that this proportion is the ratio between the neighboring Fibonacci
numbers. Then, Pacioli gave five reasons why the golden ratio should be referred to as
the Divine Proportion:

1. Its value represents divine simplicity since it can be so easily defined.

2. Its definition invokes three lengths, symbolizing the Holy Trinity.

3. Its irrationality (in the sense of distinction between rational and irrational numbers)
represents God’s incomprehensibility.

4. Its self-similarity recalls God’s omnipresence and invariability.

5. Its relation to the dodecahedron, which represents the quintessence.

While it might sound somewhat mystical, it is a good indicator for mathematicians
that something is true if it has aesthetical properties (Penrose, 1974), and the Golden
section does have such properties.

Let us recap this chapter. From the formal point of view, the concept of perfect
global symmetry is too restrictive and idealizing. Despite being useful, it cannot cap-
ture complex fractal objects satisfactorily. The concept of partial symmetries is less
restrictive and has this potential since it allows minor flaws but still provides enough
structure as opposed to even more abstract algebraic structures, and so it provides a
good balance in-between too much order and too much chaos.
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Moreover, we saw that the concept of partial symmetry captures also objects that
have self-similar and proportional nature, therefore, it can be viewed as a formalization
of the ancient concept of symmetry which was defined in terms of proportion.



Chapter 4

Philosophy

While the symmetry principle embraces the whole of nature from
microworld to macrocosm, it fails, nevertheless, to explain one most
important phenomenon-the phenomenon of growth, of change, which the
principle of proportion implies
... symmetry is the statics of nature,
... proportion is its dynamics

Voloshinov

In this chapter, we delve into the philosophy of (partial) symmetry and synthesize
the knowledge from the previous chapters. We argue that partial symmetries and their
formal corresponding concept of inverse monoids are fundamental. The whole argument
can be summarized as follows:

Argument 1: Global symmetry fails to describe even the slightest asymmetries of
the world.

Premise 1: The concept of global symmetry cannot capture objects with just slight
asymmetries. (restrictivity)

Premise 2: Objects of the world have slight asymmetries. (fundamental “imperfection”
of the world)

Conclusion: The concept of global symmetry is too restrictive to fully capture the
objects of the world.

Argument 2: Symmetry does not describe the complexity.

Premise 1: Global symmetries are characterized by repetitive and predictable infor-
mation, resulting in informational redundancy; this allows one to infer the
whole structure from just one part.

77
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Premise 2: Complex systems exhibit unpredictable behavior, chaotic dynamics, high
sensitivity to initial conditions, and fractal-like self-similarity across differ-
ent scales.

Conclusion: Due to their inherent unpredictability, sensitivity to initial conditions, and
scale-invariant self-similarity, complex systems’ behavior cannot be fully
captured by global symmetries, which rely on informational redundancy
and predictability.

Argument 3: Perfect global Symmetry might be a cognitive simplification.

Premise 1: Our cognitive faculties tend to simplify complex information by seeking
patterns, regularities, and symmetries in the world around us.

Premise 2: Perfect global symmetry represents a notion of perfect order, predictability,
and simplicity, which may not necessarily exist in the intricate and often
chaotic nature of reality.

Premise 3: The concept of perfect global symmetry, though mathematically and
aesthetically appealing, may serve as a mental construct or idealization
that helps us comprehend and make sense of the complexity of the world.

Conclusion: The idea of perfect global symmetry might be an idealization or illusion
of our minds, stemming from our cognitive tendency to simplify complex
information and seek patterns, rather than reflecting an inherent property
of the real world.

Argument 4: Local (Partial) Symmetry is a potential candidate.

Premise 1: Complex systems are characterized by inherent unpredictability and scale-
invariant self-similarity, which result in intricate patterns and structures.

Premise 2: Local (partial) symmetry offers a more nuanced perspective by integrating
unpredictability, underlying structures, and proportion (self-similarity) in
addition to being a generalization of perfect global symmetry of group
theory.

Conclusion: Given its ability to account for the diverse characteristics of complex
systems, including unpredictability, scale-invariant self-similarity, and
underlying structures, local (partial) symmetry emerges as a promising
framework for understanding and capturing the behavior of such systems.
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Argument 5: Local (Partial) Symmetry is a useful candidate.

Premise 1: Group theory can be studied using permutations, which make the theory
useful.

Premise 2: More general structures, such as bare monoids and semigroups, tend to
lack the structure that would be graspable using useful combinatorial
structures.

Premise 3: Inverse monoids can be studied using partial permutations.

Conclusion: Therefore, inverse monoids are preferable to more general structures.
(they are rich enough, but they still have a lot of structure – that is
because of the nature of the inverse property, which is a generalization
of the inverse property of group theory)

Many of these premises and conclusions were already reached in previous chapters.
However, we will elaborate on these arguments in the following sections.

Moreover, we consider what kind of fundamentality is to be attributed to this
concept. Does it have any ontological or epistemological commitments?

By examining these arguments and questions, we aim to elucidate the profound
importance of partial symmetry in understanding the complex fabric of our reality.

Finally, we provide some implications if the argument holds.

4.1 The limits of Symmetry

In this section, let us deal with the Argument 1. Firstly, let us focus on the first premise
of the argument, i.e., restrictivity of the concept of global symmetry. In Chapter 3
on mathematics, we contrasted the concept of symmetry with the concept of partial
symmetry, especially on graphs. The result was that the concept of global symmetry
could not capture the objects with just a slight asymmetry, such as the minimally
asymmetric graphs in Fig. 3.9 which, despite their non-existent global asymmetry, have
all underlying induced subgraphs globally symmetric.

Furthermore, Senechal (1989) explores the limitations of group theory in under-
standing certain aspects that one would like to be captured in the concept of symmetry.
Classical group theory focuses on global properties rather than local configurations (for
details, see Section 3.2). Senechal (1989) points out that “many of the most interesting
problems in contemporary symmetry theory concern local configurations, and group
theory may not be the only or the best tool for studying them”. This is because “the
group of automorphisms can give us information about the structure as a whole - that
is, it characterizes its global properties - but it does not always help us to understand
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the reasons why these properties exist”. As we know from the world around us, objects
tend to be organized from the bottom-up into the structures, Senechal claims that
this bottom-up approach is non-existent in the concept of perfect global symmetry.
Although, the concept of perfect global symmetry is frequently complemented with
symmetry breaking to explain the bottom-up approach, it still lacks the explanation of
why should the structures organize to global symmetries at the next level.

Secondly, let us comment on the second premise of the argument, i.e., fundamental
imperfections of the world. It is obvious that observable objects in the world have
imperfections. Despite this, there is a common scientific narrative, that there are
underlying symmetries at the deepest level (supersymmetry of theory of everything).
But, such a level has yet not been found. Moreover, modern physics describes and
unifies particles as certain types of groups, but as is well known to physicists, such
unification are only approximations with perfect symmetry (Mainzer, 1996). What
we currently empirically observe is that the objects of the world have at least slight
asymmetries that at best can be approximated by perfect symmetries.

Icosahedral quasicrystals, which have gained attention due to their five-fold symmetry,
are another example where group theory is insufficient for understanding their structure.
Instead, it is suggested that these quasicrystals may be a three-dimensional analog of
Penrose tiles, see for instance Fig. 3.14. In this context, local matching rules are more
relevant than the global perspective of the group theory (Senechal, 1989).

Thus, I think that the conclusion that the concept of global symmetry cannot
capture the objects of the world makes sense. While I agree that the concept of global
symmetry has ever had a great unificatory, descriptive, and heuristic power in the search
for ultimate laws, it turns out it cannot deal structurally with complexity.

4.2 (Partial) symmetry and complexity

In this section, let us deal with the Argument 2, i.e., the fact that perfect global
symmetry cannot capture the complexity, and Argument 4, i.e., the possibility of partial
symmetry being a possible candidate in its stead.

It is clear from the observations of the world that there are chaotic fractal structures
which are unpredictable due to inherent high sensitivity to the initial conditions. Many
of these have unpredictable and self-similar behavior at several scales.

As we showed in Chapter 3, the concept of perfect global symmetry cannot capture
self-similarity even in the trivial case of the Sierpinski triangle in Fig. 3.13 since
it represents all the steps of its generation in as one and the same group with six
transformations, completely ignoring the rich underlying structure.

However, structures such as the one in the Sierpinski triangle can perhaps be
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adequately represented using inverse monoids which are considered as formalization of
local or partial symmetries (Lawson, 1998).

For the most part, complexity, fractality, and self-similarity require some sort of
unexpectedness, change, and phase transitions. While global symmetric structures can
in some cases provide the phase transitions such as in the case of repeating the same
crystalline structures until some transition happens due to immense inner pressure
(symmetry breaking), they do not structurally describe the self-similarity across various
scales.

It is a joint strife of modern science to look for ever deeper underlying symmetries.
But “while the symmetry principle embraces the whole of nature from microworld
to macrocosm, it fails, nevertheless, to explain one most important phenomenon-the
phenomenon of growth, of change, which the principle of proportion implies” (Voloshinov,
1996). Since symmetrical objects are highly information-redundant objects, without
some sort of imbalance, it seems impossible to generate complexity.

Before the 15th century, see Section 0.1, Aristotle, Plato, Pythagoreans, Vitruvius,
and many other thinkers associated the concept of symmetry with proportion. Obviously,
their usage was not well formalized. However, in our current state of knowledge, we
might have found such a formalization in terms of inverse monoids. This formalization
allows us to consider proportionality that is not covered under the modern concept of
symmetry.

Voloshinov (1996) acknowledges that there might be a complementary principle to
the principle of symmetry that would account for the “phenomenon of growth”. He
distinguishes between symmetry and proportion, stating that “symmetry is the equality
of states, the invariance of state-balance,” and “proportion is the equality of changes,
the invariance of change-imbalance”. This distinction reflects the statics and dynamics
of nature, where “symmetry is the statics of nature,” and “proportion is its dynamics”.

However, he further describes the relationship between fractal geometry and chaos
theory and claims that “the relationship of chaotic and fractal forms is also conditioned
by the symmetry principle, for the invariance of time changes in chaotic phenomena
is analogous with space changes in fractal forms” (Voloshinov, 1996). I am not sure
whether he meant that the other principle is reducible to the former one. If that is so,
I find it unconvincing. While I agree that the principle of symmetry might condition
even the fractal forms due to global invariance of time, nevertheless it does not mean
that the fractality is reducible to global symmetry. In fact, the Sierpinski triangle is a
very simple counterexample.

Interestingly, the golden ratio, a unique geometrical proportion, exhibits a special
kind of symmetry. Voloshinov (1996) states that “similarity of form is achieved in any
geometrical proportion, but it is only in the geometrical proportion of the golden section
that the similarity of form is achieved within the framework of the whole. Thus, the
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golden section is a symmetry of similarity of the parts and the whole”, see Section 3.4.2
for more details on the golden ratio, where we demonstrated that the golden section is
a perfection of self-similarity and occurs in complex objects such as in tilings that are
not described well by the concept of symmetry.

Partial symmetry can be viewed as a property that can help us describe structures
in the spectrum from order and chaos, as illustrated in Fig. 4.1. It is a concept that
deals with partial permutations and partial permutations are in each of these structures,
thus it could be an overarching concept that can capture the structure (if they have
some) of all of these objects. Especially interesting ones are those that are commonly
generated by human behavior, such as networks of power grids, or found in living
systems such as neural networks. These structures tend to have scale-free fractal-like
structures. Similarly, Wolfram (1984) classified cellular automatons into four classes
based on their behavior, see Fig. 4.2. The cellular automaton is a formal system that
evolves over time, with each row in the matrix representing a single time step. Every
cell can be either black or white. At each time step, the value of each site in the
consecutive is updated using cellular automaton rules based on the cell’s neighborhood.
Class 1 cellular automata result in limit sets containing only periodic configurations,
similar to limit cycles or limit points in dynamical systems. Class 2 cellular automata
result in chaotic and aperiodic limit sets, which contain analogues of chaotic or ’strange’
attractors. Class 3 automata result in irregular changes and behavior that is effectively
unpredictable but with ’life-like’ structures. Class 4 automata results in noisy random
behavior. These rules take into account the values of neighboring sites from the previous
time step.

order chaos

Grid graph

Aperiodic quasicrystal-like graph

Graph with scale-free distribution

Random graph

Figure 4.1: From the highly ordered graph to the highly chaotic random graph.
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Figure 4.2: Instantiations of the behavior of four different classes of cellular automatons
based on their behavior. After Mainzer (2005).

4.3 Symmetry and Cognition

In this section, let us comment on the Argument 3, i.e., the fact that people naturally
tend to look for simplicity and perfection, which might suggest that the concept of
perfect symmetry is an idealization.

4.3.1 Symmetry arguments and symmetry principles

Brading et al. (2003) distinguish between symmetry principles and symmetry argu-

ments in the philosophical jargon. The need for this distinction relates to its usage.
Symmetry principles are symmetry properties attributed to laws, and it is this applica-
tion that “has become central to modern physics” (Brading et al., 2003). On the other
hand, symmetric properties attributed to phenomena and objects are called symmetry
arguments.

Recall from the Section 0.1 that among others, Aristotle, Plato, Galileo, Kepler, and
Leibniz were intuitively using symmetry principles. Aristotle principally assumed that
the world is made out of substances. He used the concept of substance to signify that
which subsists (stays invariant) in time, and God for him was a substance that is the
most perfect, and the most simple – which he imagined as a circle because the circle
is perfectly self-sufficient, i.e., it begins and ends in itself (Aristotle, 2016; Mainzer,
1996). Or, Leibniz used the principle of sufficient reason, which roughly says that “if
there is no sufficient reason for one thing to happen instead of another, then nothing
happens (the initial situation does not change)”(Brading et al., 2003). As an illustration,
take the problem of Buridan’s ass: imagine an ass who is standing in front of two
completely equivalent stacks of hay, he would have no reason to choose since both stacks
are equivalent, and so he would starve to death. In other words, “a situation with a
certain symmetry evolves in such a way that, in the absence of an asymmetric cause,
the initial symmetry is preserved... a breaking of the initial symmetry cannot happen
without a reason, or an asymmetry cannot originate spontaneously” (Brading et al.,
2003).
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Moreover, one can experience and expect properties like symmetry (a type of
invariance transformation) without explicit knowledge of it. These considerations
suggest that symmetry principles and arguments can be easily seen as a manifestation
of our mind’s propensity to simplify the world by seeking and expecting simplicity in
the world. We reviewed these tendencies in Chapter 2 and Chapter 1. These cognitive
tendencies may explain why we are drawn to symmetries in various domains, even
though they might not always accurately describe the underlying reality.

Furthermore, Sarukkai (2004) argues that Gestalt principles of perceptual organiza-
tion are strikingly similar to the axioms and ideas of group theory, his views can be
summarized in the Table 4.1. Based on his analysis and comparison, Sarukkai proposes
the question for further research: “Why do we model even non-visual [mathematical]
symmetries in the same way as we do the visual ones, especially since the visual form is
constructed via the Gestalt?”

Sarukkai speculates that both might be reducible to the principles of perception.
Accumulated evidence, that we provided in this thesis, supports this speculation.

Gestalt Psychology Mathematical Group theory
Perception of whole structures, e.g., see-
ing a triangle formed by three dots, in-
stead of seeing the sum of the parts.

The concept of a group is also anal-
ogous to seeing a whole structure (a
closed set of transformations that re-
order the parts), e.g., a triangle from
discrete parts (three dots).

The closure property in Gestalt princi-
ples suggests that perception fills in the
gaps, projecting a complete form even
if some elements are missing.

Closure axiom ensures that the opera-
tion between any two elements in the
set produces another element within the
same set. Thus, elements of a group can
be filled in the gaps, if sufficient infor-
mation is available to infer it from.

‘Identity’ is akin to the ‘first impression’
in Gestalt psychology.

Identity element signifies the element
that leaves others unchanged when op-
erated with.

The laws of organization include prin-
ciples of similarity and symmetry, an
instinctual recognition of patterns and
shared characteristics.

The group structure captures the idea
of an inverse for each element. More-
over, group structure captures the idea
of global symmetries.

Table 4.1: Comparison between Gestalt principles of perceptual organization and
mathematical group theory.
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4.3.2 What if there are no laws, just symmetries?

On the other hand, Rosen (1989) demonstrated that the very concepts of what we
understand by lawfulness and objectivity of science in the sense of both reproducibility
and predictability rests on the notion of perfect symmetry.

Reproducibility is commonly defined as “the same experiment always gives the same
result” (Rosen, 1989). Obviously, each experiment is unique due to differences in time,
location, and other factors, so the term “same” should be understood as ’equivalent
under a set of transformations of factors’ rather than ’identical’. Identical experiments
are impossible due to differences in time, location, and other factors, and instead he
proposes the concept of equivalent experiments that can be transformed into one another
through a set of defined transformations. Reproducibility is then defined as a relation
that holds for all transformations within a set of possible experiments, ensuring that
the transformed result is what is obtained when performing the transformed experiment
(Rosen, 1989).

Predictability is the ability to predict the results of new experiments using a
reproducibility relation R that connects experiments and their results: result =

R(experiment). Obviously, this relation is symmetrical, because “the experiment
and its result obtained by changing the experimental input obey the same relation as
the original experiment and result” (Rosen, 1989). Consider all the different experiment-
result pairs (exp, res) that have been, will be or could be obtained by doing the
experiment. You can simply transform any one of these into another by replacing it.
The transformed pair is different from the original one, but the pairs have the same
thing in common that the transformation does not change. This feature is that result
and experiment always follow the relationship result = R(experiment) for all possible
couples (experiment, result).

Moreover, Noether (1971) showed that if a system has a continuous symmetry
property, then there are corresponding quantities of the system whose values are
conserved in its processes (conservation laws), thus conservation laws can be causally
reduced to considerations of symmetries (Brading et al., 2003; Sarukkai, 2004). For
instance, if the systems are claimed to be explicitly independent/invariant under
transformations of time, the systems will conserve the total energy (Sarukkai, 2004).

Similarly, Van Fraassen (1989) conceives of the Symmetry Requirement, an im-
perative principle anchoring the process of generating symmetry arguments. This
principle posits that “problems which are essentially the same must have essentially
the same solution”, thereby emphasizing the element of equivalence and analogue in
problem-solving.

Van Fraassen, in agreement with Rosen, asserts that the symmetries of time, space,
and motion are instrumental in shaping the architecture of modern science, with
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implications for theory development. We demonstrated this with Rosen’s considerations
of reproducibility and predictability. Thus, symmetry, as a conceptual tool, rigorously
influences the formulation and articulation of all scientific theories to some extent.

An archetypal instance of a ‘pure’ symmetry argument, as per van Fraassen, can be
found in the realm of probability theory, which has, since its advent in the seventeenth
century, often been guided by the belief that symmetry can determine probability. This
belief finds expression in equipossibility leading to equal probability and is acknowledged
in terms like indifference and sufficient reason. In other words, without any prior
knowledge, we assume uniform distribution.

Moreover, would we be able to understand what is the concept of partial local
symmetry without the concept of perfect global symmetry? We can only know that
something is not perfect by first having the idea of perfection.

Based on these considerations, I admit that the narrative of perfect symmetry
principles might not be entirely avoidable, at least not at the fundamental level.
However, these principles can be subsumed under the broader and more inclusive
concept of partial symmetry as the concept of global symmetry is just a subconcept of
partial symmetry, we proved this in Section 3.3. By recognizing partial symmetry as a
generalization of the traditional concept of symmetry, moreover, we can accommodate
a wider range of structural features and relationships found in complex systems that
seem not to be possible to accommodate within the global perfect symmetry without
relying on the narrative of symmetry breaking. This generalized framework allows for
a more nuanced understanding of symmetry and its role in scientific theories, while
simultaneously preserving the essential insights that global symmetries provide.

4.4 Partial symmetry and structure

In this section, let us expand on the premises and conclusion of Argument 5. The
question under consideration is roughly this – why not even more general algebraic
structures such as semigroups, or monoids without the inverse property?

Firstly, consider that only inverse monoids still have some non-trivial structure,
which is available because of the inverse property. This inverse property of inverse
monoids is a generalization of the inverse property of the group theory. Without the
inverse property, algebraic structures lack the essence of what symmetry means.

Moreover, group theory can be studied using permutations, which has led to nu-
merous applications and insights in various areas of mathematics, physics, and other
disciplines. The availability of representation theorems in group theory allows for
connections between abstract algebraic structures and more concrete, geometric, or
linear-algebraic entities, thus facilitating combinatorial approaches to problem-solving.
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More general structures such as bare semigroups and monoids lack the combinatorial
tools and structures that make group theory so powerful. This limitation restricts the
applicability of these more abstract structures in various contexts.

Inverse monoids, as a generalization of groups, possess representation theorems that
enable similar combinatorial approaches to those found in group theory via partial
permutations and partial automorphisms. This parallelism allows for the development
of a rich theory surrounding inverse monoids, making them a suitable alternative to
global symmetries in group theory.

Thus, given their combinatorial advantages, inverse monoids offer a more versatile
and powerful alternative to more abstract algebraic structures such as semigroups and
monoids.

4.4.1 Structuralism

In Chapter 3, we dealt with the formalism of the concept of partial symmetry in terms
of inverse monoids, partial permutations, and partial automorphisms of graphs. From a
philosophical point of view, we need to ask whether the concept of partial symmetry
involves any ontological and paradigmatic commitments.

Firstly, let us make it clear – it is a common view, and I completely agree that group
theory, inverse monoid theory, and in general any mathematical theory is not inherently
aligned with any philosophical stance or worldview (Einstein, 1921; Poincaré, 1952).
Mathematical theories deal with mathematical objects and structures, such as sets of
elements that obey certain axioms and properties. As such, mathematical theories are
neutral with respect to philosophical debates and are purely concerned with formal and
logical relationships within these structures, which are defined axiomatically.

However, the applications of the theories, and motivation for their development, can
be influenced by various philosophical perspectives.

Let me now comment on paradigms that are usually employed in applications of
these theories. By paradigm, I understand “the set of common beliefs and agreements
shared between scientists about how problems should be understood and addressed”
(Kuhn, 2012). It is a “way of seeing”, a perspective (a set of beliefs and assumptions)
one adopts when dealing with the world.

Then, structural realism is a scientific paradigm in that scientific theories describe
the underlying structure of the world, rather than the world itself. It is a form of
‘post-Kantian’ scientific realism that emphasizes the importance of the structure of
scientific theories as opposed to entities. More specifically, these are some common
assumptions of structural realism:

1. The world exists.
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2. The world has a stable objective structure (and only to this structure do we have
access).

3. The entities that make up the structure of the world are (almost) irrelevant (they
cannot be perceived directly in themselves).

4. What matters are the patterns of relationships between these entities (our percep-
tion of the world preserves the structure, but not necessarily the entities).

5. The structure of the world is hidden.

6. Scientific theories aim to uncover the structure of the world.

7. The structure of the world is the basis for scientific progress.

For a more detailed description, see for instance Ladyman (1998) or a critique, and a
semantic alternative of this approach in Van Fraassen (1989). Group theory and inverse
monoid theory may subscribe in their applications to structural realism for several
reasons:

1. These theories provide a formal framework to study structures that can be known
and understood independently of the specific entities they describe. An important
concept is the notion of invariant features, which remain unchanged under specific
transformations. This aligns well with structural realism’s focus on the structures.

2. They have been successfully applied to various branches of natural sciences, such
as physics and chemistry, where they describe both the structures in which the
entities are involved and the entities themselves. For instance, in particle physics,
particles are considered just as instantiations of certain groups, thus reducing
entities to mere structures (Mainzer, 1996).

3. Both theories can be used to unify seemingly disparate mathematical structures
and scientific theories. The ability to identify common structural features across
different domains supports the idea that structure, rather than entities, is the
essential aspect of our knowledge of the world.

Furthermore, since these theories are employed in various empirical domains such
as physics and chemistry, obviously there are overlaps with the paradigm of positivism,
especially in their commitment to verificationism, reductionism, and quantificationism
as specified for instance by Popper (2005). Moreover, the whole argument of this thesis
itself relied several times on demonstrations in experiments.

But, the concept of symmetry is not confined to the objective physical world
which was the sole focus of positivists. Instead, this concept can also be extended
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into the subjective realm, encompassing psychology, aesthetics, and even motivations
in philosophy and science. This dual role is intriguing and suggests the deep and
fundamental nature of symmetry in our understanding of reality, crossing these arbitrary
boundaries of subjectivity and objectivity.

There are also evident commitments in applications to complexity perspective, which
might be succinctly summarized as follows:

1. The world is complex.

2. Chaos, non-linearity, self-organization, self-similarity, emergence and phase transi-
tions, interactions, and dynamics are concepts that capture what complexity is
about (Heylighen et al., 2006).

The concept of partial symmetry is particularly relevant to complex structures, as it
allows us to capture the underlying patterns and order in these systems without requiring
complete symmetry or perfect order. This is important because many complex systems
exhibit only partial symmetry, due to the presence of factors such as random fluctuations,
noise, or other sources of variability. Therefore, it is important to recognize that the
concept of global symmetry, while useful in many contexts, can be too restrictive
and idealizing when it comes to generating complex structures. By embracing the
complexity paradigm towards science, we can move beyond the limitations of perfect
global symmetry and explore the rich and diverse range of patterns and structures that
emerge from complex systems.





Conclusion

The mathematician’s patterns, like the painter’s or the poet’s must be
beautiful; the ideas like the colours or the words, must fit together in a
harmonious way. Beauty is the first test: there is no permanent place in
the world for ugly mathematics.

G.H. Hardy

This thesis has explored the concept of partial symmetry. By examining its evolution,
its aspects in arts, nature, and cognition, along with instances of symmetry breaking in
physics and its philosophical implications, we have argued that the observed lack of
perfect symmetry might be an essential aspect of the natural world and that perhaps the
concept of partial symmetry might be a suitable candidate in its stead for the description
of the structures. This can be viewed as a sort of return to the original meaning of the
word but with precise mathematical formulation. Moreover, it captures what master
tilers were doing when they tiled a plane. Our thesis challenges conventional perspective
and opens new avenues for inquiry in both science and philosophy.

If the argument presented holds, then this has several implications for our under-
standing of nature in general.

Firstly, it would be beneficial to re-evaluate symmetry principles, perhaps looking
for partial symmetry principles, potentially leading to novel theories and frameworks
that better account for the observed asymmetry in natural systems.

From a philosophical standpoint, the absence of perfect symmetry could change
our perspective on the nature of reality, prompting us to reconsider the relationship
between idealized concepts and the inherently imperfect world we inhabit.

In future research, it might be useful to analyze some of the key terms that are
associated with local symmetry such as causality, invariance, transformation, symmetry
principles, proportionality, laws, etc. Moreover, it would be beneficial to further contrast
the two narratives – one that we told about partial symmetry, and the other which
relies on the concept of symmetry and symmetry breaking. I think that both can be
complementary. Symmetry and symmetry breaking already serve as useful guides in
describing the process of generating complexity. These two concepts taken together
provide procedural explanations. In contrast, partial symmetries provide a structural
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explanation of the current state that was generated by the process of symmetry breaking.
This thesis has at least these limitations and weak points that I am aware of:

1. Since this thesis is a synthetic work, in many ways, my thesis will just scratch
the surface of the ongoing research on the concept of symmetries, and therefore I
might miss a lot of information that would stand against this argument.

2. I do not discard the possibility of me unintentionally looking for information that
would strengthen this argument in the synthesis.

3. Several times in the thesis, I had to rely on analogies and the intuition of the
reader instead of writing all the details, because of lack of time, space, and
comprehensibility for a wider audience, and since the formal area of partial
symmetry in mathematics is still an ongoing research.

4. Moreover, while I tried to meaningfully combine information from various sciences,
and I am not an expert in any of these fields, thus, I mostly rely on their
methodologies and sense-making. This might at times have led to an illusion of
understanding on my side, and unintentional misinterpretation that I might have
included in the thesis.

Nevertheless, to the best of my knowledge, this thesis is the first modern interdisci-
plinary and systematic (and hopefully consistent) exploration of the concept of partial
symmetries. Partial symmetries are a multifaceted topic with great relevance in both
art and nature. Its foundation lies in mathematics, similar to global symmetries. My
aim was to argue that this concept is in some sense better (and more beautiful) than
the concept of global symmetry, provide you with an overview of its numerous aspects,
and guide you from intuitive concepts to more complex, abstract ideas. I hope I have
succeeded in this endeavor.
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