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Abstract

(Somewhere in and around you: cognitive chirping) Yes? Uh-huh. So you can hear that too? 
Right as you are reading these lines, this sound in your head? ... and could you tell whether it is 
approaching or moving away from this strange being you are used to calling "you"? This thesis 
offers an interdisciplinary perspective on the cognition of hearing. Scientifically in more detail: 
on the mathematical interface between auditory cognition and neural activity, which culminates 
in connectivity analyses. Recognising sounds from an arbitrary environment and processing 
them mentally, requires a highly complex cognitive system. Not only for the subject that proces-
ses, but also for the scientists who describes such processes. However, previous empirical work 
(Baumgartner, 2017) investigates in the phenomenon known as “auditory looming bias“, which 
states that listeners are more sensitive to approaching sounds (looming), compared to receding 
ones. Whether this effect - explained as product of evolutionary pressure - is a perceptual bias for 
changes in distance, or a direct reaction to sound intensity, remains to be controversial. Neverthe-
less, this study tested subjects in multiple scenarios with looming sounds, thereby measured be-
haviour and electroencephalography, while listeners judge motion direction. As a result, looming 
bias occurs as reaction to perceived motion in distance, rather than distance itself. This means 
that a threat of distortion can be brought about by changing the spectral cues while keeping the 
intensity constant. Astonishingly, this is only the case when the stimulus is continuous and unin-
terrupted over time. Given the empirical data, this thesis builds on and compares quantitative, as 
qualitative methods like Granger Causality (GC), Dynamical Causal Modeling (DCM), or Phase 
Transfer Entropy (PTE). In doing so it enables a more detailed exploration of the mathematical 
tools to unfold cognitive and neural mechanisms of auditory effects on human plasticity. There-
fore the thesis ranges from i) an introduction of the history and fundamentals of auditory cogni-
tion, including an explanatory reflection of the experiment (e.g. auditory tests, EEG, MRI) ii) an 
identification parade of the mathematical tools that transcribe neural dynamics iii) a discussion 
of the implications on auditory plasticity iv) suggestions for further investigations within this 
area v) picking up the introducing question, a critical discussion on the influence of temporal- 
and spatial continuity for the process of hearing and processing of metrics in neuro-/cognitive 
science. Finally, this means the thesis combines aspects of physics, acoustics, mathematics, psy-
chophysics, epistemology, auditory neuroscience and physiology of hearing, in order to enable 
an inter-, multi- and transdisciplinary exploration of auditory cognition. 

Keywords:, neuroscience, granger causality, transfer phase entropy, auditory looming bias, EEG, 
cognition

General Terms: attention, acoustic, auditory cognition, hearing, computationalism, grounded 
cognition, multimodality, psychophysics

6



Abstrakt

(Niekde vo vás a okolo vás: kognitívne cvrlikanie) Áno? Mhm. Takže to tiež počujete? Práve 
keď čítate tieto riadky, tento zvuk vo vašej hlave? ... a vedeli by ste povedať, či sa približuje 
alebo vzďaľuje od tejto zvláštnej bytosti, ktorú ste zvykli nazývať "vy"? Táto práca ponúka in-
terdisciplinárny pohľad na poznávanie sluchu. Vedecky podrobnejšie: na matematické rozhranie 
medzi sluchovou kogníciou a nervovou aktivitou, ktoré vrcholí analýzami konektivity. Rozpoz-
návanie zvukov z ľubovoľného prostredia a ich mentálne spracovanie si vyžaduje vysoko kom-
plexný kognitívny systém. Nielen pre subjekt, ktorý spracúva, ale aj pre vedcov, ktorí takéto pro-
cesy opisujú. Predchádzajúca empirická práca (Baumgartner, 2017) však skúma fenomén známy 
ako "auditory looming bias", ktorý hovorí, že poslucháči sú citlivejší na blížiace sa (looming) 
zvuky  v porovnaní so zvukmi vzďaľujúcimi sa. Zostáva sporné, či tento efekt - vysvetľovaný 
ako produkt evolučného tlaku - je percepčným skreslením pre zmeny vzdialenosti, alebo pria-
mou reakciou na intenzitu zvuku. Napriek tomu táto štúdia testovala subjekty vo viacerých 
scenároch s blížiacimi sa zvukmi, čím sa meralo správanie a elektroencefalografia, zatiaľ čo pos-
lucháči posudzovali smer pohybu. Výsledkom je, že skreslenie pri loomingu sa vyskytuje viac 
ako reakcia na vnímaný pohyb vo vzdialenosti než na vzdialenosť samotnú. To znamená, že 
hrozbu skreslenia možno vyvolať zmenou spektrálnych podnetov pri zachovaní konštantnej in-
tenzity. Prekvapujúce je, že to platí len v prípade, keď je podnet kontinuálny a neprerušovaný v 
čase. Vzhľadom na empirické údaje táto práca vychádza z kvantitatívnych, ako aj kvalitatívnych 
metód, ako sú Grangerova kauzalita (GC), dynamické kauzálne modelovanie (DCM) alebo en-
tropia fázového prenosu (PTE), a porovnáva ich. Umožňuje tak podrobnejšie skúmanie matema-
tických nástrojov na rozvinutie kognitívnych a nervových mechanizmov zvukových účinkov na 
plasticitu človeka. Preto sa práca pohybuje od i) úvodu do histórie a základov sluchového poz-
návania vrátane vysvetľujúcej reflexie experimentu (napr. sluchové testy, EEG, MRI) ii) identifi-
kácie matematických nástrojov, ktoré zapisujú neurálnu dynamiku iii) diskusie o dôsledkoch na 
sluchovú plasticitu iv) návrhov na ďalšie skúmanie v tejto oblasti v) vyzdvihnutia úvodnej otáz-
ky, kritickej diskusie o vplyve časovo-priestorovej kontinuity na proces počúvania a spracovania 
metrík v neuro-/kognitívnej vede. Práca spája aspekty fyziky, akustiky, matematiky, psychofyzi-
ky, epistemológie, sluchovej neurovedy a fyziológie sluchu, aby umožnila inter-, multi- a trans-
disciplinárne skúmanie sluchového poznávania. 

Kľúčové slová:, neuroveda, Grangerova kauzalita, entropia fázového prenosu, sluchové skresle-
nie, EEG, kognícia.

Všeobecné pojmy: pozornosť, akustická, sluchová kognícia, sluch, komputacionizmus, pod-
ložená kognícia, multimodalita, psychofyzika
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1  Introduction 
As an introductory appeal, I like to start this work with a historical foray not only through 

acoustics, or connectivity in its modern phase, but to the versatile elements that go far back in 

the history of science. The following chapter therefore describes constitutive pillars of physics, 

music, mathematics, dressed in the coat of instrumental developments up to cultural music, as 

they have partly evolved in parallel with scientific breakthroughs.  

1.1 Historical Walkthrough 

Akoustos, greek for heard, nowadays known as acoustics, deciphers as the science of production-

, control-, transmission-, reception- and effects of sounds. Hence, beside the plangent sounds that 

were used in battlefields in order to terrorise enemies and the rather lenient aspects of musical 

evolution - primarily through pounding of stretched out animal skins or plugging bow strings - 

the fascination for the orchestrated phenomenon of physical waves, physiological responses and 

psychological effects reaches far back. That forms a society wherein language through verbal 

expression catalysed into singing, gesturing and movement of the body to certain rhythms 

emerged to dancing and early blow instruments were carved out of animal horns, before later 

wind instruments where made by evolved metal forming techniques.  1

Long before that, the potential founders of something like music reaches back to ancient China: 

Ling Lun and Kui. Lun created the first flutes by cutting bamboo sticks in five pieces, equivalent 

to today’s do, re, mi, sol, la. Kui on the other hand stretched animal skin over a jar to build the 

very first drum.  The resulting twelve notes, supported by the rhythm section, enabled first per2 -

formances in composing. Worth to mention that the subdivisions of an octave varies in different 

countries and cultures among the globe. For instance, the ancient Hindus systemised music by 

twenty-two notes. The Arabs meanwhile subdivided an octave into seventeen steps. More scien-

 Animal horns were fashioned into musical instruments (the Bible described the ancient Israelites’ use of 1

shofarim, made from horns of rams or gazelles, to sound alarms for the purpose of rousing warriors to 
battle 

 Lihui Yang and Deming An, with Jessica Anderson Turner, Handbook of Chinese Mythology. Santa 2

Barbara, California: ABC CLIO, 2005, p. 159.
14



tific approaches of sounds that led to unite cultural differences were followed by feasible investi-

gations. 

1.1.1 Ratios

Besides looking at acoustics from a more cultural or musical side, the study of water waves 

proved to be a useful tool, not only for the ancient Greeks, but for science in general, even to this 

day. Pythagors (550 BC) was one of the first who invested in this particular realm. Aiming to 

harmonise things by putting them in tune, Pythagoras used a monochord, which is basically a 

string - variable in length - stretched over a cuboid resonance body. The function of the length, 

known as pitch, could get represented by subdivisions of the string, like 1/2 (octave), 2/3 (fifth) 

and so forth. Adapting this findings to ethics, astrology and literally everything, Pythagoras con-

cluded: “everything is number“. The world is driven by harmony, governed by the laws of order, 

which are essentially expressed as ratios. Through the further development of his studies on the 

physical effects of sound waves on biological or psychological systems, the brilliant discipline of 

acoustics began to emerge.

Our modern system of tuning and understanding the harmonic structure of ratios is widely at-

tributed to a rich and interdisciplinary progression of various scientists, engineers, musicians and 

many others. Anyhow, another milestone, which still stands toady, was the explanation of sound 

as compression and dilution by Aristotle (350 BC). An insight with great impact, as sounds be-

came useable to engineers like Vitruvius (20 BC) who implemented acoustics in space and in the 

architecture of theatres as he installed segments of resonance by placing rows of large empty 

vases. 

Besides the architectural aspects, it happened in the 6th century AC, as the Romanian philoso-

pher Boethius draw relations between science and music to come up with suggestions about the 

human perception of pitch and its relation to the physical property of frequency, all in one vase. 

Like Pythagoras did before, Boethius understood the value of ratios and knew how to apply them 

in a variety of ways. 

Another groundbreaking discovery came with the need for some kind of medium in which sound 

can propagate. Similar - albeit by far less confusing - to the long lasting controversy about the 
15



constitutive medium of light and gravitation, it was hypothesised that sounds can only propagate 

in a flexible medium. Leonardo da Vinci (1452-1519) stated that there is no sound if there is no 

movement of air which brought him to the idea that sound waves are much more like water 

waves and thereby concluded that the sound must have a definite velocity. Leonardo was also 

involved in the discovery of sympathetic resonance, stating that generic vibrations excite further 

vibrations, depending - again - on their ratios. 

1.1.2 String laws

Almost 2000 y. after the monochord and 3000 y. after the bamboo flutes, the modern science of 

acoustics presumably elevated to more sophisticated levels by the mind of Galileo (1564-1642), 

who summarised in concise manner: "Waves are produced by the vibrations of a sonorous body, 

which spread through the air, bringing to the tympanum of the ear a stimulus which the mind in-

terprets as sound.“  Soon after, in what could be called the real origin of psychophysical 3

acoustics, the first measurements of the speed of sound were successfully accomplished by a 

human detector. A prominent scientist at the time was Mersenne (1588-1648) who studied the 

monochord in many different ways. Further progress came with Harmonie universelle (1636), 

wherein Mersenne studied vibrations of stretched strings and summarised his findings in the 

three following laws : 4

1. The fundamental frequency (FF) of a string is inversely proportional to the length of the 

string, at constant tension and mass per unit length: 

  

2. The FF is directly proportional to the square root of the tension in the string, keeping length 

and mass per unit length of the string constant: 

f1 ∝ 1
L

f1 ∝ F

 Crocker, Malcolm J., ed. (1997). Encyclopedia of Acoustics (4 volumes). New York: J. Wiley & Sons.3

 Wolfgang Köhler: Die Blasinstrumente aus der „Harmonie Universelle“ des Marin Mersenne. Überset4 -
zung und Kommentar des „Livre cinquiesme des instruments à vent“ aus dem „Traité des instruments“. 
Moeck, Celle 1987
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3. The FF is inversely proportional to the square root of the mass per unit length of the string, 

given a constant length and tension of the string: 

Mersenne used different materials and changed the thickness of the strings in order to stretch the 

strings out up to several meters. Although, ironically, it then became an almost silent experiment, 

after all, such heavy strings would hardly have produced an audible sound frequency given their 

length. However, Mersenne allowed counting the frequency to find the prime ratios and extrapo-

lated them to tone scales. From this he concluded that sound propagates as a wave and not as a 

particle or somewhat similar. Since this premise seemed to be true, the wave of a sound packet 

must also be measurable.

f1 ∝ 1
m

17

Speed of sound in different materials (20°C)
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Figure 1: illustrates the speed of sound (20°) in different 
materials, separated in three different aggregates: gas, 
liquid, solid. On the right end, beside diamonds would follow 
solid hydrogen: 4,0E + 04, resp. 36000m/s. On the left end in 
a perfect vacuum the technical sound speed of 0 would be 
reached. Which still seems to be an asymptotic challenge, 
since perfect vacuum is unreachable, but even if, quantum 
effects like the Casimir effect, or others would appear and 
describe the sound range closest to 0. 



1.1.3 Speed of sound

French philosopher and scientist Pierre Gassendi (1592-1655) did measure the speed of sound by 

comparing the time difference between spotting the flash of a gun and hearing its report over 

long distances. At that time Gassendi measured 478.4 m/s and correctly implicated that the speed 

of sound develops independent from its frequency. It took almost 50 more years to do better. It 

was Mersenne who broke the records and measured the speed of sound using slightly different 

techniques. Most efficiently by measuring the time an echo takes to reflect the phrase 

„Benedicam dominum“, which was spread out on a wall. By measuring 316 m/s the deviation 

from modern measurements was less than ten percent.5

After first breakthroughs in physics, sound was measured and compared in different materials, 

subsumed in the three known aggregates (see fig. 1). 6

How fast sounds can go depends on the medium, not on the sound. Hence neither its amplitude, 

nor its frequency matters to make any difference in speed. In the case of gas what does matter is 

the temperature and the molecular mass. Helium has much lighter molecules than air, which 

triples triples its sound speed. Additionally sound travels faster in warmer, than in colder air. 

Anyhow for solids it is a different and much faster undertaking. Since the medium of solids is 

not squashed and stretched in a classical way, vibrations of phonons carry the sound wave. For 

diamonds it reaches about 12000 m/s. This is about one third of the approximated theoretical 

maximum of sound speed in solid hydrogen of about 36000 m/s. Sound is produced by the prop-

 Thats not all. For instance on Mars, where it is significantly colder than on Earth, sound takes longer to 5

travel, which is about 241 m/s. Besides, the atmosphere is 100 times less than Earth, which makes the 
sound “softer“. 

 Exciting enough, but not part of this work, to take a moment and reflect on other aggregates, investi6 -
gating in the speed of sound in plasma, or Bose-Einstein condensate, where density waves in a conden-
sate determine to a function of temperature only, which stays in good agreement calculations of Landau 
two-fluid models (see: R. Meppelink, S. B. Koller, and P. van der Straten,Phys. Rev. A 80, 043605 – Pub-
lished 12 October 2009), or instabilities in the Kronig-Penney potential (see: Dong, X., Wu, B. Instabilities 
and sound speed of a Bose-Einstein condensate in the Kronig-Penney potential. Laser Phys. 17, 190–
197 (2007)). 
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agation by making neighbouring particles interact with one another. Atoms can only move as fast 

as the density of a material and the atomic bond limit this process.  7

Simultaneously theoreticians developed the mathematical formulas that describe the behaviour 

of waves through space and time. Just after the invention of standard analysis calculus (Newton 

& Leibniz, et al., in the late 17c.) it became feasible to derive the laws of waves. The likes of 

Euler (1707-1783), Lagrange (1736-1813) and d’Alembert (1717-1783) followed to describe the 

nature of waves as mathematical functions, evolved and applied the wave calculus to strings, os-

cillators and other vibrating systems. Poisson and Clebsch brought these studies even further by 

using membranes instead. 

The complex problem of analysing waves in their spectral components was solved by Fourier 

and the famous Fourier theorem.  Later on Ohm came up, who connected the sensitivity of the 8

ear to amplitudes, but not yet the phase of harmonics (Ohms law of hearing).  9

1.1.4 Helmholtz, Vacuum and Psychophysics

Although a few scientific breakthroughs that have already been mentioned played their parts, this 

one was perhaps the most important when it comes to psychophysic, conducted by psychophysi-

sist Hermann von Helmholtz (1821-1894) and his book: On the sensation of tone as a physiolog-

ical basis for the theory of music (1836). Accordingly it can be cautiously asserted Helmholtz 

was the most influential scientist in the field of psychophysics and physiological acoustics until 

this time. Highly renowned are the Helmholtz resonators, functioning as representers of the audi-

tory system: 

"The air mass of such a resonator in connection with that of the auditory canal and the eardrum 

forms an elastic system, which is capable of peculiar vibrations. If one ear has been blocked 

 One step further, but not part of this thesis are analogies between black holes and phonons, called 7

sonic black holes. See: Marion Cromb, Graham M. Gibson, Ermes Toninelli, Miles J. Padgett, Ewan M. 
Wright, Daniele Faccio: Amplification of waves from a rotating body. In: Nature Physics. 22. Juni 2020, S. 
1–5. Arxiv

 A mathematical theorem stating that a periodic function f(x), which is reasonably continuous, may be 8

expressed as the sum of a series of sin(x) or cos(x) terms, which is then called the Fourier series. Each of 
which has specific amplitude and phase coefficients known as Fourier coefficients. 

 Ohm, G., Annalen der Physik (1843) 59 5139
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(preferably with a sealing wax plug, which has been shaped according to the shape of the audi-

tory canal ) and if such a resonator is placed next to the other, one hears most of the tones that 

are produced in the environment much more muffled than usual; if, on the other hand, the res-

onator's own tone is given, it crashes into the ear with tremendous force.

This enables everyone, even with a musically inexperienced or hard-of-hearing ear, to hear the 

relevant tone, even if it is rather weak, from a large number of other tones ..."  10

Additionally and more or less parallel to Helmholtz - through a rotating cog wheel - physicist 

Robert Hooke produced a sound wave of known frequency. Nowadays, known as the Savart-

Wheel (or Disk), which was primarily developed in the 19s. 

Long-lasting controversy and misinterpretations was caused by the bell-in-vacuum experiment, 

where the question was asked: in what kind of supplement, sub-ground, or medium sound propa-

gates through? For the bell-in-vacuum test a ringing bell gets located in a jar. Meanwhile the air 

is pumped out of the jar and the sound diminishes until it becomes inaudible. For long this was 

recognised as clear evidence for the necessity of a traveling medium. Kircher, a german scholar, 

retested this later on, still heard a sound and wrongly suggested that air was not needed to trans-

mit sound. Finally Robert Boyle brought this myth to an end by improving the vacuum technolo-

gy, while he could measure the sound intensity dropping and decreasing virtually to zero, while 

pumping out the air. From this he concluded that air is a necessary component of sound to prop-

agate. 

However, even with more modern ultra-vacuum pumps, enough air molecules remain in space to 

spread sounds. Therefore, the cause of inaudible waves is seen in impedance, which defines the 

difference in density between media, in the case of air the density between solids, rather than the 

absolute lack of air.11

1.1.5 Traveling waves in the cochlea

 Helmholtz, Hermann F. L. von. 1877. Lehre con den Tonempfindungen. Braunschweig, 
10

Wiesbaden: Vieweg 

 More precise questions about air-less sounds, must answer the question about density probability 11

functions. 
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More modern findings revolutionised the understanding of the functioning of the ear and devel-

oped with the achievements of Georg von Békésy, who elaborated the traveling wave theory of 

the basilar membrane, with the aim of explaining the hearing process in the inner ear. Békésy 

described the phenomenon by so called „traveling waves“ in the cochlea (snail) of the inner ear, 

in which a frequency-location transformation takes place.

“… at low frequencies the maximum of the traveling wave is at the tip of the snail, at high fre-

quencies at the snail's base near the oval window…“12

This traveling wave theory, which was invented about 70 years ago, is now complemented by a 

new cellular amplifier theory (cochlear amplifier). According to this theory, the one amplifying 

component is the outer hair cell, which selects amplitude and frequency of certain sound vibra-

tions by electromechanical feedback. 

From the first century B.C. to ultrasound technology in science, medicine and industry in the 

21st century, psychophysically both the details of sound - i.e. the physical study of waves (vibra-

tions) - and physiologically above all the ear as an anatomical entrance and further the complex 

neuronal tunnel system of the auditory cortex evolved tremendously. Since there are several im-

portant aspects to get a complete picture of this research area, additional insights in each area are 

an integral part of this work.

—> Time line of the acoustical revolution (550BC -> 2019)

• 550 BC: Pythagoras; vibrating string 

• 350 BC: Aristoteles; sound as compression and dilution

• 20 BC: Vitruvius; acoustic in space and architecture 

• 1500: Da Vinci; movement of air

• 1600: Galileo; psychophysical origin 

• 1650: Huygens; sound as a wave phenomenon 

• 1750-1800: Bernoulli, d’Alembert, Euler, Lagrange, Euler publishes wave equation, Child 

visualises plate modes

• 1850: Helmholtz; sound-sensitivity

• 1900: Rayleigh; Theory of sound; surface acoustic wave

 Georg von Békésy: Experiments in hearing. New York 196012
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• 1910: Barkhausen; volume measurements

• 1920: Sabine; architectural acoustics

• 1932: Tamm; phonons 

• 1948: Bekesy; “wavetrains“,  cochlea amplifier (first proposed 1948 by Gold) 

• 1970: Sonorous clicks are used to classify bats

• 1987: Carello, & Pastore; Perception

• 1990: First acoustic study with discriminant function analysis

• 1992: Guski; Acoustic Tau - Audition as warning system

• 2008: Bach et al.; An intrinsic warning cue activating the amygdala

• 2018: Baumgartner; Auditory looming bias 

• 2019: Safari-Naeini; quantum microphones

1.2 Information boxes for used parameters

Hearing of sound

Cochlea consists of three fluid filled sec-
tions, which serve as a sensor 
for pressure variations

Outlets between these sections 
lead to mixtures of the fluids 
and impairment of hearing

Hair cells Outer: active element, non-line-
ar amplification of quiet sounds

Inner: movement transforms in a 
neural answer  

Basilarmembrane Bekesy discovered wave-like dis-
tortion that travels along B.m.

Frequenz analysis, non-linear 

ITD Timedifference between right 
and left ear

Enables auditory circuitry to 
process locations

ILD Difference in amplitude More dominant at low frequen-
cies 
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HRTFs Head related transfer function Spectral cues, ITD, ILD

Physics of sound

Amplitude Pascal [Pa] Soundpressure

Frequency Hertz [Hz]  
ω/2π = ck/2π

Vibrations/second

Wavelength Lamda [λ] c/f Velocity/Frequency

Phase Rad [φ]

Impedance Z(ω) = pˆ(ω) fˆ(ω) is the fourier-

transformed of f(t)

Soundpressure p(x, t) = ∂u(x,t) / ∂t

Speed of sound M/s c: global velocity 

of the pressure 

wave 

Speed of sound ≠ parti-

cle velocity 

Particle velocity Velocity potential: 

u(x,t)

v(x): Local 
velocity of 
particle

v(x,t)=∇u(x,t)·n(x)

Huygens-Fresnel principal Every point of a wa-

vefront is the origin of a 

new wave 
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1.3 Structure and Aim of the thesis

Indeed, this thesis claims to be eclectic. Following a nowadays rather unconventional historic 

introduction - at least to this extend - this enquiry continues by fusing features of physics, neuro-

science, physiology, mathematics, computationalism and auditory cognition. In many ways, giv-

en the multifaceted character of neuroscience, this is quite conventional. Thereof, in the endeav-

our to cross lines of demarcation, this thesis may provide unusual interactions, which in turn af-

ford inconvenient reflections. At least the theoretical part is prone to swerve at times, whereby 

the practical experiments tend to ground. In general this thesis captures both parts and aims to 

bring them together. 

One basic and fundamental question, that motivated this thesis at first place, can be posed as: 

“What is the role of brain connectivity analysis and how is it functioning deep down?“ Starting 

from there, further queries follow as “What does modelling electromagnetic waves in their pure 

mathematical form reveal about organic entities like the brain?“. “What is the relationship be-

tween an acoustic-cognitive model and different types of statistical formulas?“. “And isn't there 

another way to make that possible?“. An overview of basics, modern models, conjunctive exper-

iments, and further considerations condenses the structure of the thesis in the course of prompt-

ing responses to scientific questioning. 

Primarily the thesis starts with explanations of fundamentals. For the sake of order, Chapter 2 is 

separated into 3 sections. Sec. 2.1 explains the physical background of sounds, including wave 

characteristics and mathematical expressions. Although this barely touches the apparent content 

of the thesis, it is one of these underlying veins, that becomes all too relevant when asking deep-

er questions about the complete corpus of connectivity later on. Continuing with sec. 2.2, basal 

physiological elements are discussed. In terms of the incremental approximation near the core 

content, this part already deals with functionings of the ear and phenomena of hearing. Brought 

one step further, sec 2.3 treats the processing of sound through cortical areas.

After this follows chapter 3 which brings the fundamentals together, so that a model of acoustic-

cognitive processes can be described. As a matter of research and complexity, there is no single 

model to name. Consequently, I draw the most relevant models that explain acoustical pathways 
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in the brain, in order to clear up the melange and expose the most vivid aspects in respect to this 

thesis. Sec. 3.1 introduces by conceptual clarifications, that abet to disclose the intentions of 

acoustic-cognitive modelling. Subsequently (section 3.2), the role of auditory cognitive effort - 

also known as listening effort - is defined as the increased allocation of available cognitive re-

sources that can lead to improvements in listening tasks. Then, sec. 3.3, I examine neuroscientific 

layers and grave interlinks for the resultant connectivity analyses. Finally, sec. 3.4 closes the 

chapter by evaluating the more recent status of the acoustic-cognitive modelling. 

In accordance with the first three chapters, 4 - 6 delivers the principal constituents of the thesis. 

Starting with the experimental part (chapter 4) on which the thesis is based on and diffuses from 

(4.1 introduction, 4.2 materials (experimental design), 4.3 results, 4.4 discussion). Chapter 5 

goes into detail regarding brain connectivity analysis (5.1 Multilayered architecture, 5.2 Net-

works and graphs, 5.3 Connectivity measures, 5.4 Connectivity metrics, 5.5 Synchronising con-

nectivity). This involves examination of neuronal architecture and their algebraic equals, as the 

difference of segregation and integration that leads to the threefold classification of connectivity. 

Chapter 6 follows, in which three of the most commonly used and best established models for 

analysing neuronal connectivity are derived in detail, explained and their limitations highlighted 

(sec. 6.1 - 6.3). Of particular interest is the diversity of mathematical methods regarding 

analysing connectivity patterns in the brain. Sec. 6.4 concludes the chapter with a comparison of 

the three methods.

From modelling, experimental, through computational, to mathematic-analytical, chapter 7 com-

pletes the content area of the thesis by qualitative implications, limitations, pitfalls and reflec-

tions on scientific relations, as possible denouements (7.1 Current methods, 7.2 In-between con-

nectivities, 7.3 Behavioral integration, 7.4 Cognitive modelling).

To finalise the whole venture, chapter 8 adds a summary and last remarks. Chapter 9 contains the 

references and the brings the thesis to an end.
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2 Fundamentals 
The fundamentals here are tautological to form the fundament. Since the first steps in our percep-

tion of sounds and what sounds most likely are, is very well understood, the following pages col-

lect some important aspects of this well established state of knowledge. As it goes on, it gets 

more and more interesting, especially when it comes to the brain and how sound is processed in 

the cortex, because that's where things get fuzzier and fuzzier. Of course, this is not to say that 

the essence of sound is unquestionably clarified. Considering that matter is involved and whether 

matter is itself some kind of wave, energy, or even frequency multiplied by some fundamental 

constant (E=hv), states of knowledge are constantly changing. Depending on how closely one 

wants to examine the essential components of sound, one can arrive at strange descriptions that 

say that sound is a wave above another wave or a frequency within a frequency. Which again is 

most likely the case, but not in a way that would cause a direct mutual influence that can be in-

vestigated at this stage. Furthermore, when describing interaction phenomena, it always depends 

on which scale the region of interest is focused on. At this stage, we are starting with the funda-

mentals. 

2.1 What is sound?

To start things off we could ask the question: What is sound? One answer might be: Sounds are 

nothing more than audible  variations in air pressure. This is principally a consequence of me13 -

chanics and a description of gases that propagate in gas, liquids, or solids. In that, sound is a fun-

damental branch of mechanics and formalised in terms of Newton’s laws. Almost anything that 

can move molecules (vibrate) can generate sounds. As a result, whenever an object moves to-

wards a patch of air it compresses the air, thereby increases the density between the molecules. 

Conversely the air is rarefied, meaning it decreases its density as soon as an object moves away 

again.

Many sound sources produce air pressure fluctuations that follow different patterns, e.g. rhyth-

micity. An important component of which is the speed of pressure waves, that can reach about 

 At least most of the time, if not exclusively13
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344 m/sec at room temperature (293,15 K) and 50% relative humidity.  Imaging the mapping of 14

two sound sources not having exactly the same frequency, hence interfering with the crests and 

at times with the crest and the trough. These interferences in time can get recognised as beats. 

For what it’s worth the frequency of the sound is the number of compressed or rarefied patches 

of air that passes by our ears, every second. This means that the speed of a sound wave propagat-

ing in the air is almost independent of its frequency. 

2.1.2 Propagation of sound

At this point, let us delve a little deeper into the physics of sound. When an object moves from 

one place to another through space, it causes a change in pressure in the medium in which it 

moves. With the compression taking place, additional changes of pressure are caused, which in 

turn lead to a consecutive arrangement of pressure changes that propagates forth and can be de-

scribed by wave mechanics. Anyhow, this is not yet sound. To produce an audible exchange of 

pressure, the areas where the pressure and density changes occur must be larger than the areas 

where the molecules previously collided. This is when molecules from a higher pressure or den-

sity crash into their neighbors with a lower density or pressure and give them momentum. Thus, 

the distance between crest and trough of the pressure wave needs to be larger than the distance of 

the mean free path. In its most simple case, one-dimensional (x) and almost plane wavefronts, 

the generic formulation of such a phenomenon leads to a displacement of molecules through 

time (t). Hence the sound wave can be described as a function: X (x, t). 

One important feature of the phenomenon of sound waves is that change in density corresponds 

to change in pressure. Conventionally pressure is measured in bar. 1bar = 105 N/m2, whereby one 

1 atmosphere (atm) roughly equals 1 bar (1.0133bar). On the other hand, the acoustic pressure 

level is scaled in decibel.  20log10 (p/pref) in dB.  In contrast to the equilibrium state of 1 bar, 15

changes in pressure are utmost small. 

2.1.3 Acoustic wave equation

 Bannon, Mike; Kaputa, Frank (12 December 2014). "The Newton–Laplace Equation and Speed of 14

Sound". Thermal Jackets. Retrieved 3 May 2015.

 p…mean square sound pressure, pref…references sound pressure; 20log10 since the ear’s sensitivity is 15

roughly logarithmic
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The following equation is one of the most basic wave equations there is. It is generally known 

and frequently used. It describes the sound in one dimension (x), propagating through time (t):

p… acoustic pressure = ambient pressure deviated by local (position x) pressure 

c… speed of sound

2.1.4 Derivation of the acoustic wave equation

The derivation of the equations underlying psychophysics opens up an important insight into the 

matter. In fact it is nothing else than the change in density as gas moves. Suppose the position x 

+ Δx gives the displacement, which we write as χ when disposition depends on x and t, instead 

of other dimensions in more complex cases (y, z). In connection with ρ (density), we find that  

ρΔx=ρ[x+Δx+χ(x+Δx,t)−x−χ(x,t)]. Inasmuch Δx is small and depends on position and time, 

parts of χ can be written as partial derivatives. Boiling down to ρ=−ρ(∂χ/∂x). This spells the den-

sity change if gas moves. More precisely if x increases, meaning the air molecules are stretched 

out, the density decreases. 

Beside the density changes we have to consider pressure changes as well. Acceleration of air 

molecules, in dependence of position and time can be written as ρΔx (∂2χ/∂t2). The force induced 

by pressure changes pushes in one direction as P(x, t) and in the opposite direction as P(x+Δx, t). 

Subtracting one from the other we get P(x, t) − P(x+Δx, t) = −∂P∂xΔx = −∂P∂xΔx 

Putting all the features together we find 

Finally we have a formula of the behaviour of sound in matter, described as a wave equation. It 

interconnects the speed of sound with the density at normal pressure and the rate of change of 

pressure. 

∂2p
∂x2 = 1

c2s

∂2p
∂t2

∂2χ
∂x2 = 1

c2s

∂2χ
∂t2
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Additionally I like to mention that the speed of sound is not isothermal.  Pressure and tempera16 -

ture change adiabatically, so that a slight change of heat does not effect the speed of the sound 

wave, but its overall energy level. This is of importance when the question gets raised if the 

speed of sound is equal to the speed of the molecules, that causing the vibration of the ear drum. 

It turns out that the adiabatic change of heat and the propagation of an audible sound takes 

longer than the movement of the molecules themselves. Therefore it can be roughly said that half 

the speed of sound (c/s) approximates the average molecular speed. 

High and low frequencies of sound need to be distinguished. Because sound waves all propagate 

at the same speed, high-frequency sound waves have more compressed and rarefied regions 

packed into the same space than low-frequency waves.

2.1.5 Sound in the universe 

The mechanical nature of sounds are nothing but audible variations in air pressure. Hence in-

versely if there is no air at all, there won’t be no sound neither. Which means in a complete vac-

uum, there won’t be any sound at all and the universe is a pretty quiet place.   Apart from that, 17 18

almost anything that can change the density of molecules may generate sounds.  This covers 19

vibrating strings, blows from sticks, windy tubes and the ear itself. Indeed, it is possible and at 

times the actual case, that someone hears the sound of their own inner ear, which can be quite 

intimidating and recognised as pathology.  20

 Laplace corrected Newton in this assumption, who wrongly argued that heat is conducted from one 16

region to the next with such a high speed, that the temperature cannot change. 

 Of course there is no absolute vacuum, but inly high-ultra vacuums. Which implicates that there is no 17

place in existence, where there is no sound at all. As quiet as it may be, it can never reach zero. 

 Though the universe seems fairly quiet, there can never be nothing. E.g. listen to the “Chirps“ - mea18 -
sured gravitational-waves signals of black holes, converted into sounds (LIGO): https://www.ligo.cal-
tech.edu/video/ligo20160615v2 

 Easy to visualise in the case of stereo speaker, in which a paper cone attached to a magnet vibrates in 19

and out, alternatively rarefying and compressing air. 

 Tinnitus is familiar, but something else. 20
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2.2 The curiosity of hearing

So far we have described sound waves and how they propagate from the mechanical perspective. 

Next up is to unravel the anatomical side of our most important receiver: the ear. 

2.2.1 Anatomical Walkthrough

Starting with the outer ear, the gate for every sound wave penetrating our auditory system is the 

pinna (which gets more important at the experimental part when measuring HRTFs, sec. 4.1). 

Sounds emanating from a point source propagate according to the law of the inverse square: P/

(4π r2)= I.  Saying, if there are no reflections or reverberations (“free field“), the intensity of 21

sound drops, as the power divided by the distance squared. At two times the distance, the intensi-

ty drops to one-fourth, at four times the distance to merely one sixteenth of the original energy. 

As the intensity varies, the sensitivity does with the size of the pinna. A larger receiver absorbs 

more of the penetrating energy, which spreads out. Beyond that, the receiver, which is constitut-

ed by the structures of the outer ear works as amplifier and may raise the human hearing sensitiv-

ity by a factor of 2 up to 3. 

Afterwards, sounds that make it through the pinna, onward via the auditory channel. This resem-

bles a closed resonator about 2.4 cm long, enables a frequency peak at about 13 kHz (3rd har-

monic of a closed cylinder = 1st harmonic at 4kHz). The onward wave discharges at the 0,1 mm 

thin eardrum, known as the Tympanic membrane.  At the oval window the vibrating drum trans22 -

fers energy through moving the ossicles.  These tiny bones achieve amplification through a 23

combination of leverage that multiplies the force and is adapted through muscle movement. 

Here it is necessary to add, since it might be important for measurements, that reduction, or exal-

tation of a sound’s volume is strongly connected to cognitive functions, particularly in auditory 

neuroscience referred to as attention, or spatial learning. However, at this point it should be noted 

 Since the inverse square law is a purely geometrical implication, it counts for other propagations as 21

well: gravity, electrical force, radiation, light, etc. Hence it is likewise important 

 Clark, J. and Martin, F., Introduction to Audiology, Clifton Park, NY: Delmar, 2009.22

 Ossicles are the three smallest bones in the body: hammer, anvil, stirrup (formally: malleus, incus, 23

stapes)
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that hearing is also very much influenced by the current state of the listener due to physiological 

states. After prolonged listening tests during experiments, the musculature can change its per-

formance due to fatigue or tension. If the test person feels unwell or is in a weak condition, this 

has an influence on the cognitive apparatus and thus on the measurement. Not least for this rea-

son, shorter experiments, enough breaks, but also the number of test persons is essential for sta-

tistically reliable measurements. This will be explored in more detail later on (chapter 7).   

Next, the sounds enter the inner ear, which consists of the semicircular canals and the cochlea. 

The former helps to maintain balance by detecting accelerations in three perpendicular planes 

and the angular acceleration. These accelerometers make use of hair cells and the canals are fur-

ther connected to the auditory nerve. The cochlea consists of three fluid filled sections, which 

serve as a sensor for pressure variations. The fluid perilymph fills tympanic and vestibular 

canals, as the first two sections and endolymph fills sections three, the organ of Corti. Outlets 

between these sections lead to mixtures of the fluids and impairment of hearing. 

2.2.2 Pitch - Loudness - Timbre

In addition to the basal anatomy, hearing can be divided into 3 distinguishable auditory charac-

teristics (beside space, time and temporal modulations, which are likewise important, but less 

characteristically auditive). Firstly, pitch is the response of the auditory system to the frequency 

and quality that enables it to distinguish high (fast vibrations) and low (slow vibrations) tones.  24

This explanation already contains the psychoacoustic challenge for investigations with pitch, 

since frequency is an objective property of a vibrating system, while a person's reaction to fre-

quency - the pitch - is the subjective perception of a sound wave. Finding a more detailed theory 

that explains pitch, e.g. place-, or temporal coding, is still a matter of investigation.25

Secondly, loudness is related to the intensity of a sound and the amplitude of the sound wave, 

factored by the ear’s sensitivity to the particular frequency the sound actually contains.  It there26 -

 For this explanation frequency refers more to frequency patterns, than frequency itself.24

 see e.g.: Norman-Haignere, et al. 2019, Cheveigné, A. de 2012 25

 Changes of the humans earn sensitivity, as a function of frequency gets illustrated at the equal-loud26 -
ness graph. (Suzuki, Yôiti; Takeshima, Hisashi (2004). "Equal-loudness-level contours for pure tones". 
The Journal of the Acoustical Society of America. 116)
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fore speaks more for the strength of the perception by the ear than for the intensity of the sound 

wave itself. One rule of thumb in psychoacoustics states that in order to double the loudness of a 

sound, its power need to be increased by a factor of ten. This is called the logarithmic relation-

ship of the ears to the sound. 

Intensity in decibels: I(dB) = 10log 10 [I/I0] . In order to make sense of the subjective sound per27 -

ception, which varies at different frequencies, the unit phon was introduced. 1 phon equals 1dB 

given a fixed frequency of 1kHz. Further factorisation (x0.3) follows through the unit sone, which 

equals 40 phon. 28

Thirdly, if pitch and loudness of sound waves are constant, timbre is another measure that can be 

distinguished. "Timbre depends primarily upon the frequency spectrum, although it also depends 

upon the sound pressure and the temporal characteristics of the sound“.  Timbre refers to the 29

characteristic quality that describes sound by its harmonic content.  At the same time, the enve30 -

lope of sound is important. Since every touch is part of the timbre and changes the envelope, it 

would be far more difficult to identify a note without a touch, i.e. with a shortened course of 

sound. Therewith different types of sounds, as voices, or musical instruments can be distin-

guished from one another, even if pitch and loudness are equal. 

2.2.3 Audition

The phenomenon of hearing can also be referred to as auditory perception or audition. Audition, 

especially in the context of hearing, represents a vivid part of our conscious lives. When certain 

senses, such as vision, are impaired, other senses, such as hearing, can compensate for the blind 

spot and loss of visual perception and indeed enable us to recognise presence and identify places. 

Therefore it can be a powerful accompanist regarding all kinds of cognitive functions, like com-

plex motor skills, or paying attention. While straying through unknown areas, or strolling 

through the night, strange sounds of rustling leaves, or squeaky metals eventually turn out to 

 Yost, William (1985). Fundamentals of Hearing: An Introduction (Second ed.). Holt, Rinehart and Win27 -
ston. p. 206

 double the loudness = double the sone28

 Acoustical Society of America Standards Secretariat (1994). "Acoustical Terminology ANSI S1.1–1994 29

(ASA 111-1994)". American National Standard. ANSI / Acoustical Society of America.

 Winckell, Fritz: Music, Sound and Sensation, Dover, NY ,1967.30
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arouse our attention in a highly intense, or even frightening way and that with evolutionary 

learned reason. Even more fascinating is the ability to distinguish between sounds and the ability 

to nuance pitch, so that more complex recognition and reproduction of sounds - such as music - 

can be cultivated. Just as functions of communication and survival evolved in and outside of so-

cieties. More recent scientific studies focus on the cause of hearing, which in most cases turns 

out to be closely related to cognitive functions, especially the phenomenon of attention and se-

lective perception. According to the latter, listening can be divided into a passive and an active 

process.

2.2.4 Hearing as an active process

Hearing as an active process and ears as anatomical access points have been considered to be 

receivers of sound alone. But in fact ears can also emit sounds. With a microphone that is placed 

sensibly enough, precisely at the faint hum, clear whistles can be picked up in the ear. Conse-

quently, the ears can be seen more as active or reactive receivers, adding additional impulses at 

the exact frequency one is trying to detect. This concept goes back to Helmholtz, who thought 

about the hearing organ like a harp as a resonator, made out of strings, that response to intruding 

air pressure in various ways, depending on the intruding frequency. Instead of strings, the fluid-

filled duct of the cochlea, coiled like the shell of a snail, adopted the original idea and brought it 

further by Gold and later by Kemper. Only to be interrupted by the following experiments of 

Bekesy. 

2.2.5 Basilar membrane

Bekesy discovered the wave-like distortion that propagates along the basilar membrane. The 

membrane is quite elastic in the longitudinal direction and varies in stiffness laterally, allowing 

almost independent couplings through the fluid dispersion, which means that the shaft slows 

down as it advances. Physically a traveling wave can be a simple model of one-dimensional 

transmission (see sec. 2.1). Hereby the wave sets the cochlea fluid in motion, because of rattling 

the anvil, stirrup bones and hammer. The incompressibility of the fluid leads to lateral movement 

of the partially stiff membrane, so the movement of the membrane generates a wave that travels 

to the apex and produces spikes in the auditory nerve to transfer information about frequency, 

pitch and the like more. 
33



2.2.6 Hair cells

According to Bekeys rather complex theory of wave mechanics, much is explained, but the fine-

ly tuned differences that our ear is able to distinguish remain mysterious. Bekeys himself exper-

imented only on cadavers and needed disproportionate loud sounds to arouse a response of the 

unaware auditory system. Dead listeners turned out to be extremely inert, in contrast to the living 

ones.  Consequently there has to be an active amplifier that boosts feeble sounds and reduces, or 31

compresses all too powerful ones. The so called cochlea amplifier operates at the brink of the ear 

organs and located at the more neuronal part of the auditory pathway. At the very least, it's a mat-

ter of taste and an ongoing debate about where exactly the ear ends and the brain begins. There-

fore one part of the cochlea amplifier, which is more likely to be associated with the ear is dis-

cussed right below and the second, more neuronal part, follows in the next chapter.

The amplification process is fulfilled by hair bundles, an assembly of cellular protrusions (stere-

ocilia) and the organelles of the hair cells. These cells function as sensory receptors, detecting 

movement and transferring varying receptor potentials to active vibrations of the cell body. A 

distinction for mammals has to be made, as they possess outer and inner hair cells. The outer 

ones enable a higher sensitivity when it comes to differentiation between frequencies. The motor 

protein that underlies somatic electromotility is prestin (from musical notation presto, meaning 

fast), which is involved in the exchange in the chloride channels.  Electromotility means that the 32

entire cell body contracts when a voltage is applied. Furthermore a composition of stereocilia 

bend and tip against each other (mechanical response to the environment), which induces a ten-

sion gated transduction channel in the cell membrane and changes the ionic current, by changing 

the cell potential through admitting potassium ions. The hair cells, which convert motion into 

electrical signals, placed out- and inside the cochlea, are themselves not firing. Rather, they act 

as sensitive voltage gated receptor channels that open and close in the purpose of trigger-, or re-

leasing neurotransmitters.  (see Crawford and Fettiplace, 1985) 33

 "Sound and Hearing", Stevens, S. S., & Warshofsky, Fred,eds., Time-Life Books, NY, 1965. p5431

 Santos-Sacchi Joseph; Song Lei; Zheng Jiefu; Nuttall Alfred L (2006-04-12). "Control of mammalian 32

cochlear amplification by chloride anions". Journal of Neuroscience. 26 

 Chan DK, Hudspeth AJ (February 2005). "Ca2+ current-driven nonlinear amplification by the mam33 -
malian cochlea in vitro". Nature Neuroscience. 8 (2)
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2.2.7 Hopf bifurcation

Hair cell bundles communicate with each other, both outside and inside the cochlea. The critical 

point of “not too small“ oscillations is known as the Hopf bifurcation. The displacement of the 

oscillator varies as the cube root of the stimulus force. So as the signal that comes in falls to 

zero, the gain of the Hopf resonator grows indefinitely. Experimentally it has been shown that 

displacements of the hair bundles are directly correlated to the amount of decibel. (Variations 

around 120 dB, displace the hair bundles by only a factor of 100).34

2.2.8 Self tuning and feedback control

The mechanism of the self-tuning feedback control, as well as the origin of the oscillations, is 

still the subject of investigation. Anyhow, the calcium ion influx and the motor protein 

myosin-1c play key roles in the process. The binding of calcium sensitive, calmodulin to 

myosin-1c could thereby be responsible to modulate the interaction at the transduction 

channels.35

Another important aspect to mention is shown by the motor components of adaptation. This is 

split into slow- and fast adaptation. Whereby slow adaptation is superior in vestibular hair cells 

for sensing spatial movement. It occurs at increased tension by bundle shift, because then 

myosin-1c glides down the stereocilium, due to decreased tension channels, that are closing and 

as a response the transduction current diminishes. For fast adaptation, that is superior for hair 

cells detecting sounds and auditory signals, the tip link tension increases. Ca2+ that entered the 

stereocilium bind rapidly and induce closing the channel.  36

The curiosity of Hearing (sec. 2.2) is an arrangement of basic scientific achievements designed to 

disclose the psychophysical process from sound to hearing. Now we go one step further, into the 

brain, in particular the auditory cord.

  Géléoc GS, Holt JR (2003). "Auditory amplification: outer hair cells press the issue". Trends Neurosci. 34

26 (3): 115–7. ( but also Camalet et al., Eguiluz et al.)

 Stauffer, E. A.; Holt, J. R. (2007). "Sensory transduction and adaptation in inner and outer hair cells of 35

the mouse auditory system". Journal of Neurophysiology. 98 (6)

 Gillespie, P. G.; Cyr, J. L. (2004). "Myosin-1c, the hair cell's adaptation motor". Annual Review of Phys36 -
iology. 66: 521–45.
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2.3 Sound in the brain 

Initialised by undulating sounds that travel through space, crossing the ear channel, traverse fur-

ther to the hair cells and finally propagating into the brain (the demarcation-line between brain 

and non-brain is still controversial). The auditory nerve serves as first contact, when entering the 

bridge between the inside and outside world of the perceptual centre. For a longer period of time, 

traditional models of the neural processing corresponding to hearing described simple features of 

the auditory system that extract sounds into increasingly complex cortical areas whose functions 

enable the differentiation, amplification or inhibition of sounds as well as spatial orientation and 

memory. In recent years there has been an increasing number of studies (one of the latest releas-

es: Hamilton et al. 2021) showing that it seems to be far more unregulated and complex than al-

ways assumed. Signals are not necessarily propagating step by step through the brain, but 

branches into distinct parts of the brain and even jumping back and forth. This assumption is a 

major step towards finding reasonable explanations for the uniqueness of the brain. In the fol-

lowing we will look at the anatomical and functional line-up of this multifaceted control centre.

2.3.1 Hierarchical framework

The hair cells are responsible for separating frequencies, whereby the separation depends on the 

position of the cells and additionally hair cells convert ion injections into electrical signals that 

are caused by movements of the bundles. The electrical signals are then transmitted through the 

auditory nerve and send through several stations of the cortex as representations of the original 

sound. All the auditory information that is send to the brain (from inner and outer hari cells) is 

provided by the spiral ganglion neurons. Likewise these are the first in the auditory pathway to 

fire action potentials. Interestingly, the outer hair cells outnumber the inner ones by 3 to 1, never-

theless about 5% of synaptic communication happens between the spiral ganglion neurons and 

the lower numbered inner hair cells.  Based on this, it indicates that the brain pays far more at37 -

tention to the inner- than the outer hair cells. The reason for that might be the amplifying feature 

of the outer hair cells, already mentioned as the cochlea amplifier. 

 Kazmierczak P, Müller U. 2012. Sensing sound: molecules that orchestrate mechanotransduction by 37

hair cells. Trends in Neurosciences 35: 220-229
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2.3.2 Cochlea amplifier

The ear is not only a transmitter of sound, but also generates it. Two molecular mechanism are 

found that suggest contributions to amplification. On the one hand, motor proteins are involved 

so that outer hair cells are not exclusively reacting to receptor potentials, but also change in 

length. The already mentioned protein prestin - highly packed molecules at the hair cell body - is 

responsible for the movement of hair cells as a direct response to sound. Also, at the hair bun-

dles, myosin is a possible molecular candidate that is attached to the tip links. In addition there is 

strong evidence for the described functions of the proteins as certain antibiotics (e.g. kanamycin) 

may lead to deafness, which is also the case if the genetic encoding of prestin is eliminated 

(shown with mice) and deafness is the consequence. As the hair cells are attached to the reticular 

and tectorial membrane, their change of length effects the membrane to be pulled toward or 

pushed away, thus it guides to the next area of sound processing.  38

2.3.3 Auditory pathway

For the purpose of this study and with respect to the complexity of the undertaking, the next 

steps are described concretely and concisely, following one particular pathway rather than de-

scribing too much details of all the possible combinations and connections. 

As sound (which is less sound, but more electrochemical information by now) is coming from 

the spiral ganglion, it can meanwhile be considered as transformed information that enters the 

brain stem through the auditory vestibular nerve. There the axons innervate to the dorsal- and 

ventral cochlear nucleus. Thenceforth it becomes highly complex, as there are many synaptic 

branches spreading multidirectional and partially in parallel. Axons from the ventral cochlear 

nucleus project to the superior olive nucleus, which is located on both sides of the brain stem. 

Then reaching the inferior colliculus of the midbrain. One the other hand, axons from the dorsal 

cochlea nucleus are bypassing the superior olive, ascending directly, like all auditory pathways, 

onto the inferior colliculus. Next stage is in the thalamus and more precisely the medial genicu-

late nucleus (MGN). Form there it leads to the auditory cortex. 

 Guinan JJ Jr, Salt A, Cheatham MA. 2012. Progress in cochlear physiology after Bekesy. Hearing Re38 -
search 293:12-20
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The described pathway corresponds the firing rate of neurons as a response to sounds. What is 

seen in many neurons at each relay, from cochlea to cortex (and back) is the characteristic fre-

quency. That means a neuron is frequency tuned and shows it greatest response at a specific fre-

quency, that bounds the response as characteristic to it. This also means that the threshold of a 

single fibre of an auditory nerve is lowest, at that particular frequency. At neighbouring frequen-

cies the response is significantly less, which means the threshold remains higher.  39

Worth noting that the clinical fact of deafness coincides with the auditory pathway of cochlea 

nuclei, since both cochlea nuclei receive ipsilateral input from one ear. This is just another aspect 

that shows the complexity of the matter, as the pathway does not only run in one direction as il-

lustrated, but at least with extensive feedback, e.g. from brain stem to outer hair cells, or auditory 

cortex to MGN as well. Furthermore, forward and backward directions are only part of the 

whole, as there are also circularities in the different layers that spread out into other geometric 

dimensions. Despite its relevance, also for the later connectivity analysis, the topology of the 

brain layers will only play a minor role in the next chapter, which deals with the modelling of 

auditory processes.

3 Model of Auditory-Cognitive Processing

 (see inter alia: Rose, Hind, Anderson and Brugge, 1971)39
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Modelling, understood as the process of constructing and developing models, which in turn are 

decoded as conceptual representations of phenomena, is crucial to the sciences of the 21st centu-

ry. Given the huge amounts of data and the different approaches to dealing with it, it is actually 

models that make the whole process visible and comprehensible. Furthermore, it creates a 

tremendous field for scientific work.40

3.1 Modelling in neuroscience 

With other words, modelling is a creative process that can take many different forms. This in-

cludes experimental predictions, summarising discoveries and ideas, making explicit assump-

tions and the like more. In most cases models are mathematical driven constructs, with which 

 Namdar, Bahadir; Shen, Ji (2015-02-18). "Modelling-Oriented Assessment in K-12 Science Education: 40

A synthesis of research from 1980 to 2013 and new directions". International Journal of Science Educa-
tion. 37
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Figure 2: Joost X. Maier and Asif A. Ghazanfar, Journal of Neuroscience 11 April 
2007, 27 (15) 4093-4100 
Each part of the four-folded figure, represents one measured aspect of ALB. A 
Time-amplitudes. B Intensity-time, loud=solid lines, soft=dashed lines, 
looming=dark lines, receding=light lines. C Frequency spectrum of complex tone 
stimuli. D White noise 



scientists try to describe, or explain observed phenomena within the realm of formulas, that are 

representations of the real world. Mathematically this includes statistical models, logical models, 

differential equations, probability models, game theories, or dynamical systems. Listing rela-

tives, or sub-categories of modelling processes raises the question: what then is not a model? 

Which in fact turns out to be a more difficult one, considering the seemingly pan-covering terri-

tories that models already subverted and partially define. One possible answer could be the con-

text in which it is used as such. Speaking of it in this way says: everything could be a model, as 

long as it is used as a model. A statistical model already contains "model" in its term, whereby 

differential equations alone are not sufficient. 

Anyhow, in differential calculus we are dealing with continuous changes in time. This is a func-

tional operation and as such already some kind of modelling procedure. Given our physical un-

derstanding of the world, time passes smoothly in one direction, instead of jumping back and 

forth. That is why we can use instruments like clocks and are able to count time as sorts of parti-

cles like seconds. In other disciplines, like psychology, or even other physical theories, this is not  

necessarily the case. So given this juncture we are confronted with a topic in which we can mod-

el something that is different in mathematics, relative to other formal concepts and not always 

coherent with empirical data. Especially at the intersection of mathematics and neuroscience, 

research that deals with how the brain processes e.g. time and what time actually is, stays curi-

ously manifolded. However, in order to account for the continuous changes in time and to create 

40

Figure 3: Schema of a Near-field head-related 
transfer function (HRTF). See: The Journal of 
Acoustical Society of America 143, EL194 (2018)



the best possible models, the mathematical tools of the infinitesimal calculus are often used, 

which are very powerful models.41

Formally a model in natural (physical) sciences almost always emerges in similar steps: starting 

off from basic principles, or (e.g. in classical mechanics) so called balance equations, like the 

law of conservation. Additionally several classification criteria are commonly added to set 

weights: discrete vs. continuous, static vs. dynamic, linear vs. nonlinear, explicit vs. implicit, etc. 

In neuroscience this process develops quite similar. Based on these known constituents, further 

assumptions - often in the form of quantified parameters - can be tested and implemented. As a 

result, the modelling process leads to newly defined or simply modified equations. Especially in 

the natural sciences and the neurosciences, which both branch out into analogue mathematics, 

there are more similarities than discrepancies. Therefore, it is often helpful to use models that 

describe phenomena in neuroscience and apply them to describe other phenomena in physics, 

and vice versa. The next section discusses one of the epistemologically most important theories 

based on it in the context of modern modelling.

3.2 Ockhams model razor

 To mention at this point: Calculus is latin and means “stone“, which goes back to the romans, who 41

used stones for counting - again a model. The term prevailed for one of the most striking inventions ever 
made. Historically it is told that Newton and Leibniz invented calculus almost parallel (before that others 
were also involved), but completely independent from one another. Not only independent, but their ap-
proaches differed, which makes it even more exciting to see only one of two models prevailed (so far 
Leibniz won this race). Often differentials are explained as “instantaneous rate of change“, but this is 
obviously an oxymoron. Much more it could be phrased as “rate of change over an infinitesimal small 
amount of time“ - again a question of the model you pick. 

41

Figure 4: Azimuth, Eleva-
tion, and Sound Location 
Parameters of HRTF



The model itself never represents anything, but merely represents empirical data, observations, 

ideas or related thoughts in a way that is intended to gain recognition in the scientific communi-

ty. For example, computer models are now successfully used to simulate dynamics and recognise 

patterns in large amounts of data, sometimes without even anticipating what the data might re-

veal beyond. But within certain data sets, one can either know more about the relevant content or 

make causal statements about internal or external relationships. 

More and more virtual experimentation - as another branch of modelling - allows far simpler ap-

proaches to earn first intuitions about experimental design, data trials and hidden layers, which 

are operating in blanked undergrounds. Until today the good old “Ockhams razor“ counts, as it 

shall be the best, meaning the highest explanatory-, but likewise most simpel model that prevails 

against over-complex, but also over-fitting and sometimes not evenly content-rich competitors. 

Since the focus today is on modelling, this applies to models as it did to theories back then; 

hence it could be called "Ockhmas model razor". 

Another important aspect is the need to keep clear ideas about the experimental design, the as-

sumed outcome and possible suggestions that other scientists might draw from the ongoing ex-

periment. Therefore models are also forcing scientists to more narrow and also explicit depic-

tions as a means to inter-transfer information. Accordingly models are sharpening ways of com-

munication in the scientific community (Blohm et al., 2020). Since there is hardly any scientific 

discipline left that works completely untouched by any kind of modelling, this is an opportunity 

to inaugurate more interdisciplinary activities. A development that is of particular interest for 

neuro- and cognitive science.

 

Based on these assumptions and with the aim of discovering something rather than nothing, it is 

absolutely pivotal to ask the right, most appropriate and contextual questions. In order to deal 

with data in a constructive and insightful manner, one of the greatest challenges is to engineer 

useful concepts and build comprehensive models, ideally already beforehand. As precaution to 

resist the danger of getting lost in a sheer overwhelming sea of data. 

Choosing the right model for the right study is not trivial, yet even decisive for the potential de-

velopment of the study as a whole. In neuroscience alone, there are countless models and mod-

elling techniques, but with new types of data and objectives, it is often not entirely clear how or 
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where to start. This was one of the reasons that led me to look more closely at the mathematical 

and technical pinnacles of modelling in science. This mainly concerns the methods of connectiv-

ity analysis, which I will examine in more detail in section 5.42

3.3 Auditory - Cognitive Models

Like there are many ways of modelling, there are various models that have been created to de-

scribe auditory functions (Zhang et al. 2001; Lunner 2003; Jepsen et al. 2008; Souza et al. 2015; 

Wingfield 2016). Auditory-cognitive processing involves spatial awareness, scene analysis, se-

lective attention, attention switching and the ability to specify many different kinds of foci. Some 

features that are considered cognitive, e.g. memory functions, may occur retrospectively, as fol-

lowers of auditory and attentional processes. As one can imagine, the timing is crucial for this 

type of investigation.

3.3.1 Temporal response functions

Using EEG  in auditory neuroscience one fundamental aim is to map the cortical responses of 43

brain regions in order to extract the event response potentials (ERP). For continuous stimuli, 

which you can find e.g. in speech, this is done by temporal response functions (TRFs). While 

 In parallel to my writing of the thesis and experimental work, I joined a CoSMo workshop, which gives 42

valuable insights, like a 10-step orientation guide, for a modelling walkthrough in neuroscience, from 
which I took a few approaches and integrated some of these into my work.  

 If not mentioned explicitly EEG and MEG can be used synonymously, since most descriptions are ap43 -
plicable to both techniques.  
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Figure 5: HRIR. In a horizontal plane the right ear (90° azimuth) responses to an 
impulsive source. Brightness represents the strength of the response, at a point in 
time. Strongest at 0,4 ms



ERPs characterize the responses of EEG, TRFs generate predictions. Thereon TRFs find a vast 

scope of applications as stimulus-response models for artificial sound stimuli (Labor et al 2009, 

Power et al. 2011), phonetical markers at a speech spectrogram (Broderick et al., 2018), or at 

“cocktail party“ frameworks as linear models that separate attended and unattended acoustics 

(Puvvada & Simon, 2017). A linear model like this can be mapped in a forward direction 

(acoustics -> cortical response), or conversely as backward model (cortical response -> 

acoustics) (see Bialek et al., 1991; Haufe et al., 2014; Van Eynhoven et al,. 2017). For instance at 

the cocktail party attention selection task, precise models of forward and backward directions, 

measured with EEG signals, try to unravel and even predict to whom a listener is attending to. 

The decoding of EEG signals, especially for the prediction of genital actions with high accuracy 

(a few ms), still requires better fitting models, but exhibits first fruits. 

3.3.2 Ease of Language Understanding & Auditory Scene Analysis

Another prominent model to lucid functional links between auditory and cognitive processing is 

the Ease of Language Understanding (ELU) model.

Models like ELU are working within a prominent framework, that includes the identification of 

auditory objects in space and time. For binaural cues - intramural time and intensity difference - 

as for temporal cues - onset, offset, duration - and pitch, the objective may be achieved in com-

bination with auditory scene analysis (ASA). ASA displays how the difficult process of separat-
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ing, grouping, amplifying, attenuating, synthesising, or making extractions within a complex en-

vironment of sounds can be realised (Wingfield 2016). 

Building a hybrid of ELU and ASA, the preattentive feature of the latter gets implemented as an 

automatic process, happening before cognitive control. 

With regards to the model, a better understanding of the whole process is deeply connected to 

awareness. In this scenario, the listener, who is in a multimodal speech input situation, could fo-

cus his attention on specific cues or speakers. The more often the listener hears the speaker, the 

greater the cognitive load they memorise. Through updating the implicit procession with the ex-

plicit ones, mismatches and matches are distinguished, which leads to understanding and output. 

As shown here, there is a close connection between hearing and spatial awareness. Ex negativo 

this can be modelled by ELU and ASA for subjects that are hard of hearing. For example, if a 

person sneaks up behind them even though their footsteps are audible, hearing-impaired people 

suffer from reduced perception of the usual automatic sounds and are more likely to react with 

surprise. Additionally the cocktail party effect nicely illustrates how auditory capacities can spa-

tially maneuverer through a rather chaotic spatial distributed sound complex. 
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3.4 Spatial Hearing

The association of auditory cues and positions in space form a set of mechanisms on which spa-

tial hearing relies quite heavily. Tasks as locating sound sources, separation of sounds and there-

by focusing attention and more general awareness, serves as notable aspects of this whole proce-

dure. By continually applying and training these features, the auditory system can unmask 

sounds that otherwise remain indistinct or are just a strange noise. Furthermore this counts for 

moving moments as there are looming, or receding sounds. This content in particular is dis-

cussed in sec. 4. Therewith, and due to the already elaborated connections to all kinds of cogni-

tive tasks, research in spatial hearing could reveal much more about cognitive modules, mental 

disorders, ability to concentrate, intelligence, etc. 

3.4.1 Auditory looming bias

The central model underlying the empirical part of this research (and the Born2Hear project) is 

known as the auditory looming bias (ALB). ALB (see fig. 2) basically says that approaching 

sounds are more, quicker, or easier noticeable than receding ones. This counts for humans, but 

other mammals as well (e.g. mice, monkeys, etc.)

While standing at an intersection it might be relevant for survival to hear whether a car is ap-

proaching or driving away - just as prehistoric humans had to recognise whether a predator was 

sneaking in on them or moves away. Parts of the brain seem to process approaching noises more 

intensively and faster than others compared to different conditions.

Biases of any sort are evolutionary speaking a little peculiar. Instead of evolving towards a per-

ceptual cognitive apparatus, that perceives our environment as it is, bias does something else. 

Whether it adds or removes ingredients of how we make sense of our worlds (internal and exter-

nal), this goes beyond our senses. Of course the phenomenological phrase of investigate the 

world as prima facie and taking it perceptually most directly just as it is, seems naiv. Neverthe-

less our direct interaction with the world depends on our sensitive modalities and has evolved to 

a degree, that is inseparable from the brain and the body understood as an interactive processor. 

The common phrase about making sense obviously no longer makes sense when it gets this far. 

Moreover it emphasises sense-making as something that is not a simple and isolated process of 

perceptual sensing, but the vast interwoven cognitive functioning, involving thoughts, feelings 

and states of mind (sec. 7). 
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3.4.2 Sound localisation: Duplex Theory, ITD and ILD

Localisation - the ability of humans to orientate themselves in space - is to a large extent nothing 

other than the recognition of incoming sounds. Highly complex filters from head, pinna, and tor-

so build the ground for the ability to localise oneself within an environment. Similar to the 

uniqueness of the fingerprint each ear is different (also known as an acoustic fingerprint). The 

shape of the head alone can have an immense influence on how long it takes for sound to travel 

from one ear to the next. This difference in arrival time at ear entry is recorded as the interaural 

time difference (ITD). Thereby a cue for the angle and the direction of the intruding sound gets 

calculated by the difference the sound needs to travel from left to right ear. If sound arrives di-

rectly from an azimuth of 90°, it takes the sound a little bit longer to reach the left ear (see fig. 

4).  At azimuth 180° sound would enter directly form behind. This ITD enables the auditory cir44 -

cuit to process the localisation. Hence, through the difference of sound arrivals at the ears, vari-

ous informations about the sound source might be identified.

Beside the ITD, there are differences in sound levels entering the ears, called intramural level 

differences (ILD). Rayleigh proposed the duplex theory (Rayleigh, 1907), which states that level 

differences are more dominant at high, than low frequencies.  Yet natural sounds come in all 45

kinds of frequencies and the auditory system has to process the overlaps between ITDs and ILDs 

to decipher the relevant points in space.  46

Further experiments (e.g. Woodworth 1938, Fedderson 1957) showed that at a constant distance 

between two ears (approx. 22-23cm) and a frequency of 1500 Hz, a maximum time delay exists 

when the sound arrives from exactly 90°, which is about 660 µs. That is, if the wavelength of a 

sound is greater than the time delay between two ears - which is the case when the frequency is 

lower than 1500 Hz - location cues are provided, because there is a detectable phase difference. 

 https://sites.tufts.edu/eeseniordesignhandbook/files/2017/05/Purple_Cirone_F2.pdf44

 Rayleigh L (1907) XII. On our perception of sound direction Philosophical Magazine 13:214–232. 45

 Jan Schnupp, Israel Nelken and Andrew King (2011). Auditory Neuroscience, MIT Press.46

47

https://scholar.google.com/scholar?q=%22author:Rayleigh+L%22


It must be significantly lower, otherwise the so called head shadow  makes it impossible for the 47

listener to localise through ITD alone, so the ILD compensates the missing link. In between - 

around 1500 Hz - the phase difference is only slightly present. Consequently, the localisation 

process around this frequency start to become faulty. 

In the horizontal plane localisation accuracy is mostly generated by ITD and ILD processing.  48

However, the elevation of the source will not cause these differences. Additionally, at the range 

of overtones, interferences of sound waves occur at the pinna, that is why localisation wouldn’t 

be possible by ITDs and ILDs alone and so called HRTFs are necessary.

3.4.3 HRTFs

In order to perform precise psychophysical experiments in acoustics, one key parameter is de-

termined by head movement-related functions (HRTFs). HRTFs are representatives or responses 

of sound waves entering a channel from a free field. The transfer function itself is nothing but the 

ratio between output and input signal spectrum as a function of frequency (free field transfer 

function = FFTF). 

The free field simulator is an anechoic chamber, in which acoustic experiments are typically 

made (see fig. 3). So the function modulates how the sound changes from the source to the lis-

tener. For example, a sound wave generated by loudspeakers is transmitted through the air, re-

verberates off the walls, is reflected by the topology of a person's head, face and ears until it fi-

nally reaches the eardrum. In general HRTFs contain spatial and temporal information according 

to the sound directions, but the differences from subject to subject are significant. Therefore, two 

types of distinctions are made: generic- and personalised HRTFs. Generic HRTFs are either cre-

H( f ) = Output ( f )
Input ( f )

 The head, or acoustic shadow Is a necessary given example of diffraction. Hearing (A), talking about 47

human anatomy, requires ears (B) and ears require a head (C), so taking the inverse transitive that means 
without C, there wouldn’t be A. Likewise the ears are flawing themselves, because of head obstructions 
in amplitude. Without an automatic correction of the amplitude fitting, hearing difficulties, or losses are 
the consequence. 

 Blauert, J. Spatial Hearing: The Psychophysics of Human Sound Localisation: MIT Press, 199748
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ated by averaging existing data from subjects, or from prefabricated dummy data sets, instead of 

measuring new individual sets. Another possibility would be to personalise the HRTF for an in-

dividual by comparing it to the existing database without the need for individual measurements. 

In any case, this is the first and most precise acoustic measurement step of many specialised ex-

periments, because it is highly personal.

The measurement itself is literally a transfer function, i.e. the relationship between output and 

input is measured. The input refers to the output of the sound source, whereby the output is the 

input of the listener. Geometrically the sound wave spreads spherically in elevation θ, azimuth 

(measured clockwise) φ and either time or frequency. By manipulating these three parameters, 

sound can be simulated as if it were propagating from a particular location in space. 

3.4.4 HRIRs

In order to apprehend the sound pressure - produced by the free propagating wave - at the ear 

drum, the concept of head-related impulse response (HRIR) is used. In fig. 5 the HRIR of the 

right ear is shown.  The brightness represents the strength. At an angle of azimuth = 90° it is 49

strongest, whereby 270° is opposite, thus weakest. Additionally a sinusoidal shape is recognis-

able and the rapid changes of bright and dark bands, due to reflections of the body and the pinna 

in particular. Another anatomically conspicuous part is the pinna notch, the frequency of which 

changes with elevation. 

Given the complexity of measuring three spatial variables and frequency, inverse and fast Fouri-

er transforms (FFT) are often used to convert discrete signals between time and frequency do-

mains. Hence the HRTF is the Fourier transform of the HRIRT and captures all important physi-

cal cues of the source localisation. This operation commonly happens at the far field, which is 

defined at a distance about one meter, where the turbulences are becoming noticeably weaker. 

3.4.5 Measuring HRTF/HRIR 

 https://www.ece.ucdavis.edu/cipic/spatial-sound/tutorial/hrtf/#HRTF_hor49
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The test person sits in an anechoic chamber so that the greatest possible isolation of the sound 

reflection is achieved. Microphones are inserted to the test subjects to receive sounds. Due to the 

arrangement of loudspeakers the movement of the subject rotating or moving loudspeakers, all 

angles of interest are captured and the ratios between the reference sound and the recorded sound 

forms the HRTF. It is also worth mentioning that the HRTFs do not capture resonating or rever-

beration effects.  It rather simulates a perfectly smooth room, without any interferences. There50 -

fore the sounds must contain the effects of the room so that it sounds like a realistic 

environment.   51

One important aspect of this arrangement is to enable the possibility of taking both into account: 

front and back dimensions. Other techniques, e.g. amplitude planning method, is simply operat-

ing in 2D, by using amplitude levels in stereo. Another alternative is the ambisonics recording 

technique, which also works in 3D but requires its own format, so it is not similarly practical to 

use. 

Since all the basics and a lot of technical pre-requirements have been covered so far, the suc-

ceeding chapter examines the experimental part of this undertaking. 

4 ALB Experiment

In this chapter I would like to explain the experimental idea, the components, the parameters, the 

mechanics, the instruments and the preliminary results of the listening experiment I participated 

in as part of my thesis. Like a walkthrough I start with an introductory part outlining the main 

 To note: resonance is not reverb: when screaming at your computer because it doesn’t do what it 50

should, it starts to vibrate a little bit in resonance, because of the air fluctuation in density that waves at 
it. Reverb on the other hand, occurs when your scream would be capsulated in a room, bouncing back 
and forth, which prolongs the scream. This is only the case, as long as the scream gets reflected fast 
enough, or from a surface near enough, otherwise the screams are phase transferred and echos are cre-
ated. 

The specific echo threshold ranges from 20ms to several seconds, depending on various things, fore-
most on the typ of signal, the volume and the surface. 

 Among other examples, this gets fascinatingly demonstrated at the virtual barbershop for binaural au51 -
dio.
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idea, followed by an explanatory part specifying the materials and general architecture. In the 

remainder of the chapter, I elaborate on the individual components of the study and conclude by 

presenting some of the findings and discussing broader perspectives as immediate implications. 

4.1 Introduction

Although there have been previous studies that have illustrated how sounds that get louder are 

perceived as superior compared to those that get quieter, this experiment is different. As a rule, 

the approach of a noise source causes a more salient perception, but so far no one has been able 

to clearly prove, whether the increased attention occurs due to the already anticipated approach, 

or just as a reaction to the increasing intensity.

Our auditory system is constantly taking in and presenting information to monitor our environ-

ment. This already includes auditory and spatial aspects and links them closely together. As such, 

it is an inimitable part of our survival and - less precariously put, but all too important - forms 

our capacity for daily survival. Along the mechanistic plasticity of our neural system, the audito-

ry system comes not as fully evolved anthropologic craft, but needs additional learning and con-

tinues to do so through the whole span of a human lifetime, starting off as a newborn. Whether 

statistical or supervised learning, frequent and implicitly inattentive automation or - the latter - 

an attentive ability to discriminate auditory phenomena on the basis of feedback prevails remains 

unclear. In particular, the question of at what age, from the newborn to the young to the old adult, 

the weighting of the learning rate is remains unclear. Spectral shape cues combined with the au-

ditory system and plasticity - as an ongoing learning machinery - turns this region of interest into 

an interdisciplinary area of research. 

Earlier studies (Baumgartner, 2017) simulated the approach of noise generation by means of 

changes in the sound spectrum. The volume of the audio signals remained constant during the 

test series. Noticeable the subjects were able to recognise much better when a sound source from 

the sound spectrum moved in their direction than when it moved away from them. Brain activi-

ties - measured with EEG - showed also higher intensity when the source of the sound loomed 
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closer, as when it receded. Scientifically phrased, the empirical fact that approaching sounds are 

more salient than receding ones is termed as auditory looming bias (ALB). 

The ALB occurs effectively due to the approach and not just to changes in the tone intensity. But 

it also only occurs with continuous tones. If sounds interrupt in between the test subjects did not 

perceive the noises more intensely, even if they were simulating approaching. It appears, there-

fore, that constant movement of the sound source is necessary to achieve this effect.

The recent study which I joined investigates in the cortical mechanisms underlying the looming 

bias, transposed as connectivity analysis. According to the findings, there is a preferential top-

down projection from the prefrontal cortex (PC) to the auditory cortex (AC). Next it is key to test 

and analyse if that specific finding can be generalised. Essentially if it holds the hypothesis under 

spectrally induced looms and neural correlates.

4.2 Materials

The main experiment falls into two main parts, whereby each part consists of specific measure-

ments and the follow up is conditioned by the primary. First up, it starts with an acoustic-physio-

logical ear measurement and secondly follows an acoustic-cognitive hearing task, while using 

EEG. The former can be seen as pre-study that inspects anatomical idiosyncrasies and proofs ba-

sic functional abilities. This rather sumptuous process may not be considered as a necessity, 

since familiar studies from other labs manage without this procedure by reverting to the estab-

lished literature. Anyhow it leads to higher precision, more individuality and additionally illus-

trates some characteristic features the institute is known for (ISF) and where the experiment is 

carried out. 

Depending on the date of publication and the fact that more than one experiment has been con-

ducted, new data sets are constantly being collected, using slightly different approaches and part-

ly combined with previous studies in this work (Baumgartner et al., 2017). In this thesis I focus 

on the main pinnacles of the scientific ideas and working steps that were done experimentally 

and computationally. By doing so I do not persist on identical coherency between description 

and background data of one particular publication, as it is sufficiently known and even overlaps, 

which is feasible for the implementation of this project. 
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4.2.1 Subject criteria

One important criterion for subjects participating in a hearing study is their ability to hear gener-

ally. As hearing loss is considered to occur as gradual delay, rather than some discrete threshold, 

it was made sure that hearing loss was not greater than 20 dB relative to normal-hearing popula-

tion. This holds for a frequency of 500 Hz to 8 kHz.   52

Arguably the first and most important resource of the whole study consists of its subjects. In total 

it included 33 listeners, separated in two blocks. First, paid volunteers (age 20-29 y, M = 24, SD 

= 3.7; 10 females, 5 males) and in experiment II 13 subjects (age 20-42 y, M = 29, SD = 5.7; 7 

females, 6 males). 5 more listeners participated as subset in both experiments. 

The first experiment consist of 840-, the second of 192 trials. This means that each trial repre-

sents sounds that are played to the listener. In Exp I, in 86% the spectral contrast switched, 14% 

stayed constant. Exp II in turn, switches happening in 100%, for every trial, so there are no con-

stant trials. In order to learn about learning in the long run, undesired short-term learning by 

cues, or schemes is tried to avoid by randomising the order of the trials and reducing feedback. 

4.2.2 Experiment 1: Pinna test

Prior of the auditory-cognitive task - during measurement of the EEG signals - the anatomical 

dimensions of the outer-ear (especially the pinna) are measured.  Simulation of sound source 53

locations are used to find and define the beforehand already described HRTFs. For this trial the 

subjects take a seat, centred right at a half circle of 7 loudspeakers, in a semi-anechoic booth.  54

The booth itself ranges from -90° at right side of the listener, to the left side at 90°, in sampling 

steps of 30° each. (Acoustic Research 215 PS; amplified by Crown 1002 XTi; IAC Acoustics, 

single-walled, 12 ft x 13 ft)  (see fig. 3). The loudspeakers levitate nearly at the level of the ears, 

with a radius of 1.5 m. Now the actual metric of interest are the transfer characteristics. Binaural 

 Informed consent was monitored by Boston University Institutional Review Board52

 For HRTFs the filters of the Pinna are crucial, although there are other important, isotropic compo53 -
nents that shape the HRTFs as the concha and the open ear gain. The torso and shoulders are influenc-
ing as well. 

 Later experiments are done in a more modern anechoic chamber, consisting of 92 speakers54
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miniature microphones (AuPMC002; Ausim, Inc.) are insetted in the subjects ears and stabilised. 

Therewith the maximum length sequence (MLS) of order 15, after 20 trials, gets identified. In 

order to reduce noise (hereby noise could come in form of early sound reflections), foam as wave 

breakers is pinched to the back of the subject, on the ground and at the microphones. In order to 

remove further reflections the extracted impulse responses are windowed to 3 ms with 0.5-ms 

cons ramps and equalised by reference measurements for each loudspeaker. Additionally the 

recorder signals are amplified and converted with a sampling rate of 44.1 kHz (analoge-digital 

with Motu 24I/O).

Then, within a frequency between 1 and 16 kHz, the magnitude (dB) of the measured HRTFs 

were manipulated. At the same time the measured phase spectrum remained unmodified. Within 

a specific spectral contrast factor of C = {0, 0.51}, Gaussian white noises presented two consecu-

tive stimuli, that are filtered by the band-limited HRTFs. 

The magnitude spectrum is measured in dB and calculated as follows:

M (f)… magnitude spectrum in dB

Nf … frequency bins 

w’…  frequency weighting function 

The across frequency derivative of equivalent rectangular bandwidths (ERPBs) approximates the 

auditory frequency resolution. Band limitation ranged between the mentioned 1- and 16 kHz fil-

Mc(f ) = CM1(f ) + (1 − C) 1
Nf ∑

k∈f
w′ (k) M1(k),
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tered noise through fourth-order Butterworth filter.  For fade in- and outs squared sine ramps are 55

used. A pair of stimuli faded in and out by 50 ms. 

4.2.3 Experiment 2: EEG, acoustic-cognitive test

For the second part of the experiment, or in fact the second measurement, subjects are wearing a 

32 scalp electrode EEG cap (Activetwo system with Activeview acquisition software, Biosemi 

B.V., standard 10/20 montage), while performing auditory-cognitive tasks.  Furthermore one 56

vertical and two lateral electrodes are added for the record, to ease capturing eye blinks and sac-

cades. In order to apprehend critical experimental events, real-time processing hardware (RP2.1, 

Tucker Davis Technologies, Inc.) marked timing and record on an additional data channel. 

4.2.4 Processing of EEG data

To this day, there is not a single algorithm that solves the SNR for fuzzy data in such a way that, 

almost mysteriously, completely clean and well processed output data comes out of the input 

data. Therefore, it has a significant impact on the study as a whole, by being well prepared and 

drawing consequences that best fit the decisions made previously. As a rule, there are a number 

of conventional instructions to be followed in the proper processing of EEG data. Such a pipeline 

contains filter applications, re-references, rejection of artefacts, selection of window sizes, de-

composition of frequency domain, or averaging. Depending on the self defined ROIs sound can 

turn into noise and vice-versa. The following steps illustrates how this is done for the present ex-

periment. 

 Butterworth filter is a special type of signal processing filter. The frequency response should transfer to a maxi55 -
mally flat magnitude. So unwanted frequencies are not completely rejected, by guaranteeing uniform sensitivity for 
frequencies of interest. It is given in terms of the transfer function H(jω):


  


ω = angular frequency 

ωc  = cutoff frequency as angular value

n = number of order in the filter (4 in this experiment) 


H(jω) = 1

1 + ( ω
ωc )

2n

 Depending on the experiment, others are done with a 64 electrodes EEG for more complex data 56

analysis. 
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The leading software for this matter is the EEG toolbox, used in Matlab. This starts the process 

of limiting the bandwidth for signals between 0.5 and 20 Hz. Caused by a finite-impuls-response 

filter, in accordance with the Kaiser window design.  Kaiser manages to maximise the ratio of 57

the mainlobe- to the sidelobe energy as a useful approximation, given some prolate spheroidal 

window (β=7.2, n=462). The already band-limited signals are epoch- and baseline corrected, up 

to the 200 ms foregoing event and resampled to 100 Hz. Transgressions of these epoch thresh-

olds, like it occurs for eye channels (−800 - and 200 μV), or brain channels (−200 - and 800 μV) 

are removed. Further selections for choosing independent signal components for every subject 

(Infomax), leads to correction of eye artefacts, bad channels, or others complications and an 

overall rejection of almost one third of the trials for every listener (min 83 trials/condition). 

Matlab Fieldtrip toolbox performed a cluster-based permutation test, to evaluate the actual test 

statistic. Under a distribution of 500 permutations the P value was calculated by Monte Carlo 

estimate. At an alpha level of 0.05 a two tailed T statistic is thresholded and the maximum of the 

cluster-level statistic gives us evaluated the test statistic.

4.2.5 EEG Monitored auditory tests

The experiment consists of three parts: Pre-test, Exp I, Exp II (EEG-monitored). For the timing a 

Psychtoolbox is used, as headphone (HB7) preamps and tubephones (ER-2) for the sounds. Lis-

teners receive stimuli with a front sound pressure that is calibrated around 75 dB and a magni-

tude deviation within a range of +/- 5 db. 

The pre-test literally familiarises listeners with the task. For half an hour they undergo a 1—> 0 

contrast switch condition test. This was to report associations with distance change, but for some 

cues listeners perceived instead or also a change in height. Sources of this sort were excluded 

from the study. Besides, listeners are asked to discriminate between approaching, receding and 

static auditory percepts, by selecting the corresponding source angle (1 of 3). 
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• I0 = zeroth-order modified Bessel function

• L = window duration
• α = non-negative real number for window shape. Determines the trade-off between main-lobe width and side lobe level
• When β = 0, Kaiser window becomes a rectangular window
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Exp. I continued the pre-test tasks, extended to 1 hour. It consists of 40 blocks, around 1 min 

each, containing 840 trials to complete (breaks of 1 min between blocks are allowed and oblig-

atory after at least 10 blocks). 

Exp. II includes discontinuous example stimuli, with an ISI of 100 ms, which allows immediate 

responses. With a shorter pre-test than before Exp. I, Exp. II takes about 30 min. 

4.3 Results

A crucial aspect of this study is the exclusion of volume as a cause of impending (looming) bias. 

For this purpose, predictions are used that allow a loudness model to be developed that can be 

used to switch spectral contrasts. ILDs, as difference between ipsilateral and contralateral loud-

ness, are extracted from the predictive loudness model and show that a decrease in spectral con-

trast is accompanied by an ILD increase in the lower two octaves and an ILD decrease in the up-

per two octaves. 

In Exp. I listeners have to choose between 3 alternatives (approaching, receding, static), whereas 

in Exp. II only between 2 (approaching, receding), but for that with trials that are either occur-

ring with instantaneous but continuous-, or discontinuous changes in spectral shape across stimu-

lus pairs. 

During Exp. I, for all listeners frequency-specific loudness changes relative to the reference 

spectral contrast C = 1 are perceived similar. At low and mid frequencies, loudness decreases 

when spectral contrast is decreased. Whereas loudness increases for high frequencies. This is in 

contrast to ILDs. Decreasing the spectral contrast (C1 > C2)  shows that listeners perceive more 

likely as approaching and receding for increasing spectral contrasts (C1 < C2). 

Response consistency, as a measure of cue salience, is different between contrast pairs (e.g.: (0 

↔ 1 vs. 0 ↔ 0.5 vs. 0.5 ↔ 1). Larger contrast pairs had higher consistency as they targeted de-

creasing rather than increasing spectral contrasts. This holds for Exp. II as well. Besides, the 

consistency seems overall unaffected by stimulus continuity and not significant for the statistics. 
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Experimentally, looming bias comes down to ERP elicited stimuli. A frontocentral negativity 

(N1, Onset), followed by a central positivity (P2, Onset). For each spectral contrast, with inter-

vals of 80-140 ms and 140 - 280ms, the amplitudes (N1, P2) are measured and averaged. 

Quantifying statistical differences for increasing and decreasing contrasts, scalp distribution and 

timing of neural responses is performed by a permutation test. It shows a difference of 1μV (half 

the size of the max. Grand-average amplitude) at the central electrode (latencies around 160 ms), 

favouring switch directions with decreasing spectral contrast. Thus this applies for looming 

sounds.  As a result, spatiotemporal clusters of the ERPs illustrate strong constitutional neural 

correlates indicating looming bias. 
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Figure 6: 
ERPs by stimulus = A Onset, and stimulus switch = B and C, C1 & C2 are spectral 

contrasts.  
None of switch-N1 amplitudes shows significant difference across contrast pairs. 

Although their magnitudes increase, with increase in contrast change. 
Switch-P2 are different across contrast pairs and switch directions. Amplitudes are 
higher for decreasing contrast, which leads to P2 at B switch, that reflects looming 

bias (Baumgartner et al.). 



4.4 Discussion

In summary the study (Baumgartner et al, 2017, resp. 2021/22) illustrates looming bias for tem-

porally continuous stimuli. Specifically looming occurs as increment of response consistency and 

central cortical activity. Whenever there is a time gap between the test tones, looming is no 

longer present. The experiments are realised in an individualised virtual environment, in which 

measurements of EEG and psychoacoustics are combined. 

4.4.1 Looming and the brain

As described within this study, like others did before (Neuhoff, 1998, Bach et al., 2008, Stecker 

and Hafter 2000), perceptual bias for judging looming faster than receding appears to be neurally 

evident. Likewise the evolutionary point of view stresses that the observed bias has been evolved 

by natural selection. For an organism it is more costly to overestimate source distances (false 

negative error), than to underestimate approaching source distances (fasle positive error).  These 58

findings (Bach et al., 2008; Baumgartner et al., 2017; Neuhoff, 2016) seem to reinforce the idea 

that human listeners would respond more quickly and pay secondary attention to audio-visual 

phenomena. As mentioned before looms - in contrast to recedes - are perceived as having faster 

“time to arrival“ measures. This behavioural anisotropy, as noted towards increasing intensity, 

has also been found in infant primates (Ghazanfar et al., 2002). This means that this kind of bias 

appears relatively early in life. Therefore similarities of phylogenetic, in particular neural origins, 

are to be assumed. As it is, the auditory decoding process of sonic motion addresses fundamental 

questions to the origins of neural perceptual connectivity and the brains plasticity.

Looking at PAC during EEG recording of ERPs while listeners (exclusively humans in these 

cases) make quick judgements about whether sounds are approaching or moving away still does 

not show whether brain responses are caused de novo, bottom-up, or top-down, but should high-

light higher activity in approaching sounds. Anyhow recent results (Bidelman et al., 2020) evi-

dently illustrate receding signals, which are more strongly represented in the auditory system of 

the cortex. Nevertheless immediately hereupon the PFC overrides the sensory processing, hence 

higher responds according to looming are privileged. 

 Neuhoff et al., 200958
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4.4.2 Cortical areas

The cortical mechanisms that lie behind and operate in the different layers are not yet clearly un-

derstood, and some have been studied more than others. Further potential for this study undoubt-

edly lies in the areas that have not been considered so far but could nevertheless be considered. 

In addition to PFC and PAC the inferior parietal lobe (IPL) seems to play a major role when it 

comes to spatial hearing in general and sound motion processing in particular. Through fMRI 

studies, that are often the starting point in order to localise ROIs, before continuing to unravel 

the time dynamics with M/EEG, the involvement of the amygdala is also highlighted. More pre-

cisely when it comes to processing the emotional meaning of auditory stimuli this becomes rele-

vant. In both cases, external sounds (e.g. environmental soundscapes) and internal sounds (e.g. 

tinnitus), the emotional state can have significant direct-, or even prior effects on the activation 

of brain regions and thus also the measurements in general (Irwin et al. 2012). 

Other regions that are involved in the auditory looming circuitry are the temporal plane, which 

lies at the surface of the cranium, the superior temporal sulcus (STS), also called temporoparietal 

junction which is more important for social interaction and the intraparietal sulcus (IPS) that 

would include sensorimotoric functions which are likewise not negligible given a broader per-

spective. 

Another absolutely profound element of this study are the intensity based stimuli. As a scaling of 

the amplitude and variety in position the intensity induces the difference of rising, falling, or 

staying constant. By simulating these three components it is possible to play sounds as if they are 

dynamic. Yet, the variety of sound intensity alone is also considered a disturbing factor. The very 

thing that listeners should be able to recognise eventually turns out to be a potential confounder, 

because the sensitivity of response has been influenced by the strength of the stimulus (Her-

rmann, Augereau, & Johnsrude, 2020; Teghtsoonian, Teghtsoonian, & Canévet, 2005). This is 

the case for high frequencies, which the pinnae filters for incoming sounds. Thus the manipula-

tion of spectral cues thus takes the place of pure intensity variations. 

Simulated motions along the distance dimension allow countless kinds of environments, angles 

and situations. This is brought even further when it comes to virtual reality space. In such a sce-

nario it becomes much more easier and complex to include, or excluded other senses, sensorimo-
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tor functions and amygdala activity. At the same time, this opens up a very wide field of possibil-

ities for future extensions of the study. In parallel, the analytical methods must develop, which 

will be discussed in the following chapter.

5 Brain Connectivity Analysis

The fifth part of the thesis deals with the methods and analytic procedures of the experiment. As 

far as this investigation is concerned, it forms not only the centre, but also the overlapping layers 

of my work. 

One of the most challenging problems when dealing with the brain arises from its multilayered 

and tremendously complex structure. So first I like to go through most common architectural 

classifications, which are used to make sense of the brain in order to undergo connectivity analy-

ses. Since this classification cannot cover the entire architecture, I particularly focus on networks 

and graphs. Straight afterwards follows a reflection on the role of mathematical modelling in 

neuroscience ant its relations to connectivity. This mostly covers its current attempts, break-

throughs, limitations and difficulties. The conceptual framework will condense on three types of 

connectivity: structural, functional and effective, operating at micro, meso and macro levels un-

der the guidance of fitting models, which in turn reveal different forms of connectivity. But first 

the architecture in use needs to be clarified. 

5.1 Multilayered architecture 

The brain is considered to be a conglomeration of functional units, that split into neurons at 

smallest scale and assemblages of neurons at larger scale. In addition these complex combined 

scales and regions are interacting in effective- and functionally active connections. So one rep-

utable aspect of the complex morphology of the brain is its interconnectivity. Depending on the 

scale, individual neurons (microscale), that are linked by synaptic connections, reveal as micro-

circuits. Whereby larger populations of neurons (mesoscale) arrange themselves into networks of 
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columns. On the even large scale (macroscale), interconnected pathways of populations and in-

dividual neurons form distinct regions in the brain.  

5.2 Networks and Graphs

In various disciplines, but especially in brain research, the study of the connectivity of cortical 

areas is a particularly important and successful pattern for deciphering anatomical relationships. 

For this purpose, the anatomical regions of the brain are defined and the functional interactions 

between the different regions are described, such as certain cognitive processes that are active in 

certain time spans, statistical dependencies and causal interactions. Beside the specific processes 

between synaptic connections at short- and long ranges the variability is one of the major sources 

to express neural dynamics. As a result the plasticity of the brain, the growth rates of the connec-

tions and the development of the regions reveal functional insights. 

This conception precedes the information process in the brain as almost optimal. Additionally 

spatial (at near and far range) and temporal correlations are understood as functionally correlat-

ed. Thus, what runs ahead of all these studies is a prior model of synchronised and functional 

causal activity of brain functions and cognitive dynamics.59

Based on the assumption that pre-formulated ROIs can be detected by means of (f)MRI or M/

EEG, the results of the mathematical analysis should make correlations visible as superimposed 

modelling processes of data sets. As mentioned earlier, what is associated depends on the algo-

rithm that underlies the experiments. The algorithm itself depends on the primary understanding 

of what is expressed by the data and what is the condition of possibility for the algorithm to find 

certain connections. The epistemological loop of defining findings beforehand, in order to find 

them, will be discussed in more detail later on.

5.2.1 Graphs

The complex topology of brain networks can be described and represented by properties of stat-

ic- and dynamic graphical models (GM & DGM). In the realm of neuroscience such models are 

representing physical brain variables by conglomerations of parameters from the glossary of 

 O. Sporns, Connectome, vol. 5, Scholarpedia, 2010.59
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graph theory. Modern attempts of increasing relevance (e.g.: B. W. Huang et al., 2018; Rosa, & 

Hilgetag, 2019; Pascucci, & Tourbier, 2020; Ju & Bassett, 2020) are connectome harmonics, 

brain gradients, graph neural fields, or Fourier modes. As a result, the brain areas and the interac-

tions of the neurons correspond to the vertices or nodes and the associated edges, if assuming a 

compilation of the connectivity analysis using graphical models. The composition of edges (in 

this case synapses, or pathways) and vertices (individual neurons, or regions) act as so called 

graphs (Brandes & Erlebach, 2005). A graph is considered to be complete if it consists of N ver-

tices and one edge between every two vertices. The spectral graph theory studies properties of 

graphs via the eigenvalues und eigenvectors of their associated graph matrices, which are the 

adjacent matrix and the graph Laplacian, but also variants of them. 

5.2.2 Graph Laplacian Matrix

The Laplacian, Admittance, Kirchhoff, or also known as the discrete Laplacian, is a simple but 

quite important matrix formulation of a graph in use. It allows a link between discrete represen-

tations, which are represented as graphs and vector spaces, or manifolds which represent conti-

nuity. The Laplacian L is defined as: 

L = D - A

D… diagonal degree Matrix

A… adjacent matrix 

Thus graphical models provide the mathematical framework to describe pairwise interactions in 

the brain. Given the functional and effective neuronal changes, as for short- and long term 

changes, spatiotemporal fluctuations find fitting representations through differentiable graph 

modules (DGMs). 

DGMs are graphical models that change over time. In this way, instantaneous relationships be-

tween nodes can be described while the directions of networks are estimated. 

The aim is to explore and use suitable metrics, which are capable of quantifying the eigenmodes 

of FC in the appropriate eigenspectrum. The geodesic path lengths between two vertices, which 
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is always the shortest in-between, determines their functional efficacy. The degrees of correlation 

of the vertices, the associations of the clusters that occur, such as the motifs (subgraphs), as pa-

rameters for the positions of the vertices and edges depend on the research interest. For example 

uni-, or bidirectional edges between pairs of vertices within corresponding layers, can be de-

scribed by differential equations, delineating development over time, or more simplistic by adja-

cent matrices. The rows and columns of a connectivity matrix corresponds to different regions in 

the brain and thereby encodes neighbourhood relations in a quantified order. Especially by inves-

tigations in small-world networks (SWNs), high efficiency at different spatial and temporal 

scales with a minimum of energy costs characterise features of structural, functional and effec-

tive connectivity (Guye et al., 2010).60

SWNs describe mathematical graphs in which nodes are not necessarily neighbours of one an-

other, but most likely so, or can at least be reached by a small number of steps, within the net-

work. Like someone would say it is a small world, context wise, here it is a small network. 

SWNs in topologies of complex brain networks share properties with many other complex sys-

tems, which indicates more general, but likewise more versatile exertions of cartographic ven-

tures, like the connectome.

Connectome is the name of an ambitious neuroscientific project that seeks to trace and compre-

hensively map neural connections in the brain. As a goal the entire structure and all functions of 

the nervous system of every operating neuron and ever synapse with its dynamical interactions 

shall be collected and mapped. 

That is, if connectivity analysis is planned, one task is to find those nodes and edges over which 

extrapolation of network specifics is possible and a functional map of the brain can be created. 

The characteristic path length - known as the global average of all measured distances - might be 

of particular interest for some analyses. Multidimensional scaling, or principal component analy-

sis (PCA) might be used for clusters transpiring through the data. 

 M. Guye, G. Bettus, F. Bartolomei, and P. J. Cozzone, “Graph theoretical analysis of structural and 60

functional connectivity MRI in normal and pathological brain networks,” Magnetic Resonance Materials 
in Physics, Biology and Medicine, vol. 23, no. 5-6, pp. 409–421, 2010.

64



PCA gives structure within a set of data by reducing the dimensions of the sampling using the 

direction of greatest variance. Through calculating the eigenvectors of the covariance of the data 

it is possible to project the significant components of the data into a more simple environment. So 

the complexity is reduced and it gets easier to work with. 

As it is, there exists no uniquely defined model that would always be appropriate. Nonetheless, 

what remains important from a statistical point of view is the design of the null hypothesis and 

the arrangement of parameters to form the framework, like the ones that are mentioned above. 

Null-Hypothesis claims that there is no statistical significance between variables in the hypothe-

sis of interest. 

5.3 Connectivity Measures - Segregation and Integration

Apart from that another basic organisation pattern of the brain is characterised by segregation 

and integration of information (Tononi et al., 1994). In segregation, anatomical focusing seeks 

explanations for brain functions by localising the regions of individual neurons, neuron popula-

tions and brain regions as precisely as possible. The integration on the other hand tries to deci-

pher how these neurons talk to each other. It is considered to be the interplay of segregation and 

integration that generates high diversity, but at the same time binds strong alliances in the brain 

complex. These two conceptual parts are based on three different types of connectivity analysis, 

which are explained as follows (Horowitz, 2003):

5.3.1 Anatomical-, Functional-, Effective Connectivity

Anatomical connectivity, also called structural connectivity, represents the interactions of 

white matter regions in the brain. Synaptic contacts of varying strength and effectiveness be-

tween neighbouring neurons and distant fibre tracts form the neuronal connections. Due to the 

plasticity of the brain, structural changes are unstable over longer periods of time such as hours 

or days. In contrast, anatomical connectivity remains stable over shorter periods of time, i.e. over 

seconds to several minutes. 
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In order to illustrate the tractography of the white matter in the brain, diffusion-weighted mag-

netic resonance imaging (DWI) is used as a special implementation of MRI. Here, the diffusion 

process of water molecules is imaged non-invasively and in vivo. In particular, diffusion tensor 

imaging (DTI), a special form of DWI, provides information about the architecture of the tissue 

at the microscopic level. (Taylor & Bushell, 1985). 

Functional connectivity is basically a statistical concept, relying on correlations, covariance, 

phase locking or spectral coherence of voxel activities. Mostly all elements of a system, regard-

less of their anatomical linkings are included and depicted as statistical fluctuations. Hence nei-

ther the directions of correlations, nor the structures are explicitly screened. In contrast temporal 

dependency at around hundreds of milliseconds of neural activation patterns at brain regions are 

the essential part for exposing connectivity. 

Effective connectivity reflects causal interaction between particular brain regions. The causal 

descriptions of these effects can build on spatial or structural, resp. anatomical information, or 

causal dependencies in time (time series analysis=TSA).  Effective connectivity can be consid61 -

ered as a combination of anatomical and functional connectivity.

Nowadays the focus in neuroscience - seeking to unravel the circuitry underlying cognition and 

perception - lies on functional and effective connectivity. Chapter 6 serves as an identification 

parade of three statistical concepts used for effective connectivity analysis: Granger Causality, 

Phase Transfer Entropy and Dynamical Causal Modeling.

5.4 Connectivity metrics

Before we dive into more detailed explanations of the specific connectivity analysis methods, I 

like to review some fairly important metrics, which are basic prerequisites in connectivity re-

search. 

When we talk about functional connectivity, we are talking about information being transmitted 

between regions in the cortex. Neuronal oscillations, which are expressed as action potentials, 

 Friston, K., Moran, R., and Seth, A. K. (2013). Analysing connectivity with Granger causality and dy61 -
namic causal modelling. Curr. Opin. Neurobiol. 23, 172–178.
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cause bursts, further increase the reliability of information transmission or establish long-range 

synchronisation.  Given the hypothesis of neural oscillations, the strength, frequency, or pattern 62

of inter-area synchronisations vary for different functions and can get described by quantitative 

methods, which evaluate neural synchrony in electrophysiological data. The invasive, or non-in-

vasive collected data from context dependent, or task-free experimental designs are then pro-

cessed, to provide valid interpretations of the measurements. The scientific literature furnishes 

beforehand a multitude of metrics, based on diligent stochastic processes like Granger causality 

for once and more impromptu modifications like Phase Locking Value in other cases. All with 

advantages and disadvantages in view of the specific context and different circumstances. Decid-

ing what to use in which situation is crucial. Furthermore, as science is constantly confronted 

with new methods and discoveries, individual stochastic solutions are required more and more 

often. So it is a balancing act to stay at the level of the existing, well-known and proven litera-

 Wang, X.-J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 62

90
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Figure 7: Modes of brain connectivity. Sketches at the top illustrate structural connectivity (fibre pathways), 
functional connectivity (correlations), and effective connectivity (information flow) among four brain regions 
in macaque cortex. Matrices at the bottom show binary structural connections (left), symmetric mutual 
information (middle) and non-symmetric transfer entropy (right). Data was obtained from a large-scale 
simulation of cortical dynamics (see Honey et al., 2007 and Sporns 2007, Scholarpedia).



ture, but at the same time to implement something completely different, which has never been 

done like this before. Given this challenge, the interpretation of the personal data collected be-

comes even more complicated and often over-interpreted. 

5.4.1 Correlation coefficients

Functional connectivity works in the time and frequency domain. The combination of the time at 

which neuronal oscillations occur and in which strength, i.e. their intensity. Following this as-

sumption, functional connectivity is divided into model-based or model-free and subdivided into 

undirected and directed methods of analysis (see fig. 7). Model based approaches make assump-

tions of linearity between the interactions of two signals. Directed or not, defines if the metrics of 

interaction include the direction of influence. Arguably the most simple non-directed, model 

based measure is the Pearson product-moment correlation coefficient (PPMCC). This method 

sets the ratio between the covariance of two variables and the product of their standard devia-

tions as follows:
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PPMCC:  

cov (X, Y) … covariance

σ  … standard deviation of  

As shown in this formula, an independence from the temporal structure of the data is apparent in 

PPMCC measurements. Otherwise, shifting two time series with respect to one another at multi-

ple lags, a cross-correlation - here as a function of time - can be obtained.  Maximal correlations 63

are in this case reasonably informative about the effective information flow between brain areas. 

Such cross-correlations have proven useful to study unidirectional interactions at certain time 

delays.  64

ρX,Y = cov(X, Y )
σXσY

X
Y

X
Y

 “Lags“ are used for temporal relationships as a delay in the successor. So a lag k is a fixed amount of 63

data plotted in a time series before the event t+k occurs. In contrast, “lead“ means an acceleration of 
the successor activity. 

 Alonso, J. M., Usrey, W. M., and Reid, R. C. (1996). Precisely correlated firing in cells of the lateral 64

geniculate nucleus. Nature 383; Usrey, W. M., Reppas, J. B., and Reid, R. C. (1998). Paired-spike inter-
actions and synaptic efficacy of retinal inputs to the thalamus. Nature 395; e.g. geniculocortical, or 
retina-geniculate feedforward pathways 
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Anyhow, the cross-correlation usually misses discrete peaks, whereby positive and negative lag 

values remain significant, but unclear to decipher. Additionally most cortico-cortical interactions 

are not un- but bidirectional. This means that the use of cross-correlations alone is not 

sufficient.  65

5.5 Synchronising connectivity 

Measuring the synchrony of oscillations conveniently implies the estimated amplitude and phase 

of a pair of signals. Geometrically this is a plot in a 2-dimensional cartesian coordination, repre-

senting complex valued numbers (i) either as , or x + iy. The magnitude of the vector rep-

resents the amplitude (A), whereby the angle  of the X-axis and the vector represent the 

phase. This gets combined with additional signals and spectrally cross-correlated by multiplica-

tion of the signals with the complex conjugate, of the other signals. As a result we have two or 

more signals plotted by difference in phase. 

In order to measure synchrony, the distribution of phase differences is quantified and correlated 

as probability distribution. This can be achieved by normalising all vectors from head to tail and 

take their weighted sum. A significant non-zero value of two cross observations counts for some 

consistency as they add up, where a zero or near-zero value represents a shift. This relationship 

can be illustrated quite simply and clearly shows the synchronisation within a data set.

5.5.1 Coherence coefficient 

Another approach to quantify synchrony is the coherence coefficient. That is a normalised quan-

tity bounded by 0 and 1. Between a pair of signals, the squared value as a function of frequency 

represents the variance of one signal, which can be explained by the squared value of the time 

domain of the other signal. However this approach may lead to ambiguous interpretations, be-

Ae(iϕ)

(ϕ)

 Another alternative to Pearson would be Spearman. Instead of proportional correlations, Spearman 65

builds on ranking driven correlations. That means the rate of change for two variables are not necessarily 
equal. 
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cause of larger phase delays in the frequency domain.  Therefore a particular range as a fixed 66

time delay between two signals offers a phase difference that can get interpreted instead. The 

slope of the phase difference is further used as a function representing the coherence within the 

region of interest.  67

However, it is argued that the technique of normalising individual observations reflects artificial 

phase synchronisation rather than the coherence that lies in the data. Phase locking values (PLV) 

support processing of the data, so that amplitude correlations between measured signals can be 

detected. The same applies if the frequencies were still very different, so that even perfectly cor-

related amplitude functions would be highly artificial and worthless. 

Another application of the metric is to quantify the distributions of phase differences across mul-

tiple observations. Such distribution methods (PLI=phase shift index, PPC=pairwise phase con-

sistency) are calculated from all pairwise differences, in contrast to PLV, where a vector averages 

the relative phases. By computing pairwise differences, individual clusters that occur in the data 

can be detected. Other than PLI, PPC works unbiased, so the number of trials make no difference 

for the expected PPC value, which has its ad- and disadvantages, depending on the available 

data. This interpretational difficulties are fairly similar to the sample size problem, or the ongo-

ing SNR controversy. 

5.5.2 Phase Slope Index

For changing phases, as it is the case for unidirectional interactions, the phase slope index is 

used. So this means working with a modified bandwidth parameter that clarifies the frequency 

range, i.e. the change in phase difference. Thereby the complex valued coherency computes and 

quantifies the change in phase across the frequencies of some signals. If the index deviates from 

zero, there is significant coherence. 

 Phase difference works as circular modulo 360°. If the discrepancy is larger it gets impossible to 66

transfer. 

 Friston, K. J., Bastos, A., Litvak, V., Stephan, K. E., Fries, P., and Moran, R. J. (2012). DCM for com67 -
plex-valued data: cross-spectra, coherence and phase-delays. Neuroimage 59
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By using the complex value, the imaginary part of the coherence is projected onto the y-axis 

(imaginary axis).  68

5.5.3 Spike-Field Analysis

One way to go beyond pairwise metrics for connectivity analysis is to use partial coherence.  To 69

eliminate indirect influences on the estimates and inherent data processing problems, i.e. prob-

lems that only occur due to the processing method used. Using a complete cross-spectral density 

matrix, a partial cross-spectrum can be determined. The spikes of individual neurons, which are 

basically induced action potentials, and the electromagnetic fields that occur while patients are 

performing a certain task can be visualised by the so-called spike field analysis.. 

So far, some of the most important metrics for connectivity analysis have been mentioned here, 

now I would like to continue the identification parade and start with Granger causality. 

6 Models of neural dynamics

Functional and effective connectivity are linked by overlapping areas in their methodology, but 

at the same time clearly distinguishable from each other. The first deals with statistical depen-

dence between at least two or more variables, while the second aims to find underlying physical 

mechanisms that are elucidated by data analysis. In other words, functional connectivity looks 

for correlations in brain activity, while effective connectivity refers to patterns of causal interac-

tions. 

Let's take an example, when two parts of the brain process acoustic information, they share the 

process and in response both parts of the brain should light up. What is still missing, however, is 

the direct influence or effect that one part of the brain has on another and vice versa. Effective 

 García Domínguez, L., Stieben, J., Pérez Velázquez, J. L., and Shanker, S. (2013). The imaginary part 68

of coherency in autism: differences in cortical functional connectivity in preschool children.

 Rosenberg, J. R., Halliday, D. M., Breeze, P., and Conway, B. A. (1998). Identification of patterns of 69

neuronal connectivity–partial spectra, partial coherence, and neuronal interactions. J. Neurosci. Methods 
83
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connectivity is exactly what direct causal interactions are engineered for. Howsoever, in order to 

determine the time- and frequency-dependent interactions, a specific model is required. Conse-

quently, effective connectivity analysis is also referred to as “model fitting exercise“ (Friston, 

2008). To make sense of the data, the most promising model that best fits the data, i.e. makes ac-

curate predictions, is of highest interest. 

6.1 Granger Causality

Given a range of applications, but particularly when it comes to connectivity, the interest is in 

understanding the interactions between datasets. Irrespective of the type of interaction, causality 

and prognosis play an important role, indeed so important that both even merge into each other 

as described in brief. 

Take  as all relevant information that lies historically to the time (t-1) and the optimal predic-

tion of  given  as , y is causal for x if for the variances holds the following:

That expression tells us that  excludes all values  from the history and the variance of 

the optimal prediction error is reduced by including values . Therefore it follows that the in-

clusion of past values of y improve the predictability of x and y is causal to x. Causality is re-

ferred to as something that is ordered in time and the predictability is interwoven with the mech-

anistic influence of which a cause has on an effect. This indeed led to the specified term G-

causal, instead of causal in a more classical sense. 

Thereby Granger causality (GC) evolved to an important representative of functional connectivi-

ty in the field of modelling. It serves as a statistical paradigm for identifying directed functional 

interactions and is defined for time and frequency domains (see sec. 6.1, model of domains). In 

fact, GC evidences can occur in situations where random variations of variables can be mod-

elled, and they are exclusively useful in these situations. As long as this is the case, however, 

juxtapositions are formed on the basis of model errors. 

H<t

xt H<t P(xt |H<t)

var[xt − P(xt |H<t)] < var[xt − P(xt |H<t /y<t)]

H<t /y<t y<t

y<t
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Originally developed in the field of econometrics, GC has found applications in a broader areas, 

particularly in neuroscience. For decades the main ways of studying the effects of one part of the 

cortex on another have been either to stimulate- or lesion the first part and investigate the out-

come in the second. Focusing on predicting ongoing processes in one part of that in another en-

tails a fundamentally different approach to identifying connectivity in neuroscience. The term G-

causality is itself a predictive notion, whereby causes precede and should predict their effects. 

Earlier definitions followed the ideas of Wiener (1956): 

A signal x causes a signal y if the past of x helps in the prediction of y

Granger (1969) took Wieners concept, with the aim to end the long lasting discussion about 

causality and to adept it to econometrics.  70

 Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral meth70 -
ods. Econometrica 37
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On the other hand something fails to G-cause if it is of no help forecasting the course of the con-

juncted other variable. So if the predictive error can get reduced by including an additional vari-

able. It is again important to mention that Granger is nothing else than a statistical tool, trying to 

reduce forecasting error by using it. Thereby the data is stationary and cannot entail theoretical 

models that are functioning behind the forecasting process. At least in the context of a vector au-

toregressive model (VAR). 

The VAR model is a system of simple mathematical models, representing the relationships be-

tween multiple variables. Thus current observations of a variable are related with past observa-

tions of itself, but also with other variables. The variables are then vector stochastic processes of 

some particular time series. Such a time series model collects data from different points in time 

and lays the ground for further operations like Granger. 

In order to use this idea of predictability in the field of causality, the quality of a given event 

must be quantified. The VAR model helps to optimise the quantification process by finding 

weights that minimise the estimation error. 

So causality in the Wiener-Granger sense is therefore based on the statistical predictability of a 

time series derived from knowledge of one or more other time series. This leads to some kind of 

weak, but operational form of the prior definitions of GC. The idea of improving predictions is 

generalised by encoding it into conditional dependency, or independency. 

Originally Granger (Granger, 1969) based this theory on a unique linear model:

 are n x n lag matrices of finite or infinite order (also lag).  stands for the error term that can 

have a diagonal or non-diagonal covariance matrix. So unless  is diagonal, this is a simple not 

identifiable causal model. In contrast to instantaneous casual effects (when  has nonzero off-

diagonal values), this general form corresponds to the structural (S)VAR model and is identifi-

able (Kilian & Lütkepohl, 2017). But in order to establish a useful framework for the (S)VAR 

model, assumptions are needed: 

A0xt =
d

∑
k=1

Ak xt−k + et

Ad et

A0

A0
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• Linearity - real world processes are non-linear, but casually effecting variables within this data 

model need to be

• Discrete-time - if the data rate is slower or irregular, causality may be violated

• Known lag - history of data needs a known, linear order

• Stationarity - processes are time-invariant, resp. not evolving 

• Perfectly observed - variables that are observed, need to be without measurement error

• Complete system - there are no hidden parameters in the data, alle relevant variables of the sys-

tem are completely known

• Continuous-valued series - given the model the observations are assumed to be continuous 

valued, instead of discrete-valued 

Mathematically this is possible for a system containing at least two variables X and Y (bivariant 

system) that early approaches of GC much focused on. Using the basics of a VAR (4) model we 

have:

This shows a bivariate SVAR model (n=2) and when  is diagonal GC corresponds to nonzero 

entries in the autoregressive coefficients. In practice, at least two VAR models are compared at 

the beginning of a GC analysis like this one. Technically the GC has a magnitude composed of 

the variance ratio and the prediction error, for reduced and full regression. Beforehand a full 

VAR model estimates the error between variables and enables predictions. Cutting off the low 

potent variables, a second, reduced VAR model is estimated and the prediction error shrinks. If 

the prediction errors for the full regression are smaller than for the first regression alone, a G-

cause is found. 71

xt = c1 +
4

∑
i=1

α1,iyt−i +
4

∑
i=1

β1,ixt−i + ϵx,t

yt = c2 +
4

∑
i=1

α2,iyt−i +
4

∑
i=1

β2,ixt−i + ϵy,t

A0

 Barnett L, Barrett AB, Seth AK (2009) Granger causality and transfer entropy are equivalent for Gauss71 -
ian variables. Phys Rev Lett 103
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Next, a Wald test  can be performed to find out which parameters are statistically significant and 72

which are not.  Doing so, a model with X alone, that excludes Y and one with Y alone, exclu73 -

ding X is compared to implicate a X2 sampling distribution, as n approaches infinity. The null 

hypothesis of the excluded models suggest that the variables in question can be removed, wi-

thout significant changes in the model.  So if the Wald test shows, the parameters that could 74

have explanatory influence are zero, they can be removed from the model. This, as a conse-

quence simplifies the whole process.  75

6.1.2 Multi varied GC

The causal interaction in a bivariate system is quite easy to see and fairly limited. It becomes 

more difficult, but also exciting and expressive when multivariate systems are involved. Over 

time many different versions and derivations of the original GC idea have developed. Most are 

of higher complexity, involve more parameters and variables, and drop some or even multiple of 

assumptions listed above. For example, the need for linearity is eliminated in order to be closer 

to the real world, stationarity is eliminated insofar as processes can continue to change, or the 

number of lags is no longer limited. In such scenarios, it is no longer trivial to claim that X is the 

cause of Y, since Y could also be caused by the causes of Z or other variables. This can be mode-

led in a VAR(4) system for x, y and z: 

xt = c1 +
4

∑
i=1

α1,iyt−i +
4

∑
i=1

β1,ixt−i +
4

∑
i=1

γ1,izt−i + ϵx,t

yt = c2 +
4

∑
i=1

α2,iyt−i +
4

∑
i=1

β2,ixt−i +
4

∑
i=1

γ2,izt−i + ϵy,t

 ,  = max. Likelihood Estimator, : expected Fisher Information72

 Another alternative would be the F-test: testing the full model, including all past values of x and y and 73

subtract it from the reduced model that contains values of x alone. 

 Agresti A. (1990) Categorical Data Analysis. John Wiley and Sons, New York.74

 This is extremely useful for large sample sizes, where it is roughly equivalent to t-test and Lagrange 75

multiplier test. For small sample sizes (<30), Likelihood ratio tests are preferred. (Agresti, 1990)
77



Consequently, instead of chaining up all possible causes, a group of potential influences can be 

collected, e.g. in the form of O(…). Since all possible causes are contained in a set, it is func-

tionally easier to check whether X is the cause of O.  76

Another variation of illustration would offer the Network GC for identifying relationships among 

a large set of variables, which are compactly represented as a graph (Eichler, 2012). 

This also connects with accounts that try to investigate in the rela-

tionship between exogenous and endogenous variables. One ap-

proach could be to integrate factors in the model, so called factor-

augmented VAR (FAVAR), that are representatives of both. Or else 

by using different kinds of tuning parameters that can control the 

nonzero entries element-wise, as high-dimensional VARs on the one 

hand, or on the other hand through Bayesian estimates of the priors. 

The latter can be used as an extension and induce group-level 

shrinkage. 

Therefore, larger sets of variables can be used, and automatic lag se-

lection, non-stationarity or non-continuous aberrations explain this 

rather flexible range of GC.

6.1.3 Properties of GC

Finally, summed up a short list of classical Granger properties that are advantageous when using 

stationary data:

zt = c2 +
4

∑
i=1

α3,iyt−i +
4

∑
i=1

β3,ixt−i +
4

∑
i=1

γ3,izt−i + ϵz,t

 Other types of Granger causality tests: Toda & Yamamotot (1995), Single Fourier Frequency Granger 76

Causality (Enders & Jones, 2019), Single Fourier Frequency Today & Yamamoto (Nazlioglu et all., 2019), 
Cumulative Fourier frequency Granger Causality  (Enders & Jones, 2019), Cumulative Fourier frequency 
Toda & Yamamoto (2019)

78

x1t-2

x2t-2

x3t-2

x4t-2

x1t-1

x4t-1

x1t

x3t-1

x2t-1 x2t

x3t

x4t

Figure 11: graphical model, 
replicating variables over 

time



- means and variances of the variables are stable over time

- GC is invariant under rescaling of variables 

- Easy to compute (e.g. VAR)

- No underlying a priori assumptions about physical mechanisms are necessary

- Follows asymptotically X2 distribution. Statistical significance can be tested without resam-

pling the data, without “Münchausen-trick“ (bootstrapping)

6.1.4 Limitations

Depending on the specific choice of the GC relation and the associated model, there are many to 

almost no limitations. Although in the latter case it is difficult to speak of GC in the classical 

sense, therefore we will stay closer to the classical or semi-classical applications of GC. As with 

most simple models, simplicity can prove useful up to a point, but loses its advantages when it 

comes to more complex data sets. Granger almost only models linear interactions, although non-

linearity can sometimes be approximated, but solely if the data set remains to be small enough. 

Otherwise severely biases or high variance lead to spurious and redundant shortcomings. In its 

simple form it is theoretically practical, but turn out to be much harder to use in real world prac-

tice. Advanced methods such as the radial basis function (Ancona et al. 2004) and locally linear 

neighbourhoods (Freiwald et al. 1999) attempt non-linear regressions but are less applicable. 

Additionally the VAR model that is used in GC analysis can be extended with a VARMA model, 

which ads a moving average component and makes it even more flexible to work with, e.g. in a 

state-space framework or under more noisy circumstances. 

Apart from that, the GC signals are covariance stable. Ideas for analysing non-stationary data 

like the windowing technique (Hesse et al. 2003), or trial-by-trial (Ding et al. 2000) are approa-

ches that divide non-stationarity into small stationary parts. Hence this can maximally be an 

asymptotic approximation to a non-stationary GC analysis. 

Although GC can be considered as a powerful theoretical framework to study influences between 

signals mathematically, directed information theory provides the measures to test theoretical as-
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sertions practically. Granger is justified as approximation to phase transfer entropy, which fol-

lows next.  77 78

6.2 Phase Transfer Entropy 

In contrast to strongly model-based methods like GC, phase transfer entropy (PTE) works com-

pletely model-free. It is therefore not dependent on previous data that is assumed when the data 

is created. Anyhow, PTE is a measure of directed connectivity among neural oscillations. If a 

signal X has a casual influence on Y, it can be separated if Y is conditioned on its own past alone, 

or on the past of X as well. By using the term entropy, this can also be formulated in such a way 

that the entropy of the present Y decreases when knowledge about X and its past is added. Fol-

lowing this assumption another way to describe PTE is to define it as a reduction of necessary 

information to decipher Y. Especially when M/EEG data sets are available without prior assump-

tions for data generation, PTE can be an effective tool. 

As mentioned earlier, GC is considered an approximation of TE. However, TE is not synony-

mous with PTE. The latter literally filters between phase time-series. Thus TE is sometimes also 

called real-valued TE, without additional phase filtering. Comparisons of these two showed that 

PTE is computationally more efficient and highly robust to nuisance parameters.  Furthermore, 79

TE usually gets confused when it comes to bidirectional frequency band interactions, which 

PTE, on the other hand, is able to decode accurately.  

Within the realm of statistics, uncertainty gets substituted as Shannons Entropy H: 

 80H(X ) = −
n

∑
i=1

P(xi) log P(xi)

 For Gaussian variables (normal distribution) these two are overlapping77

 Barnett L, Barrett AB, Seth AK (2009) Granger causality and transfer entropy are equivalent for Gauss78 -
ian variables. Phys Rev Lett 103

 The nuisance parameter can possibly be every parameter in the data, that is not directly of interest, 79

but still necessarily taken into account. 

 Shannon, Claude E. (July 1948). "A Mathematical Theory of Communication". Bell System Technical 80

Journal. 27 
80
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X… random variable
x1, …, xn… possible outcomes
P(x)… probability of x
log… base(2) = digits, base(10) = dits, base e = natural units

The possible outcomes x1,….,xn of a discrete random process X (like flipping a coin, or rolling 

dice), works with an inherent probability of P(x1),….,P(xn). Taking the sum of the processed va-

riables gives a value from minimum surprise of 0, to maximum surprise of 1. This is then con-

sidered as the expected value of the system and the utterance of the uncertainty within. 

The equation thus expresses the average missing information in a random source. However, ins-

tead of expressing Shannon entropy (H) only for a causal evolution from X to Y, PTE takes into 

account the past of Y (Y(t')) and the past of X (X(t')) and Y (Y(t')).  Which in turn leads to the 81

TE equation: 

TEX->Y = H (Yt | Yt-1:t-L) - H (Yt | Yt-1:t-L, Xt-1:t-L) 82

And for directed phase transfer, it is suitable for large-scale directed connectivity analyses, in-

cluding time series:

θx/y(t) …  instantaneous phase time-series & θx/y(tʹ) …  past states

PTEX→Y = H(θy(t), θy(t′ )) + H(θy(t′ ), θx(t′ )) − H(θy(t′ )) − H(θy(t), θy(t′ ), θx(t′ ))

 Lobier u. a., „Phase transfer entropy: A novel phase-based measure for directed connectivity in net81 -
works coupled by oscillatory interactions“. NeuroImage, 2014

 This expression implicates, that the PTE won’t be negative. Since uncertainty of the present Y cannot 82

get increased, PTE can maximally become 0. Additionally there is no extreme value, or upper bound, 
neither values that could represent significant data limits, nor absolute connectivity. 
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It is easy to see that different phases are included (t), so that the handling of the whole data set 

becomes more robust and computationally efficient to realistic amounts of noise. As a conse-

quence, the phase based transfer entropy equation is suitable connectivity analyses for larger fre-

quency band and complex directed interactions. Based on these two equations and the factors 

taken into account, it is easy to manage whether TE or PTE is preferable in order to detect direc-

tional interaction patterns in the data. 

6.2.1 Limitations

Studies (e.g. Ursino et al. 2020) have tested PTE and recognised this method as a reliable estima-

te of connectivity, but exclusively for epoch lengths of less than 10s and exclusively for linear 

neuronal regions. Multivariate networks may lead to counterfeit statistical measures in signifi-

cance, even if there is an absence of a true connection. 

In general, non-linear connections and information transfers between two ROIs, even if there is a 

strong real connection, can be weak, noisy or faulty. This counts not only for bivariate but also 

multivariate PTE (see Garcia-Medina and Hernandez, 2020). As an effect, changes during cogni-

tive tasks, likewise changing brain conditions, might reflect different information transmissions, 

rather than changes in the connecting network. 

6.3 Dynamic causal modelling

The basic idea behind DCM is to create a tool that is able to model cortical interactions between 

regions or nodes that are active in the brain. So this is not only about stochastic interactions in 

data sets, but physical mechanisms, that open up the causal architecture of dynamical systems, 

like the cortex. The guiding idea is based on the assumption of functional segregation or specia-

lisation of brain activity on the one hand and the possibility of observing these functions (M/

EEG, fMRI etc.), leading to functional integration on the other. Hence it is all about the dyna-

mics of fluctuations of brain regions, that are causing brain activity in various detectable regions. 

Therefore it is named and self-evidently holds the term dynamic causal modelling. In the true 

sense of the word, a model of causal modelling is of interest to explain functional couplings that 

combine functional segregation and integration. 
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Technically speaking, the combination of segregation and integration is a state space analysis, 

which is the same as for the weather, economical markets, or other similar kinds of stochastic 

systems. The state-equation itself is based on neurobiological responses and an observer equati-

on, represented by a model. By integrating the responses through the model, a predictive measu-

rement is generated. The dynamics of the integration are formulated as differential equations of 

matrices, that are representers of averaged connectivity and modulations in connectivity due to 

the experimental input. So the vectorised data (since it is physical brain data it has topological 

components) and associated likelihood corresponds to a convolution of input and response. Free 

parameters (typically ) are used to minimise the discrepancy between prediction and observati-

on, which is also known as Variational Free Energy. Additionally the predictions are specified by 

a prior density relation, according to Bayes’ rule (Friston et al, 2003).  

θ
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Figure 12 : “Schematic of the hemodynamic model used by DCM for fMRI. Neuronal activity 
induces a vasodilatory and activity-dependent signal s that increases blood flow f. Blood flow 

causes changes in volume and deoxyhemoglobin (v and q). These two hemodynamic states 
enter an output nonlinearity, which results in a predicted BOLD response y. In recent versi-

ons, this model has six hemodynamic parameters (Stephan et al., 2007c): the rate constant of 
the vasodilatory signal decay (κ), the rate constant for auto-regulatory feedbackby blood 
flow (γ), transit time (τ), Grubb’s vessel stifness exponent (α), capillary resting net oxygen 

extraction (E0), and ratio of intra-extravascular BOLD signal (ϵ ).E 
is the oxygen extraction function. This figure encodes graphically the transformation from 

neuronal states to hemodynamic responses; adapted from (Friston et al., 2003).“



6.3.1 Major components

The dynamics are in fact differentials.  So the equations describe the hidden dynamics at a level 83

of detail constrained by the measurement. In order to declare structural control about the com-

plex mechanism, causality refers within this context to a perturbation of the equilibrium of the 

neural dynamics, which are causally propagating through networks to other regions of the brain. 

Since we are dealing with uncertainties when dealing with the results of differentials describing 

temporal developments that extend into the future, a consistent quantification of the probability 

distribution is given by Bayesian inference. This can be interpreted as an additional tool that in-

troduces constraints that ensure robust parameter estimation and likewise allows to draw conclu-

sions from observed data. However, based on the conclusions drawn, uncertainties can be up-

dated and thus more evidence and higher flexibility can be provided. Yet it should be mentioned 

that this approach is also being criticised as biased or artificial, because it shall be prior introdu-

ced into data processing to play into the hands of scientists. Against these allegations it should be 

accentuated that the posterior distribution is provided, which is stronger determined by the data, 

not the scientist. Notwithstanding the scientist is still the designer and therefore to some extend 

prior to the posterior, as for the inverse modelling attempt. But this argument wouldn’t hold, 

compared to the biased effects of other influences. Moreover inference can only occur for prior - 

post differences and if this is the case, the rate of change as "new" data speaks for itself, as de-

monstrated by the model evidence. But the fact remains that the prior has a dramatic impact on 

the objective aims. Therefore priors are specified by having a global minimum and are defined 

under Gaussian assumption. The global minimum raises the robustness of the objectivity of the 

function und Gaussian attaches the prior parameters to mean and variance. The mean equals the 

expectations and the variance the information which was prior available. Hence if there were 

precise prior information, the variance is small and the distribution is tight.84

 Dependent on the design of the experiment the evoked responses of EEG are not always precisely 83

located in time. E.g. in dream research under sleep conditions, or psychiatrical studies, it may happen 
that one has to estimate the onset and duration of inputs, as these are unknown. A steady-state par-
adigm is applied, apparently dealt with nonlinear differential equations that initiates a starting situation 
with white noise input, that is distributed over a spectrum, but can then be shaped via a transfer func-
tion. Thus, the unknown, but real inputs are manipulated and specified in DCM parameters and then 
tested using the inference hypothesis. More precise examples are applied by Moran et al, 2007.

 Comparatively, to see parts of this description: Jansen & Rit 1995, David et al 200684
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Four major components of DCM can be listed as follows:

1. The model is formulated in terms of stochastic or ordinary differential equations

2. This model transforms neural activity to a hemodynamic, or electromagnetic response

3. A set of in-built biological plausible parameters are as prior parameters implemented

4. Optimising the model and the parameters of the observed data by Bayesian inversion

6.3.2 DCM and fMRI

Although fMRI scanning plays a minor role in this thesis, I start with a short explanation of the 

applications of DCM, using fMRI, as this is the most common and suited combination (fMRI + 

DCM). Anyhow, afterwards, I go into more detail about DCM applications with ERPs using 

EEG.

Mathematically and for fMRI experiments, DCM boils down to the so called Balloon Model (fig. 

11). That is the combination of the neural state equation and the hemodynamic state equation, as 

the BOLD  signal change equation. This is necessary, because the cognitive system at its under85 -

lying neuronal level remains not directly accessible for fMRI. So the neural dynamics are trans-

formed into area specific BOLD signals. This leads from a neural state equation, to the hemody-

namic and finally an estimated BOLD response. 

As it is only incidental to the connectivity here, but valuable for a broader understanding, I 

would like to briefly discuss what I consider to be the most important mathematical steps leading 

to the BOLD result. In addition, there is a figure, mostly found in the literature, that gives a more 

detailed insight (fig. 11). 

6.3.4 Neural state equation

State equations are ordinarily first-order differentials, that are normally derived from three neu-

ronal subpopulations, which are operating similarly as linear damped oscillators. The subpopula-

 =blood oxygenation level dependent85
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tions consist of excitatory pyramidal as outputs and the inputs, from inhibitory and excitatory 

interneurons (fig. 12). 

 

x…neural states of sources 
…dx/dt…derivative of x 

u…exogenous input 
…prior assumption 

…matrix for fixed or modulated connectivity, resp. input parameter  

6.3.5 Hemodynamic state equation:

CO = 

CO…cardiac output (in L/min)
MAP…mean arterial pressure (in mmHg), the average pressure of blood as it leaves the 
heart
RAP…right atrial pressure (in mmHg), the average pressure of blood as it returns to the 
heart
TPR...total peripheral resistance (in mmHg * min/L)

And additionally the velocity of the blood flow ( ) is calculated:

Saying that the velocity of the blood flow, that streams across a circulatory system, is 
determined by the area of the cross section it flows through. 

·x = f (x, u, θ ) = A x +
m

∑
j=1

ujB( j)x + Cu

·x

θ
A, B, C

(MAP − R AP)
TPR

v

v = Q
A

86

https://en.wikipedia.org/wiki/Total_peripheral_resistance


6.3.6 BOLD signal

The predicted BOLD response shrinks down to the following expression:

y(t) =  (v,q)

 (v,q)… changes in volume and deoxyhemoglobin due to blood flow

The hemodynamics basically show the relationship between flow and resistance. Under these 

conditions the BOLD signal change produced by a change in deoxyhemoglobin flow may be ap-

proximated by the differential.

6.3.7 DCM and EEG

In contrast to fMRI, with EEG and the usage of biophysically forward models, explicit state-

ments can be made about the underlying neural parameters (David et al, 2006). That means 

source activity on the scalp surface and EEG data is assumed to be linear and almost instanta-

neous, which we can capture with this expression: 

This only says that the scalp data h, as a function g of the input signals  is equal to L (lead-

field matrix)  (Mosher et al. 1999). Which means further, it takes into account the passive con86 -

duction of the electromagnetic field, hereby for laterals  and source signals .

In order to compute the lead-field matrix, individual elements need to be approximated by poly-

nomials, which comes with high computational costs. One way to keep the working power low is 

to reduce the dimensionality by projecting the data onto a subspace, defined by its principal 

eigenvectors. The eigenvectors are computing via singular value decomposition (SVD), or PCA, 

that was discussed earlier. 

λ

λ

h = g(x, θ ) = L (θL)x0

(x, θ )

θL x0

 The lead field is the linear operator relating brain electrical activity to potentials on EEG electrodes.86
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It should be emphasised that fundamental conditions of EEG experimentation have changed 

dramatically over the last decade. In accordance to the fast evolvement of capacities of comput-

ers highly sophisticated calculations can be performed routinely. Besides the model development 

has changed. By inclusion of the inversion technique models are specified, which is important, 

because this influences the believes of how data were generated (Daunizeau & Fristen 2007). 

As a starting point some reasonable and fairly realistic model of neural interactions in the corti-

cal regions of interest is initiated. The event-related input is exactly the same for all ERPs, albeit 

the specific changes in the connections are caused by the effects of experimental factors, which 

are mediated through event-related response (ERR). By taking EEG measurements of the aver-

aged scalp responses of the neural activity the original model is updated by a forward, backward 

or lateral model. These differential responses to different stimuli can either be mediated as ex-

trinsic (forward=bottom-up / backward=top-down) or intrinsic changes in connectivity strengths 

(David et al, 2006). These effects are mathematically expressed by coupling factors:

Here the diagonal of the matrix gives intrinsic effect of the connections. These three equations 

only differ in their architectural references F = forward, B = backward, L = lateral. A represents 

the strength of a connection from related sources i, j, k and B modules the multiplicative factor. 

Since multiplication is used, instead of addition, the resulting effect remains positive, if the con-

nection and factor are both positive. If one factor negative, it represents decrease of the connec-

tivity strength. 

Continuing with the model that was mentioned as a starting point basically contains the inputs of 

afferent activity that are forwarded to the corresponding subcortical structure. In order to do so, 

the model uses two mathematical constituents: first a gamma density function, through which the 

spread and delayed inputs are trimmed to the peri-stimulus bursts.  Second through a discrete 87

cosine set, that allows to integrate the fluctuations of the inputs as a function of peri-stimulus 

time.  

AF
ijk = AF

ij Bijk AB
ijk = AB

ij Bijk AL
ijk = AL

ij Bijk

 Peri-Stimulus, more often peristimulus-histogram (PSTH), are a form to visualise the rate and time of 87

highest interest. That means it highlights the rate of firing at the time of firing, in relation to some stimu-
lus or event. 
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The neuronal activity, represented by the inputs and forwarded connections can e.g. be structured 

hierarchical as a neural mass model. Here, the dynamics of the excitatory and inhibitory neurons 

are assigned to a certain number of cortical layers and their connections (e.g. granular, subgranu-

lar, pyramidal, etc.). The already mentioned differences of intrinsic and extrinsic connections of 

ERPs depend on the cortico-cortical model of the neuronal sources. So what DCM facilitates by 

this structure is in fact an ongoing updating model of effective connectivity. 

6.3.8 Limitations

The main idea of DCM for EEG is to model condition-specific responses over channels and peri-

stimulus time with the same model. The very limits of the informative value of DCM lies in the 

complexity of the underlying model. Indeed, the occurring differences among conditions are ex-

plainable by changes of only a few parameters. This makes it useful for single trials, where one 
89

Figure 13: Neuronal state-equation. 3 Subpopulations, 4 
intrinsic connections: weights = γ 1,2,3,4. AF (forward), AB 

(backward), AL (lateral). Output=transmembrane potential



would use a parametric modulation of parameters to model the effects of changes between the 

trials, but also for group studies, where trials as the effects of single subjects are changed by an 

experimental variable. Accordingly a vast variety of forward models, Bayesian comparisons, as 

e.g. equivalent current dipoles (ECD) can be applied and compared for a given set of data. None-

theless, non-Bayesian approaches, where comparisons are only feasible under certain constraints, 

simultaneously show the advantages and limitations of DCM. Since DCM is deterministic, it is 

sort of tied to Bayesian inference. This means that the observation noise in the sensors is taken 

into account, but not at the level of the neuronal dynamics. Noteworthy when DCM is applied to 

fMRI, because hemodynamic signals still provide low-pass filtered information about neuronal 

events that are fluctuating (Heinzle et al., 20018).  Fitting of complex models to data sets with 88

limited resolution may lead to great fits, while the physiological parameters are out of focus. 

However combing EEG - used as a first pass by sequential inference procedures with Bayesian 

inference and then applied to fMRI as second inference step - may help to dam this limitations. 

Another issue, or rather limitation is the resting condition. The complexity of doing and thinking 

about nothing, endures to be mysterious. Someone never knows exactly, or can hardly describe 

how much, or less of this nothing is dominant in their thoughts. What remains is a vague starting 

condition and the unclear potential utility of task free states. 

Finally DCM is restricted to a few nodes, or regions. Although more simplified versions of DCM 

(Frässle et al., 2017), achieved computations for hundred of regions, this is not possible while 

keeping the same indicated and high level of modelled complexity. 

6.4 PTE, GC, DCM

Since we have come this far, let's take a look at the three methods and sum up their relationship 

to each other. 

Up to this point the examination of connectivity already proceeded in a rather comparative way 

and there are some similarities and distinctions that should be addressed before we go any fur-

 The Wilson-Cowan model (Wilson & Cowan, 1972) is one approach that allows a compromise of sim88 -
ple and complex neural states that can be helpful to overcome the resolution and complexity limitation. 
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ther. Prior to listing individual components, the rhythmical compositions of the data and special-

ly the rhythmics of neuronal interactions are to be lit. For it a distinction can be made between 

the time and the frequency domain on one side and the phase and amplitude relations on the oth-

er side. Although this concerns are two separated discussions in the field, context wise we can 

treat them as being quite similar. Hence this similarity comes to the fore when looking at the 

time, resp. phase methods that are successful for testing moment-by-moment changes in syn-

chronisation for neuronal interactions (PTE). Moreover these methods can operate with very lit-

tle information of the envelope (amplitude). At the same time the advantage of doing almost 

without what is usually most meaningful is not necessarily only an advantage. So the frequency, 

resp. amplitude driven relations can achieve insights by the application of non-parametric (e.g. 

Fourier-, Hilbert transformation) and parametric (e-.g. VAR) techniques. 

With such connectivity metrics (GC) diffuse resolutions of the data can still lead to revealing 

findings. Seeking the couplings of dynamical causalities in the brain, DCM uses highly specified 

and detailed state-space models. By doing so, insights about the underlying physical-causal 

mechanisms of the brain are sought. 

DCM is with its sophisticated complexity one extreme among the whole repertoire of the wide 

ranged scale of connectivity analysis methods. Even more distinctively it is a model-based ap-

proach, which is one of the key differences when comparing the three of them. Right at the other 

extreme are model-free approaches like PTE. As a far more simple analysis method, it likewise 

urges far fewer assumptions on data samplings. Solely PTE extracts causality from time series 

data by detecting the exchange of information between two systems. This makes it immensely 

sensitive to choices of rates and parameters compared to the likes of GC and DCM. 

Rather in the middle of the connectivity arrangement stands GC. Although a generic model 

serves as the basis of GC when using VAR, and model-based assumptions about underlying con-

nectivity are inherent, it is considered a much more liberal setup compared to DCM. One could 

perhaps say GC is in itself prediction-based and therewith maximal semi model-based. Inclusion 

in modelling occurs when it is associated with VAR or the like. 
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Apart from this allegation, if the data is Gaussian GC can be viewed as an approximation to PTE 

and becomes indistinguishable beyond a certain point.  In addition GC is created to describe 89

data in the form of information flow, instead of physiological dynamics like it is the case for 

DCM. GC takes into account the dependencies between the measured responses, while DCM 

models how the neuronal activity in one brain area causes the dynamics in another.

Therefore it can be applied to higher sized networks and directly to any time-series of empirical-

ly sampled neuronal systems. 

Furthermore GC (approximately PTE) and DCM are part-wise complementary. Despite funda-

mental differences, multivariate GC can be used for large datasets and DCM optimises network 

discovery for sparse regressions. Depending on the hypotheses one convenient way to combine 

both methods is to provide a data driven approach with GC as first analysis and subsequently 

specifying physical mechanisms using DCM. 

7 Discussion and Reflection 
Starting with an interpreted summary of the historical development at the interfaces of physics, 

acoustics and neuroscience, this thesis evolved to review different approaches to characterise 

acoustic research and methods in connectivity analysis. A number of mathematical approaches 

were discussed and compared, primarily on the basis of an empirical research project, which 

should be of interest for follow-up studies. 

Brain connectivity, as well as connectivity analysis, is often considered as communicative inter-

action between different brain regions. We have seen many studies and explored a generous vari-

ety of metrical methods and models to expand the patterns of couplings between neuronal popu-

lations and associated behaviours. From exploratory analyses of anatomical-, over functional- to 

effective connectivity various approaches and combinations of increasingly sophisticated mod-

elling of neuronal mechanisms were covered. This also attracted that the shape and exact loca-

 Gaussian=normally distributed (Barnett et al., 2009) 89
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tion of brain regions is not exclusively in interaction with itself, but just as strongly with the 

modelling. Projects like the connectome, or functional connectivity fingerprints are on the verge 

to demystify the otherwise uncharacteristic activations that illuminate in imaging procedures.  

Essentially, some of the discussed measured are not explicitly defined as being based on a math-

ematical approach. For instance the phase slope, or the phase lag index (PLI) with the imaginary 

part of coherency are first of all pragmatic. By design these draws put forward the interpretation-

al problem of field spread and interaction between time series. Which of the measures is most 

appropriate is often an empirical question. Unlike, for example, coherence and GC, which are 

rooted in the theory of stochastic processes. In general it remains to be advisable to work tenta-

tively with various models, thus the conclusions are not too strongly dependent on the chosen 

priors.

7.1 Current Methods

One of the keys for understanding which mechanisms underly the drive of information in and in-

between brain regions, as populations of neurons and individual neurons is to bridge functions 

and structures. Focusing on the dynamics of the brain on the one hand and the rather static struc-

tural backbone on the other hand, combines segregated parts to one effectively integrated organ-

ism. 

In order to achieve a deeper understanding of the functional-structural relationship that may lead 

to an integration of segregated parts each of those, segregation- and integration processes have to 

get mapped and understood one at a time. So first, how information is segregated to specific parts 

and then gets integrated across various different regions in the brain. Revelation can occur by 

utilising individualised concepts of various statistical measures and imaging modalities. Differ-

ent parts of the brain are considered as functionally connected if there is a measurable fluctuation 

in their activity, that persists in phase. Thus fluctuations occur synchronously and coherently in 

temporal resolution. Their structural connectivity is usually derived from diffusion spectrum 

imaging (DSI), high angular resolution diffusion imaging (HARDI) and diffusion tensor imaging 

(DTI). The measured strength of structural connections follow as edges, which are converted 

values representing weights in graphical models. In contrast, functional connectivity uses cross-
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correlations, partial correlations, coherence in GC, PTE, or DCM, derived from fMRI and M/

EEG.

7.2 Gap between connectivity types

Considering the variety of methods and models, the approach of further increasing the complexi-

ty and combining them with each other is not without danger. In order to bridge the gap between 

different types of connectivity methods and more direct biophysical insights, several things need 

to be considered.

7.2.1 Sample size

According to recent critics of brain imaging (Marek et al, 2022), data sets had been swelling in 

size. Since one common phrase at the end of a publication says the amount of data needs to be 

increased to be more conclusive, this should also increase the reliability of the study. But raising 

the number of participants from a few docent up to a few hundred won’t necessarily change the 

strength of the correlation significantly. Marek and Dosenbach claim that far larger sample sizes, 

around a few thousands are needed otherwise the notion of correlation is only a weak measure 

showing that a study is wrong or rather lucky. In contrast, drawing conclusions about brain func-

tions as they are, or even individual brains, derived by sample sizes over a thousands is highly 

suspect. The correlation between one scan and another won’t gauge their reliability. In fact just 

repeating one and the same scan over time, won’t correlate with itself neither (Hariri et al. 2020). 

Anyhow, one way of dealing with this issue is to prolong the scanning time. Instead of detecting 

one elucidation for a few minutes, an hour for more similar task testing may turn out to be more 

robust. There is a danger of habit here, so that further blurring enters into the measurement and a 

range for the correct measurement must be worked out. Of course the ideal task-scanning-time 

differs strongly between individuals, therefore additional pre-studies (e.g. biomarkers, HRF, 

blood pressure, anamnesis, etc.) can be helpful to be able to determine at least a rough fitting in-

ter-subjective range. 

7.3 Behavioural integration
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Yet there is more to it than sample sizes. The selection process of participants is a careful under-

taking. Even more so - as illustrated in this thesis - the choice of model and analysis method. 

Techniques like DTI that allow tracking of fibres can initiate fundamental changes. Whereby this 

very technique has been rather limited so far, as it only functioned properly at low resolution, but 

that is one thing of significance that has changed (Axer et al., 2010).  Using 3D-polarised light 90

imaging (3D-PLI) , a spatial resolution in the range of one micrometer is possible and these 91

 M. Axer, K. Amunts, D. Grässel et al., “A novel approach to the human connectome: ultra-high resolu90 -
tion mapping of fibre tracts in the brain,” NeuroImage, vol. 54, no. 2, pp. 1091–1101, 2010.

 3D PLI is a neuroimaging technique that visualises the complex architecture of nerve fibres. Serial 91

brain sections of tissues (taken from postmortem brains) are analysed by optical methods. This happens 
by casting polarised light on the tissue and analysing the difference in index of refraction (birefringence). 
The resulting phase shift between orthogonal polarisation states exhibits fibrous structures such as 
myelinated and unmyelinated axons. Polyfilters are detecting every ever so slight change of the trans-
posed  refraction angles. In order to get the depth for the 3D visualisation, another detection run is un-
dertaken with the inclination of the same tissue image. By a voxel based matrix analysis the 3 D PLI is 
achieved. 
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Figure 14: responsive neural interplay of 
PFC and PAC for judging sonic motion, 
(a) looming (b) receding. Elucidation for 
dynamic sounds early at 200 ms and late 
at 465 ms (Bidelman & Myers, 2020)



methods are constantly evolving and promise a rich future for connectivity analysis from the cor-

tical visualisation perspective. 

Until then, it must be stated that the scaling of temporal and spatial ranges as the way they are 

brought to connectivity remain insufficiently understood. Foremost the concepts of functional-, 

or effective- and the related structural-, or anatomical connectivity remain to be questionable. 

The computed quantities of functional imaging types heavily vary in spatial, temporal, frequen-

tial and a whole series of other features. Moreover different definitions for variables, constants, 

measurements and data of the same modality is employed with different computational algo-

rithms. This connects directly to the debate on causality which was suggested by Granger at the 

time. Much of science still depends on its notion, what it represents, how it is defined and what it 

implies. As in this investigation, the walkthrough from the acoustic evolution in physics to its 

follow up adaptation to neuroscience and mathematical modelling, the puzzling challenge of 

taming the Leviathan in the data is still up to his tricks. Despite the dichotomous definitions, the 

fundamental interest in all connectivity research persists as “… understanding the causal rela-

tionship among neural entities.“ (Reid et al., 2019). With Friston that is indeed nothing but a fix-

ing exercise. So change in this sense is not just about the development of the research field, but 

the need to establish a more compact and neat concept of this procedure. Some new type of 

modality that is not based on a post-phrenological versus sophisticated and all-function concep-

tual framework that produces non-reproducible data. Connectivity as a measure of brain func-

tions alone, might be expanded to include extra-cortical areas and bend to the limits of its limita-

tions. 

The models of functional, resp. effective connectivity are mathematically still exclusively inves-

tigating in the brain. Other aspects of the organised individual and its surrounded environment 

are usually not taken into equational account. The trinity of body-brain-behaviour, within an en-

vironment may lead to more conclusive findings and reliable parameters, as the brain alone is 

able to reveal. So the connectivity analyses methods of the brain structure could be expended to 

behavioural traits and cognitive parameters that are integrated in the metrics. In addition, the 

model fixing exercise can be accompanied by a cognitive model approach. 
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7.4 Cognitive model 

As a consequence it is about the mind, whatever that turns out to be, which brings the fire into 

the neuroscientific equations. In a similar way like Marek points out, saying that not only higher 

sample sizes, but behavioural trait offs are like adding an environmental- to the biological mark-

er to stabilises connectivity measures and the likes of cognitive parameters as representers of the 

mind could have a similar effect. The biophysical evolution from anatomical to functional and 

lastly up to effective connectivity measures on the one hand and model transformations like im-

provements from speculative projections to constantly updating error rate functions, Bayesian 

inference and predictive coding on the other hand, are still operating in a self-limited area, math-

ematically, biophysically and conceptually. The trend of expanding the complexity of the mod-

els, the resolution of the imaging methods and precision of the measurements led to an important 

and viable step-by-step development of the field which stands for itself. But what hopefully did 

not remain hidden in the course of this work is the sever limitation of the conceptual frameworks 

and to what kind of physicalities the mathematics are factually referring to. Therefore with the 

following I like to question some paradigms that are used in neuroscience, but which are in tran-

sition and could be extended or even modernised in one or the other way.

7.4.1 Overriding

At this point it may be exciting to question the used notions of SC, FC and EC. At several publi-

cations (see the references) appears the instructors description for connectivity analysis methods 

as separated in three. This master's thesis also uses this term out of convention, but not without 

criticism. As neuroscience has changed dramatically over the last decade, classical ideas about 

the theoretical framework behind experimentation and the current state of science can get out of 

joint. These representations in particular must therefore always be adapted to the current state of 

research. 

The empirical study of this thesis, as from others (e.g. Bidelman & Meyers, 2020), reassert that  

functional connectivity of neuroelectrical brain activity during looming and receding of sounds 

reveal stark differences (see fig. 13). Approaching sounds are more rapidly evaluated (< 200ms), 

than those in retreating motion. This counts for the prefrontal cortex (PFC), rather than the pri-
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mary auditory cortex (PAC), which might have been expected sooner in the case of sound per-

ception. This is explained as override from higher-order brain regions (PFC) of auditory cortical 

processing at initial stages (Winkowski et al., 2018). Moreover the assumption is strengthened 

by the direction of the information flow. During looming PFC -> PAC preferential operates in a 

top-down manner, whereby bottom-up (PAC -> PFC) showed no differences to directional 

changes of the auditory motion. That means overriding is an indication of top-down, resp. PFC 

activity. 

Furthermore, and if that is the case, a transformed definition for basic concepts of connectivity 

methods could support further steps in research. With the following section I like to discuss if 

that is the case for the long prevailed trinity of connectivity approaches at first place. Overriding, 

as a feature of the brain might go one step further than the effectiveness of connectivity. Several 

conclusions could now be drawn from this assertion. An obvious approach would be to ask what 

else happens before the PFC activity <200 ms, what is the precondition, what means resting-, or 

initial state and what is it, that is actually being measured? Asking about this involves further 

questions, such as those about technological possibilities, mathematical integration and, last but 

not least, the concept of brain and connectivity in more detail.

7.4.2 Extended neuroscience 

Primarily various novel technologies are transforming the methodological possibilities. As the 

mentioned 3D-PLI, optogenetics, implantations, or interfaces. In combination with the integra-

tion of the parameters of interest in the equations, mathematics has to adept to these technolo-

gies, more than the other way around. But latter adaptation only makes sense if the concept of 

the brain, as the understanding-, or level of connectivity and neuroscience generally develops in 

complementarity. This is obviously going on right now and has been for the past few decades. 

Anyhow not necessarily in lockstep. Sometimes one area lags behind or another jumps far ahead, 

leading to disparities that slowly converge again until they diverge again, as it oscillates on. 

Conceptually, neuroscience as a whole is changing. The view of the brain as the central control 

unit is no longer dominant, although leading imaging techniques do not yet take into account ad-

vanced neuro- or cognitive theories to the same extent. Therefore, it could be assumed that the 
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technology does not go hand in hand with the present concepts, while the mathematical ap-

proaches are all too versatile. Approaches like those that do neuroscience without neurons 

(Prakash et al., 2021), involve the body and environment as dynamical system (e.g. Beer, 2008), 

but also exploring ideas like augmented or extended cognition (e.g. Clark & Chalmers, 1998). 

This can be understood as a state of mind from which certain conditions for a measurement en-

tail. The focus is not primarily on clear, directly measurable parameters of one's own biomarkers, 

but on far-reaching interrelationships of effects that lie in and outside a classical neurocentristic 

perspective. 

Consequently the very thing that is to be measured and subsequently interpreted can partially 

already be part of the preconditions, the equations and the measurement itself. The uncertainty, 

but nevertheless the complementarity in this form, can give a more comprehensive picture. 

Hence this is different from doing cognitive neuroscience branch-wise, wherein cognitive tasks 

and brain activity - as environmental features - are wired together in a perceptual manner, but the 

measured entities themselves are immanent to each other. To understand the nervous system, liv-

ing beings and somehow organised structures that form something like life or even conscious-

ness must include representatives such as mental states in the connectivity. 

Even more so and given the assumption that this could be feasible, the mathematical concepts 

that are used in neuroscience are of such a wide variety that - as shown in the discussion of some 

approaches in this study - measurements can vary to great extend, or even contradict depending 

on the model chosen. From a mathematical point of view computational neuroscience may not 

have been the last encapsulation, as there could also be the separate research area of mathemati-

cal neuroscience (Silva, 2011). Even more on a conceptual, less on a biophysical level, venture-

some steps such as the integration of quantum formalism in neuroscience tend in such a direction 

(Busemeyer, 2013). The development of structural to statistical to causal coritcal connections 

could lead to the introduction of modern concepts in imaging with non-standard probabilistic 

graph theory.

7.4.3 Cognitive parametrisation

For instance, most M/EEG laboratories have adopted a dual strategy. Resolved this means the 

first measurement step is based on most robust and conventionally safe methods, whereas the 

99



second weights the ideal mixture of exploration and exploitation (Picton et al. 2000). Afterwards 

the same robustness is sought in the analytical process. Nowadays, e.g. fMRI analysis groups 

agree on main methodological exploitation, that obviously gives little room for exploration (Po-

lice et al. 2006). Another strategy could open up the research space by defining cognitive para-

meters through current and future models of the mind implemented directly into a mathematical 

structure. More prominent and in many ways synonym to mind-models are theories of con-

sciousness like higher-order-theory (HOT) (Rosenthal, 2005), integrated information theory (IIT) 

(Tononi, 2012), predictive processing (PP) (Seth, 2020), or global workspace theory (GWT) 

(Dehaene, 2011), just to mention a few contenders for mind integrated connectivity measures 

(lets call them MIC). Of course future progress when employing theories in this manner will 

strongly depend on the validation of the mind-part. Currently there remains to be a measurement 

issue that makes it difficult to identify trustworthy equations, parameters and resulting measure-

ments of consciousness (Browning & Veit, 2020). 

However, it can be argued that this problem is rather caused by controversy. Primarily there must 

exist some kind of taxonomic clarification, that distinguishes conscious from unconscious, or 

non-conscious. There could be distinctive notions about; what it takes for human consciousness 

to emerge for the first and last time in a lifetime; how it and certain properties of it, as for trau-

matic injuries, psychedelic influences etc., develops; how other animals and artificial beings can 

be consciousness. 

At the realm of conceptual and computational modelling is going to be the first important hurdle 

after the updated version of connectivity measurement is on the run. Depending on the theory as 

there are re-entry models (HOT, PP) which need to indicate specific parameters and meta-

paramters for the update functions that are in concrete relation to some state of mind, or for more 

environmental orientated theories (IIT, GWT) the impact factors, as the relevant senses must be 

clearly defined. Whether the mind is seen as a functional neuroanatomical region somewhere “at 

the brain“ (front of the brain vs. back of the brain theories, Sergents, 2021), or a process that is 

extended and also accounts for phenomenological features. 

7.4.4 Novel connectivity
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The pressing question in terms of connectivity analysis is what kind of connectivity follows next 

and in view of the previous explanation how might it involve an expanded form of neuroscientif-

ic investigation? Given the lack of coherent concepts, unambiguous mathematics and a multitude 

of models that are more or less reproducible and meaningful, as well as evolving technology that 

is constantly expanding measurement possibilities, a kind of connectivity that goes beyond the 

effectiveness of a causal concept could be a possible successor. At this point in development of 

various models and concepts in parallel, assuming that there are some of them, which are partial-

ly correct in a sense that their results lead to deeper understanding of the content and further 

steps in science, more than one consequences are possible. 

So folded in three: first there is a desirable and productive outcome which leads to models in un-

expected, but experimental testable and verifiable, reproductive and computationally predicable 

results. Second, the novelty of the model is rather modest and only partially corresponds the ex-

periments, or is only to some extent testable at all. Third, less desirable, the model is untestable, 

computationally limited and without counterparts in the real world. All three possibilities share 

the model construction and perhaps the simulation of these models at first stage. Since this re-

mains to be purely descriptive, in the literature often referred to as “numerical simulations of 

postulated models“ and the amount of data are getting larger some qualitative prescriptions 

would be something else. 

In other words the starting conditions in neuroscience could be formally more concise. Given a 

theoretically well constructed and scientifically agreed framework - as described above - this 

could be translated into mathematical expressions. The theoretical and mathematical expressions 

can be used as axioms which must be proven. Further implications and numerical simulations 

can be built on the proof, as it is possible to work back to the foundation of the axioms. 

This, or something near to it can be achieved by applying these different frameworks in order to 

detect parallels, congruences or their anti-parts in a connectivity way. As it was the case in 

physics, chemistry and others, it is in neuroscience that specific-, or even personal concepts and 

mathematics are needed to express the ideas, concepts and findings of this very field of study. 

Currently the mathematics of neuroscience are still very much limited to approaches from other 

areas, as the concepts and the underlying understanding of how the brain, mind, etc. functions. 

The great challenge, and the great gain, would be to develop, or adapt, a unique mathematics and 

concepts that come much closer to describing what neuroscience can be than synthesising other 
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disciplines into a model-fitting exercise. Connectivity wise this can be investigated by expanding 

the regions of interest by a combined strategy of fundamental complementary notions of mathe-

matics and analytical reasoning, as a post Von-Neumann architecture, with non-classical, e.g. 

chaotic processing in neuroscience, which allows neuroscience to go further than todays imaging 

methods.  

8 Conclusion 

In a final summary, this thesis introduced with a short recapitulation of the development of 

acoustical research (sec. 1.1). As it turned out this also included physics, physiology, neuro-

science, mathematics, computational and cognitive science. So it ended up being an exploration 

of the interdisciplinarity of this endeavour. Part two of the chapter (section 1.2) outlines the 

structure and aims of the thesis in a formal preview. 

The second chapter explained the fundamental components of further investigations. From the 

basic but all too important question of What is sound? (sec. 2.1), through the curious phenomena 

of hearing (sec. 2.2) to the neuroscience-oriented backgrounds (sec. 2.2). 

With the models of auditory-cognitive processing (Chapter 3), I have invested part of the thesis 

in the important field of modelling in neuroscience (sec 3.1) and modelling as one of the most 

central aspects of today's research in general (sec 3.2 & 3.3). The chapter was rounded off by the 

more directly applied and thoroughly relevant models for this work: e.g. ALB, ITD, ILD  (sec 

3.4).

An examination of the empirical part of the thesis follows in chapter 4. This leads through the 

whole course of the experiment in a classical, resp. conventional arrangement: Introduction, Ma-

terials, Results, Discussion.As some research has already been done in this area, but the experi-

ments as well as the whole study are still ongoing, more emphasis has been put on the content 

and understanding of the techniques and activities as a whole, rather than focusing exclusively 

on a publication or a small completed part of the study.
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Chapter 5 - Brain Connectivity Analysis - finally opened up the core area. Most relevant parts of 

the architecture (sec 5.1), networks and graphs (sec. 5.2) and the method of measuring connec-

tivity (sec 5.3) are described.

The core area was further investigated into deeper and deeper layers. The measurements turned 

into metrics (sec 6.1) and the interdisciplinary prepared neuro-dynamical backgrounds of mod-

elling in time, space and frequency (sec 6.2) transformed more and more into concrete connec-

tivity models (sec. 6.2 - 6.5). The whole structure of the metric modelled area resulted in a com-

parison of the most important analysis methods (sec. 6.6). 

Arrived at the discussion and reflection part the current approach (sec 7.1), like the gap between 

these approaches (sec 7.2) in connectivity, but neuroscience oriented disciplines in general, initi-

ated a more critical exchange with modern coverings in the field, but also there omissions. The 

last sections (7.3 - 7.4) elaborate possibilities of what is currently failing, what the study fields 

could need and solution wise how this could be feasibly modelled to set incentives and impulses 

for further development steps. 

Finally there is chapter 8 in which we are in right now. Concerning the long term schedule of the 

underlying neuro-acoustic project (at least until 2024), there is still loads of work to be done. 

Then again, a lot of work has already been done. 

The scientific evolution to a point where vast amounts of data are collected, variously interpreted 

and virtually tested is astonishing and holds great potential. So, of course, this potential is not 

only used in basic research, but also applied in all sorts of areas where it has a direct impact on 

the lives of humans, other animals and the planet in general. …

We are analogue beings trapped in a digital world, and the worst part is, we did it to ourselves. Is 

the brain digital and the mind analogue, or vice versa? At least it seems that we perceive things 

discretely, although there is reason to believe that they are not quite as discrete, since we are able 

to transform them into our perceptual reconstruction. The world is not what it looks like, what it 

sounds like, what it seems like, but rather the self-taught illusions we constantly derive from it. 

In order not to get ahead of oneself, but rather around the illusory parts, scientific practices and 
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modelling in particular open up opportunities, indeed bear the very responsibility of recognising 

and adopting them. The scientific point of the whole endeavour shows that the thesis itself is 

nothing more than a model. A model about and around models, as an iterative development 

process that straddles the line between reality and simulation. Some of the challenging propo-

nents in modern science are addressed and put into specialised context. Efforts to experiment, 

test and comparison will lead to a much more profound comprehension of these deepest myster-

ies. 
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