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Abstrakt 

Protokol kontralaterálnej oneskorenej aktivity (CDA) študuje kognitívne evokované potenciály 

(ERP), ktoré predstavujú rýchle senzorické reakcie mozgu na vizuálne stimuly počas úlohy detekcie 

zmien (CDT). Okrem toho analyzuje aj kognitívne reakcie, ktoré stoja za spracovaním a ukladaním 

vizuálnych podnetov do vizuálnej pracovnej pamäte (VWM). Diplomová práca je zameraná na 

metódy predspracovania neurónového signálu naprogramované v softvéri MATLAB za účelom 

analýzy elektroencefalografu (EEG) zaznamenaného počas CDA protokolu, študujúceho účinky 

tréningu vo virtuálnej realite na VWM. Cieľom práce je analýza vplyvov rôznych metód spracovania 

EEG signálu na ERP a behaviorálnu výkonnosť v CDT. Okrem toho sme skúmali vplyv manipulácie 

so žmurknutím a zmenou pohľadu v protokole CDT na komponenty ERP a behaviorálny výkon. 

Ťažkosti pri rozlišovaní medzi žmurknutím a sakádou počas žmurknutia v EEG signále viedli k 

uskutočneniu pilotnej štúdii zaoberajúcej sa vplyvom zmeny pohľadu počas CDT na behaviorálny 

výkon. 

Výber dolno-priepustného filtru ovplyvňuje latenciu skorých ERP komponentov. Preto postup 

spracovania EEG dát za účelom analýza CDA nie je možné použiť bezo zmeny pre analýzu skorých 

ERP komponentov.  

Behaviorálne výsledky naznačujú, že žmurknutia počas zobrazenia testovacieho poľa v CDT nemajú 

vplyv na korektnosť odpovedí. Naproti tomu, zmena smeru pohladu v tejto fáze by mohla ovplvniť 

presnosť výsledku. Obe pozorovania je potrebné potvrdiť vykonaním experimentov s väčším počtom 

subjektov. 

 

Kľúčové slová: CDT, ERP, MATLAB, spracovanie EEG  



Abstract 

 

Contralateral delayed activity (CDA) protocol studies an event related potentials (ERPs) representing 

rapid sensory responses of the brain to the visual stimuli during a change detection task (CDT). 

Additionally, it analyses cognitive responses that are behind the processing and storing of the visual 

stimuli in the visual working memory (VWM). The diploma thesis is focused on 

electroencephalograph (EEG) preprocessing methods programed in MATLAB software with the 

purpose to analyze the EEG recorded during CDA protocol that studies the effects of the training in 

virtual reality on VWM. The aim is to study the influence of different processing methods on ERPs 

and behavioral performance in CDT. Moreover, we manipulated blinks and eye movements in the 

CDT protocol and analyzed its influence on the ERP components and behavioral performance. The 

difficulty in differentiating between eye blink and horizontal saccade performed during blink in EEG 

signal led to a pilot study about the impact of a change of gaze during CDT on behavioral 

performance. 

The selection of a low-pass filter affects the latency of the early ERP components. Therefore, the 

EEG data processing procedure suitable for the CDA analysis cannot be used without modifications 

for the analysis of early ERP components. 

The behavioral results suggest that blinks occurred during the display of the test array in the CDT do 

not affect the correctness of the responses. On the other hand, a change in the direction of the view 

at this stage could affect the accuracy of the result. Both observations need to be confirmed by 

performing experiments on a larger number of subjects. 

 

Key words: CDT, ERP, MATLAB, EEG data processing  
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Introduction 
 

The task of the distinguishing an important visual information (target) from the non-relevant 

(distractor) and deciding how to react accordingly is an everyday task. Oftentimes, it is 

necessary to evaluate the visual stimuli in a time range of several seconds. Apart from the 

professionals that have to make quick decision on daily basis (air traffic controller, 

professional racing drivers or pilots, athletes of collective sports), the driving, video games 

playing, watching out for children, crossing road, it all requires to pay attention to targets 

and filter out the distractors. We not even have to look on those targets and distractors 

directly to be able to evaluate them. This information processing uses a working memory, a 

combination of storage and executive procedures (Baddeley, 2010). This storage has two 

limits; the capacity and the time range during whose it can hold the items in the memory. 

The storing of an item in working memory last only several seconds (Baddeley, 2010). It 

was researched that in the case of identifying differences between two sets of similar visual 

information with targets and distractors (detection task) the visual working memory capacity 

(VWMC) is between 1.5-5 item (Vogel & Machizawa, 2004). This number vary across 

population and depends on age (Brockmole & Logie,2013; Xie et al., 2019), mood or sleep 

quality (Xie et al., 2019). Similarly, the working memory accuracy depends on various 

factors such as the motivation (Grogan et al., 2022), affective states (level of arousal and 

valence in Gabana et al. (2017), stress hormone cortisol in Yeh et al. (2015)), nicotine (Ernst 

et al., 2001), alcohol (Saults et al., 2007). The results in (Katahira et al., 2018) suggest that 

the flow state (a mental state in which a person is fully immerse in the task (Nakamura & 

Csikszentmihalyi, 2009)) is correlated with “a high level of the cognitive control and 

immersion in a task“ while the working memory has “relatively low load” (Katahira et al. 

2018, p. 8). 

The VWMC is highly correlated with cognitive capacity and can be reliably determined with 

a simple detection task, and so with the contralateral delay activity (CDA) analysis (Luck & 

Vogel, 2013). The VWMC’s differences lead to a question if a cognitive training can 

increase the storage capacity, improve the filtering ability or behavioral performance and 

influence the neural activity connected to visual working memory (VWM).  

“Virtual reality (VR) is an advanced, human-computer interface that simulates a realistic 

environment” (Zheng, Chan & Gibson,1998, p. 20). VR was applied in cognitive 
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rehabilitation with improvements in executive and visual-spatial abilities such as speech, 

attention and memory (Maggio et al., 2019). 

This thesis research is part of a national funded project ECoReMiR conducted at FMFI UK, 

IMS SAS, and TUKE. One of the ECoReMiR research objective was to investigate whether 

a cognitive training using appropriately designed mixed reality environment will enhance 

perceptual and cognitive performance in healthy subjects, especially to improve their 

filtering abilities. A special mixed reality environment was developed in Košice to study this 

research question. It is LIRKIS CAVE, the virtual reality (VR) environment with a game-

like-training. The game was created for the purpose of improving VWM by enhancing the 

ability to filter the relevant visual stimuli from irrelevant (Korečko et al., 2019). 

Evaluation of the CDA during the visual tasks that engages VWM requires 

electroencephalograph (EEG) recordings. And while the experimental design is important, 

without proper analysis, the result may be misleading or even completely incorrect. 

Therefore, the preprocessing methods of the EEG data is a crucial step in an experimental 

paradigm (Luck, 2014).  

One of the common problems during EEG preprocessing is a trial rejection caused by eye 

movement artifacts recorded in EEG. Their electromyographic (EMG) activity is interwind 

with the brain’s neuronal electrical activity may lead to a rejection of a large number of trials. 

In specific experiment settings, only the saccades can be problematic, while the eye blinks 

are not. The CDA evoked by a first set of visual stimuli is not corrupted by eye movements 

occurred after the interval of interest (e.g., until the retention period). However, eye blinks 

may influence the visual input or saccades can influence the performance when they happen 

during the second, testing set of visual stimuli. When eye-tracker is not used to record eye 

movements, it is complicated to distinguish between eye blink and saccades during blink 

(Luck, 2014). If all trials with any of those artifacts are rejected it can lead to insufficient 

number of trials for statistical significance. A question arises, how the performance can 

change when the second set of visual stimuli is seen directly and not laterally. 

In the first chapter we describe main theoretical attributes and experimental design of the 

problem. We introduce the VWM, take a look through the ERPs and CDA experimental 

designs, and we familiarize with EEG data preprocessing from artifacts up to the CDA wave 

creation. In the second chapter we will present the aims of this thesis. All the methods of the 

thesis, meaning the methods of the ECoReMiR experiment, methods of the preprocessing 

and analysis of the EEG data recorded during this experiment and methods of the CDT 

experiment that studies the influence of the gaze change on behavioral performance, will be 
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explained in the third chapter. The results are contained in the chapter number four which is 

followed by a discussion in the fifth chapter. The thesis is finished by a conclusion and the 

list of references is provided. 

 

 

1 State-of-the-Art 

1.1 Visual Working Memory 
Baddeley's model of working memory presented by Alan Baddeley and Graham Hitch 

(Baddeley & Hitch, 1974) in 1974 contained three components: central executive, the visuo-

spatial sketchpad, and the phonological loop. It was a dynamic representation (by organizing 

component) of primary memory, also known as short-term memory. In contrast to Atkinson 

& Shiffrin's (1968) multi-store memory model, in which the memory is divided into long 

term memory, short term memory (or working memory), and sensory memory, Baddeley's 

model distinguishes between short term memory being a storage and working memory 

playing a role of a multicomponent dynamic system. Furthermore, it included visual and 

auditory information from long term memory. A quart century later, the fourth component, 

episodic buffer, was added to the original model (Baddeley, 2010).  

Central executive being a supervisory (supreme) system controls and regulates the flow of 

information from and to its slave systems and therefore regulates cognitive processes. It 

connects long-term memory with working memory. It updates and code incoming 

information, replaces old information, coordinates slave systems, binds information from 

multiple sources into episodes, shifts between tasks and retrieval strategies, inhibits 

automatic response, play role in selective attention. Phonological (or articulatory) look stores 

auditory information in short-term phonological store and articulatory rehearsal component 

(or articulatory loop). The second can retrieve auditory memory traces which are held in the 

first one while rapidly decaying. While auditory verbal information directly enters in 

phonological loop, language presented visually can enter by silent articulation. The visual 

information is encoded by the phonological process "inner voice" as auditory information 

into the phonological store or "inner ear". Visuospatial sketchpad stores visual and spatial 

information for manipulation. It subdivides into spatial short-term memory ("where" an 

object is) and object memory ("what" an object is). There are two different pathways in the 
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brain – where – a dorsal stream, what – a ventral stream, that can process information 

independently. The less intense tasks are handled in the occipital lobe, more complex ones 

are processed in the parietal lobe. The episodic buffer is a limited capacity store, that holds 

and connects information across domains. It links a long-term memory, semantic meaning 

and perception during a working memory task. It arranges a conscious access to 

phonological loop and visuospatial sketchpad. (Baddeley, 2010) 

This research is interested mainly in the visuospatial sketchpad and central executive. 

Visual working memory (VWM) can hold only 3 up to 4 items simultaneously, while it may 

vary among populations between 1.5 up to 5 items (Vogel & Machizawa, 2004). Those items 

can be colors regardless of the resolution of representation (Ye et al.,2014), orientations, 

shape, and even their binding (Luria et al., 2016). However, the VWM is flexible about 

which features of the objects are encoded, so the binding is not always present. In the 

experiment with colored polygons, the amplitude of CDA was lower when the color was 

relevant compared to the case of focusing only on the shape (Luria et al., 2010).  

The divergence in the VWM capacity led to an interesting question of whether it is possible 

to increase the VWM by specific training with long time lasting results.  

 

 

1.2 ERP Components 
Event-Related potentials (ERP) are electrical potentials elicited by the event to which they 

are evoked at a stable time. Their dependency on provoking factors divides them into 

exogenous and endogenous components. The early sensory responses are exogenous, so they 

are dependent on external factors such as stimulus parameters. Endogenous components are 

slower cognitive responses depending on the internal factors (the task performed by the 

subject).  

Recorded brain electrical activity arises most likely in pyramidal neurons which are aligned 

perpendicularly to the surface of the scalp, action potential short (a millisecond), 

postsynaptic potentials longer (tens of hundreds of milliseconds) – discrete voltage spikes –

excitatory neurotransmitter, flowing current from extracellular space via apical dendrites and 

out of body cell and basal dendrites. This creates a dipole from positivity at cell body and 

negativity at the apical dendrites. The summation of spatially aligned dipoles from millions 

of neurons when discharge happen at the same time results at measurable voltage at the scalp. 

ERPs are therefore measured postsynaptic potentials. 
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This brain activity can be measured by electrodes attached to the scalp, as was discovered 

by Berger (Berger, 1929). Waveforms with specific amplitudes and frequencies represent 

this recorded activity called electroencephalogram (EEG). It contains various neural 

communications, including responses to specific sensory, cognitive, or motor events. Those 

responses, or ERPs, are extracted from EEG by averaging the segments of EEG 

corresponding to the same stimulus. This is more detail described and discussed in section 

1.4. The averaged ERP waveform contains several ERP components under a form of voltage 

deflections represented as peaks or waves. They represent the information flow in the brain 

from early sensory detections to cognitive processing. ERPs are defined by their polarity - 

positive (P) or negative (N) and their amplitude. Their ordinal position in the waveform 

usually gives them labels, for example P1, N1, P2, N2 etc. Several ERPs are named 

according their latency, e.g., P300 signifying the positive peak at 300 ms after the stimulus 

onset. 

Position of brain origin of ERP is not easy to determine from scalp voltages. Mathematically, 

it is an inverse problem; an infinite number of dipole configurations can lead to identical 

voltage distributions (Helmholtz, 1853). 

The ERPs differ also by sensory stimuli that evoked them; therefore, we can find ERPs with 

same labels that are not related. They have only the same polarity and order. 

Following the focus of the thesis, next visual sensory responses associated with the VWM 

are described: 

The first ERP component C1 can vary in polarity; it is positive for stimuli in lower visual 

field, and negative for   stimuli in upper visual field. C1 is generated in V1 – primary visual 

cortex, while onsets 40 ms up to 60 ms with peak at 80 ms up to 100 ms after stimuli onset 

(Luck, 2014). 

The first positive ERP component is P1. It is largest at lateral occipital electrode; it has onset 

at 60 ms up to 90 ms with peak 100 ms up to 130 ms and usually it overlaps with C1. Latency 

can be influenced by contrast, direction of spatial attention, and state of arousal (Luck, 2014) 

The first negative ERP component N1 contains multiple subcomponents. The peak is 

reached at 100 ms up to 150 ms at anterior electrodes, at least two posterior subcomponents 

achieved peaks at 150 ms up to 200 ms from parietal and lateral occipital cortexes electric 

signals. Those potentials are influenced by spatial attention. N170 can have higher negative 

amplitude when it is elicited by faces, while inverted faces can evoke even larger potential 

(Luck, 2014). 
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The P2 component can be detected at anterior and central scalp. When stimulus contains 

targets with simple features (only occurrence), infrequent targets result into larger 

components (Luck, 2014). 

The N2 family contains multiple negative ERP responses (Luck, 2014). Basic N2 is elicited 

by a repetitive non-target stimulus. Larger amplitude was reported when deviants (other 

stimuli) are presented in a repetitive stimuli pattern. In the case of task-irrelevant deviants, 

we are talking about N2a or mismatched negativity. On the other side, when the deviants are 

task-relevant and therefore categorization process takes place, N2b is elicited with larger 

amplitude when targets are less frequent. When looking on the N2 family via spatial 

deviance, we can differentiate three subcomponents. Bilateral anterior N2 is elicited even 

when deviant is not target but participant must be looking for deviant. The presence of the 

other two N2 ERPs is conditioned by deviant being target. Posterior bilateral N2b is 

probability sensitive, so it is larger for less frequent targets (Luck, 2014).  

As the name suggest, the posterior contralateral N2pc is observed at the posterior side 

contralateral to the target location and it represents a focus of the spatial attention onto the 

target location (Luck, 2014). N2pc is connected to the VWM task reflecting working 

memory maintenance in which case it is located more in parietal sites (Vogel & Machizawa, 

2004). N2pc is observed at posterior occipital sites with maximum voltage at PO7 and PO8 

electrodes at 200-300 ms stimulus onset. It is more negative at electrode contralateral to 

attended object than when attended item and electrode are at the same side. While N2Pc can 

be influenced by suppressed object (distractor), it represents processing of the attended 

object (target) (Luck, 2014). 

Surprisingly, eccentricity as a degree between the inner edge of stimuli and midline of visual 

field does not have effect on the amplitude of the N2pc ERP component in the case of small 

degrees (up to 4°), not even when the edge is at the midline (0°). However, the N2pc 

amplitude is reduced by 50% when the eccentricity is 8° (Papaioannou & Luck, 2020). 

Therefore, the stimuli near midline doesn’t reduce the effect of laterality. 

Suppressing or inhibition of distractor is reflected by distractor positivity (Pd) with more 

positive voltage at contralateral sites to the distractor.  It has similar scalp distribution to the 

distribution of N2pc and it is not present when the attention task contains only targets (Luck, 

2014). It followed the N2pc component and in the case of large eccentricity, its amplitude 

increases (Papaioannou & Luck, 2020).  
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1.3 CDA Experiments 
Change detection task (CDT) is experimental visual task for testing the VWM by detecting 

changes on rapid (hundreds of milliseconds) succession of images. Standard protocol 

consists of 6 steps. In the center of the visual field the cross is placed. By sustained gaze on 

this point, visual field is divided at the left hemifield processed by the right hemisphere and 

the right hemifield processed by the left hemisphere.  At the start of each trial, a cue arrow 

is shown (e.g., 300 - 400 ms) to instruct the participant about the hemifield of the interest, 

or by other words, which hemifield should be remembered. Next, the memory array (MA) 

is shown for a short period of time (e.g., 100 ms). The array contains targets and/or 

distractors that can be in different shapes, colors, rotations or numbers according to the 

experimental paradigm. After the retention period (RP) (e.g., 900 ms) during nothing beside 

the center cross is displayed, the test array (TA) (e.g., 2000 ms) is revealed and the 

participant should report whether the targets at the cued hemifield changed.  

A sustained higher negative activity at contralateral sites after N2pc component is another 

ERP component called contralateral delay activity (CDA). It is sensitive to the number of 

targets and connected to the VWMC. The amplitude increases with more items held in the 

memory (Vogel & Machizawa, 2014). CDA waveform is obtained as a difference of 

contralateral and ipsilateral waveforms while arising from posterior parietal cortex. CDA 

amplitude differs among population and becomes asymptotic when the VWMC is reached. 

By other words, it increases its amplitude with more targets until the maximum number of 

different targets that the individual is able to process is reached. It persists through the 

retention interval during which the items are held in the working memory (Luck, 2014; Luria 

et al., 2016). Furthermore, it is negatively corelated to the fluid intelligence,  

The protocol of CDA studies rapid sensory responses and slower cognitive responses. Vogel 

and Mazichawa (2004) performed several experiments with the aim to find 

electrophysiological confirmation of lateralized activity of encoding and maintenance of 

items in the VWM. The MA presented in their first CDT consisted of 4 colored squares in 

each hemifield while in 50% trials one of the squares had different color in TA. The negative 

voltage approximately 200 ms after the onset of the MA was higher over the contralateral 

hemisphere at the lateral occipital and posterior parietal sites. For next experiments, they 

compared the neural activity elicited by different number of items in MA, while numbers of 

items at the left and right hemifield were same in one trial. Specifically, their three 

subsequent experiments tested 1 to 4 items, 2, 4 and 6 items and 2, 4, 8 and 10 items.  Their 



8 

 

overcome the problem of multiple processes connected to the CDT contained in EEG 

waveform by computing difference between contralateral and ipsilateral activity for each set 

size. The ‘difference waves’ were free of any bilateral activity such as anticipation to the 

cue, executive processes, increased effort, arousal, focus on non-blinking (Luck, 2014; 

Vogel & Machizawa, 2004). The results shown that the averaged CDA waveforms 

significantly differed only up to 4 items while the bilateral activities increased significantly 

with the number of items in the MA even with 6, 8 and 10 items in each hemifield. Therefore, 

the ipsilateral and contralateral activities represented the general effort of performing task 

supported by reduction in accuracy. The averaged CDA waveforms reflected the 

maintenance of the items held in the visual memory and predicts the individual’s memory 

capacity by calculating the amplitude increase between different set sizes (Vogel & 

Machizawa, 2004).  

In the CDT, the visual memory capacity is usually computed as Cowan’s K (Vogel & 

Machizawa, 2004; Luck & Vogel, 2013; Železníková, 2021). It represents the measure of 

behavioral performance and depends on the number of correct and incorrect responses 

(Cowan, 2001)). 

 

 

1.4 Preprocessing of EEG Data 
Recorded signal form the ERP experiment contains not only the neural response in the form 

of EEG but also the non-neural noise. The origin of the noise can be endogenous or 

exogenous. The later one is induced electric signal from the environment, for example from 

computer or lights. It is usually constant noise with small amplitude and can be reduced by 

preprocessing methods such as filtering or averaging. The noise of endogenous origin 

represents the interferences of the other biological signals such as muscle activity, eye blinks, 

eye movements or mental activity not connected to the ERP response. Biological signal 

causes artifacts which are transient noises with large amplitude and generally trials are 

discarded because of their presence (Luck, 2014).  

Artifacts may cause three types of the problem in processing and evaluating data from the 

experiment. Firstly, they might reduce the signal-to-noise ratio (SNR) of the averaged ERP 

waveform. With lower SNR it can be harder to obtain significant differences between groups 

or conditions. According to the square root law (chapter 5 in Luck, 2014), 20% rejected trials 

cause 11% reduction in the SNR. Secondly, systematic artifacts are appearing at 
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approximately same times with respect to the stimulus and therefore are not removed by 

averaging. In the case that they are present in a higher amount in some conditions they cause 

difference in averaged ERP waveforms. That can be wrongly interpreted as difference in 

brain activity instead of real difference e.g., in motor behavior represented by more blinks 

elicited by specific stimuli. Thirdly, blinks and eye movement may change the sensory input 

or completely miss it when they happen at the start of the trial, what results in different input 

for different conditions.  

According Hansen’s axiom, which states that “There is no substitute for good data,” (Luck, 

2014) and the best practice is to minimize or better prevent occurrence of artifacts during 

recording the neural signal. Unfortunately, there are cases when one received recorded data 

and has to do processing and analysis. There are two approaches to dealing with artifacts. 

Either, trials with detected large artifacts are excluded from the final processing what is call 

artifact rejection. Or artifact corrections can be performed by estimating the influence of the 

artifact on the neural signal and subsequently subtracted. 

 

1.4.1 Filtering and Slow Drifts 

Filtering is based on the Fourier transform analysis (Luck, 2014). The Fourier transform 

calculates amplitudes, frequencies and phases of sinusoidal waveforms whose combination 

represent analyzed EEG waveform. It transforms the time-domain data into frequency 

domain. Usually, the term power is used instead of amplitude and it is equal to amplitude 

squared. By summing the found goniometric functions to reconstruct the original EEG 

waveform, the inverse Fourier transform is executed and the frequency domain is 

transformed back into time domain. This is only a mathematical representation of the data 

and doesn’t mean that all found frequencies were really elicited by brain and therefore 

represent physiological oscillations. However, a neural oscillation at certain frequency 

represents one of the sin waveforms found in the Fourier transform.  

The Nyquist theorem says “a continuous analogue signal can be converted into the set of 

discrete samples without losing any information while the rate of digitization is at least twice 

as high as higher frequency in signal” (Luck, 2014).  In other words, filter out anything that 

is higher than half of the sampling rate (e.g., sampling rate of 250 Hz – filter anything beyond 

125 Hz). 

Filtering removes noise that occurs in the data, but also it can filter specific frequencies that 

correspond to a on activity or oscillation (alpha, beta, gamma, delta waves). A low-pass filter 
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leaves only smaller frequencies in data, while a high-pass filter removes lower frequencies. 

The subsequent use of those two filters is equivalent to a band-pass filter. Notch filter reduces 

specific frequency.  

The filter’s gain is a multiplication factor for change of frequency and in EEG/ERP it is 

between 0 and 1. Gain equal to 0.2 represents reduction of amplitude by 80%. The filter can 

cut off all frequencies beyond the limit or by other words remove all sinusoidal functions 

with those frequencies. This may lead to unwanted side effects therefore, usually, the gain 

is represented by smooth frequency response function and can be set for each filter 

separately. The steps for any filtering are, firstly, the Fourier transform, secondly, 

multiplication of the amplitude of each frequency function by corresponding gain, thirdly, 

the inverse Fourier transform. Filtering by two filters is equivalent to filtering with frequency 

response function created as a product of frequency response functions of those two filters. 

This applies to the software filters (offline analysis), the hardware (online or anti-aliasing) 

filters, and even their combination (Luck, 2014). 

 

Skin potential and slow voltage shifts  

Slow waves of drifts in EEG data can be caused by a sweat in sweat glands resulting into the 

change of impedance of the skin and change in electrical potential of the skin or by a change 

of electrode position, usually caused by a participant’s movement. The drifts can sustain in 

the data for many seconds. Skin potential can be filtered out by be high-pass filter of 0.01 or 

0.1 (selected according the experimental parameters) (Luck, 2014), or by a polynomial 

function (de Cheveigné & Arzounian, 2018). The change of EEG to the new level can be 

detected by a moving window with the peak-to-peak amplitude or step function. Low-pass 

filter above 100 Hz removes activity elicited by a muscle movement (Luck, 2014).  

 

Alpha waves 

Oscillations in EEG at the range of approximately 8 to 12 Hz are alpha waves. They are 

largest at posterior electrode sites and can be elicited by tiredness of participants or by 

closing their eyes. Alpha activity reflects recurrent connection between thalamus and the 

cortex. Since they are present among longer period of time, they influence a higher number 

of trials and therefore it is not recommended to reject them because the SNR worsens. They 

are usually not removed by averaging process and the typical approach is filtering. However, 

one should be aware that the filtering also removes other processes represented by oscillation 

around the filtered one (Luck, 2014). 
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1.4.2 Artifacts 

Detecting an artifact is a signal detection problem, where an artifact is a signal that we want 

to detect (Luck, 2014). The detected artifact can be removed by a complete rejection of the 

whole trial, or it can be estimated and the signal can be corrected accordingly. Artifact 

rejection is used when the cause of artifact can influence not only the EEG signal but also 

the physiological response itself, e.g., eye movement representing the change of gaze which 

changes the lateral response plus and causes step artifact in EEG data. 

 

Artifact rejection 

Artifact rejection process results into fewer trials included in average ERP waveform 

therefore reduces the SNR of the estimated ERP response. Furthermore, experimental 

conditions may have unequal number of trials, consequences of which will be explained 

later. 

The basic algorithmic approach to detect artifacts uses threshold value for detecting noise; 

anything above threshold is an artifact. This leads to four possible outcomes that are hit – 

artifact is present and signal is above threshold, correct rejection – artifact is missing and 

signal is beyond threshold, miss – artifact is present but signal is beyond threshold, false 

alarm – there is no artifact but signal exceeds threshold. First two are correct answers and 

last two are errors in detections.  By increasing the threshold, we obtain more hits but also 

more false alarms. A higher number of rejected trials because of more false alarms causes 

lower SNR of the averaged ERP. On the other side, lowering the threshold produces more 

accepted trials but less hits what can lead to non-detected systematic artifacts in one or more 

but not all conditions which can also subsequently cause an invalid conclusion. Hence the 

necessity of the maximizing the statistical power while avoiding confounds means that not 

all artifacts are eliminated only problematic ones what can be specifically different for each 

experiment (Luck, 2014). 

EEG is typically recorded on more than one electrode; therefore, a detected artifact causes 

rejection of not only the corrupted channel but the rejection at all channels. The artifact 

signal can spread across scalp with changing amplitude and while on one channel artifact is 

detected, the threshold may cause miss at other channels. The blink artifact at prefrontal 

electrodes Fp1 and Fp2 with amplitude 100 µV has at the frontal electrode F2 amplitude 
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approximately 36 µV, at the Cz electrode approximately 16 µV and at the Pz electrode 

approximately 10 µV. Blink artifacts at Cz and Pz would not be detected but their amplitudes 

will impact the experimental effect. Other problem which arises when rejecting trials on 

channels with detected artifacts, are different numbers of trials in averages. Additionally, 

different trials on different electrodes are averaged, so the scalp distribution may be 

untrusted. Therefore, rejecting only trials on corrupted electrodes is not generally 

recommended (Luck, 2014). 

Artifact detection can be done visually by personally checking of each trial for artifacts. 

While trustworthy, the process is long and hard to verify. Other possibility is to apply a 

computer algorithm, which would be faster, more effective, bias-free and easy to verify. The 

threshold is known and can be easily changed to compare artifact-free data preprocessed by 

different thresholds even by different algorithms. 

One way to detect artifact is using a fixed threshold for all subjects that is compared with 

absolute value of maximum voltage in trial. If artifact’s amplitude exceeds the threshold, the 

trial is rejected. This approach is suitable for artifacts with large amplitude such as eye blinks 

but it also requests to do baseline correction before artifact detection. Also, drifts in signal 

can cause miss of an artifact too (Luck, 2014). 

The algorithms for artifacts detection can be suitable for more types of artifacts. Next, we 

list several algorithms presented by Luck (Luck, 2014).   

More suitable approach for blink detection is algorithm developed by Javier Lopez Calderon 

for the ERPLAB toolbox (Lopez-Calderon & Luck, 2014) called moving window peak-to-

peak amplitude. A window with settable size (e.g,. 200 ms) is overlap with the signal 

waveform at the start of the trial and looks for difference in amplitude between the most 

positive and the most negative peaks (peak-to-peak). The window is shifted in time by a 

specified time step (e.g., 50 ms) and again, peak-to-peak amplitude is found. After the whole 

trial (or its specified part) is tested, biggest peak-to-peak amplitude is compared to the 

threshold and if above threshold, the trial is rejected. This algorithm does not need baseline 

correction prior the artifact detection because it works with amplitude differences instead of 

maximal absolute amplitude. It can correctly detect artifacts even when a drift is present in 

the data. 

Sudden changes in amplitude level can be reliably detect by a step function. Similarly, as a 

previous algorithm, the step function works with moving window (e.g., 200ms) in which a 

difference of the mean amplitudes of both halves of the window (first 100 ms vs second 100 

ms) representing a step in the data is calculated. The window is moved by a time step which 
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the user specifies (e.g., 50 ms). If maximal difference of mean amplitudes exceeds the 

threshold, the trial is rejected (Luck, 2014).   

In all cases, the threshold can be set specifically for each subject (physiological differences) 

in the case of within-subject conditions. To avoid bias in the case of between-subject 

manipulations, the thresholds and other artifact rejection parameters (e.g., moving window) 

should be determined by a person blind to group membership. The initial threshold can be 

set according to the previous experience or similar studies. After the first artifact free trails 

are selected, visual inspection with comparison to raw data can verify whether the threshold 

removed all artifacts or it is necessary to increase its value. Similarly, if it rejects a lot of 

trials without visually confirmed artifacts on raw data, the threshold should be decreased. 

General Luck’s advice is to exclude any participant with more than 25% rejected trials 

(Luck, 2014). 

 

Artifact correction 

Artifact rejection may lead to unrepresentative sample of trials, e.g., in the case of eye blinks 

removing specific group of participants (e.g., kids, neurological patients), using only trials 

with a high alert state of participants, experimental paradigm connected to eye movement 

and eyeblinks (Luck, 2014). 

The problem is any specific instruction what participant should do (posture) or don’t 

(blinking) is unwillingly added to the tested hypothesis; participant is focused not only on 

the task but also on the instructions and it is problematic to distinguish those two mental 

activities from EEG waveforms. Ochoa and Polich (2000) presented this drawback with non-

blinking instruction during oddball test and tested it with contrast to the same test with no 

instruction about blinking among college students. The P3 ERP component has a smaller 

amplitude and longer latency in the case of non-blinking instruction.  

Luck (2014) presented three approaches in correcting data and therefore preserving the SNR. 

Regression-based procedure designed by Gratton, Coles & Donchin (1983) estimates 

artifactual potentials generated by blinks and eye movement in electrooculogram (EOG). 

Subsequently, it is subtracted from the EEG data. However, EOG data contains also brain 

activity and by subtracting this activity is removed from EEG data.  Dipole localization 

represent a dipole modeling method (Berg & Scherg, 1991). The method models how 

artifact’s signal propagate via scalp. But for the correct results, the signal for the calculation 

should be recorded from at least seven electrodes for each participant and it assumes that 

vertical eye movement and blinks are the same. Statistical component analysis such as 
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principal component analysis (PCA) or independent component analysis (ICA), finds 

components of EEG with a characteristic scalp distribution, and then specifies which 

components represent artifacts and subtract their voltages from the waveforms. These 

methods can be used for correction artifacts with fixed scalp distribution (e.g., ocular or EKG 

artifacts) (Luck, 2014). 

However, visual input changed by blink remain unfixed even if the ocular artifacts are 

corrected by these methods. So, the solution should be considered from case to case, e.g., 

reject all trials with blink prior to stimulus onset, remove the participant, or if the presence 

of the blink does not change the experimental paradigm, subject is hard to replace, and it is 

within-subject experiment with unwanted blinks in almost all trials than include it. 

 

1.4.3 Corneal-retinal potential 

Corneal-retinal potential is the constant electrical potential between the cornea (positive 

dipole) and retina (negative dipole) of the eye. This potential is present across the head while 

decreasing the amplitude with the increasing distance from the eye and causes offset in EEG 

and electrooculogram (EOG) raw waveforms. It is easy to diminish its presence in signal by 

baseline correction (Luck, 2014). 

 

1.4.4 Blinks 

Movement of the eyelids across eyeball creates voltage deflection because the eyelids work 

as a resistor. This change in potential can be detected at most electrodes with decreasing 

amplitude as was already explained. Movement of eyelids, or eyeblink, response recorded 

as a difference between two electrodes (active and reference) under and above the eyes is 

noted as VEOG (vertical EOG), with 50 - 100 µV deflection lasting 200 – 400 ms and has 

opposite polarity for the sites on head above and below the level of the eyes. In contrast, the 

true EEG deflection does not change polarity, so it is straightforward to distinguish it from 

the blink. Interestingly, voluntarily performed blinks have higher amplitude than 

spontaneous blinks so it may be problematic to use the same detection threshold for the 

control of blinks during the recordings. Besides moving window peak-to-peak amplitude 

and absolute maximum amplitude, which are suitable for the blink detection, also the step 

function work with eyeblinks detection (Luck, 2014). 

 



15 

 

1.4.5 Saccades 

Eye movement also changes voltage in at half of the scalp if the eyes are turned toward. In 

other words, when turning the eye at left, the positive voltage deflection is at the left part of 

the scalp and negative on the right one. The horizontal EOG (HEOG) recording is done by 

two electrodes attached to the temples laterally to the eyes where one electrode is the active 

electrode and the other serves as a reference. Recordings of the vertical eye movement are 

same as those of blinks. In the case that an eye-movement is not strictly vertical or strictly 

horizontal, artifact will show on both, VEOG and HEOG, recordings. Saccades are quick 

shifts in the eye position represented as a step in the voltage that remain until next saccade 

is perform. In this case a boxcar-shaped voltage is present in the data. Its length is 

proportional to the time between two saccades (Luck, 2014). 

The size of the voltage deflection is linear to the size of the eye movement. Large saccades 

are easy to detect by absolute value of maximum voltage but the threshold (e.g., 100 µV) set 

for their detection may not be sufficient to reveal the small eye movements (e.g., 10°). 

Therefore, using a step function that can detect even an eye-movement of 2° (1° under 

optimal conditions) is a more suitable approach (Luck, 2014). 

Horizontal eye movement influences lateral neurological responses on visual input, 

specifically, it produces a negative voltage at the contralateral hemisphere, so it impacts 

N2pc and CDA components. Furthermore, as was already mentioned an eye movement may 

change the visual input, in this case by changing the location of the stimulus. With regards 

of good SNR of EOG, detecting smaller saccades then 1° can increase number of false 

alarms. What can be done is to divide EOG waveforms into groups of the conditions that 

may cause unidirectional movement of the eyes. The averages of the grouped EOGs will 

show consistent small eye-movements. So, the process is as follows: firstly, detect saccades 

larger than 1° and reject trials. Secondly, check if the averaged EOGs exceed the threshold 

for smaller saccades (e.g., 1.6 µV ~ 0.1°) (Luck, 2014).  

 

On the other side, slow eye-shifts can be reliably detected only by the eye-tracking devices. 

Same applies for determining the position of the eye. Their neurological representation is 

not easily recognizable in recorded waveforms and mentioned algorithm don’t work 

adequately for their detection. However, for detection of the slow eye-movements there 

already exist complex algorithms developed for sleep analysis and evaluation (Magosso, 

2007) and neural network for fatigue detection study (Jiao & Jiang, 2022). 
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Amplifier/adc saturation/blocking 

Slow voltage shifts (e.g., or skin potential origin) causes the amplifier or analog to digital 

converter (ADC) to saturate. This results into flat EEG. During recording, the frequent 

occurrence can be solved by lowering a gain on amplifier. The way to detect this type of 

artifact is either to check large number of points with relatively same voltages or use the X-

within-Y-of-peak developed by Jon Hansen at UCSD (Luck, 2014). The second method is 

based on finding the maximum and to count the number of points that are in the Y distance 

(e.g.,0.1 µV) of that maximum. If more points are found than the defined threshold X (e.g. 

30), the trial is rejected. This process has to be performed for positive and negative voltages 

separately. Likewise, described method is a good tool for detecting electrodes that 

intermittently disconnected what it represented also by flat line (Luck, 2014). 

 

Muscle and heart activity 

Electromyogram (EMG) – electrical potential formed during muscle contraction. Rapid 

voltage fluctuations. It can be eliminated by a low-pass filter with a half-amplitude cut-off 

between 30 and 100 Hz. The electrode sites T7 and T8 can contain a recorded signal from 

jaws contractions, Fp1 and Fp2 detect a furrowing brow or cap pulling at forehead. The neck 

muscles movements and contractions influence the electric signal recorded by all electrodes 

if a mastoid reference was used.  

Electrocardiogram (EKG) represents a heart beating; it propagates to head via carotid 

arteries – mastoid electrodes. Occurs once per second, so it is not possible to reject trials, 

therefore artifact correction is suitable approach. (Luck, 2014) 

Any signal or artifact, that is picked up by reference electrode, occurs at all channels (Luck, 

2014). 

 

Speech related artifacts are beyond the scope of this thesis and are mentioned only for the 

consistency. Shortly, they are called glossokinetic artifacts and are caused by voltage created 

by moving tongue because of the electrical gradient between tip of the tongue and its base. 

More can be found in (Luck, 2014) and their possible application to man-machine interface 

in Nam et al (2016). Other non-usual artifacts can be found in Sazgar & Young (2019). 
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1.5 Building CDA 
EEG signal is standardly recorded as a continuous signal of all trials in one block including 

event codes. Therefore, the first step consists of extracting trials and group them according 

to the trial parameters. From those trials are used segments time-locked to specific event, 

e.g., the MA onset, with the length depending on the type of components that will be 

analyzed (e.g., 500 ms). Each segment requires also the presence of the pre-stimulus EEG 

data referenced as baseline (typically 100 up to 200 ms) (Luck, 2014). 

 

1.5.1 Baseline Correction 

Baseline correction minimize offset voltage caused by slow fluctuations of skin hydration, 

skin potentials, and static electrical charges. The averaged activity before the stimulus onset 

is subtracted from the activity after the stimulus onset (Luck, 2014). 

 

1.5.2 Averaging   

We assume that the neural activity during a task differs only in noise and is time-locked to 

the events (e.g., the MA onset) in every trial (Luck, 2014). Noise, according to definition, 

has a random distribution (Luck, 2014), so it differs from trial to trial. Averaging is the sum 

of all trials divided by their number; therefore, the more trials are included, the greater the 

decrease in noise, and the SNR increases. The size of noise in an average of the N trials 

equals to 1/√N R, where R represents the size of noise in a single trial (Luck, 2014). 

In the case of averaging, one should consider the number of trials in each condition. An 

unequal number can lead to a non-representative average, e.g., when averaging 40 and 20 

trials. In those cases, a weighted average is a possible solution. Another approach requires 

equaling the number of trials in each condition, for example, by a random selection or doing 

more averages by random permutations. In the case the difference between the number of 

trials is small (e.g., 40 and 41), one may decide not to distinguish between them. However, 

those cases should always be reported (Luck, 2014). The CDA is calculated as a difference 

between ipsilateral activity and contralateral activity that were averaged over the conditions 

(Vogel & Machizawa, 2004; Luck, 2014). 
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1.6 Meaning of Blink 
There are three types of blinks, voluntary, reflexive (in order to protect the eye) and 

spontaneous or endogenous (Wascher, 2015). The physiological role of the last type of blink 

is to maintain the tear film on the eyes. However, blinks occur more often than each 27 

second what is an average tear-break-up-time (Sweeney, Millar & Raju, 2013).  

Blink rate is affected by fatigue, task engagement or cognitive demand. Blinks are inhibited 

while the stimulus is expected, presented and processed. Wascher at al. (2015) carried out a 

set of experiments where they studied the blinking behavior in three experiments: spatial 

stimulus-response correspondence, change detection and continuous performance test. 

According to the obtained results, blink occurred at the same time frame after stimulus onset 

in go (manual response) and no-go trials, while in go trials they followed the manual 

response (button press). This indicated that the blinks were connected to the stimulus 

processing rather than to the motor-behavior itself.  

Saccades could occur during a blink. (Rottach, 1998). The CDA protocol requires lateralized 

view, so the difference in neural activities can be observed between hemispheres. Therefore, 

it is necessary to reject any trials where the gaze changed, or by other words, where were 

detected horizontal eye movements during the MA. Also, response time (RT) should be free 

of eye movement. The CDA lasts during the whole retention period so any horizontal eye 

movement which creates negative voltage at the contralateral hemisphere will corrupt the 

ERP waveform, including N2pc and CDA. The eye movement during the TA doesn’t 

influences CDA but they can affect the behavioral response of CDT. 

The question is how performance of CDT is changed when the subject changes the gaze and 

he or she does not see the TA laterally as saw the MA, but directly. We decided to run a pilot 

experiment with gaze change during TA of CDT in addition to comparing the performance 

from the CDA experiment with and without including trial with blinks during the TA. 
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2 The Aims of the Thesis 
The main aim of the thesis was an analysis of the neural measures and behavioral 

performance of the change detection task (CDT). To reach this goal, it was necessary to 

fulfill the following partial aims. 

1. Study of principles of measurement and processing of ERP components 

2. Identification and description of CDT related ERP components in MATLAB. 

3. Study of variability in ERP components and behavioral success due to changes in 

the EEG recordings processing and changes in the CDT protocol. 

The diploma thesis was a part of an ongoing research “Enhancing cognition and motor 

rehabilitation using mixed reality” supported by the Slovak Research and Development 

Agency (Korečko et al., 2019). 

 

3 Methods 

3.1 CDA Protocol 
The objective of the CDA protocol was to investigate the influence of training in VR on 

perceptual and cognitive performance of the VWM especially on the changes in filtering 

abilities with the aim to improve them. The CDA protocol was designed with two conditions, 

therefore treatment group and control group were formed. Only the treatment group 

underwent the VR training. This experiment was a part of the project APVV-16-0202, 

“Enhancing cognition and motor rehabilitation using mixed reality” (ECoReMiR) supported 

by the Slovak Research and Development Agency (Korečko et al., 2019). 

 

3.1.1 Procedure 

Each session of training or data recording started and ended with questionnaires. There were 

three types of sessions, CDT, CDA and CAVE, while CAVE was exclusively for treatment 

group. Order of sessions for treatment group in Kosice (KE) was CDT (CDT2), CDA1, five 

CAVE sessions, CDA2, five CAVE sessions followed by and CDA3. The CAVE session 

was directly preceded by CDA1 or CDA2 session and between CAVE sessions was at least 

one free day.  The control group had same order, only without CAVE sessions; CDT (CDT2), 

CDA1, one week pause, CDA2, one week pause, CDA3. 
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Questionnaire was divided into three sections, first section concerned general questions 

about participant, second was T-MENSTAT before each session (CDT, CDA or CAVE) and 

third was also T-MENSTAT after each session. They also contained questions about possible 

influences of mental states and cognitive performance (caffeine/alcohol intake, length of 

sleeping).  

 

3.1.2 Change Detection Task 

The same format of CDT with different parameters took place during the CDT and CDA 

sessions. CDT was performed on computer using script written in PsychoPy (Peirce & 

MacAskill, 2018). The objective was to memorize the orientation of the red rectangles 

(targets) and ignore blue and green rectangles (distractors). The rectangles were randomly 

placed on screen vertically, horizontally, or diagonally while their size was constant (0.5 cm 

x 1.5 cm). Their orientations were generated randomly and their counts on both hemifields 

were identical. The number of targets and distractors differed by a session type and are 

specified in the next two sub subchapters. The cue arrow was displayed for 200ms. After 

that, the span of attention (SOA) was randomly set from the interval 300 ms up to 500 ms. 

The memory array (MA) was present on the screen for 300 ms. The retention interval of 900 

ms was followed by a test array (TA) that stayed at the screen for the 3 seconds. 

 

3.1.3 CDT session 

Firstly, skin of participants was prepared with abrasive paste. Then, EOG electrodes were 

attached to above and below left eye for vertical eye movement - blinks detection, and next 

to outer canthi of both eyes for horizontal eye movement – saccades detection. Reference 

electrode was attached on left earlobe and ground electrode was attached on the neck at the 

left side. Next, signal test using the script in PsychoPy was performed to check EOG 

recording. Electrodes were connected to computer using g.TRIGbox of g.tec company 

(gtec.at).  

Secondly, participants subdue a practice of CDT containing instructions. 

Finally, CDT1 with EOG recording took place. Participants were seated 70 cm before the 

screen. CDT consisted of combinations of 2, 3 or 4 targets and 0 or 2 distractors. So, six 

combinations, with focus on the left or right hemifield (x2), under changed or same condition 

(x2), in 5 blocks with 2 repetitions in each. This sums up to 240 (6x2x2x5x2) trials. 

The whole session started and ended with a questionnaire. 
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Fig.  1 Schematic representation of procedural setting for CDA and CDT recordings. RB – response 
button, A – cue arrow, MA – memory array, TA – test array. The rectangle at the top of the figure 
represent screen, FD – photodiode attached to the gray square at the screen records the changes on 
the screen event and synchronizes EEG recordings and RB responses. The input is the PsychoPy 
script, the output is a CSV file with the CDT parameters and responses. 

 

3.1.4 CDA session 

The CDA session contained CDT in PsychoPy, EEG ad EOG recordings. Settings for EOG 

were same as in the CDT case without ground electrode on neck. The 4 pairs of electrodes 

(P3-P4, PO7-PO8, P7-P8 a O1-O2), Fz, Cz, Pz and two earlobe electrodes were placed 

according to the 10 -20 international system using the EEG cap available in two sizes.   

CDT for the CDA session consisted of 2 or 4 targets, and 0 or 2 distractors (therefore 4 

combinations: 2,0; 2,2; 4,0; 4,2), 40 blocks and no repetitions. With two possible hemifield 

and two change conditions it sums up to 640 trials.   

 

3.1.5 CAVE session 

The objective of the CAVE session was to train in visual stimuli filtering by using the game 

proprietary constructed in the VR environment represented by LIRKIS CAVE at the 

Technical University in Kosice. The later was built by twenty LCD panels with total size of 

2.5 m x 2.5 m x 3 m. The game was perceived three-dimensionally thanks to the 3D 

projection and 3D glasses.  

The training game Tower Defense was designed in Kosice as the gaming analogy for CDT 

with corresponding cognitive load. The aim is to shoot down the enemy red drones 
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representing the target while ignoring the friendly blue and green drones playing the role of 

distractors (Korečko et al., 2019). 

 

3.1.6 Participants 

The two non-randomized groups of 15 participants in each were created. The group in Kosice 

(KE) represented treatment condition with training in VR and the group in Bratislava (BA) 

represented control condition. In both groups, participants had to meet the same criteria. All 

participants subscribed the consent and were informed about the experimental procedure. 

Participants were right-handed between the ages of 19 and 24 (BA: mean = 21.8, SD =1.21; 

KE: mean = 21.1, SD = 1.1) with 3 women in BA group and 4 women in KE group. They 

had no known neurological issues and normal or corrected to normal vision. 

 

3.2 Preprocessing Methods for EEG 
Preprocessing was done in MATLAB (The MathWorks, Inc. 2021) and consisted of several 

necessary steps. The original script was provided and then edited by myself or by my 

supervisor. My colleague then generated the results for each participant according to this 

script. Together we evaluated results and selected the final preprocessing steps. 

The raw EEG data contained the noise from exogenous – interferences from electric devices 

and endogenous sources – muscle movement, or brain activity not connected to the task. 

Before analyzing the data, we had to filter out the relevant waveforms. The data visualization 

was done in MATLAB (The MathWorks, Inc. 2021), EDFBrowser (van Beelen, 2022) and 

AcqKnowledge (Biopac Systems, 2010).  

 

3.2.1 Noise Problem 

Even with detrending methods and filtering, the slow drifts were still present in the first few 

trials of each block of trials. This was caused by “flying” data during the pauses between 

blocks of trials, where the participant was moving, or electrodes were controlled/reattached. 

The recording often started before the drifting calmed. This caused that the detrending 

removed primarily the biggest drifts of pauses and since we used polynomial functions it 

couldn’t accommodate to lower drifting. Therefore, we decided to remove recorded data 

between blocks and only after that to start with preprocessing. Grace of this step, the 
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problematic detrending at the start of each block diminished. Consecutive detrending and 

filtering completely removed the slow drifts while preserving the CDA data above 0.01Hz. 

The cutting was performed on the raw data by the MATLAB script when the time difference 

between two blocks of trials was greater than 10 seconds. The start of cutting was 5 s after 

the TA onset of the last trial of the previous block and end of cutting was 5 s before the first 

event onset of the following block. The responses were valid only until 3 sec after the TA 

onset, therefore any later response events were considered missed. 

After the data was cut, the endpoints on both sites were joined and smoothed by 5-point 

moving average method using the interval of four points prior and four points after the joint. 

This procedure created new data that were preprocessed in the main MATLAB processing 

chain. 

 

3.2.2 Removal of Slow Drifts 

Standardly, a high pass filter of 0.1 Hz cut-off is used for removal of slow drifts, but there is 

a possibility that a slow-frequency part of CDA is lost due to this filtering. The way how to 

minimize the loss of this slow frequency is by using a polynomial function for detrending. 

We compared five different ways: high pass filter 0.1Hz, 0.01 Hz, 0.01 Hz and spline (de 

Cheveigné, & Arzounian, 2018), 0.01 Hz and spline with central step, 0.01 Hz with 

Savitzky-Golay filter (Press & Teukolsky, 1990). 

Nodes (ss) for a spline used in (de Cheveigné, & Arzounian, 2018) were set at the time 

matching the beginning of each window from which the mean was computed: 

 
ss(ch,j) = mean(data(chanArray(ch), win(j):win(j)+winpnts-1)) 

 

We defined the spline with the central step as a spline made from nodes that sit in the middle 

of the window from which the mean is computed: 

 

ss(ch,j)=mean(data(chanArray(ch),win(j)-(winpnts/2):win(j)+(winpnts/2)-1)) 

The fitted spline was calculated using the MATLAB spline function performing cubic spline 

interpolation: 

spline_fit = spline(1:nwin, ss(ch,:),xf);                                  

Then, the fitted data were subtracted from original ones. 

 

The moving window length was set to 1500 points being approximately 6 seconds (sampling 

rate 256 Hz) with the step of 500 points representing approximately two seconds.   
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okno winpoints =2000, 1000, prekryv winstep = 500 
frequency - 256Hz; 1000:256 = 3.206s -> slow wave – 5s 
5s ~ 5*256 = 1280 winpoints 
6s ~ 6*256 = 1536 

 

We utilized the first-order Savitzky-Golay (SG) filter (Press & Teukolsky, 1990) with the 

same window length of approximately 6 sec. After applying this filter, we further smoothed 

the filtered EEG traces with the moving average method using the span of the half of the 

used window, that is approximately 3 sec. The moving average method is a form of the SG 

filtering, so by other words we applied two SG filters.  

 
filtered=sgolayfilt(data(chanArray,:)', 1, winpnts-1)'; 
for ch=1:numchan 

filtered (ch)=smooth(filtered (ch),winpnts/2);  
end  
data(chanArray,:)=data(chanArray,:)- filtered; 
 

 

3.2.3 Filtration 

The low pass filter with the cut-off frequency of 22 Hz was firstly used to validate the effect 

of the best preprocessing methods together with a notch filtering of alpha oscillations of [8 

12] Hz. As a results of this validation and several methods testing, for the final processing 

of CDA, the low-pass filter with the 8 Hz cut-off frequency was applied. 

 

3.2.4 EOG – Blinks and Saccades Rejection 

The EOG data was used to reject the trials with eye movements or blinks before and during 

the MA. Initially, the filters were applied at EOG; high-pass at 0.01 Hz and low-pass at 25 

Hz with stop at 30 Hz. The EOG artifact should not be present between 300 ms before MA 

onset and 700 ms after it. 

There were programmed two ways of dealing with EOG artifacts: detecting blinks and 

saccade trials or only detecting trials with a saccade. 

The artifact rejection was searching for blinks at VEOG using the peak-to-peak method with 

the moving window of 200 ms, the time step of 50 ms, and the peak-to-peak threshold at 100 

µV. The HEOG was filtered for saccades by a step function method where the moving 

window lasts 400 ms, the time step had 10 ms, and the step threshold was set at 30 µV. 
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3.2.5 Artifacts 

We programmed several artifacts detectors in MATLAB. Also, we proof-compared the 

detected artifacts with those obtained by automatic BVA artifact detection. 

Foremost, baseline correction was done on copy of each trial and then the artifacts detection 

took place. The original trials still contained baseline. 

 

Peak-to-peak 

The minimum and maximum peaks in the window were computed and their difference in 

absolute value was compared to the threshold. The moving window was 15 ms wide, with 

15 ms time step, and 80µV peak-to-peak threshold. Therefore, there was no overlap among 

moving windows.  

 

Step function 

We computed the mean amplitudes prior and after pointer index as a middle of the 200 ms 

moving window, and compared their difference to the threshold of 50µV. The window was 

then moved by 10 ms and the process was repeated. 

 

Amplitude-beyond limits – set individually  

The initial threshold amplitude was set at 75 µV, but at the end we decided to manually set 

threshold for each subject and each CDA specifically. The maximal absolute amplitude 

during trial was compared to the threshold. 

 

Low activity 

The low-activity was considered as an activity in the range of 0.5 µV during 250 ms 

window, so it was detected by a moving window of 250 ms with time step of 50 ms.  

Difference of the highest and lowest amplitude in the window was compared to the 0.5 µV 

threshold.  

 

We created a matrix containing information about every detected artifact. In next step, it was 

possible to either reject all channels if an artifact was detected at least at one channel or reject 

only the pair of channels. Computerizing these steps allows easy switch between these 

approaches. The second approach required a weighting of electrodes. 
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3.2.6 Weighting of Electrodes 

Each electrode contributed into ipsilateral and contralateral waves. Rejecting only pair of 

trial channels in the case that an artifact is at one of them causes unequal number of trials for 

each condition. Therefore, it might influence the final CDA by adding more strength into 

data from those conditions that had less trials (Error! Reference source not found.). 

Because of that, it was necessary to determine number of trials separately for each condition 

and each channel and then propagate this information via the whole process of estimating 

CDA waveforms. The weighted average formula is 

� �  ∑ �������	
∑ �����	

  
�����	,…,� � 0, 

and in case of the normalized weights 

� �  � �����
�

��	
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Furthermore, the programmed algorithm allowed to decide about which pair of electrodes 

were included in the final processing. 

 

Fig.  2 The schematic explanation of the difference between average and weighted average. The 
average of E1 containing 100 samples and E2 containing 1 sample is P1, what is practically an 
average of two samples. But the weighted average P2 is an average of 101 samples. So, each sample 
has equal weight in contrast to P1 where E2 has a bigger weight than any of the samples in E1. 

 

3.2.7 Order of Baseline Setting on Data 

As was explained in 1.4.2, baseline correction should be done before detecting artifact by 

using the absolute value of voltage. However, we used the peak-to-peak detection and step 

function for treating artifacts. Both of those are able to overcome the effect of the baseline. 

Therefore, the baseline correction was done after filtering and artifact rejection during the 

CDA estimation. 

200 ms before stimulus onset. 

 

E2 - 1 

E1 - 100 

P1 
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3.2.8 CDA estimation 

The electrodes pair are O1/O2, P3/P4, PO7/PO8, P7/P8.  

The cue arrow at the left hemifield includes 8 conditions, same for the right hemifield. We 

had four set sizes (2-0, 2-2, 4-0, 4-2), with or without distractor, and with the same or 

changed TA, that is 16 combinations for 8 electrode channels. 

At the start, the algorithm takes values from each trial of a given set size, given channel and 

given time position and averaged them. It means it averaged the trials separately at each 

electrode for a given condition and given set size 

 

Fig.  3 Schema of contralateral waveforms averaging 

 

Next, the pair electrodes are combined by the weighted average for the ipsilateral and 

contralateral waveforms. The contralateral waveforms required counting trials with cue on 

the left hemifield and recording at channels from the right hemisphere and vice versa. The 

ipsilateral waveforms included recordings from same sites as the cued hemifield, for the 

right-right and left-left combinations. We obtained ipsilateral and contralateral matrixes, and 

by computing their difference also a difference matrix. 

 

[8, 4, 333]  same 

   H – 1, 2, 3, 4, 5, 6, 7, 8 

     change 

 

        weighted average - same / change 
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The third (weighted) average covered change and no-change condition and was calculated 

separately for every matrix from the previous step. We compared two approaches, firstly we 

averaged the difference matrix and we called it D matrix. Secondly, we made a difference 

(aD matrix) from averaged ipsilateral and averaged contralateral matrices for the change/no-

change condition. Mathematically, the average of differences and difference of averages is 

equal. It was confirmed by computing the norm difference between D and aD, which 

converged to zero (7.3940���	). 

 

Finally, we obtained three waveforms (ipsilateral, contralateral and their difference) for each 

of set sizes. 

This process was performed on every participant. Furthermore, the average by day over all 

participants from one recording site (KE or BA) and average of all days was performed. 

 

3.3 Creation of Final ERP  
 

The insensitive zone for the area under curve (AUC) was set as epsilon value equal to -0.5 

µV. The detection area for the N2pc was adjusted after visual scan of CDAs according to 

the interval of 230 ms to 350 ms after the MA onset. The area for CDA was determined to 

be from 450 ms up to 850 ms after the MA was presented. The AUC was computed as a sum 

of values on the CDA curve. The negative sign corresponds to the physiologic properties of 

the CDA. 

 

3.4 Performance and CDA 
The CDA measure is the AUC with the insensitive area set in interval [-0.5 µV, 0.5 µV]. We 

compared the difference between CDA created from correct trials and CDA built from the 

incorrect trials only. 

 

3.5 Effect of Eye Blinks on Performance 
As was already said, the original design was not capable to distinguish the case of blink 

when saccadic eye movement was present. The CDA protocol was designed to obtain lateral 

differences in response to seeing and memorizing the MA, therefore any eye movements 
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were prohibited. Since we couldn’t distinguish the saccades from blinks, we assumed that 

every blink contained saccade. Several participants were blinking extensively during specific 

periods around the TA what caused to reject many trials for performance as well as for CDA 

waves. We wanted to research under which conditions those trials could be permitted into 

the final analysis and how they can influence results. 

Therefore, we manipulated task conditions by admitted which trial could, or could not, to be 

marked as valid. Firstly, we used the original data from the main experiment and compared 

the performances in case that any eye movement were excluded with the performances of 

trials included blinks and saccades from the onset of TA until 500 ms after. This 

corresponded to possibility that the participant looked on cued hemifield when the TA was 

shown.  

Secondly, we decided to research the change in performance when the participant is 

instructed to look on the TA. In this case, three different results were possible: performance 

will be better indicating that looking on the TA make recall of the MA easier, performance 

will be same, or performance will be worse suggesting recall of the MA is harder when the 

point of gaze is changed. The experiment was designed with an eye-tracker as the tool to 

evaluate whether participant fulfilled the instructions with changing or fixing the point of 

gaze. However, after the preparatory work (research, scripts) was done, it was discovered 

the license for available eye-tracker was nonexistent and the manufacturer refused to provide 

one because the available eye tracker was obsolete. The alternatives suggested by 

manufacturers were beyond the financial limit of the project. Later in the time, another eye-

tracker was available but because of logistics of that time (healthy issues and COVID 

restrictions) it was not possible to use it. Therefore, the original design was simplified, and 

it represented the pilot research instead of fully autonomous research. Since there was not 

the possibility to scientifically evaluate the precision of fulfilling gaze instruction, we decide 

to add the subjective evaluation into the post-questionnaire. In this way, the participants had 

the possibility to review and evaluate their performance, how they fulfilled the instructions 

and compare the two conditions they underwent.  

 

3.5.1 Eye Blinks during TA in CDA session  

Computing performance and testing significance of differences was done in MATLAB. 

We regrouped data from both groups – treatment and control – into to two conditions – blinks 

and no-blinks. 
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Firstly, we detected blinks and eye movements in trials in the whole interval until the TA 

event. These trials were excluded, and the rest defined Set 1. 

Secondly, we detected blinks and eye movements within Set 1 from TA until 500 ms after 

TA (TA + 500 ms), even though the blinks and/or eye movements started at the end of the 

interval. Trials containing these artifacts were referenced as Set 2. 

Thirdly, we evaluated Set 2 by two conditions; the number of trials in Set 2 shall be higher 

than 20 and at the same time lower than 90% of Set 1. Trials fulfilled the conditions stayed 

in Set 2 and were compared with corresponding subject, set size, day, etc. The value of 90% 

was heuristically set as an expected change between blink and no-blink conditions. 

Finally, we tested the percentual difference of performance and Cowan K (a measure of 

memory capacity) between the combinations of day and set size using the unpaired two-

sample t-test. 

 

3.5.2 Pilot CDT Experiment 

The CDT procedure of the main experiment was modified to test the difference in 

performance between blink and no blink conditions by evaluating the role of saccadic eye 

movement in performance. 

Two conditions within subject experiment used the original CDT with one set of original 

(FF) and one set of modified instructions (ZZ). In the case of modified instructions, the 

participants were asked to look at the cued hemifield after the TA onset without blinking.  

The questionnaire of the original experiment was enriched by questions about eye conditions 

and subjective evaluation of the performance. 

 

Stimuli 

The three scripts in PsychoPy2 from the original experiment were reused. One script was 

edited for training with the instruction about the gaze change (ZZ), and one was for the fixed 

gaze (FF) training with instructions, and one for data acquisition were identical to the 

original ones. The scripts updated to the higher version PsychoPy3 for an offline distribution 

were not used because the correct behavior on the different platforms, hardware architectures 

and with the software dependencies were not guaranteed by PsychoPy developers and the 

online distribution did not support the programmed PsychoPy experiments, only those 

created by a Builder interface (psychopy.org). 
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Targets were red rectangles and distractors were blue or green rectangles with height of 1.5 

cm and width of 0.5 cm. The field in which the rectangles were shown on each hemifield 

was 7.6 cm tall and 4.8 cm wide. The minimal distance from vertical centerline to the closest 

possible rectangle was 1.5 cm. 

The CDT for both conditions consisted of 2, 3, or 4 targets and any or 2 distractors with 2 

repetitions and 5 blocks, therefore 240 trials. They were randomly grouped into blocks, with 

short pauses (max 2 min, decided by participant) between them. One CDA took 

approximately 25 min. 

 

Participants 

For the pilot experiment, the participants were the only ones accessible during the COVID-

19 restrictions. The 4 participants (2 women; ages 24, 58, 29,58), were right-handed, college 

educated with normal or corrected to normal vision without any previous brain injury.  

 

Data acquisition 

The experiment ran on notebook with refresh rate 60 Hz, screen width 34.5 cm, and 

resolution 1366x768.   

 

Procedure 

Participant signed informed consent after being introduced to the procedure of the 

experiment. Subsequently, they were pseudo-randomly assigned the order of conditions; one 

participant had a random order while the next one had the inverse order of the conditions to 

the previous participant. The order of participant was randomized. Then, they filled the first 

part of the questionnaire. 

Participants were seated 70 cm in front of the screen and asked to not lean forward. They 

answered using a computer mouse where a right button represented the change of the TA 

and left button no change. Depending on what was easier to them, they either used one hand 

or both hands to control the mouse button. By this way, we diminished the mental effort 

connected with focus on remembering which button is controlled by which finger or hand. 

Firstly, practice session was held with instructions of the first type of gaze (change or fixed 

gaze) with 1 or 3 targets and any or 2 distractors, and it took approximately 5 minutes. 

Secondly, CDT A took place. Thirdly, this was followed by a pause of 15 minutes for 

refreshing and eye relaxation. Fourthly, after pause a practice session with instructions of 

the second type of gaze (fixed or change gaze) with the same parameters was held. Again, it 
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lasted about 25 minutes. At the end, they answered to the second part of the questionnaire 

including their subjective opinion about their experience.  

The total time of measurement per participant was one and half hour. 

 

Methods of Analyses 

We analyzed a subjective evaluation of the participants with regards to the difficulties of 

both gaze conditions. 

The accuracy and memory capacity were calculated for each set size and gaze condition. The 

accuracy determined as a percentage of correct trials in a given set size. The memory 

capacity was computed as a Cowan’s K that is a number of items stored in visual working 

memory (Vogel & Machizawa, 2004). The hit rate was corrected by a false alarm rate and 

multiplied by a set size (2, 3 or 4).  Subsequently, the descriptive statistics and the parametric 

paired sample t-test was performed after the normal distribution of the data was confirmed 

by the Saphiro-Wilks test for both accuracy and memory capacity. The JASP (JASP Team, 

2022) software was used for statistical analyses. However, we are aware that the low number 

of participants is not sufficient.  

 

4 Results 

4.1 Preprocessing methods for EEG 
The CDA waveforms were built only from a subset of correct and incorrect trials, therefore 

aby trial without response or with response after the specified time frame of 3 seconds were 

not included into suitable trials. 

 

4.1.1 Cutting 

The cutting removed EEG data recorded during pauses from which the excessive drifting 

propagated into the subsequent trials. Data were cut individually for each subject. For 

example, ones’ original data contained 1 104 128 samples what represent 71min 53 sec, cut 

data had 964 352 samples corresponding to 62 min 47 sec. 
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Fig.  4 EEG waveforms of one subject, applied low-pass filter at 8 Hz, channel P3, unshortened data 
starting at 906 sec with the duration of 20 sec. Green – high-pass filter 0.01 Hz, there are present 
slow waves with approximately 5 sec long period. Red – high-pass filter 0.1 Hz, slow waves are 
diminished. Blue – detrended by spline and high pass filter 0.01 Hz, results are similar to the case 
when the high-pass filter of 0.1 Hz is applied. 

Original data 
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Fig.  5 EEG waveforms of same subject and of the same time frame as in Fig.  4,  applied low-pass 
filter 8 Hz, channel P3, cut data from 786 sec with duration of 20 sec. Green – high-pass filter 0.01 
Hz, Red – high-pass filter 0.1 Hz, Blue – detrended by spline and high-pass filter 0.01 Hz 

 

4.1.2 Removal of Slow Drifts 

The difference between 0.1 Hz and 0.01 Hz can be seen in subplots A and B of Fig. 6, 

respectively. Slow drifts are present in the sub-plot A, while higher high-pass filter was able 

to reduced them. In Fig.  7 we can see a visually similar result of applying high-pass filter 

of 0.1 Hz (red waveform) and detrending by polynomial spline function (de Cheveigné & 

Arzounian, 2018) with the high-pass filter of 0.01 Hz (blue). We decided to use detrending 

in combination with the high-pass filter of 0.01 Hz instead of the high-pass filter of 0.1 Hz, 

therefore, we lowered the risk of losing slow-frequency components of CDA.    

Cut data 
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Fig. 6 EEG waveforms of one subject, window of 15 sec, applied low-pass filter of 22 Hz, slow 
waves of approximately 5 sec period are present in data. A – high-pass filter 0.01 Hz, B – high-pass 
filter 0.1Hz. 

 

Fig.  7 EEG waveform of one subject, window of 15 sec, applied low-pass filter of 8 Hz, Green – 
high-pass filter of 0.01 Hz, Red – high pass-filter of 0.1Hz, Blue – detrended by spline smoothing 
and filtered by the high-pass filter of 0.01 Hz. 

 

 

Fig.  8 Comparison of detrending methods: Red – EEG data 3640.5 sec – 3680.5 sec, Blue – spline, 
Green – spline with central nodes, Black – Savitzky-Golay  

A B 
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Fig.  9 Comparison of detrending methods: Red – EEG data 42.5 min – 52.5 min, Blue – spline, 
Green – spline with the central nodes, Black – Savitzky-Golay filter. 

 

After comparing the spline, central spline and Savitzky-Golay methods for detrending, we 

decided to use the Savitzky-Golay filter. The Savitzky-Golay filter removed the slow drifts 

in the data while it did not affect the EEG data without slow drifts when applied on them. 

 

4.1.3 Filtering 

 

Fig.  10 Influence of the 0.01 Hz high-pass filter and 8 Hz low-pass filter. Red – only Savitzky-Golay 
detrending, Blue – Low-pass and high-pass filters applied on detrended data. 
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Fig.  11 Comparison of high-pass filters: Blue – 8 Hz, Red – 22 Hz and notch filter [8, 12]. Both 
filters filtered out the alpha oscillations. 

The application of the 8 Hz low pass filter smoothed the CDA what simplified the visual 

analysis. The values of AUC for CDA did not differ when the low pass filter of 8 Hz was 

used instead of the notch filter for removing the alpha oscillation with the low pass filter of 

22 Hz. Though, the later combination of filters had an effect on early ERPs, see 4.2.2. 

 

 

4.1.4 Blinks, Saccades and Other Artifacts  

All trials with at least one detected ocular artifact (blink, saccade) in EOG recording were 

rejected. The remaining trials were searched for other artifacts defined in 3.2.5.  

The rejection after EOG artifact detection included all eight channels of a given trial. We 

rejected 619 trials of CDA1, 657 trials of CDA2, 809 trials of CDA 3 in KE group and 312 

trials of CDA1, 342 trials of CDA 2, 312 trials of CDA3 in BA group. 

The EEG artifact detection found markedly more artifacts in KE group than in BA group. 

The low activity was not detected at all in neither group and similarly peak-to-peak artifacts 

occurred barely (21 in KE, 12 in BA). 

 

 

CDA 1 KE – EOG Artifact Rejection and EEG artifact detection 

  

Suitable 

trials  

EOG 

artifacts 

# (% of 

rejected) 

 

# of detected 

artifacts 

 

 

P2p 

 

Step 

 

Beyond 

limit 

 

Low 

activity 

# of trials 

with at 

least one 

artifact 

AB65 640 43 (6.56) 60 

 

0 49 11 0 39 

BB67 639 115 

(18.13) 

50 0 31 19 0 27 
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Tab. 1 Statistics of rejected EOG artifacts and detected artifacts of CDA 1 for all subjects in the KE 
group. 

 Tab. 2 Statistics of rejected EOG artifacts and detected artifacts of CDA 2 for all subjects in the KE 
group. 

 

DK 52 640 189 

(28.91) 

104 2 24 78 0 53 

DL 51 640 26 (4.06) 21 0 10 11 0 13 

KB 55 640 114 

(16.72) 

56 0 16 40 0 10 

LM 61 640 22 (3.13) 4 0 2 2 0 3 

MB 53 640 12 (1.88) 29 1 13 15 0 15 

MB 54 640 17 (2.66) 23 0 10 13 0 15 

MD 66 640 7 (1.09) 30 0 18 12 0 12 

MM 60 639 7 (1.25) 138 0 23 115 0 37 

MV 57 639 41 (6.25) 89 0 15 74 0 67 

PJ 62 640 6 (0.94) 0 - - - - 0 

PL 56 640 7 (1.09) 22 0 4 18 0 14 

SK 63 640 8 (1.25) 8 0 0 8 0 1 

SO 69 640 5 (0.78) 6 0 1 5 0 4 

CDA 2 KE – EOG Artifact Rejection and EEG artifact detection 

  

Suitable 

trials  

EOG 

artifacts 

# (% of 

rejected) 

 

# of 

detected 

artifacts 

 

 

P2p 

 

Step 

 

Beyond 

limit 

 

Low 

activity 

# of trials 

with at 

least one 

artifact 

AB65 640 72 (9.84) 143 8 73 62 0 54 

BB67 640 127 (19.53) 0 - - - - 0 

DK 52 640 159 (24.22) 51 0 15 36 0 6 

DL 51 638 17 (2.66) 116 0 36 80 0 63 

KB 55 640 31 (4.53) 166 0 32 134 0 88 

LM 61 638 28 (3.75) 10 0 4 6 0 6 

MB 53 640 21 (2.81) 20 0 5 15 0 7 

MB 54 638 29 (4.84) 0 - - - - 0 

MD 66 640 17 (2.34) 4 0 1 3 0 2 

MM 60 640 8 (1.25) 50 0 14 36 0 14 

MV 57 636 118 (16.72) 11 0 5 6 0 2 

PJ 62 640 14 (2.19) 193 0 44 149 0 134 

PL 56 640 5 (0.78) 0 - - - - 0 

SK 63 640 11 (1.72) 2 0 0 2 0 1 

SO 69 635 3 (1.25) 22 0 0 22 0 6 

CDA 3 KE – EOG Artifact Rejection and EEG artifact detection 

  

Suitable 

trials  

EOG 

artifacts 

# (% of 

rejected) 

 

# of detected 

artifacts 

 

 

P2p 

 

Step 

 

Beyond 

limit 

 

Low 

activity 

# of trials 

with at 

least one 

artifact 

AB65 640 50 (7.50) 158 0 128 30 0 94 

BB67 640 146 (22.81) 17 0 0 17 0 15 
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Tab. 3 Statistics of rejected EOG artifacts and detected artifacts of CDA 3 for all subjects in the KE 
group. 

Tab. 4 Statistics of rejected EOG artifacts and detected artifacts of CDA 1 for all subjects in the BA 
group. 

 

DK 52 640 132 (20.16) 38 0 15 23 0 9 

DL 51 639 26 (3.44) 26 0 11 15 0 16 

KB 55 640 92 (13.59) 63 0 1 62 0 24 

LM 61 640 37 (5.00) 15 0 3 12 0 14 

MB 53 640 14 (2.03) 0 - - - - 0 

MB 54 640 4 (0.63) 0 - - - - 0 

MD 66 640 5 (0.78) 17 0 7 10 0 12 

MM 60 640 7 (1.09) 61 0 28 33 0 36 

MV 57 639 270 (36.09) 31 0 9 22 0 12 

PJ 62 640 10 (1.41) 99 8 48 43 0 14 

PL 56 640 1 (0.16) 68 0 8 60 0 59 

SK 63 640 5 (0.78) 55 2 22 31 0 35 

SO 69 640 10 (1.56) 4 0 1 3 0 3 

CDA 1 BA – EOG Artifact Rejection and EEG artifact detection 

  

Suitable 

trials  

EOG 

artifacts 

# (% of 

rejected) 

 

# of detected 

artifacts 

 

 

P2p 

 

Step 

 

Beyond 

limit 

 

Low 

activity 

# of trials 

with at 

least one 

artifact 

DJ 37 640 0 (0) 0 - - - - 0 

FP 22 640 49 (7.03) 6 0 1 5 0 6 

JM 24 640 13 (2.03) 0 - - - - 0 

JP 20 640 42 (6.56) 15 0 7 8 0 9 

KK 35 640 2 (0.31) 0 - - - - 0 

MK 21 640 22 (3.44) 24 0 10 14 0 6 

MP 27 640 2 (0.31) 83 0 0 83 0 47 

MU 36 640 18 (2.66) 5 0 2 3 0 4 

OK 34 640 7 (1.09) 13 0 6 7 0 7 

PK 38 640 11(1.56) 0 - - - - 0 

RS 30 640 22 (3.44) 280 0 3 277 0 108 

SD 28 640 4 (0.47) 1 0 0 1 0 1 

SS 32 640 13 (1.72) 0 - - - - 0 

TM 33 640 22 (2.34) 31 0 9 21 1 9 

VF 29 640 85 (13.13) 1 0 0 1 0 1 

CDA 2 BA – EOG Artifact Rejection and EEG artifact detection 

  

Suitable 

trials  

EOG 

artifacts 

# (% of 

rejected) 

 

# of detected 

artifacts 

 

 

P2p 

 

Step 

 

Beyond 

limit 

 

Low 

activity 

# of trials 

with at 

least one 

artifact 

DJ 37 640 0 (0) 25 0 12 13 0 15 

FP 22 640 35 (5.31) 6 0 4 2 0 3 

JM 24 640 5 (0.63) 2 0 0 2 0 2 

JP 20 640 56 (8.59) 1 0 0 1 0 1 

KK 35 639 6 (1.09) 8 0 0 8 0 8 
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Tab. 5 Statistics of rejected EOG artifacts and detected artifacts of CDA 2 for all subjects in the BA 
group. 

 

Tab. 6 Statistics of rejected EOG artifacts and detected artifacts of CDA 3 for all subjects in the BA 
group. 

 

 

4.1.5 Weighting and CDA Creation 

We removed only the pair of electrodes, not all channels in the case of a detected trial at one 

of them. This resulted into two facts. A positive one, we could include into CDA higher 

number of trials, therefore increasing SNR. And a negative one, we had to overcome the 

problem with different number of trials under each pair of electrodes counted into CDA. 

Furthermore, this unequalness was transferred from individual level into averages by day 

MK 21 640 12 (1.72) 1 0 0 1 0 1 

MP 27 640 17 (2.19) 39 0 1 38 0 19 

MU 36 640 28 (4.06) 44 0 0 44 0 26 

OK 34 639 20 (3.28) 2 0 1 1 0 1 

PK 38 639 10 (1.72) 0 - - - - 0 

RS 30 640 19 (2.97) 55 0 4 51 0 31 

SD 28 638 13 (2.03) 137 0 1 136 0 73 

SS 32 640 1 (0.16) 30 0 2 28 0 18 

TM 33 640 67 (8.75) 15 0 1 14 0 14 

VF 29 639 53 (7.34) 29 0 4 25 0 19 

CDA 3 BA – EOG Artifact Rejection and EEG artifact detection 

  

Suitable 

trials  

EOG 

artifacts 

# (% of 

rejected) 

 

# of detected 

artifacts 

 

 

P2p 

 

Step 

 

Beyond 

limit 

 

Low 

activity 

# of trials 

with at 

least one 

artifact 

DJ 37 640 4 (0.63) 10 0 3 7 0 6 

FP 22 640 26 (3.75) 55 0 12 43 0 32 

JM 24 640 7 (0.78) 1 0 0 1 0 1 

JP 20 640 18 (2.81) 33 9 12 12 0 12 

KK 35 640 4 (0.63) 75 0 6 69 0 37 

MK 21 640 10 (1.56) 4 0 2 2 0 2 

MP 27 640 7 (0.78) 95 2 8 85 0 52 

MU 36 639 6 (1.09) 4 0 2 2 0 2 

OK 34 640 18 (2.81) 6 0 3 3 0 4 

PK 38 639 5 (0.94) 3 0 2 1 0 2 

RS 30 640 69 (10.63) 10 0 1 9 0 9 

SD 28 640 22 (2.97) 8 0 5 3 0 2 

SS 32 640 2 (0.31) 0 - - - - 0 

TM 33 640 26 (3.91) 4 1 1 2 0 2 

VF 29 640 88 (12.19) 1 0 1 0 0 1 
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over all participants in corresponding sites. As a resulting tool, we programmed a weighted 

average method that solved the negative outcome.  

Each trial that was not excluded after EOG artefact rejection, contributes to the CDA from 

the recorded electrode sites. In the tables Tab. 7  and Tab. 8 are counted all the time series 

from the electrodes of the contralateral site that are used for computing contralateral activity 

(maximally 640 trials per electrode per set size), furthermore they represent the weights by 

which each participant was included into averaged contralateral activity. Since we rejected 

the trials on whole electrode pair, we obtained equal number of trials that enters into 

ipsilateral activity. The CDA computed as a difference of ipsilateral and contralateral 

activities is therefore built from two times of number of contralateral trials (maximally 1280 

per set size). The 4 set sizes (2,2; 2,0; 4,2; 4,0) used together maximally 5120 time series or 

640 trials recorded on 8 electrode sites. Those numbers related to one participant and one 

CDA session. The maximal number of used trials for 15 participants and 3 CDA sessions 

was 28800 trials recorded on 8 electrodes, therefore 230400 time series per group (KE and 

BA). The total number of 221386 time series were used in BA group and 211472 time series 

in KE group for a CDA averaged by all days. 

The weights were also calculated for electrode and set size when building CDA for each 

participant. Due to the large amount of those data (4 set sizes, 4 electrodes sites on each 

hemisphere, 3 CDA session, 15 participants per treatment condition - KE/BA), they are not 

published in this thesis.  

This approach increased the number of used trials and therefore, the SNR. For example, the 

artifacts of participant AB 65’s CDA3 were located primarily on electrode pair of P3/P4 

what led to 131, 122, 126, 132 time series for 2,2; 2,0; 4,2; 4,0 set sizes respectively. If we 

rejected the whole trial when the artifact was located at least at one electrode, the weights 

for contralateral activities would be 524, 488, 504, 528 for respective set sizes, what is less 

by 47 (8.2%), 60 (10.9%), 48 (8.7%), 33 (5.9%) time series respectively.  

 

 

CDA 1  

KE 

2,2 2,0 4,2 4,0 

AB65 584 599 566 592 

BB67 517 495 533 521 

DK 52 452 380 463 457 

DL 51 584 611 619 526 

KB 55 547 531 499 532 

LM 61 607 632 639 599 
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MB 53 623 622 619 625 

MB 54 607 609 629 628 

MD 66 631 624 629 630 

MM 60 617 612 608 614 

MV 57 580 589 585 569 

PJ 62 640 632 632 632 

PL 56 629 624 633 629 

SK 63 632 632 628 632 

SO 69 632 631 636 636 

Sum 8882 8823 8918 8822 

 

CDA 2 

KE 

2,2 2,0 4,2 4,0 

AB65 563 543 544 573 

BB67 520 512 520 508 

DK 52 477 503 460 480 

DL 51 594 602 607 613 

KB 55 591 572 571 588 

LM 61 617 618 601 620 

MB 53 618 623 627 608 

MB 54 604 596 616 620 

MD 66 624 623 632 618 

MM 60 632 628 617 625 

MV 57 528 518 530 552 

PJ 62 579 585 592 590 

PL 56 640 628 636 636 

SK 63 611 632 636 636 

SO 69 621 628 637 628 

sum 8819 8811 8826 8895 

 

CDA 3 

KE 

2,2 2.0 4.2 4.0 

AB65 571 548 552 561 

BB67 487 480 513 479 

DK 52 510 521 494 499 

DL 51 624 606 610 613 

KB 55 527 547 545 543 

LM 61 611 602 604 601 

MB 53 616 620 636 636 

MB 54 636 636 636 636 

MD 66 630 633 631 634 

MM 60 632 613 632 611 

MV 57 425 406 372 415 

PJ 62 614 614 634 627 

PL 56 625 625 627 619 

SK 63 626 628 625 626 

SO 69 635 616 634 631 

sum 8769 8695 8745 8731 
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Tab. 7 Contralateral weights of three CDA in KE per participant. Numbers of time series used for 
building contralateral (or ipsilateral) waveforms in KE group summarized over the set sizes for each 
participant after rejecting artifacts on pair electrodes. The sum represented the total number of time 
series for averaged contralateral activity by day over all participants in KE group.  

 

CDA 1 

BA 

2,2 2,0 4,2 4,0 

DJ 37 640 640 640 640 

FP 22 575 581 604 614 

JM 24 616 624 636 632 

JP 20 594 598 585 606 

KK 35 640 640 640 632 

MK 21 599 631 630 602 

MP 27 612 628 612 625 

MU 36 617 632 615 623 

OK 34 635 627 630 633 

PK 38 632 632 628 628 

RS 30 572 569 557 551 

SD 28 632 640 639 636 

SS 32 620 632 632 632 

TM 33 619 616 625 625 

VF 29 564 552 555 552 

sum 9167 9242 9228 9231 

 

CDA 2 

BA 

2,2 2,0 4,2 4,0 

DJ 37 637 635 635 638 

FP 22 607 604 609 600 

JM 24 639 640 628 635 

JP 20 580 592 587 580 

KK 35 625 635 625 639 

MK 21 628 624 627 636 

MP 27 631 610 614 620 

MU 36 594 606 608 615 

OK 34 604 624 632 615 

PK 38 632 628 632 624 

RS 30 608 620 617 595 

SD 28 604 598 608 591 

SS 32 630 627 636 637 

TM 33 592 580 574 575 

VF 29 593 603 568 583 

Sum 9204 9226 9200 9183 

 

CDA 3 

BA 

2,2 2,0 4,2 4,0 

DJ 37 635 635 632 636 

FP 22 615 614 616 583 

JM 24 631 636 632 640 
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JP 20 614 620 626 616 

KK 35 613 621 622 620 

MK 21 636 627 627 628 

MP 27 611 619 619 626 

MU 36 635 636 627 632 

OK 34 626 627 607 624 

PK 38 636 640 628 630 

RS 30 582 580 568 549 

SD 28 614 621 623 620 

SS 32 632 640 640 640 

TM 33 615 608 611 624 

VF 29 568 560 560 559 

Sum 9263 9284 9238 9227 

Tab. 8 Contralateral weights of three CDA in BA per participant. Numbers of time series used for 
building contralateral (or ipsilateral) waveforms in BA group summarized over the set sizes for each 
participant after rejecting artifacts on pair electrodes. The sum represented the total number of time 
series for averaged contralateral activity over all participants by day in BA group. 

 

4.1.6 Final Preprocessing Chain 

Recordings from 4 pairs of electrodes were used for the final analysis. We applied the 

Savitzky-Golay filter with 1500 points window (~ 5.86 seconds), low-pass filter of 8 Hz with 

stop at 10 Hz and high-pass filter of 0.01 Hz with stop at 0.005 Hz. The EOG artifact 

detection for a given trial led to the rejection of EEG channels where only one EEG artifact 

was detected. In the case of EEG data, if an artifact was detected on an electrode of the trial 

only the corresponding pair of electrodes of that trial was rejected. After the visual analysis 

of the participants trials and detected artifacts caused by the amplitude-beyond limits, the 

individual threshold was set for this type of artifact (Železníková, 2021). The CDA was built 

by weighted averages where the weights came of the number of trials at the electrodes after 

the artifact rejection. The window for the CDA started 370 ms after the MA stimulus onset 

and ended at the 850 ms. 

 

4.2 ERPs after Preprocessing Methods 
Since each component of the preprocessing influence the resulting ERPs, it is not possible 

to change the preprocessing steps at the end when the ERP waveforms are not satisfactory. 

Therefore, to see the influence of different preprocessing methods, we consider our main 

chain as basic, and we are going to compare every time only one component while the rest 

is the same as in the final preprocessing chain.  
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The red crosses at figures of ipsilateral and contralateral activities of the CDAs represent the 

early ERPs, P1, N1, P2, N2pc. The main experiment was oriented toward CDA, and its 

analysis can be found in Železníková (2021). 

We compared the differences in ERP components caused by different preprocessing 

methods. The referential ERPs are those obtained from final preprocessing methods. 

However, some differences are visible only on individual levels because the averaging 

highlighted the common characteristics and suppressed individual features in the CDA. This 

can be seen on Fig.  12 and Fig. 13 displaying the CDA 3 of one participant and CDA 3 

averaged by all participants. 

  

 

Fig.  12 Contralateral and ipsilateral activity CDA 3 of subject SO 69 generated from the final 
preprocessing chain. Red crosses represent P1, N1, P2, N2pc respectively. 
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Fig. 13 Contralateral and ipsilateral activity of averaged CDA 3 by day over subjects in KE generated 
from the final preprocessing chain. Red crosses represent P1, N1, P2, N2pc respectively. 

 

We can see the ERPs after the main preprocessing chain in Fig. 13. The filtering suitable for 

smoothing the CDA, mainly the low-pass filter of 8 Hz, is inappropriate for the early ERPs. 

The ERP are extensively smoothed, P1 usually found at 100 ms after stimulus onset is 

located at the too early latency of 70 ms. Since the preprocessing are focused on the smooth 

CDA waveform estimate, we preferred correct estimate of slow ERP components over the 

faster early ERPs components. This caused the distortion of the early ERPs. Therefore, the 

statistics of the early ERPs was not performed because results would not have meaningful 

and correct interpretation.  

 

 

4.2.1 Cutting 

The assumption that the “flying” data recorded during pauses between blocks would 

propagate into CDA waveforms and the fact that the drifts in EEG data were present even 

after detrending resulted in cutting the pauses between blocks of trials from the EEG data. 

The discontinuity between blocks caused by data cuts was negligible in comparison with the 

raw uncut data when we were looking on detrended waveforms. 

Interestingly, the contralateral and ipsilateral waveforms of the CDA3 averaged by day over 

all participants in KE group did not differ when comparing the uncut and cut data. 
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Fig.  14 Overlays of contralateral (lighter color) and ipsilateral (darker color) waveforms created 
from cut (green) and uncut (blue) EEG data. The waveforms belong to the CDA 3 session averaged 
by 13 participants in the KE group. The 2 participants had more than 40 trials in the uncut EEG data, 
therefore, they were excluded from the averages. 

 

4.2.2 Detrending and Filtering 

 

Fig.  15 Comparison of filtering methods on contralateral waveforms of CDA3 averaged by day over 
all subjects in the KE group, selected set size of 2 targets and 2 distractors.  
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The graph on Fig.  15 show a minimal variance in the contralateral waveforms averaged by 

day and calculated for 2 targets and 2 distractor set size. The processing pipeline with alpha 

notch filter (dotted black waveform) flatten the amplitude of the N1 ERP component and 

stretch the waveform in both directions. This causes sooner peak of the P1 ERP component 

and later peak of the P2 ERP component in comparison of the final processing pipeline. The 

difference was minimal and could be overlooked. However, the three other waveforms (final, 

0.01 Hz, and 0.1 Hz) shared the shift in the early ERP latencies. In the case of the 

contralateral activity recorded during CDA 3 session and averaged by day over all 

participants in KE site, the P1 reached the peak at 77.3 ms, the N1 at 155.5 ms and P2 at 

245.3 ms after the stimulus onset. The typical peak for the P1 ERP component is between 

100 ms and 130 ms. 

 

 

Fig.  16 Comparison of filtering methods on CDA 3 averaged by day over all subjects in the KE 
group, selected set size of 2 targets and 2 distractors. 

 

The more visible effect of the filtering and detrending method can be seen at averaged CDA 

3 of KE group (Fig.  16).  The high pass filter 0.01 Hz was not sufficient in removing the 

unwanted slow drifts. Therefore, they propagated in the averaged CDA waveform and 

differed from the CDAs of the other filtering setups. The AUC values for N2pc and CDA of 

this specific example are accessible in Tab. 9 and Tab. 10 respectively. 
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N2pc auc Final 

preprocessing 

chain [µV] 

High pass 0.1 

Hz, no 

detrending [µV]  

High pass 0.01 Hz, 

no detrending 

[µV] 

Alpha notch [8 12] 

Hz, low pass [22 25] 

Hz [µV] 

SS2+2 

Distractors: 
 -35.659 -37.231  -39.772 -35.390 

SS2+0 

Distractors:  
 -21.918 -21.730  -23.046 -23.827 

SS4+2 

Distractors:  
 -19.846 -19.632  -20.146 -19.215 

SS4+0 

Distractors:  
 -19.246 -19.021  -18.991 -19.457 

Tab. 9 AUC values for N2pc of CDA3 averaged by day over all subjects in the KE group. The results 
were generated by the final preprocessing chain, a final chain with changed high pass filter to 0.1 Hz 
without detrending, a final chain with high pass filter 0.01 Hz without detrending and a final chain 
with alpha notch filter [8 12] Hz turned on with low pass filter of 22 Hz. The values are generated 
for all set sizes. 

 

CDA auc Final 

preprocessing 

chain [µV] 

High pass 0.1Hz, 

no detrending 

[µV]  

High pass 0.01Hz, 

no detrending 

[µV] 

Alpha notch [8 12] 

Hz, low pass [22 25] 

Hz [µV] 

SS2+2 

Distractors: 
-129.806 -137.189 -151.212 -126.714 

SS2+0 

Distractors:  
-120.111 -123.428 -124.884 -124.218 

SS4+2 

Distractors:  
-144.181 -145.751 -147.793 -145.503 

SS4+0 

Distractors:  
-155.718 -152.479 -154.122 -158.628 

Tab. 10 AUC values for CDA of CDA3 averaged by day over all subjects in the KE group. The 
results were generated by the final preprocessing chain, a final chain with changed high pass filter to 
0.1 Hz without detrending, a final chain with high pass filter 0.01 Hz without detrending and a final 
chain with alpha notch filter [8 12] Hz turned on with low pass filter of 22 Hz. The values are 
generated for all set sizes. 

 

 

4.3 CDA and Performance 
We analyzed the influence of the correctness of the responses on the averaged CDA 3 

waveforms of the trained group in KE. As can be seen on results, the CDA waveforms 

created by one type of responses did not differ from each other. In both cases, the set size of 

4 targets and 2 distractors reaches the highest AUC values, as well as their waveforms are 

located above the waveforms of all the other set sizes. Similarly, the waveforms of the set 

size of 2 targets and any distractors lie beneath the other set sizes waveforms and AUCs are 

the smallest for them. The results suggest that the CDA did not change depending on the 

correctness of the response. So, the visual memory capacity is not influenced by a 



50 

 

performance. However, the diverse number of trials that enters into CDA creation for 

corrects and incorrect factors influences the SNR; the total number of trials per set size 

differed by approximately 800 trials. 

 

 

Fig.  17 CDA 3 averaged by day over all subjects in the KE group. Upper plot was assembled only 
from trials with correct responses. Lower plot was assembled only from trials with incorrect 
responses. 

 

 O1/O2     P3/P4     PO7/PO8     P7/P8 
 Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect 

2,2 2201 2042      2187      2028       2191      2032       2190     2041      

2,0 2186 2027      2163      2004       2174      2015       2172      2021     

4,2 2194 2035      2180      2021       2192      2033       2179     2031     

4,0 2201 2043      2180      2022       2181      2023       2169      2017      
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Tab. 11 Number of trials used per electrode for unilateral activity (contralateral and ipsilateral) 
created by only correct or incorrect responses in CDT during CDA 3 session averaged by all 
participants in KE group. 

 

 

 Correct 
responses 

CDA3 AvgByDay  
KE [µV] 

Incorrect 
responses 

CDA3 AvgByDay  
KE [µV] 

AUC N2pc 
SS2+2 Distractors: -35.659 -34.460 
SS2+0 Distractors:  -21.918 -22.843 
SS4+2 Distractors:  -19.846 -19.142 
SS4+0 Distractors:  -19.246 -19.354 

AUC CDA 
SS2+2 Distractors: -129.806 -123.073 
SS2+0 Distractors:  -120.111 -119.358 
SS4+2 Distractors:  -144.181 -136.280 
SS4+0 Distractors:  -155.718 -151.448 

Tab. 12 AUC values for N2Pc and CDA 3 averaged by day over all participants in KE created by 
only correct responses or incorrect responses. 

 

 

4.4 Eye Blinks Effect on Performance 

4.4.1 Eye Blinks during TA in CDA Session 

 

The standard T-test performed in the MATLAB did not show any significant difference 

between Set 1 and Set 2 (trials with EOG artifacts in the interval [TA, TA + 500ms]. This 

suggests that the blinks did not influence the performance. 

 

 Trials with TA blinks [#] Trials without TA blinks [#] 
Total  8270 12031 
CDA 1 2280 3365 
CDA 2 2978 4255 
CDA 3 3012 4411 
Stimulus type - 22 1906 2915 
Stimulus type – 20 2346 3597 
Stimulus type – 42 1816 2505 
Stimulus type – 40 2202 3014 

Tab. 13 Counts of trials with and without blinks during TA. 
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 Trials with TA blinks Trials without TA blinks 
 Correct trials [%] Incorrect trials 

[%] 
Correct trials [%] Incorrect trials 

[%] 
Total mean 85.738 (±11.213) 14.280 (±11.239) 86.214 (± 10.838) 13.708 (±10.865) 
CDA 1 84.303 (±12.244) 15.657 (±12.286) 85.204 (±11.589) 14.768 (±11.621) 
CDA 2 87.071 (±10.107) 12.704 (±12.144) 86.761 (±10.433) 13.116(±10.492) 
CDA 3 85.526 (±11.625) 14.357 (±11.610) 86.457 (±10.928) 13.471 (±10.915) 
Stimulus type - 22 91.700 (±7.571) 8.239 (±7.590) 92.220(±7.318) 7.740 (±7.325) 
Stimulus type – 20 93.707 (±6.503) 5.998 (±6.303) 94.130 (±5.909) 5.700 (±5.874) 
Stimulus type – 42 78.031 (±9.002) 22.993(±10.231) 77.035 (±9.198) 22.879 (±9.222) 
Stimulus type – 40 76.853 (±10.168) 21.969 (±9.002) 78.782 (±8.668) 21.218 (±8.668) 

Tab. 14 Average percentage (and standard deviation) of correct trials with regard to the blinks in TA. 

 

4.4.2 Pilot CDT Experiment with Eye Gaze Manipulation 

The pilot study was limited by accessible participants. We tried to equalize the subjects’ 

parameters. Both younger participants woman (24) man (29) used to play video games 

frequently while elder participants woman (58) and man (58) were non-gamers. In the case 

of both pairs, randomly selected one of them was assigned a random order of conditions (ZZ 

– changed gaze, FF – fixed gaze). The other one was assigned to the inverse order.  

All participants had slept 6 to 8 hours the night before the experiment, they had no intake of 

nicotine, alcohol nor caffeine at least 20 hours. They didn’t experience the eye discomfort 

before the experiment started. 

According to the T-MENSTAT and subjective evaluation, all participant reported a full 

energy mode before the experiment; they were well rested, full of energy, prepared to 

concentrate on the task. However, after the experiment, they felt tired, sleepy and were only 

partially satisfied with their concentration during the whole experiment. One of the 

participants even reported a “boredom at the end of the experiment” and another one 

experienced “a rapid decrease in concentration” at the end of each condition. 

The participants perceived differently the difficulty of following the instruction of the gaze 

unequally. One participant (IS 75) reported a fixed gaze (FF) condition as easier than a 

changed gaze (ZZ) condition. The other two participants (VS 67, NC 29) considered the ZZ 

condition being easier. The last one (IS 63) judged both conditions as equally difficult. 

One of the participants reported a strategy during encoding the MA and subsequent decision 

making; in several trials during both conditions, he was able to create a pattern from several 

rectangles. In those cases, they saw a difference immediately (from Slovak metaphor “bil do 

očí” translated as “it was a torn in the eye”). In the rest of the cases, he reported a longer 

decision making (NC 29). Also, he reported a longer decision making in the ZZ condition 

what lead to an increased number of missed responses.  
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One participant (IS 63) stated that the boredom he felt at the end of the experiment resulted 

in worse concentration. 

One participant stated that in several trials in the FF condition she lost the track of the cue 

arrow what exhort herto evaluate both hemifields (VS 67). 

 

The memory capacity results 

 

Cowan K - Descriptive Statistics  
Gaze  Stim.Type[TgtDst] Mean Std. Deviation 
FF   20  1.538  0.301  

   22  1.445  0.394  

   30  2.088  0.616  

   32  2.030  0.625  

   40  2.482  0.474  

   42  2.022  1.064  

ZZ   20  1.639  0.288  

   22  1.566  0.186  

   30  2.157  0.418  

   32  1.969  0.400  

   40  2.632  0.688  

   42  2.056  0.785  

Tab. 15 Descriptive Cowan’s K – fixed gaze (FF) and changed gaze (ZZ) conditions  

The average Cowan’s Ks for different set sizes are listed in Tab. 15. The averaged maximal 

number of items held in the memory did not surpass 3 items, even in the cases of four targets 

(and zero or two distractors) the maximum could be 4 items. The set sizes of three and four 

targets reached similar values, suggesting that on average, those conditions had comparable 

difficulty.   
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Fig.  18 Descriptive plots of the Cowan’s K with error bars marked with the confidence level of 95%. 
While the difference between conditions was not significant, the result suggest the fixed gaze 
condition led to higher number of items held in the memory except for a 32 and 42 set sizes.  

 

 

Fig.  19 Individual differences in Cowan’s K in gaze conditions. 

Because of the low number of participants, we looked also on individual differences in gaze 

conditions. Corresponding to the subjective reports of the conditions’ difficulty, the 

participants had unequal memory load changes between the gaze conditions.  Participant VS 
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67 reported a changed gaze condition as easier and her Cowan’s K was higher for that 

condition. Participant NC 29 had lower cowan’s K for 20, 22 and 42 set sizes in changed 

gazed condition that he reported being easier than in fixed gaze condition. IS 75 reported 

fixed gazed condition as easier and she had a higher Cowan’s K in this condition for 20, 22 

and 30 set sizes. IS 63, who considered both conditions to be of the same difficulty, had no 

differences in Cowan’s K for 20 and 22 set sizes. The lower Cowan’s K had for 3 targets in 

the changed gaze condition and reversely in the case of 4 targets. 

 

Paired Samples T-Test  

Measure 1   Measure 2 t df p 

FF 20 Cowan K  -  ZZ 20 Cowan K  -1.161  3  0.330  

FF 22 Cowan K  -  ZZ 22 Cowan K  -1.313  3  0.281  

FF 30 Cowan K  -  ZZ 30 Cowan K  -0.328  3  0.765  

FF 32 Cowan K  -  ZZ 32 Cowan K  0.356  3  0.745  

FF 40 Cowan K  -  ZZ 40 Cowan K  -1.058  3  0.368  

FF 42 Cowan K  -  ZZ 42 Cowan K  -0.087  3  0.936  
 

Note.  Student's t-test. 
Tab. 16 The comparison of Cowan’s K between fixed gaze and changed gaze condition by a paired 
sample T-test. 

According the results in Tab. 16, there was no significant difference in memory capacity in 

the fixed gaze and changed gaze conditions across group. 

 

Accuracy results 

Correct trials [%] - Descriptive Statistics  
Gaze  Stim.Type[TgtDst] Mean Std. Deviation 

FF   20  0.869  0.094  

   22  0.848  0.107  

   30  0.825  0.129  

   32  0.800  0.124  

   40  0.756  0.075  

   42  0.706  0.121  

ZZ   20  0.881  0.125  

   22  0.863  0.075  

   30  0.844  0.080  

   32  0.800  0.074  

   40  0.794  0.107  

   42  0.731  0.107  

Tab. 17 Descriptive statistics of correct trials in percentage according set size and gaze condition. 
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The accuracy decreased with the increasing number of targets and distractors. The paired 

sample t-test showed for all set sizes worse accuracy in the fixed gazed condition than in the 

changed gaze condition. There were no statistically significant differences between the fixed 

gaze and changed gaze condition. The results may lead to the conclusion that the changes of 

gaze during the TA had no effect on accuracy of participants. However more participants are 

necessary to confirm either the null hypothesis of no difference between conditions or the 

worse accuracy in the standard CDT test without the change of the gaze.  

 

Paired Samples T-Test  
Measure 1   Measure 2 t df p 

FF 20 correct %  -  ZZ 20 correct %  -0.397  3  0.718  

FF 22 correct %  -  ZZ 22 correct %  -0.795  3  0.485  

FF 30 correct %  -  ZZ 30 correct %  -0.441  3  0.689  

FF 32 correct %  -  ZZ 32 correct %  -9.065e-16  3  1.000  

FF 40 correct %  -  ZZ 40 correct %  -1.567  3  0.215  

FF 42 correct %  -  ZZ 42 correct %  -0.632  3  0.572  
 

Note.  Student's t-test. 
Tab. 18 The comparison of accuracy between fixed gaze and changed gaze condition by a paired 
sample T-test. 
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5 Discussion 

5.1 Differences in preprocessing methods 
The cutting of data was performed due to the excessive drifts caused by moving or electrode 

reattaching during the pauses between block. The trials started before the EEG was steadied 

and the drifts propagated into EEG during trials. The worries that the “flying” data would 

corrupt the final CDA were not confirmed, at least the final processing chain that we created 

did not show the differences. 

In the step of removing the slow drifts in EEG data that could be caused by sweating, we 

observed an example of negative influence of the preprocessing method on data. The 

polynomial spline function with nodes set at the beginning of the processed time window 

did not remove the slow drifts completely; the smoothed signal proceeded the actual drift. 

The nodes calculated with the central step fit better, in some cases the method was too fine. 

The Savitzky-Golay filter represented a compromise between eliminating the slow drifts and 

not removing too much of the data because of excessively fine detrending method.  

The influence of the 8 Hz filters was detected during the analysis of the early ERPs 

components. Both, the low pass filter of 8 Hz and its training equivalent the alpha notch 

filter of [8 12] Hz with low pass filter of 22 Hz smoothed the early ERP components. They 

aided to clear CDA estimates but distorted the amplitudes and the latencies of the early ERPs 

(mainly P1 and N1). For that reason, it is important to decide before a selection of 

preprocessing methods whether one wants to investigate early fast ERPs or later slower N2pc 

and CDA components. Evidently, the same process cannot be used for different types of 

analysis. Also, the similar course of the contralateral waveforms resulting in differences in 

CDA waveforms pointed out the unpredictable outcome of the averaging that can emphasize 

the common characteristics and filter out the individual differences. 

The unequalness in the number of detected artifacts in KE and BA group lead to unequal 

numbers of trials (or time series in our case) of final CDAs. The difference could influence 

the signal-to-noise ratio and therefore it is hard to tell whether the final CDAs were impacted 

only by a training condition in KE group. Even though we applied the weighted average in 

combination with the electrode pair artifact rejection, the final CDAs of BA and KE groups 

did not have an equal representation in number of trials. Moreover, with only 15 participants 

in each group, this reduces a statistical power. Železníková performed a comparison of the 

least square means estimates for ANOVA factors (group, session, set size). The results 
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suggested that the two weeks training in VR led to a small change at the level of several 

decimals of μV in CDA; the difference was significant for set sizes of 4 targets (p < 0.05, 

0.035) (Železníková, 2021). She also concluded that the higher statistical power would 

require more participants. It is necessary to mention that the original intention contained 

recordings of 20 participants per group, however the COVID-19 pandemic outbreak resulted 

in only 15 participants in each group. 

The recordings of both groups were performed with the same instruments, they differed by 

researchers who collected the data. By looking on the numbers of detected artifacts, one may 

say that the recordings in BA group were done by higher precision and better data collection 

methodology. Therefore, to increase the probability of the approximately equal number of 

samples, we suggest to perform all recordings according to the same methodology by equally 

trained data collectors, if not by the same one. 

Our decision to use a weighted average instead of an average for CDA creation gave us a 

possibility to reject only artifacts on pair of electrodes. We obtained more trials, so the 

signal-to-noise ratio increased with contrast to the case when channels of all electrodes were 

rejected. We tried to eliminate any unwanted consequences of this approach that were 

presented by Luck (2014). 

The limitation of the preprocessing outcome is intertwined with the number of participants. 

Since it was not possible to record more participants, even the one with a lot of detected 

artifacts and rejected trials were included in the experiment. The participants were not 

randomized, they were selected at each site (KE, BA) according the prepared conditions. 

The initial ability to filter the distractor, that were the main research topic in the experiment, 

was not balanced between participant. A more difficult set sizes (higher number of targets 

and/ or distractors) for individuals with high initial abilities in filtering and inverse, easier 

settings of set sizes, could more accurately map the progress of visual working memory 

abilities across the experiment. 

 

5.2 Blinks and Eye Gaze in CDA and Performance 
The CDA is influenced by horizontal eye movements only during the MA and the retention 

period. Therefore, the saccades during the TA should influence only the behavioral 

performance. Since the blink lasts up to 400 ms (Sweeney & Raju 2013) and the TA is shown 

for 3 seconds, the blink should not cause missing of the visual input. Since we could not 

differentiate between blink and a saccade occurred during blink, we assumed that all blinks 
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contained saccades. This led to rejecting all trials that contained a detected EOG artifact 

during MA. Several participants in the CDA experiments were blinking systematically 

before their response. Without the knowledge of the influence of saccades during TA on the 

behavioral performance, we had to reject more trials what caused lower signal-to-noise ratio. 

The statistical power and noise removal from the data were behind the decision to look on 

effect of blinks and saccades on performance.  

We studied the influences of the blinks during the TA on the accuracy in CDT. The data 

originally came from the CDA experiment. We manipulated the conditions and included 

participants from both groups. Our assumption was that the training in VR should not 

influence the accuracy caused by blinks. The Cowan’s K, that represent the memory load, 

and the accuracy were calculated by MATLAB and tested by unpaired two sample t-test that 

confirmed the hypothesis about the non-differences between conditions. However, we were 

limited by a small sample and we assumed that each blink was accompanied by a saccade.  

We were aware of the necessity to differentiate between the effect of blink and saccade. The 

original plan with the usage of eye-tracker for a modified CDT experiment had to be changed 

because of logistic and technical reason. So, we executed a pilot experiment with the aim of 

find out whether there may be differences in performance when one looks at a TA directly 

during a CDT. This manipulation should represent the horizontal saccadic movement. 

Two set of CDT measurements were recorded, one with standard instruction to look at the 

center of screen. During the other one, the participants were asked to look on cued hemifield 

when TA was shown on the screen. We also asked of them to evaluate their performance 

and asses the difficulty of both conditions. 

The results should be taken with a grain of salt. Only the four participants were of the non-

representative sample (two different age groups, different habits in video games playing). 

The average Cowan’s K and accuracy did not have a statistically significant differences 

between gaze conditions. The individual differences partially corresponded to reported 

difficultness of corresponding condition while they did not agree about which gaze condition 

was the easiest. Also, the impact of age on working memory was visible across group, with 

the highest Cowan’s K present at the youngest participant. Participants reported an 

increasing fatigue and boredom throughout CDTs with increasing time that also influence 

their focus, as was reported. The results suggested that the fixed gaze condition could 

connected with a lower accuracy while the memory load seems to be individually dependent. 

The higher statistical power is necessary to confirm or reject this observation. 
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5.3 Relation to Cognitive Science 
The diploma thesis had a broad spectrum of tasks. It was necessary to get familiar with the 

topic of contralateral delayed activity and its connection to the visual working memory. The 

understanding of the methods for EEG data processing, their implementation was crucial to 

the programing a MATLAB processing chain. We learnt about the impact of the chosen 

processing methods on a final CDA waveform and its neurological and behavioral 

implications. Similarly, we spent a lot of time with the PsychoPy software just to find out 

that its features were not sufficient for the intended research and therefore we had to modify 

not only the size of the additional CDT experiment but also the aims of the thesis. So, the 

computer science played in important role in assessing the pilot CDT experiment. The edit 

of the CDT resulted into an added self-evaluation and report of experience added a piece 

form the phenomenological aspect. After all, we gained a wealth of knowledge from various 

scientific fields and learned to combine them into a functioning machine.  
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Conclusion 
The main aim of the thesis was a study of the neural measures and behavioral performance 

of the change detection task (CDT). We studied the principles of measurement and 

processing of the ERP components. We identified and described the ERP components related 

to CDT in MATLAB software. Finally, we studied the variability in ERP components as 

well as behavioral success caused by changed in the EEG data processing along with the 

changes in the CDT protocol. The ERP waveform is a difference of contralateral and 

ipsilateral activity CDA and it represents maintaining objects in working memory. 

Our findings confirmed the assumption that the processing of neurological data may 

influence the analysis and the results. We showed the proofs on several examples, mainly 

concluding that the processing pipeline suitable for analysis of the later ERP components 

(CDA, N2pc) is not suitable for an analysis of the early ERP components (e.g., P1, N1). 

Behavioral performance of the CDT, specifically the accuracy, may be affected by changes 

in the gaze direction. The additional research with significantly higher number of participant 

than was accessible during a pilot study and supported by an eye-tracker device needs to 

confirm the suggestion. However, we did not recommend including trials with the saccades 

and the blinks accompanied by saccades during a presentation of test array in the CDT when 

analyzing the behavioral performance. 

Also, we suggest a further study of the possible link between a memory load during CDT 

and participants’ self-evaluation of performance.  

Concerning the differences of the number of artifacts between CDA groups, we advise to 

secure homogenous methodology of EEG data acquisition across the whole experiment.  

The constrictions of COVID-19 outbreak on the experimental design was a sad reality and 

we hope that both experiments – the influence of the VR reality on the CDA and the 

influence of gaze direction during CDT – will be conducted again with a larger number of 

participants while maintaining a professional experimental design. 
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