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Abstract

Spatial working memory, the ability to memorize locations for a short period of time,
has been studied for decades. Compte and his colleagues proposed a model of the
spatial working memory used to simulate an oculomotor delayed-response task. The
model consisted of excitatory pyramidal cells and inhibitory interneurons. Pyramidal
cells were spatially distributed according to their sensitivity to different peripheral cue
angles. Pyramidal cells closer to each other had stronger synaptic connections than
those farther apart. The oculomotor delayed-response task was simulated as stim-
ulation of pyramidal cells with a selective transient current. Pyramidal cells whose
preferred angle was close to the presented cue angle exhibited elevated spiking activity
which persisted after the disappearance of the stimulus. Leaky integrate-and-fire neu-
rons were employed in the model. We implemented the model using the Simple model
of spiking neurons described by Izhikevich and tested how this model behaves when
different model parameters are manipulated. We showed patterns appearing in the
region where neurons with preferred cue angle close to the presented cue angle resided.
Although these patterns were not completely identical with findings of Compte and
his colleagues, they represented a prominent and distinct manifestation of the spatially
tuned stimulation of the neurons during the cue presentation. Therefore, we managed
to simulate the oculomotor delayed-response task using the Simple model of spiking
neurons. Results of our thesis may be used in replicating existing computational stud-
ies related to this task using the simple spiking neurons and integrating the task and
the spatial working memory model to the simple spiking neurons related research.

Keywords: simple model of spiking neurons, spatial working memory, synaptic con-
nection
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Abstrakt

Priestorová pracovná pamäť, zodpovedná za krátkodobé zapamätanie si polohy v priestore,
je skúmaná už desaťročia. Model priestorovej pracovnej pamäte, navrhnutý Comptem
a kolektívom, bol použitý na simulovanie úlohy oneskorenej okulomotorickej reakcie.
Model pozostával z excitačných pyramidálnych buniek a inhibičných interneurónov,
pričom pyramidálne bunky boli priestorovo usporiadané na základe ich citlivosti na ro-
zličné obvodové uhly. Navzájom si bližšie pyramidálne bunky mali silnejšie synaptické
spojenia ako navzájom vzdialenejšie pyramidálne bunky. Úloha oneskorenej okulomo-
torickej reakcie bola simulovaná cez stimuláciu buniek externým dočasným prúdom,
pričom čím bol obvodový uhol bunky bližšie k stimulovanému obvodovému uhlu, tým
silnejším prúd bola bunka stimulovaná. Bunky dostatočne blízko k stimulovanému uhlu
si vybudovali zvýšenú vzruchovú aktivitu, ktorá pretrvávala aj po skončení stimulácie.
Pôvodne bol model implementovaný pomocou deravého integrujúceho neurónu. My
sme implementovali model pomocou jednoduchého modelu pulzného neurónu, ktorý
navrhol Izhikevich. Testovali sme, ako sa takto implementovaný model správa pri
rôznych kombináciách parametrov. Objavili sme vzorce vzruchovej aktivity, ktoré sa
po stimulácii objavia u neurónov dostatočne blízko k stimulovanému obvodovému uhlu.
Hoci tieto vzorce neboli úplne identické s výsledkami predošlej štúdie Compteho a jeho
kolegov, znamenajú výraznú a zreteľnú stopu po stimulácii neurónov. Podarilo sa nám
teda nasimulovať úlohu oneskorenej okulomotorickej reakcie s použitím jednoduchého
modelu pulzného neurónu. Výsledky našej práce môžu byť použité na replikáciu exis-
tujúcich výpočtových štúdií súvisiacich s úlohou oneskorenej okulomotorickej reakcie a
na integráciu tejto úlohy a modelu priestorovej pracovnej pamäte do širšieho spektra
výskumu používajúceho jednoduchý model pulzného neurónu.

Kľúčové slová: jednoduchý model pulzného neurónu, priestorová pracovná pamäť,
synaptické spojenie
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Introduction

Working memory is a phenomenon largely studied by many disciplines encompassed
by cognitive science. Spatial working memory, a part of the working memory related
to memorizing locations in space, has been subject to research of Funahashi et al.
[10], Goldman-Rakic [12], Rao and his collective [19], and last but not least Almeida,
Compte, Edin and their colleagues [1, 6, 7].

Following neuroscientific experiments with the oculomotor delayed-response task
of Funahashi and his colleagues [10] and the theoretical work of Goldman-Rakic [12],
Compte and his colleagues developed a computational model of the spatial working
memory. This model was based on spatial tuning of synaptic connections of excitatory
pyramidal cells. Each pyramidal cell coded a particular peripheral location described
by its peripheral angle called the preferred cue angle. The closer preferred cue angles
of two pyramidal cells were, the stronger their connection was. Pyramidal cells in
the network received their external stimulation current based on proximity of their
preferred cue angle to the peripheral angle of the location presented in the experiment.
Pyramidal cells with their preferred cue close to the presented cue angle developed
elevated firing activity during the stimulation. This elevated activity persisted even
when the stimulation ended and was suppressed by a strong stimulation of all the
neurons in the network. Detailed information on the theoretical background of our
thesis can be found in chapter 1.

The model of spatial working memory [1, 6, 7] used leaky integrate-and-fire neurons,
a neuron model which can simulate only a limited number of neuronal types in the
human brain [15, 17]. Therefore, we implemented the model of spatial working memory
[1, 6, 7] using the Simple model of spiking neurons [14], which can simulate the vast
majority of cortical neurons [14, 15, 17]. Implementation details are presented in
chapter 3.

We tuned several parameters of the model [1, 6, 7] in order to learn how it behaves
when the Simple model of spiking neurons [14] is used. This can be seen in numerous
simulations presented in chapter 4 of this thesis.

We compared the results of our simulations with the results of Compte and his
colleagues [6]. Results of our simulations and their evaluation can be found in chapter
5 and section 6.1.

1



Chapter 1

Theoretical background

In this chapter, we present the theoretical background of our thesis. Firstly, we intro-
duce the concept of spatial working memory and oculomotor delayed-response task. It
is followed by essential mathematical models used in our implementation. We also give
insight to the state of the art of given topics. We note here that x′ denotes dx/dt.

1.1 Spatial working memory

Working memory, unlike long-term memory, has limited capacity and is used to main-
tain memories for a short period of time. For example, this can be relevant for main-
taining numbers while they are noted or in a digit-span task [2]. Researchers have
associated neural correlates of working memory more and more with the prefrontal
cortical areas.

Delayed response paradigms (for comparison, see section 1.1.1), utilized when study-
ing working memory as the ability to remember events for a short period of time in the
context of remembering spatial locations, have shown that neurons in the prefrontal
cortex are activated for a few seconds after a stimulus vanished. Selective persis-
tent activity of a specific subgroup of neurons depending on the stimulus has, thus,
been considered responsible for maintaining the working memory [6, 5, 12]. Moreover,
Compte [5] argues that persistent neuronal activity might have been developed as a
general strategy used by the nervous system to retain needed information that is no
more available to the senses. States of persistent elevated neuronal activity in selected
group of neurons might be considered attractor states. In this case, the brain activity
in a spatial working memory task may be looked at as an activity of a multistable sys-
tem able to switch across several stable attractor states depended on the parameters
of the sensed environment [5].

Experiments with the oculomotor delayed-response task [10] (section 1.1.1) show

2



CHAPTER 1. THEORETICAL BACKGROUND 3

Figure 1.1: Recording of a neuron with preferred cue angle 270◦. It is evident that
this neuron shows highly elevated activity when presented with a stimulus at 270◦.
Inhibition of this neuron can be also observed during the presentation of a 90◦ cue.
Image taken from [10].

that pyramidal neurons1 in the dorsolateral prefrontal cortex form memory fields re-
lated to the location of a presented visual target [12, 19]. The neurons have the maximal
firing when the target is presented at one or a few locations in the visual field and one
neuron always codes the same location [12]. In relation to the task, the neurons have
preferred cue angles. They also show the effect of opponent memory fields. Increase
in activity of pyramidal neurons with one preferred cue angle causes inhibition of neu-
rons with the opposite preferred cue angle (for comparison, see figure 1.1). This can
be illustrated on an example: when the subject is presented with a stimulus at 0◦,
activity of a particular group of neurons - coding the stimulus location - sharply rises,
but activity of neurons coding 180◦ falls, as was shown experimentally [10].

Goldman-Rakic [12] recognizes neurons that are active during the presentation of
a stimulus, those that are active during the subsequent delay period (see section 1.1.1)
and those that are active during the memory-guided response. However, many neurons
are not time-locked to only one of the described periods. She proposes a laminar
hierarchy of neurons, assembled according to their function.

In the architecture Goldman-Rakic [12] proposed, pyramidal cells with the same
1Pyramidal cells (or pyramidal neurons) are neurons with rich connectivity that contain excitatory

neurotransmitter glutamate. They are the most populous neuron type in the cortex and comprise
approx. 70-90% of all cortical neurons [8].
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preferred direction are interconnected and form columns. Interneurons2 are crucial
for this columnar architecture, as they connect pyramidal cells of one column with
their antagonistic counterparts within another column. This enables inhibition of the
pyramidal cells whose preferred cue direction is opposite to the direction of a stimulus.
This feature is in agreement with findings of Funahashi and his colleagues [10]. It
has been shown that interneurons also form memory field similar to those formed by
pyramidal cells [12, 19].

1.1.1 Oculomotor delayed-response task

Various delayed-response paradigms have been employed to study spatial working mem-
ory. In a classical, manual delayed-response task, a monkey was required to find a food
reward whose location had previously been shown and then hidden by an opaque screen
during the delay period [12].

Funahashi and his colleagues [10] used an oculomotor delayed-response task. This
task consisted of five periods: inter-trial period (ITI), fixation period (F), cue presen-
tation period (C), delay period (D) and response period (R). After a period of 5 s
(ITI), the monkey fixated a central point on a monitor (F). After 0.75 s a visual cue
was presented in one of four or eight peripheral locations (P), randomized over trials.
This randomization ensured that the monkey could not predict in what location the
next peripheral cue would occur. Presentation of the cue lasted for 0.5 s. Fixation had
to be maintained until the end of the delay period (D), lasting for 1-6 s. Then, the
central fixation point vanished from the screen and the monkey had to do a saccadic
eye movement (R). If this movement was done within the next 0.5 s to the location
where the cue had been presented (within a window of 6◦), the monkey was rewarded.
The periods of the oculomotor delayed-response task are visualized in figure 1.2.

Figure 1.2: Periods of the oculomotor delayed-response task. ITI - inter-trial period,
F - fixation period, C - cue-presentation period, D - delay period, R - response period
The illustration taken from [10]

2Interneurons are neurons that contain inhibitory gamma-aminobutyric acid (GABA). Their fun-
damental role is thought to be controlling the level of activity in a particular brain area via inhibition
[9].
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Figure 1.3: A schema of spatial distribution of the neurons on a ring and the con-
nectivity structure between pyramidal cells (black triangles) and interneurons (grey
circles). Each black triangle represents a group of pyramidal cells sensitive to the same
peripheral angle. The illustration taken from [1].

A crucial feature of this paradigm was that the monkey was required to maintain
fixation during the delay period. Thus, the monkey’s behavior could be controlled
with high precision and it was ensured that the monkey had to use working memory
to achieve a high level of performance. The scientists could also record the monkey’s
direction of gaze throughout the task and compare monkey’s behavior over trials [10].

1.2 Model of the spatial working memory

Compte and his colleagues [6] used a network architecture which was consistent with
columnar organization of dorsolateral prefrontal cortex as described by Goldman-Rakic
[12]. The model consisted of excitatory pyramidal cells and inhibitory interneurons.
Pyramidal cells were 4 times more numerous than interneurons. Cells were spatially
distributed according to their preferred cue angle on a ring (figure 1.3). They modelled
the neural cells as leaky integrate-and-fire units. External excitatory inputs from other
cortical areas were modelled as uncorrelated Poisson spikes to each neuron at rate 1800
Hz per cell (or 1000 Poisson spike trains, each with a frequency of 1.8 Hz). Excitatory
inputs to cells were received via AMPA and NMDA receptors and inhibitory inputs
via GABAA receptors.

1.2.1 Leaky integrate-and-fire neuron

Leaky integrate-and-fire neuron is one of the most widely used models in computa-
tional neuroscience [15]. Its subthreshold dynamics is described by the following linear
differential equation:

CV ′ = I − gleak (V − Eleak) (1.1)

In this equation, C is the total membrane capacitance, V is the membrane potential,
gleak is the total leak conductance and Eleak is the leak reversal potential. When V
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reaches the threshold Vth, and action potential is fired. V is then reset to a Vres value
for the refractory period τres.

Leaky integrate-and-fire neuron has a well-defined threshold and a relative refrac-
tory period. Strength of the input can be continuously encoded in the frequency of
spikes, and excitatory inputs (I > 0) facilitate firing, whereas inhibitory inputs (I < 0)
decrease the membrane potential [17].

Izhikevich [17] is critical about this model. Despite being computationally effective,
it cannot produce rich spiking and bursting dynamics of cortical neurons and has
unwanted mathematical properties. This model does not model a spiking behavior; it
is only said that a neuron ’spiked’ when the neuron’s membrane potential V reaches
the threshold value Vth.

1.2.2 Details about the model architecture

In the model [6], synaptic responses are modelled according to Wang [26]. In this
model, current running to a cell is sum of currents from NMDAR, AMPAR and
GABAAR channels. Synaptic current at a receptor:

Isyn = pgsynssyn (v − Vsyn) (1.2)

Variable gsyn represents the conductance of a receptor. Its value depends on the
difference of the preferred cue of connected neurons. It is computed as gsyn,ij =

GsynW (θi − θj). Gsyn is a parameter specific for each type of the receptor. W (θi − θj)
is a constant for unstructured connections and a constant term plus a Gaussian cen-
tered at (θi − θj) = 0 for connections structured according to preferred cue angles θi
and θj:

W (θi − θj) = J− +
(
J+ − J−

)
exp

(
− (θi − θj)2

2σ2

)
(1.3)

J− is the strength of the weaker cross-directional connections, whereas J+ is the
strength of the stronger isodirectional connections. σ is the width of the ’connectivity
footprint’ W (θi − θj) normalized as:

1

360

∫ 360

0

W (θi − θj) dθj = 1 (1.4)

Therefore, only J+ and σ are given as parameters. J− can be computed according
to the normalization condition (equation 1.4). Figure 1.4 shows the graph of W .

The variable ssyn is the synaptic gating variable, which represents the fraction of
opened ion channels. AMPAR and GABAAR channels have the following opening
dynamics with after-spike rises followed by exponential decays with time constant τ :

s′ (t) = −s (t)
τ

+
∑
k

δ (t− tk) (1.5)



CHAPTER 1. THEORETICAL BACKGROUND 7

Figure 1.4: Strength of structured connections of pyramidal cells depending on their
proximity to the neurons with 180◦ preferred cue angle according to the connectivity
footprint (equation 1.3). On the x-axis is shown the preferred cue angle θ and on the
y-axis is shown W (θ). Parameters are chosen as J+ = 1.62 and σ = 18◦.

where tk denotes time of spike of a presynaptic neuron and δ is the Dirac function.
The sum over presynaptic spike times, then, checks whether a spike occured at t. If yes,
the synaptic gating variable ssyn jumps with magnitude 1 [6]. For AMPAR channels,
τAMPA = 2 ms, and τGABAA

= 10 ms for GABAAR channels.
NMDAR channels have different dynamics with slower rises and decays controlled

by parameters τrise = 2 ms and τdecay = 100 ms. Parameter α = 0.5 kHz controls
the saturation properties of the channel at high presynaptic firing frequencies. The
dynamics is described by two differential equations:

s′ (t) = − s (t)

τdecay
+ αx (t) (1− s (t)) (1.6)

x′ (t) = −x (t)
τrise

+
∑
k

δ (t− tk) (1.7)

NMDAR channels are voltage dependent, with variable
p = 1/ (1 + [Mg2+] exp (−0.062v/3.57)), with [Mg2+] = 1.0 mM, whereas p = 1 for
voltage independent AMPAR and GABAAR channels.

Parameter Vsyn is the membrane synaptic reversal potential, whose value is the
point at which positive current, causing depolarization, becomes negative, causing
hyperpolarization.

Number of pyramidal cells (excitatory neurons) in the network [6] is NE = 2048

and number of interneurons (inhibitory neurons) is NI = 512. Recurrent synaptic
conductance parameters are denoted GEE for pyramid-to-pyramid, GEI for pyramid-to-
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Compte et al.
control parameter set

Edin et al. Almeida et al.

GEE 0.381 nS 0.684 nS 0.7 nS
GEI 0.292 nS 0.479 nS 0.49 nS
GIE 1.336 nS 3.643 nS 0.935 nS
GII 1.024 nS 2.896 nS 0.7413 nS
J+
EE 1.62 1.5

J+
EI 1.25 1.4

J+
IE not used 1.4

σEE 18◦ 9.4◦

σ+EI 18◦ 32.4◦

σ+IE not used 32.4◦

Table 1.1: Different model parameters used in Compte et al. [6], Edin et al. [7]
and Almeida et al. [1]. J+

EI and σEI used only in some simulations of Compte and
his colleagues [6]. Note that Edin et al. [7] and Almeida et al. [1] share the same
parameters used in the connection footprint.

interneuron, GIE for interneuron-to-interneuron and GII for interneuron-to-interneuron
connections. If different number of neurons is used, synaptic conductances are scaled
inversely propotional to NE + NI . This allows for keeping the total level of synaptic
conductance unchanged. In most simulations, AMPAR-mediated channels are not
involved and only the pyramid-to-pyramid connectivity is structured according to the
preferred cue angle. Interneuron-to-interneuron are not structured in any simulations.
Inhibition is stronger than excitation and GIE/GEE = GII/GEI .

Compte and his colleagues [6] used two different parameter sets. Parameters used in
the control parameter set are listed in table 1.1.The modulated parameter set is similar
to the control parameter set, except for enhancement in conductances (GE{E,I},m =

1.2GE{E,I}, GI{E,I},m = 1.4GI{E,I}).
Parameters for the connectivity footprint are also included in table 1.1. Pyramid-

to-interneuron connections were structured only in some simulations.
A similar model was used by Edin et al. [7] and Almeida et al. [1]. Here, all but

interneuron-to-inerneuron connections were structured. Connectivity between excita-
tory and inhibitory neurons was wider and flatter than between excitatory neurons.
Parameters used in both studies are shown in table 1.1.

1.2.3 Simulation of the oculomotor delayed-response task

The simulation protocol [1, 6, 7] followed the oculomotor delayed-response protocol
employed by Funahashi and co-authors [10].
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During the presentation period, selective transient current was injected to pyramidal
cells with preferred cues close to the stimulus angle. Stimulation input to a cell with
preferred cue angle θ can be computed as [1, 7]:

Istim (θ, θstim) = α exp

(
µ

[
cos

(
2π

360
(θ − θstim)

)
− 1

])
(1.8)

θstim is the presented cue angle, and the strength of the selective transient current
Istim (θ, θstim) decreases as (θ − θstim) increases. Parameter α = 0.025 nA represents
the highest delivered input current strength (peak value) and µ = 39.

No selective transient currents are presented during the delay period. Oculomotor
response in the response period is simulated as a current injection to all neurons in the
network.

During the presentation period, the network [6] builds elevated activity of neurons
with the preferred cue close to the stimulus. This activity persists during the delay
period because of reverberatory loops. Cells around the location of the stimulus show
strong excitatory feedback. Profile of this elevated activity does not depend on the
exact shape or intensity of the stimulus and the network goes into a ’bump’ state.

Non-selective stimulus to all neurons during the response period causes the network
to switch off. It is due to strong inhibitory feedback, which builds up to be strong
enough to calm down all the excitatory activity of the pyramidal cells.

Development of the network activity is shown in figure 1.5.

Figure 1.5: Rastergram of neural spiking shows elevated spiking activity during the
delay period in neurons with preferred cue close to the stimulus (’bump’ state). This
activity starts when the selective transient current is being injected to these neurons,
persists during the delay period when the selective transient current is missing and
vanishes when the transient current is injected to all neurons. The time step in the
simulation was 0.02 ms. Image taken from [6].

1.2.4 Distractors

Some trials of the experiment [6] were done with distractors presented during the delay
period. These were of the same intensity and length as the original stimulus, but in
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different peripheral locations. The impact of distractors on the network was measured
by the drift of the peak location of the enhanced neuronal activity after the distraction.

It was observed in the simulations that the resistance of the network to the dis-
tractors depended on the strength of the stimulus. Sufficiently large amplitude of the
stimulation current could overcome the ’bump’ state dynamics of the neuronal activity
in the network and move its peak closer to the distractor location. The network with
enhanced conductances (the modulated parameter set - see section 1.2.2) was more
resistant to distractors [6]. These dependencies can be seen in figure 1.6.

Last but not least, the amount of distraction also depended on the proximity of the
location of the original stimulus and the distracting stimulus. For distractors close to
the original cue angle, the distraction rose almost linearly with the distance. It reached
its maximum at approx. 90◦ distance of the angles. When the two angles were farther
apart than 90◦, the distraction became small [6].

Figure 1.6: Stimulus intensity affects the network’s resistance towards distractors. In
A, the control parameter set network is completely distracted when a stimulus of 200
pA is used. When a stimulus of 100 pA is used, the modulated parameter set network
remains undistracted in B. Image taken from [6].
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1.2.5 Spatial working memory model related research

While Compte and his colleagues [6] described the model of spatial working memory
and tested it on a series of experiments comparing it to neuronal records of Funahashi
and colleagues [10], the model has been put into practice and used in several other
scientific studies.

Edin and his colleagues [7] used the model of spatial working memory to simulate
the intraparietal sulcus, an area thought to be responsible for storage of short-term
memories, in a study on the function of the dorsolateral prefrontal cortex in top-
down control of the working memory capacity. They used the model in which all
internal but inhibitory-to-inhibitory connections were spatially tuned (for comparison,
see section 1.2.2). In the presented model, the spatially tuned network representing the
intraparietal sulcus received unspecific excitatory inputs from the network representing
dorsolateral prefrontal cortex, whose connectivity was not spatially tuned. The authors
of the study presented a mathematical model explaining the mechanisms behind the
capacity of the visuospatial working memory, supported by the empirical data.

Another study using the model of spatial working memory is by Almeida and her
co-authors [1]. In this study, the authors used the model to investigate the memory
of multiple items. The study focused on how proximity of spatial locations of several
memorized items influence the precision of their recall. The study confirmed that the
items were recalled with attractive or repulsive recall bias, based on how close they
were to each other.

The spatial working memory model has also been subject to a theoretical paper
by Compte [5]. In the paper, the author discussed the model of the spatial working
memory within the attractor theory framework. The author also discussed the biolog-
ical relevance of the mechanisms of the working memory model and pointed out the
biologically observed increased variability of neurons’ spike trains during the persis-
tent elevated activity, a feature very difficult to be accounted for in the computational
models. The models, on the other hand, showed a more regular activity.

Exercises accompanying the book Neuronal dynamics: From single neurons to net-
works and models of cognition [11] contain an implementation of the model of spatial
working memory [6] used for educational purposes. The exercise3 uses different param-
eters than in the publication by Compte and his colleagues [6], but it enables its user
to observe different properties of the model.

3This exercise is directly available at the webpage:
neuronaldynamics-exercises.readthedocs.io/en/latest/exercises/spatial-working-memory.html.
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1.3 Simple model of spiking neurons

Izhikevich [14] proposed a computationally efficient model that can produce large vari-
ety of firing patterns of cortical neurons. Based on bifurcation theory [17], this model
consists of four parameters and a two-dimensional system of ordinary differential equa-
tions:

v′ = 0.04v2 + 5v + 140− u+ I (1.9)

u′ = a (bv − u) (1.10)

where the values of v and u are reset when a spike occurs:

if v ≥ 30 mV, then

{
v ←− c

u ←− u+ d
(1.11)

In the equations, the parameters a, b, c and d work as dimensionless variables. Variable
v represents the membrane potential and u represents a membrane recovery variable,
relating to the activation of K+ and inactivation of Na+ ionic currents. Parameter
a is the time scale of the recovery of u. Parameter b represents sensitivity of u to
subthreshold fluctuations of v. Parameter c is the after-spike reset value of v and d is
the after-spike reset value of u. It is to be mentioned that 30 mV is not the threshold
value of the spike, it is the peak of the spike. The threshold is dynamical, like it is in
biological neurons, and it lies between -70 mV and -50 mV.

These parameters can be chosen in different ways to simulate behaviors of different
types of neurons. Typical values of each parameter are a = 0.02, b = 0.2, c = −65 mV
and d = 2.

Excitatory and inhibitory neurons in the mammalian brain are divided into several
classes. These can be simulated by the Simple model of spiking neurons and are de-
scribed by Izhikevich [14]. Here, we describe regular spiking and fast spiking neurons,
since they are used in this thesis.

1.3.1 Regular spiking neurons

Excitatory regular spiking (RS) neurons are the most common type of neurons found in
the mammalian brain. They are found as stellate and pyramidal cells [17]. When they
are stimulated with a prolonged stimulus, they fire a few spikes with higher frequency
and this frequency then decreases. This process is called spike frequency adaptation.
Simulation of spiking of a RS neuron can be seen in figure 1.7. The spiking frequency
slightly increases with stronger stimulation. This type can be achieved with a = 0.02,
b = 0.2, c = −65 mV and d = 8 [14]. The initial values v0 = −90 mV and u0 = bv0.
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We have observed that the neuron fires when instantaneous depolarization reaches
vt > −56 mV.

Figure 1.7: Simulation of a regular spiking neuron with the Simple model of spiking
neurons [14]. The graph shows the time development of the membrane potential v(t)
for a period of 200 ms. The time step is 1 ms.

1.3.2 Fast spiking neurons

Fast spiking (FS) neurons are inhibitory neurons, morphologically including basket
or chandelier cells (types of interneurons). They provide local inhibition along the
intralaminar (horizontal) direction of the neocortex [17]. They fire periodically with
a very high frequency and exhibit no frequency adaptation (figure 1.8). This can be
obtained with fast recovery, corresponding to a = 0.1. The other parameters are:
b = 0.2, c = −65 mV and d = 2 [14]. The initial values v0 = −90 mV and u0 = bv0.

1.3.3 Simple model of spiking neurons related research

Izhikevich described the Simple model of spiking neurons extensively in several of his
research papers. He defined the model and discussed its potential use [14], compared it
to other models of neurons [15] and explaind thoroughly on which concepts the model
was based [17]. Izhikevich [16] studied the self-organization of spiking neurons into
neuronal groups. He implemented a large neuronal network inspired by the cerebral
cortex. The study showed how the Simple model of spiking neurons can be used to
build large brain networks.

The model has found its place in the field of computational neuroscience. In a
research of Wacongne and her colleagues [25], the Simple model of spiking neurons was
used to computationally model auditory cortex based on predictive coding. Similarly to
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Figure 1.8: Simulation of a fast spiking neuron with the Simple model of spiking
neurons [14]. The graph shows the time development of the membrane potential v(t)
for a period of 200 ms. The time step is 1 ms.

the model of spatial working memory [6], synapses were modelled according to Brunel
and Wang [3]. Therefore, the implementation of Wacongne and the co-authors [25]
represents an example of a larger network architecture in some aspects similar to the
model of spatial working memory [6] built using the Simple model of spiking neurons
[14].

One of the most related studies to out thesis is by Szartmáry and Izhikevich [20].
In this study, the simple spiking neurons [14] were used to simulate working memory
in an attempt to relate the precise spike timing of events in the brain to emergence of
working memory functionality. In this model, memories were represented as overlap-
ping neuronal groups with stereotypical, yet not necesarilly synchronous time-locked
firing patterns. These patterns, called polychronous patterns, were defined by synap-
tic patterns, which meant that a neuron could be included in different polychronous
patterns. Unlike the work of Compte and his colleagues [6], neuronal groups were not
defined by the strength of synaptic connections, but by the exact timings of axonal
conduction delays arranged in a way that enabled for different functional subnetworks.



Chapter 2

Motivation and goals

The model of the spatial working memory [1, 6, 7] was originally implemented using the
computationally effective leaky integrate-and-fire units (see section 1.2.1) as a neuron
model. According to Izhikevich [14, 15, 17], this model of a neuron was very limited in
the number of types of neurons it could simulate and had mathematical ’flaws’ in terms
of simulating the spiking dynamics. Therefore, it might be beneficial to implement the
model of spatial working memory employing a more general model of a neuron; a model
which can simulate a broad range of types of neurons. The Simple model of spiking
neurons by Izhikevich [14] is suitable for the task because not only can it simulate
multiple types of neurons, it is also computationally effective (see 1.3).

The main goal of this thesis is to see how the model of spatial working memory
can be implemented employing the Simple model of spiking neurons, and to see how
it needs to be tuned in order to be able to simulate the oculomotor delayed-response
task (see section 1.1.1) experiments and obtain similar results to those of simulations
of Compte and his colleagues [6].

More specifically, we are looking for these features of the network, observed in the
original implementation of the model of spatial working memory [6]:

1. The ability of the network to develop a selective spiking activity of the neurons
whose preferred cue angle is close to the angle of the stimulus. This activity
persists even after the stimulus vanished.

2. The ability of the network to switch off to the basal state when the whole network
is stimulated by a strong stimulus.

These two features of the spatial working memory model are visible on the raster-
gram figure 1.5.

Additionally, we are looking at how our implementation deals with distractors.
The original implementation showed varied behavior depending on the proximity of
the original stimulus presented during the cue presentation period and a distractor

15
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presented during the delay period, and on the strength of the stimulus (the same
strength was used for both the original stimulus and the distractor) [6]. It was also
observed that an increased strength of connections in the network enabled it to be less
prone to distraction. Section 1.2.4 discusses distractors in more detail.



Chapter 3

Implementation of the model

The main practical task of our Master’s thesis is implementing the model of the
spatial working memory [1, 6, 7] using the Simple model of spiking neurons [14].
We decided to do the implementation in Python 2 [23]. We used packages numpy,
mathplotlib.pyplot, math and csv.

Our task consisted of implementing the Simple model of spiking neurons [14], the
connectivity between the neurons in the network and the simulation protocol.

3.1 Neuron

The neuron properties are defined as a dictionary where "a", "b", "c" and "d" corre-
spond to the neuron parameters defined by the Simple model of spiking neurons [14]
and "v_0" represents the initial value of the membrane potential v0 (u0 has to be com-
puted as u0 = bv0; for comparison see section 1.3). Initiation of each type of the neuron
is done by the function init, which takes 5 arguments a, b, c, d and v_0.

Equations 1.9, 1.10 and 1.11 are implemented in the update function using the
forward Euler method [28]. According to this method, x(t + τ) = x(t) + τf (x(t)) for
a differential equation x′ = f(x). Using this method:

v(t+ τ) = v(t) + τ
(
0.04v(t)2 + 5v(t) + 140− u(t) + I

)
(3.1)

u(t+ τ) = u(t) + τ (a (bv(t)− u(t))) (3.2)

.
In these equations, t represents the current time in ms and τ represents the time

step in ms.
The update function outputs are 3-tuple. The first value is the neuron’s updated

membrane potential v, the second one is the updated membrane recovery variable u
and the third one is a binary value signaling whether or not the neuron fired.

The neurons in the network are represented by three matrices of size N × T where
N = Ne+Ni represents the number of excitatory and inhibitory neurons in the network

17
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and T represents the number of steps of the simulation (total experiment time divided
by the time step). Matrix v (matrix u) stores the values of the membrane potential v(t)
(membrane recovery variable u(t)) in every simulation step, so that v[i][t] (u[i][t])
stores the value of the membrane potential vi(tτ) (the membrane recovery variable
ui(tτ)) of the neuron i (0 ≤ i < N) at the simulation time tτ (t ∈ N and 0 ≤ t ≤ T/τ).
The array inp, constructed in a similar manner, represents the input current I to the
neuron i. Other neuron related arrays related in the network are just_fired and
num_of_firings. These two arrays are, more specifically, related to the firings of the
neuron. In the former one, just_fired[i] is set to 1 when the neuron i fired in the
current simulation step, otherwise it is set to 0, and the latter one counts the number
of firings for every neuron in the network.

Index i related to the neurons in the network represents an excitatory neuron when
0 ≤ i < Ne, and an inhibitory neuron when Ne ≤ i < N .

3.2 Network architecture and connectivity

Pyramidal neurons in the model are spatially distributed on a ring, covering the circle
[6]. In our implementation, we divide pyramidal neurons into groups with preferred
cue angles according to their indices i ∈ N. If q ∈ N is the number of preferred cue
angles, then θi = (i mod q) 360

q
is the preferred cue angle of the neuron i. This division

is not completely equal for every angle in the network, but it can be seen that there is
no more than one extra neuron for some angles. We call this assignment of neuronal
labels non-uniform. We also use an equal spread of the neurons, characterized by
the equation θi =

360
Ne
i, in some of the simulations. Ne is the number of excitatory

pyramidal cells. We call this assignment of neuronal labels uniform.
Each neuron in the network receives a sum of synaptic currents Isyn originating

in other, presynaptic, neurons (equation 1.2). Each synaptic current depends on the
strength of the connection between the presynaptic and the postsynaptic neuron.

Connections between all the neurons in the network are represented in the con-
nection matrix g. For each two neurons i and j, g[i][j] represents the strength of
the connection from the (presynaptic) neuron i to the (postsynaptic) neuron j. Each
g[i][j] is, then, equivalent to the receptor conductance variable gsyn,i,j (section 1.2.2).

According to the model [6, 1], connections between some neurons are spatially tuned
(see section 1.2). It means that the strength of a connection between two neurons i
and j depends on the proximity of their preferred cue angles. This is reflected by
the connectivity footprint (equation 1.3). The connectivity footprint of two neurons is
implemented in the function W_conn_foot. In this function, J+ and σ are parameters
defined by the network properties, and J− needs to be computed according to the
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normalization condition (equation 1.4). The normalization condition is in the form of
a definite integral, which we compute as:

∫ 360

0

W (θi − θj) dθj =∫ 360

0

[
J− +

(
J+ − J−

)
exp

(
− (θi − θj)2

2σ2

)]
dθj =

[
θjJ

−]360
0

+
(
J+ − J−

) ∫ 360

0

exp

(
− (θi − θj)2

2σ2

)
dθj =

360J− +
(
J+ − J−

) ∫ 360

0

exp

(
− (θi − θj)2

2σ2

)
dθj︸ ︷︷ ︸

I (θi)

The next step is to compute the integral marked as I (θi). It can be done using
the Error function [27] already implemented in math package as math.erf:

I (θi) =

∫ 360

0

exp

(
− (θi − θj)2

2σ2

)
dθj =

1

2

√
πσ2

(
erf
(
θi
σ2

)
− erf

(
θi − 360

σ2

))
In the next step, we are able to compute J− for each angle θi from the normalization

condition as:
J−(θi) =

360−I (θi)J
+

360−I (θi)
(3.3)

Computations of I and J− are implemented in functions W_integral and J_minus.
Synaptic currents Isyn also depend on the synaptic channels (section 1.2.2). An

important biological feature of synaptic channels is their dynamics dependent on the
spiking activity of the presynaptic neuron. The dynamics of AMPAR and GABAAR
channels are described by the equation 1.5. For the sake of immediate clarity, these
AMPAR and GABAAR channel dynamics are implemented in two separate functions
ds_AMPAR and ds_GABAR1. The more complex dynamics ofNMDAR channels described
by equations 1.6 and 1.7 are implemented in functions ds_NMDAR and dx_NMDAR. These
three equations are in the form of differential equations, so we used the forward Eu-
ler method [28] to compute the derivative. These equations include sums over the
presynaptic spike times [6, 25]. We implement these sums through the binary variable
just_fired[i], set to 1 when the presynaptic neuron i fired an action in the pre-
vious simulation step, and 0 otherwise. This mimics the after-spike rising dynamics

1This might not represent the most efficient solution from the programmer’s viewpoint. As we see,
the two functions implement the same equation, which differs only by the constant τ .
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of the channels [6, 25]. Synaptic current Isyn delivered via the NMDAR synapses is
multiplied by the factor p implemented in function NMDAR_factor (see section 1.2.2).

In some of the simulations, we use the sign control for the synaptic input current
value Isyn, depending on whether the input came a excitatory or inhibitory synapse.
We introduce a condition that if the synapse is excitatory (inhibitory), the resulting
Isyn cannot be less (greater) than zero. That means that if it were, Isyn would be set
to zero.

We use two forms of the synaptic current equation. Alongside the form shown in
equation 1.2, we use the synaptic current equation:

I∗syn = pgsynssyn (Vsyn − v) (3.4)

We call this equation the inverse definition of the synaptic current and label it I∗syn.
Such a definition of the synaptic current was chosen following the manner in which
equation was presented by Izhikevich [17].

We do not use AMPAR channels in modelling internal synaptic activity, following
work of Compte and his colleagues [6]. Channel dynamics of all used internal synaptic
channels is stored in array s, where s[i] represents the current value of the synaptic
gating variable s for each presynaptic neuron i. Similar array x is used for the variable
x (see equation 1.7).

Random number generator random.random is used to generate uncorrelated Poisson
spikes at a given average frequency f . A Poisson spike is delivered in a given simulation
step t when a random constant rand < f

1000/τ
. The underlying idea is that 1000/τ is the

number of ’slots’ in ms contained in 1 s. This is implemented in the function Poisson.

3.3 Simulation protocol

The simulation protocol is implemented as a for cycle through all stimulation steps t
such that 0 ≤ t < T/τ . The cycle can be divided into two functional parts.

In the first part, all the neurons receive their input. It consists of Poisson spike
trains, external stimulation current and synaptic input currents. Time parameters t0,
tp, pd, ts and te mark lengths of oculomotor delayed-response paradigm phases (section
1.1.1) in their respective order in ms, where t0 is the pre-trial period and te is the
post-trial period.

We use much lower frequency than used by Compte et al. [6]. Our frequency f is
not higher than 1.8 Hz. This is mostly related to the fact that a much wider time step
size is used.

During the cue presentation period, lasting when t0/τ ≤ t < (t0 + tp) /τ , selective
transient current Istim (θ, θstim) is delivered to the excitatory neurons following equation
1.8. In this equation, α is the peak stimulation current, delivered to the neuron whose
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preferred cue angle θ = θstim, where θstim is the presented cue angle. Transient current
is implemented in function I_transient_current. The value of the parameter α is
stored in the variable i_transient.

During the response period characterized by (t0 + tp + td) /τ ≤ t < (t0 + tp + td + ts) /τ ,
all the neurons in the network are stimulated by the transient current of the same
strength. The value of this response period current is stored in the variable i_response.

During the whole stimulation, all the neurons in the network collect synaptic cur-
rents coming from all the other neurons, following connectivity described in section
3.2.

In the second part, all the neurons update their v and u using the update function.
The update function’s output is stored in the v and u matrices. Also NMDAR and
GABAAR channel gating variables s and x are updated. One part of the update

function output, signaling whether the neuron had just fired, is used to update the
channel gating variables.

The time complexity of the simulation protocol is O (TN2), where T is the number
of simulation steps andN is the overall number of neurons in the network. For T = 5000

and N = 640, a simulation runs for about 1.5 hours on a 2,7 GHz Dual-Core Intel

Core i5 MacBook Pro portable computer.

3.4 Data collection and analysis

During each simulation, we recorded the membrane potential development, the mem-
brane recovery variable and a number of spikes in each simulation period of a neuron
in each cue angle group and of all interneurons as .csv files. At the end of each
simulation period, we calculated the spiking rate of these neurons. We also kept log
files to see how the experiments proceeded. In one of the log files, each stimula-
tion step had its row [time] : [input_current_stimulated] / [v_stimulated]

/ [u_stimulated] - [input_current_not_stimulated] / [v_not_stimulated] /

[u_not_stimulated] - [input_current_interneuron] / [v_interneuron] /

[u_interneuron] in which we stored inputs, membrane potentials and membrane
recovery variables of a stimulated neuron, a neuron with the opposite preferred cue
angle, and a randomly selected interneuron to see the activity of interneurons. We
also had two log files (one for pyramidal cells and one for interneurons) in which we
recorded simulation times in the form tτ at which the respective neurons fired. This
information was stored as a 2-tuple (tτ, i), where i is the neuron index. Two other log
files were used to record the firing frequencies of all pyramidal cells and all interneurons
in the delay period.

After the simulation, plots of the membrane potential of the simulated neuron, the
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opposite neuron and the interneuron were generated using the matplotlib.pyplot

Python package. Rastergrams of spike times of the neurons and some other charts
were created in the programming language R [18] or using the online tool Plotly Chart
Studio [13].



Chapter 4

Simulations

Our second task was to manipulate parameters of the model to try different solutions
and find out how the model can be tuned to simulate the oculomotor delayed-response
task (see section 1.1.1).

We identified the connectivity parameters (GEE, GEI , GIE and GII), the connec-
tivity footprint parameters of spatially tuned connections (JEE, JEI , JIE, JII , σEE,
σEI , σIE and σII) and the peak stimulation current amplitude α (equation 1.8) as the
parameters to be manipulated.

We tried two different network configurations: the network where only excitatory-
to-excitatory connections were spatially tuned [6], and the network with all but inhibitory-
to-inhibitory connections spatially tuned [7, 1].

We looked at whether the network was able to develop a persistent selective elevated
neural activity of stimulated neurons and whether the network was able to switch off
(see section 2). We also tried to figure out how the network deals with the distractors
presented during the delay period (see sections 1.1.1 and 1.2). Here we present experi-
ments that were at least partially successful, i.e. in which we managed to succeed in at
least one of our research goals. We describe the simulations according to their similar
behavioral characteristics.

In the following sections, parameters are presented dimensionless, following the way
in which they were treated in the code.

4.1 Simulations with 1 ms time step

In the presented simulations, we used a network with a 4 times smaller number of
neurons than used by Compte et al. [6] (Ne = 512 and Ni = 128). This was possible
when all the strengths of the connections were adjusted by a constant factor inversely
proportional to the total number of neurons [6]. In this case, the factor was 4. The
time step used in the experiment was 1 ms. The parameter set used was the control

23
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parameter set used in the original publication [6], with the absolute values of the
channel conductances G multiplied by 4× 10−3. We used the inverse definition of the
synaptic current (equation 3.4). Our reason for this was that the synaptic reversal
potential of inhibitory neurons Vsyn = −70 in Compte et al. [6]. Intuitively, inhibitory
synaptic current should lower the whole synaptic stimulation when the membrane
potential v of inhibitory neurons is high. In these simulations, we used the non-uniform
label distribution with the number of preferred cue groups q = 90.

We managed the network to build up persistent elevated activity of strongly stim-
ulated neurons. When a strong transient current stimulation was introduced to the
neurons, these neurons built up a high frequency spiking activity which persisted even
after the stimulus vanished. We managed to build such activity with the peak stim-
ulation current α ≥ 68.3. This persistent activity can be characterized by a regular
firing pattern of the neurons whose preferred cue angle equaled the presented cue angle.
This was presumably caused by the persisting neuron membrane recovery variable u
built-up during the cue presentation period. Such a behavior can be seen in figure 4.1.
If u was not high enough at the end of the cue presentation period, u gradually fell
down, causing the neuron not to spike.

Figure 4.1: Time development of the membrane recovery variable u of neurons at 0◦,
4◦, 8◦ and 20◦. Stimulation cue angle θstim = 0◦. PR is the pre-trial period (10 ms),
C the cue presentation period (500 ms), D the delay period (500 ms), R the response
period (500 ms) and PS marks the post-trial period (100 ms).

The overall behavior, seen in the rastergram figure 4.2, shows an elevated activity
in a subpopulation of the pyramidal cells during the cue presentation period. This
activity even reduced to a smaller subpopulation of neurons during the delay period.
A strong elevation of activity, which persisted even after the cessation of the stimulus,
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did not disappear in the response period.

Figure 4.2: Rastergram of the neural activity in the network. Stimulation cue angle
θstim = 0◦. We used non-uniform distribution with 90 preferred cue angles (separated
by 4◦). This graph shows just a subpopulation of networks. The whole network activity
consists of patterns repeating along the y-axis (not shown in the figure) due to the
nature of the neuronal label distribution. PR is the pre-trial period (10 ms), C the cue
presentation period (500 ms), D the delay period (500 ms), R the response period (500
ms) and PS marks the post-trial period (100 ms).

We concluded that the issue with this type of the network was that the persistent
activity could not be switched off in the response period even if significantly stronger
stimulation current was applied in the response period. On the other hand, activity of
a neuron which was not originally stimulated, and which was supposed to be inhibited
by the protocol, built up during the response period, in which the neuron was also
stimulated. The response period stimulation current amplitude equaled α. However,
we can see that the spiking activity of this opposite cue angle neuron did not persist
after the response period (figure 4.3).

We assumed that the overall network connectivity was weak and, therefore, the
neurons could not influence each other sufficiently. This was accounted for by the
lack of spiking activity of the interneurons. All the spiking activity was concentrated
in a small subpopulation of pyramidal neurons with preferred cue angle close to the
presented cue.

In the next experiments, we, therefore, tried to increase the overall connectivity in
the network to see how it affected the network’s behavior.
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Figure 4.3: Time development of the membrane potential v of a stimulated neuron with
preferred cue angle 0◦ (A) and a neuron that was not stimulated with preferred cue
angle 180◦ (B). Stimulation cue angle θstim = 0◦. PR is the pre-trial period (10 ms),
C the cue presentation period (500 ms), D the delay period (500 ms), R the response
period (500 ms) and PS marks the post-trial period (100 ms).

4.2 Strengthening the channel conductance parame-

ters

To increase the activity of the network, we decided to increase the strengths of the
connections compared to simulations described in section 4.1, while all other parameters
remained the same. We did so by multiplying the channel conductance variables G
by factor 4 × 10−2. When the connections became ten times stronger compared to
simulations described in section 4.1, the network displayed spiking activity in almost
all time steps. This did not result in the desired outcome and we concluded that the
time step 1 ms should be lowered.
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4.3 Searching for the optimal parameter set

We observed several facts. One of them was that in Compte et al. [6], the current
injected during the response period was of a greater strength than the strength of the
selective transient current injected during the cue presentation period. Also, the time
step we used previously, 1 ms, could supposedly not simulate the network with enough
precision. We, therefore, gradually lowered the time step to 0.2 ms. This allowed us
to increase the channel conductances G, as the values leading to persistent elevated
activity in simulations described in section 4.1 did not result in the ’bump’ state when
a lower time step than 1 ms was used.

Here, we present simulations run with 0.2 ms time step and a network four times
smaller than the network described by Compte and his colleagues [6]. In a standard
simulation, cue presentation started after 100 ms, lasted for 250 ms followed by a delay
period of 350 ms. Length of the subsequent response period was 250 ms. With time
step 0.2 ms used, this meant that the pre-trial period was from simulation step 0 to 500,
the cue presentation period lasted until simulation step 1750, the delay period until
3500 and the response period until 4750. Different simulation lengths are, otherwise,
noted. The length of stimulation periods (250 ms) was chosen in accord with Compte
et al. [6].

As in simulations described in previous sections, the channel conductances used were
in the form 4×G{E,I}2 × 10e, where e ∈ R and G{E,I}2 represent the control parameter
set conductances (see section 1.2.2). We were gradually increasing the exponent e and
observing how it affected the behavior of the network. We present simulations per-
formed with some of the exponents. We observed how different values of J+ influenced
the network’s activity. We also manipulated the external and Poisson input current
values. The peak value of the selective transient current injected during the cue pre-
sentation period α ranged between 2 to 100. We also tried different values of µ (see
equation 1.8). The current injected during the response period to all the neurons was
chosen to be 4α. We used the Poisson input of values 2 or 20. Both uniform and non-
uniform neuron label distributions were tested. Where uniform distribution was used,
the number of cues was set to 360. Regarding the synaptic current, sign control was
used in some simulations, and some simulations were done with the synaptic current
equation 1.2 and some with the inverse form equation 3.4 (see section 3.2).

We present the most significant simulations in the following sections.

4.3.1 Influence of the synaptic current

In order to find out how the synaptic current properties directly influence the network’s
activity, we simulated the network with synaptic currents computed according to either
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(a) Isyn (equation 1.2)
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(b) I∗syn (equation 3.4)

Figure 4.4: Simulations of networks with two different definitions of the synaptic cur-
rent. Stimulation angle θstim = 180◦. (a) Network with synaptic current computed
according to equation 1.2 shows no significant spiking activity in the delay period, and
massive spiking activity on the response period. This is opposite to (b), where rich
bursting activity can be noticed in the delay period, and no activity in the response
period. When the stimulation angle θstim is 180◦, the maximum stimulation is given
to the neuron with index i = 256.

synaptic current
definition

input sign
control

label
distribution

parameter
set

e α µ θstim

inverse no uniform control −2 30 29 180◦

Table 4.1: Parameters of the network used in the ’reference’ simulation.

equation 1.2 or equation 3.4, while all the other parameters remained the same. These
two networks are shown in figure 4.4. A network which utilized the inverse definition
of the synaptic current I∗syn (figure 4.4b) showed richer activity centered around the
stimulation angle and switched off during the response period and subsequently went
to the pre-stimulation state. Other network properties and parameters are shown in
table 4.1.

Synaptic input sign control (see section 3.2) was used in a similar simulation with
the inverse synaptic input definition (figure 4.5). Neuronal activity during the delay
response period was more homogeneous and the activity around the stimulation angle
θstim was weaker than in the no-sign-control condition with the inverse synaptic input.

In the following text, the network with the inverse definition of the synaptic current
and with no sign control shown in figure 4.4b functions as the reference, and we present
only simulations where some of the parameters were changed compared to simulation
in figure 4.4b. Parameters of this network are displayed in table 4.1.

This reference simulation showed a clear neuronal firing desynchronization pattern
around the stimulation cue, which took a form of a series of waves oriented to the
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right, in the temporal direction of the simulation. Pyramidal cells showed higher
synchronization in neighboring areas.
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Figure 4.5: Rastergram of a simulation with the synaptic input sign control. Cue
presented at θstim = 180◦.

4.3.2 Channel conductance and strength connections

We looked for an appropriate level of the network connectivity by manipulating the
exponent e while retaining the base of the channel conductance parameter values as
assigned in the control parameter set. In the simulations, no neuronal activity was
present in the delay period for e ≤ −2.6 and we concluded that the network displayed
too much activity when e ≥ −1.6. Figure 4.6 shows the network’s behavior when
different values of e, −2.6 ≤ e < −1.6, were employed.

We also decreased or increased the strength of the isodirectional connections J+
EE

(1.4 ≤ J+
EE ≤ 1.8). However, we did not notice any significant change in the firing

pattern.

4.3.3 Choosing the better neuronal label distribution

Simulations with no selective transient current injected during the cue presentation
period showed different patterns of spontaneous neuronal activity. Uniform distribution
of neuronal labels behaved in a calmer manner (see figures 4.7a and 4.7b), while non-
uniform distribution showed richer and more varied activity patterns in some of the
regions (see figures 4.7c and 4.7d). Both distributions showed lateral symmetry, as it
can be seen in figure 4.7.
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(a) e = −2.6
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(b) e = −2.4
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(c) e = −1.8

Figure 4.6: Networks with different levels of channel conductances. It can be seen that
greater values of the exponent e enhance the width of the center of elevated neuronal
activity and more activity is spread out to the neighboring regions with greater values
of e. The conductances in (a) are too small and the activity does not persist during the
delay period. On the other hand, stimulation of the whole network during the response
period gives rise to high spiking activity towards the end of the simulation. In this
figure, (a) e = −2.6, (b) e = −2.4 and (c) e = −1.8.
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(a) Uniform distribution
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(b) Uniform distribution
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(c) Non-uniform distribution
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(d) Non-uniform distribution

Figure 4.7: Rastergram of spontaneous firing activity of unstimulated network. Subfig-
ures (a) and (b) show spontaneous activity of a network whose neurons are uniformly
labeled, whereas neurons in the networks shown in subfigures (c) and (d) are non-
uniformly labeled.
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(a) θstim = 180◦

0 1000 2000 3000 4000 5000

0
10
0

20
0

30
0

40
0

50
0

time

ne
ur
on
_f
ire
d

(b) θstim = 250◦
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(c) θstim = 90◦

Figure 4.8: Activity of a network with non-uniform neuronal distribution. The figure
shows three stimulation angles: (a) 180◦, (b) 250◦, (c) 90◦.

We simulated the network with no stimulation to see how the stimulation affected
the network’s activity when the non-uniform distribution was used. Next simulations
were done with the same network properties as shown in table 4.1 except for using the
non-uniform distribution. Figure 4.8 shows how the network behaved under different
stimulation angles. The 90◦ cue (figure 4.8c) showed significantly stronger activity in
the stimulated region compared to 180◦ and 250◦ (figure 4.8a, 4.8b). This activity was
supposedly due to the slightly higher number of neurons with preferred cue angle close
to 90◦ (see section 3.2).

4.3.4 Effects of different stimulation input current strength

When different input current strengths α were used, different activity patterns emerged
in the region close to the stimulus angle. Simulations with different values of α (5, 7.5,
10, 20 and 50) can be seen in figure 4.9. Stimulation current amplitude during the
response period was 4α.
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(a) α = 5
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(b) α = 7.5
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(c) α = 10
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(d) α = 20
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(e) α = 50

Figure 4.9: Rastergram of the network stimulated with different values of the peak
current: (a) α = 5, (b) α = 7.5, (c) α = 10, (d) α = 20, (e) α = 50.
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4.3.5 Longer simulation

We performed a simulation where the pre-trial and the post-trial periods were 200 ms
long, the cue presentation and the response period were 250 ms long and the delay
period was 2500 ms long. This was the longest simulation performed in this series
of simulations. Parameter set used was the same as shown in table 4.1. It showed
an activity pattern similar to the simulation figure 4.4b. In later stages of the delay
period, desynchronization patterns emerged also in other regions of the network. We
measured the spiking frequency of pyramidal cells during the delay period. It showed
areas of higher and lower spiking frequency, however all the frequencies were in 18 - 24
Hz frequency band. Figure 4.10 shows rastergram and spiking frequency of neurons in
the network.

4.4 Activity of interneurons

Simulation of the network shown in figure 4.4b, in which only pyramid-to-pyramid
connections were spatially tuned, showed strong spiking activity of interneurons in the
pre-trial period, bursts of spikes followed by calmer activity during the cue presentation
period, which was being stabilized towards the delay period. Regular and stable activity
in the delay period was followed by selective activity in some of the regions during the
response period and a quite homogeneous spiking activity during the post-trial period.
This activity can be shown in figure 4.11a.

Simulation figure 4.11c was performed with spatial tuning of pyramid-to-interneuron
connections. The values of relevant parameters were set according to Compte and his
colleagues [6] and were J+

EI = 1.25 and σEI = 18◦. Other parameters were set according
to table 4.1.

Figures 4.11b and 4.11d show spiking frequencies of interneurons in these simula-
tions. Interneurons in the simulation with no spatial tuning of pyramid-to-interneuron
connections were in a slightly lower and narrower frequency band of 112 - 116 Hz
and their spiking frequencies were more uniformly distributed than in the simulation
with spatial tuning of pyramid-to-interneuron connections. We can see how the spatial
tuning affected the interneurons. Regions with higher frequency rate are towards the
middle of the scatterplot. These are the regions with preferred cues closer to the stim-
ulated cue angle. Similar distribution of firing rates can be found with pyramidal cells
in different simulation shown in figure 4.10. The frequency band was 105 - 130 Hz.
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(a) Rastergram of the activity of the pyramidal cells
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(b) Frequency of firings of the pyramidal cells
during the delay period

(c) Membrane potential time development
of a neuron close to the presented cue angle

Figure 4.10: Simulation with a 2500 ms long delay period shows in (a) a slow decay of
the desynchronization pattern around the stimulation angle θstim = 180◦ and emergence
of desynchronization patterns in the regions farther from the stimulated cue angle θstim
as the delay period progressed. In the after-trial period, following the response period,
the neurons fire rather synchronously. (b) Higher spiking frequency is located in regions
closer to the presented cue angle. (c) Time development of the membrane potential
v of a neuron close to the presented cue angle shows rather irregular activity at the
beginning of the experiment, very high spiking activity during the presentation period,
rather regular spiking activity of a frequency lower than in the cue presentation period
during the delay period, low level activity with no spikes during the response period,
and a periodic spiking activity during the post-trial period.
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(a) No p-to-i spatial tuning - rastergram
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(b) No p-to-i spatial tuning - frequency
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(c) P-to-i spatial tuning - rastergram
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Figure 4.11: Activity of interneurons in a simulation with and without spatial tuning
of pyramid-to-interneuron connections. (a) and (b) show rastergram and spiking fre-
quencies of interneurons without spatial tuning of pyramid-to-interneuron connections,
(c) and (d) show rastergram and spiking frequencies of interneurons with spatial tun-
ing of pyramid-to-interneuron connections. For the sake of clarity, green line marks
the beginning of the cue presentation period, red of the delay period, orange of the
response period and blue of the post-trial period in these rastergrams.
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Figure 4.12: Simulation of a network with 1024 excitatory and 256 inhibitory neurons.

4.5 Simulation of a larger network

We also simulated a network two times smaller than the network used by Compte
and his colleagues [6]. It was simulated with the control parameter set multiplied by
2 × 10−2. The other parameters used in this simulation were the same as displayed
in table 4.1. This network displayed elevated activity pattern similar to the reference
network. This simulation can be seen in figure 4.12.

4.6 Simulations with distractors

With distractors, we looked at how different distances between the stimulation angle
θstim and the distraction angle θd affect the distraction. Stimulation angle θstim = 180◦

and two different distraction angles were chosen: θd,1 = 230◦ and θd,2 = 300◦. Two
different selective transient input current values α1 = 20 and α2 = 10 were tested to
see how the network is distracted when different stimulation strength is imposed. The
network used was four times smaller than in Compte et al. [6]. Neurons were uniformly
labeled with their preferred cue angle (see section 3.2). Other parameters were similar
to the ’reference’ network shown in figure 4.4b. The onset of the original stimulus was
at 100 ms and lasted for 250 ms. The onset of the distractor stimulus was at 200 ms
after the beginning of the delay period and lasted for another 250 ms.

Figures 4.13a and 4.13c show that two traces which emerged during the stimulations
at two particular angles and two different times moved towards each other when they
were close to each other.

In simulations in which the two angles were separated by more than 90◦, the two
traces remained more or less the same throughout the whole delay period. Distrac-
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(a) θd = 230◦, α = 20
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(b) θd = 300◦, α = 20
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(c) θd = 230◦, α = 10
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(d) θd = 300◦, α = 10

Figure 4.13: Simulations in which distractors were introduced 200 ms after the be-
ginning of the delay period. In (a) and (c), cue period stimulation angle θstim and
distraction angle θd are close to each other (|θstim − θd| < 90◦). In (b) and (d),
|θstim − θd| > 90◦. Simulations (a) and (b) were done with a higher stimulation peak
strength than simulations (c) and (d).

tion caused some changes in the activity pattern of the traces originating in the cue
presentation. These changes were, however, not very prominent.

4.7 Simulations of other parameter sets

Here we present simulations done either with the modulated parameter set [6] or the
parameter set used by Almeida and her colleagues [1]. Parameters of these sets can be
found in table 1.1.

The modulated parameter set showed behavior similar to the control parameter set.
However, the pattern around the stimulation angle was less prominent and the activity
in other regions was richer and more desynchronized, as shown in figure 4.14a.

The parameter set used by Almeida and her colleagues [1] showed a significant
amount of activity in all regions during the cue presentation and the delay periods. The
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(a) Modulated parameter set [6]
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(b) Parameter set from Almeida et al. [1]

Figure 4.14: Pyramidal cell firings when two different parameter sets used: (a) modu-
lated parameter set [6], (b) parameter set used by Almeida and her colleagues [1].

exponent e had to be radically lowered. Although, this problem might have occurred
only because time step of 0.2 ms was used in this simulations. Also, all pyramidal cells
showed high firing activity during the presentation of the stimulus to the whole network
during the delay period. This activity switched off only after the disappearance of the
stimulus. Figure 4.14b shows a rastergram of a simulation with the Almeida et al. [1]
parameter set with the exponent e lowered to the value −2.8.

4.8 Simulation using 0.02 ms time step

In the following simulation, we used time step 0.02 ms, which was used by Compte et
al. [6]. Parameters used are as shown in table 4.1 with one exception: the exponent e
was set to −1. Lengths of periods were as presented in section 4.3. Figure 4.15a shows
the simulation until the beginning of the response period. Pyramidal cells exhibited
activity patterns similar to those found in the simulation figure 4.4b. Higher frequency
of firing activity in regions closer to the stimulated cue angle can be seen in figure
4.15b. Frequency band was 20 - 35 Hz.

When e was set to −2, no delay period activity was present, suggesting that this
order of magnitude did not lead to sufficiently strong connections when the time step
of 0.02 ms was used. The exponent e set to 0 led to too strong neural activity of the
network.

This simulation showed that the network simulated with a smaller time step dis-
played similar behavior to the network simulated with a greater time step when the
synaptic conductance variables were increased to a sufficiently high level.
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(a) Rastergram of the simulation
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(b) Frequencies of neuronal firings

Figure 4.15: Simulation of a network which uses 0.02 ms time step. (a) Rastergram of
neuronal activity during the pre-trial, the cue presentation and the delay periods, (b)
firing frequencies of pyramidal neurons during the delay period.
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Overall results of the simulations

In this section, we present the overall results of our simulations. For a detailed descrip-
tion of individual simulations, see chapter 4.

5.1 Emergence of the elevated activity

The network we implemented managed to build up an elevated activity in the stimu-
lated subpopulation of pyramidal cells during the cue presentation period. This sub-
population of neurons remained active when the stimulus vanished. However, frequency
of firings of each individual neuron in the subpopulation was relatively lower during the
delay period compared to the cue presentation period. The network displayed stronger
desynchronization in the region close to the stimulus cue angle than in other regions.
Most simulations (see section 4.3) suggest that the whole network was affected by the
stimulation, and not only a selected area of pyramidal cells.

Similar patterns of activity were found when different number of neurons was used
in the network (section 4.5), other parameter sets were used (section 4.7) or a different
time step was used (section 4.8).

5.2 The network switches off

The simulations presented in section 4.3 showed that the network was able to switch
off. Supposedly due to the activity of interneurons, the network displayed significant
decrease of activity of pyramidal cells during the response period and no selective
elevated firing activity in the region close to the stimulation angle in the subsequent
post-trial period.
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5.3 Time step and network connectivity

We state that the selected time step had an enormous impact on the accuracy of
the behavior of the network. A sufficiently small time step had to be used in order
to achieve the right amount of the network’s activity and to use sufficiently strong
connection between the neurons. Simulations in section 4.1 used time step 1 ms.
Although elevated spiking activity of stimulated neurons persisting during the delay
period was built when 1 ms time step was used, the connections were presumably not
strong enough to make the network switch off. The order of magnitude of the channel
conductance variables was −3 (we used the variables as dimensionless). When the same
order of magnitude was used with 0.2 ms time step, no persistent elevated selective
spiking activity developed. It was necessary to increase the channel conductances to
-2 order of magnitude (for comparison, see figures and 4.4b and 4.6). A simulation
performed with time step 0.02 ms (see section 4.8) showed a similar activity pattern
than simulations performed with time step 0.02 ms when the order of magnitude of
the channel conductance variables was −1. This network did not exhibit any firing
behavior of the pyramidal cells with the order of magnitude −2. It is, thus, clear
that the level of neuronal connectivity in our implementation of the model [5] is very
sensitive to the time step used.

5.4 Two definitions of the synaptic current

In Compte et al. [6], the synaptic current is computed as defined by equation 1.2. In
this equation, the synaptic reversal potential Vsyn is subtracted from the presynaptic
membrane potential v. Such a definition is also used in several other studies employing
the Simple model of spiking neurons [14] (e.g. Izhikevich [16] and Wacongne et al.
[25]). However, Izhikevich [17] also defined the synaptic current similarly to equation
3.4 (the inverse definition), i.e. the presynaptic membrane potential v is subtracted
from the synaptic reversal potential Vsyn. We tested both definitions of the synaptic
current in our simulations. Our implementation of the model showed satisfying results
only when the inverse definition was employed, as it can be seen in figure 4.4.

5.5 Assigning preferred cue angles

We found and tested two methods of labelling the neurons with preferred cue angles,
called uniform and non-uniform (described in section 3.2). The non-uniform distribu-
tion, unlike the uniform distribution, enhanced neuronal activity in some regions. It
was so because there were more neurons with the same preferred cue angle than in
other regions. Therefore, uniform distribution gave more satisfactory results.
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5.6 Stimulation strength

Different transient current stimulation peak amplitudes α resulted in different enhanced
activity patterns in the neuronal regions with preferred cue angle close to the stimula-
tion angle. However, all tested current amplitudes α resulted in the selective enhanced
activity. Overview of different strengths can be seen in figure 4.9. We used α = 30

in most simulations and amplitude of the transient current injected to all neurons
during the response period was set to 4α in order to give the neurons strong enough
stimulation to overcome the ’bump’ state and reset the neuronal activity.

5.7 Network size

Simulation of a larger network of 1024 pyramidal cells and 256 interneurons (figure
4.12) showed similar after-stimulation pattern than simulations with 512 pyramidal
cells and 128 interneurons.

5.8 Distractors

Simulations with distractors showed different behavior when the cue presentation angle
θstim and the distractor angle θd are separated by an angle smaller or larger than 90◦.
We could clearly see how this two traces approached each other. With separation angle
greater than 90◦, the two traces remained more-less unaffected.



Chapter 6

Discussion

Regarding the practical part of our thesis - the implementation of the spatial working
memory model [1, 6, 7] employing the Simple model of spiking neurons [14], we have
managed to develop a computer program following the description of the spatial work-
ing memory model by Compte and his colleagues [6], using some elements of the model
described by Edin and the collective of co-authors [7] or Almeida and her colleagues
[1], and the description of the Simple model of spiking neurons [14, 17]. We have run
hundreds of simulations in order to learn how the model works when the Simple model
of spiking neurons is used, tune the parameters of the model to get plausible results
and see how maniputating these parameters changes the properties of the implemented
network. Several of these simulations are presented in chapter 4.

In this chapter, we evaluate our implementation, compare our results to the results
of Compte et al. [6], describe issues and limitations we encountered and frame our
work in a larger scope of theoretical research in this field.

6.1 Evaluation

We identified two main features of the model of the spatial working memory [6]. One
of them was its ability to develop selective elevated neuronal activity in a stimulated
subpopulation of pyramidal neurons which persisted also after disappearance of the
stimulus (so called ’bump state’). The second one was the ability of the network to
override this persistent selective enhanced activity when all the neurons were stimulated
(see sections 1.2.3 and 2).

Our findings suggest that this behavior can be accomplished when the network is
implemented using the Simple model of spiking neurons [14]. However, we did not
directly detect elevated activity in the region close to the stimulated angle in a way
it was shown in simulations of Compte and his colleagues [6] (see figure 1.5). The
stimulus-induced selective delay period activity was rather manifested as a distinctive
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and prominent desynchronization pattern (see section 4.3) and we concluded that the
behavior of the whole network was influenced by the stimulation. This desynchro-
nization means that the neurons in the stimulated area showed larger differences in
their spiking times. However, each neuron spiked at relatively precise timings, with its
unique frequency (e.g. shown in figure 4.10c).

Also, our network generally behaved in a more synchronous manner and neurons
very often fired one after each other, forming different patterns of activity.

In our simulations, the network very clearly switched off when all the neurons were
stimulated in the response period. What followed, was an activity pattern similar to
the one exhibited by the neurons before the cue presentation period.

In simulations with distractors, we showed attraction when the presented cue angle
and the distractor angle were separated by an angle smaller than 90◦.

We tried different network sizes, time steps and simulation lengths. Our simulations
with a larger network, a larger simulation length, or a smaller time step showed similar
behavior than simulations of a shorter length, a smaller time step, or a smaller network.
There was, however, one exception: the simulations done with 1 ms time step did not
show a very accurate behavior (see section 4.1). We concluded that this was largely
due to the limitations imposed by this time step on the possible connectivity level.

6.2 Issues and limitations

Largely due to technical reasons, in most of our simulations, we used a network four
times smaller than the network originally used [6]. Also the time step we used in most
simulations was 10 times larger than originally. It was clear that the time step used
related directly to the possible strengths of the connection in the network and, thus,
had impact on the behavior of the network. Smaller time step allowed for stronger
connections. Also smaller time step increased the network’s accuracy.

From the software development perspective, it took quite a long time to compute
a relatively short simulation 700 ms at 0.2 ms time step. This was partially caused by
the hardware used.

Regarding theoretical limitations, according to Compte [5], computational mod-
els such as the one we implemented did not completely show a biologically plausible
behavior (for comparison, see section 1.2.5). They did not account for some features ex-
hibited by biological neurons during the oculomotor delayed-response task experiments
[10] (see section 1.1.1.



CHAPTER 6. DISCUSSION 46

6.3 Interdisciplinarity

Our thesis is mostly embraced by the field of computational cognitive neuroscience. It
employs parts of computer science, software development and computational modelling
to study a topic related to cognitive psychology. Using tools of computer science to
study and understand cognitive phenomena more thoroughly is a standard research
trend in cognitive science [21].

6.4 Significance

In our thesis, we implemented and tested an existing model of the spatial working
memory proposed originally by Compte and his colleagues [6] using a different model
of neurons. Originally, leaky integrate-and-fire units were used [22, 15], but we imple-
mented it using the Simple model of spiking neurons [14], which is more powerful in
simulating behavior of various types of neurons than the former model. Yet, we did not
find any study in which the spatial working memory model [6] was implemented using
the Simple model of spiking neurons [14]. Therefore, our thesis might be the first step
towards using the spatial working memory model [6] together with the Simple model
of spiking neurons [14] in a research, thus integrating this model of the spatial work-
ing memory [6] into the part of the brain research using the Simple model of spiking
neurons [14].

6.5 Future work

First of all, further investigation on how the network would behave if the number of
neurons was set to the number originally used by Compte and the collective [6] is
needed. It might be also beneficial if larger networks than that would be simulated.

In all of our simulations, we based the parameters on either control parameter set,
modified parameter set [6], or a parameter set used in Almeida et al. [1]. Only some of
the parameters were manipulated to see how their modifications change the network’s
behavior. However, we propose to further investigate how a finer parameter tuning
may affect the network’s behavior.

AMPA-mediated synaptic channels were omitted from the implemented network.
It was done so because AMPAR channels were not used in most of the simulations of
Compte et al. [6], either. However, some simulations in the paper by Compte and his
colleagues [6] also employed AMPAR channels. Therefore, the next step might be to
include them in some of the simulations with the Simple model of spiking neurons [14].

We should also take the time which it took to run our simulations. If we keep
in mind that Compte and his colleagues [6] run their simulations at a Pentium III
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processor and a simulation of a few seconds with a network 4 times bigger than the
network we used took them approx. 2.5 hours to run, we have to say that the code
and compiling process has to be optimised. Compte and his colleagues [6] used the
programming language C++, whereas we used Python 2. Therefore, it also might be
beneficial to program our implementation of the model in faster C++.

Moreover, we concluded that the synaptic current as defined by equation 3.4 must
be used when the Simple model of spiking neurons is employed [14]. This follows the
suggestion by Izhikevich [17], but it contradicts how the synaptic current was computed
in most of the related research [1, 6, 7, 16, 25]. It might be needed to research why the
synaptic current as defined by equation 1.2 does not lead to plausible results, although
we proposed some intuition behind this (see section 4.1).

We showed prominent desynchronization patterns in the delay period, following the
selective stimulation during the cue presentation period. However, mechanisms beyond
these patterns have to be, yet, researched.

Last but not least, replication of existing research related to the topic [1, 7] using
the Simple model of spiking neurons [14] would be beneficial to figure out how using
the model of the spatial working memory [6] would be in accordance with the state of
the art in the field of the spatial working memory research.



Conclusion

The aim of this Master’s thesis was to implement the model of spatial working memory
[1, 6, 7] employing the Simple model of spiking neurons [14].

In the theoretical part of this thesis (chapter 1), we analysed the theoretical back-
ground of our thesis: the spatial working memory and a theoretical model of its un-
derlying cellular mechanisms as proposed by Goldman-Rakic [12], the model of spatial
working memory [1, 6, 7] and the Simple model of spiking neurons [14].

Using the information presented in chapter 1, we implemented the model of spatial
working memory using the Simple model of spiking neurons. The model of spatial
working memory was originally implemented employing the leaky integrate-and-fire
neurons [22], which according to Izhikevich [14] could not produce rich spiking and
bursting behavior patterns of cortical neurons and, therefore, its ability to simulate the
brain functions was limited. On the other hand, the Simple model of spiking neurons
was capable of producing behavior of majority of cortical neurons in the human brain
[14, 15, 17]. Therefore, we implemented the model of the spatial working memory using
this neuron model [14], in hope that it can be better integrated to models of large brain
structures, like the prefrontal cortex.

We tested our implementation of the model [6] by simulating the oculomotor delayed-
response task [10], looking for its main feature: the ability to build a selective elevated
activity when a subpopulation of excitatory neurons is stimulated. This elevated ac-
tivity persists when the stimulation ends (delay period) and vanishes when the whole
network is stimulated (response period). We manipulated several parameters of the
model to find a plausible result and study how manipulating this parameters affects
the network’s behavior. We used several proposed types of the model [1, 6, 7] and tested
how the network behaves when distracted by different stimuli in the delay period of
the oculomotor delayed-response task [10].

We found out that this selective elevated activity was manifested as patterns of
frequent spikes of pyramidal neurons in the region in which neurons’ preferred cue
angles were close to the presented cue angle. It was characterized by a sequence of
neuronal firings with a lot of phase shifts between different neurons in the region.
Other regions in the network showed more synchronous activity.

Nature of these activity patterns that emerged in our simulations has not yet been
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studied. Therefore, it is needed to perform theoretical and practical research to study
these patterns in more detail.

Our thesis showed that the model of the spatial working memory [1, 6, 7] can be
implemented and the oculomotor delayed-response task [10] can be simulated using the
Simple model of spiking neurons. However, the results are partly different from the
results of previous computational studies (e.g. [1, 6, 7]). These differences are mainly
in the microstructure of neuronal firings.

Our results can contribute to the simple spiking neurons related research and help
in integration of the spatial working memory model [6] to the part of computational
neuroscientific research employing the Simple model of spiking neurons [14].
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Appendix A - Electronic attachment

Source codes of our implementation are included together with a short instruction file
README.txt on a CD attached to this thesis. We include code of simulations with
and without distractors. This CD also contains vizualizations of results of our simula-
tions displayed in chapter 4. Contents of this CD can be found in the CONTENTS.txt.
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