
 
 

UNIVERZITA KOMENSKÉHO V BRATISLAVE 

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY 

 

 

 

 

 

 

 

 

 

DEEP REINFORCEMENT LEARNING FOR COMPUTER 

GAMES 

 

Diplomová práca 

 

 

 

 

 

 

 

 

  

2016                                                                         Ing. Matúš Tuna 



 
 

UNIVERZITA KOMENSKÉHO V BRATISLAVE 

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY 

 

 

 

 

 

 

 

DEEP REINFORCEMENT LEARNING FOR COMPUTER 

GAMES 

 

Diplomová práca 

 

 

Študijný program: Kognitívna veda 

Študijný odbor: 2503 Kognitívna veda 

Školiace pracovisko:  Katedra aplikovanej informatiky 

Školiteľ:           prof. Ing. Igor Farkaš, Dr. 

 

 

 

  

 

Bratislava 2016                                                      Ing. Matúš Tuna 



 
 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Čestne prehlasujem, že som túto diplomovú prácu vypracoval samostatne s použitím 

citovaných zdrojov. 

 

Ing. Matúš Tuna 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chcem sa poďakovať svojmu školiteľovi prof. Ing. Igorovi Farkašovi, Dr. za cennú pomoc, 

rady, konzultácie, čas a ochotu ktorú mi venoval počas písania diplomovej práce. 

 

 

 



 
 

ABSTRAKT 

 

Témou tejto diplomovej práce je najnovší výskum v oblastiach učenia posilňovaním 

a hlbokého učenia. Táto diplomová práca sa zameriava na algoritmus hlbokého Q-učenia, 

ktorý v literatúre preukázal schopnosť učenia sa efektívnych rozhodovacích stratégií 

priamo z vysokorozmernej reprezentácie prostredia v doméne jednoduchých počítačových 

hier. Hlavnými prínosmi tejto práce je prehľad a analýza súčasného výskumu v oblasti 

algoritmov učenia posilňovaním založených na neurónových sieťach a ich aplikácií, ako aj 

replikácia niektorých výsledkov z literatúry hlbokého Q-učenia. Na základe analýzy 

relevantného výskumu sme navrhli niekoľko metód založených na súčasnom výskume 

v oblasti hlbokého učenia, ktoré by mohli byť použité na rozšírenie a vylepšenie 

algoritmov hlbokého učenia posilňovaním, ako napríklad hlbokého Q-učenia, tak aby 

takýto algoritmus mohol “emulovať” niektoré kľúčové kognitívne kompetencie prítomné 

u ľudí a zvierat, ktoré sú potrebné na to, aby mohol umelý agent pôsobiť “kompetentne” vo 

svojom prostredí. Taktiež sme vykonali niekoľko experimentov hlbokého Q-učenia 

s využitím našej vlastnej implementácie. Počas týchto experimentov sa nám podarilo 

replikovať niektoré výsledky z kľúčovej literatúry hlbokého Q-učenia, ako aj zlepšiť 

niektoré výsledky pomocou alternatívnych algoritmov učenia a inicializácie váh.  

 

Kľúčové slová: učenie posilňovaním, hlboké učenie, neurónové siete, hry. 

 

 

 

 

 

 

 

 

 

 



 
 

 

ABSTRACT 

 

The topic of this thesis are the recent advancements in the fields of reinforcement learning 

and deep learning. We focus on the Deep Q-learning algorithm that was previously shown 

to be capable of learning effective control policies from a high-dimensional representation 

of the environment in the domain of simple computer games. The main contributions of 

this thesis are the review and the analysis of the current research on the topic of the neural 

network based reinforcement learning algorithms and their potential applications, as well 

as the replication of some results from the Deep Q-learning literature. Based on the review 

and the analysis of the relevant research we proposed several methods based on the current 

deep learning research that could be used to extend and to improve deep reinforcement 

learning algorithms like Deep Q-learning so that this algorithm could “emulate” some of 

the core cognitive competences of human and animal minds that are necessary for artificial 

agents allowing them to act as competent agents in the environment. We also managed to 

perform a limited number of experiments with the Deep Q-learning algorithm based on our 

own implementation. We were able to replicate some results from the key Deep Q-learning 

literature and also improve these results by utilizing a different learning algorithm and 

weight initialization techniques compared to the original literature.   

 

Key words: reinforcement learning, deep learning, neural networks, games. 

 

 

 

 

 

 

 

 

 

 



 
 

Obsah 

 

Introduction ............................................................................................................................ 1 

1. Theory of reinforcement learning .................................................................................. 2 

1.1 Reward, learning and control .................................................................................. 2 

1.2 Basic reinforcement learning methods .................................................................... 6 

     1.3     Reinforcement learning in the brain……………………………………………...12 

2. Deep Q-learning ........................................................................................................... 16 

2.1 Value function approximation ............................................................................... 16 

2.2. Deep Q-learning for discreete action spaces ......................................................... 21 

    2.3 Deep Q-learning for continuous action spaces ...................................................... 25 

2.4 Possible extensions of Deep Q-learning ............................................................... 28 

3. Computational experiments in deep reinforcement learning ....................................... 39 

Conclusion ........................................................................................................................... 47 

References ............................................................................................................................ 49 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Introduction 

 

Designing an artificial agent that can autonomously perform actions and learn with 

minimal amount of supervision is one of the biggest challenges for artificial intelligence. 

There are numerous practical applications of such agents, for example in self-driving cars, 

robotics, AI assistants and chatbots, or question answering computers. 

One of the approaches to this challenge is the reinforcement learning (RL), which is a 

subfield of machine learning concerned with a question how should a system (an agent) 

select actions in some environment so as to maximize the cumulative value known as 

reward. An agent has to infer the optimal action from a reward that is determined by the 

environment and from observations of the state of the environment. Although there are 

many algorithms for learning optimal action selection function or policy, only the recent 

advancements in the field of deep learning made it possible to learn policies from the high-

dimensional representations of complex environments. Our primary focus is on the Deep 

Q-learning algorithm, which uses deep neural networks to learn optimal policies based on 

the high-dimensional representation of the environment. So far, Deep Q-learning has been 

used for learning policies in various domains such as arcade games, robotic control tasks or 

board games. We think that deep reinforcement learning algorithms like Deep Q-learning 

could be used as a basis of a controller in more complex tasks, for example in self-driving 

cars, humanoid robots or AI assistants. 

There are three main goals that we want to achieve in this work. In Chapter 1, we 

examine the theoretical basis of RL algorithms including the biological significance of this 

concept. In Chapter 2, we examine discrete and continuous versions of the Deep Q-

learning algorithm. We also consider potential extensions of the Deep Q-learning 

algorithm based on the current development in the field of deep learning. More 

specifically, we will consider the possibility of endowing Deep Q-learning agent with the 

core cognitive competences or “ingredients” of the human intelligence that are necessary 

for artificial agents allowing them to act as competent agents in an environment. Among 

these competences are developmental start-up software, learning by rapid building of the 

models of environment and fast thinking. In Chapter 3, we will attempt to replicate and 

improve upon some of the results from Deep Q-learning paper by Mnih et al. (2013). For 

this purpose, we use our own Python based implementation of Deep Q-learning algorithm. 

 



2 
 

1. Theory of reinforcement learning 

 

1.1 Reward, learning and control 

 

The term reinforcement learning (RL) has two basic meanings [1]. One meaning refers to a 

general RL problem. The second meaning refers to the subfield of machine learning. The 

learning problem concerns the question of how should some system, otherwise known as 

an agent, select actions in some environment so as to maximize the cumulative value 

known as a reward. As a subfield of machine learning, reinforcement learning can be 

viewed as a collection of algorithms and techniques for solving learning problems.  

 Reinforcement learning differs in many ways from traditional machine learning 

algorithms. One major difference is that in RL there is no supervisor that tells the agent the 

correct answer to some problem. As a result, an agent has to infer correct answer from a 

scalar feedback signal known as a reward. Reward signal is determined by the environment 

and can be viewed as an indicator of how good (or bad in the case of negative reward) the 

agent is doing in the environment. The type and characteristics of a reward signal is 

determined by the environment and the task that our agent tries to accomplish. For 

example, for a humanoid robot in the environment of a typical household, positive reward 

would be awarded to such an agent if it accomplishes some household task, for example 

cleaning, and negative rewards would be awarded if the agent broke some property. 

Similarly, if the agent operated in a stock market environment, a positive reward would be 

awarded for making money on some investment and a negative reward for losing money 

on investment. The second major difference between reinforcement learning and 

supervised learning is that the feedback signal (reward) can in many environments be 

delayed and the decisions that an agent makes can have long term consequences. We can 

now formulate the basic structure of RL problems: 

 at time 𝑡 the agent receives an observation 𝑂𝑡 and a scalar reward 𝑅𝑡, 

 based on this observation and a policy that determines what action to take the agent 

selects an action 𝐴𝑡, 

 environment receives an action 𝐴𝑡 and emits an observation 𝑂𝑡+1 and a reward 𝑅𝑡+1, 

 agent receives an observation 𝑂𝑡+1 and a reward 𝑅𝑡+1, selects a new action 𝐴𝑡 and, if 

necessary, modifies its policy. 

 



3 
 

Reinforcement learning agent can operate in two basic types of environments. The first 

type is fully observable environment. In this environment the state and the dynamics of the 

environment are fully known to the agent. Formally, we can say that an environment is 

fully observable if all states of the environment have a Markov property, which means that 

the current state is all that is needed to determine the future dynamics of the given 

environment, therefore the history can be omitted. We can define a Markov state by the 

following equation where 𝑝 denotes probability, 𝑆 denotes the state and 𝑡 denotes time 

step. 

𝑝[𝑆𝑡+1|𝑆𝑡] =  𝑝[𝑆𝑡+1| 𝑆1, … , 𝑆𝑡] 

This kind of environment, in which every state has a Markov property, can in  RL be 

modeled using a Markov decision process, which is a memoryless random process defined 

as a tuple 〈𝑆, 𝐴, 𝑃, 𝑅, 𝛾〉 where 𝑆 denotes states of an environment, 𝐴 denotes a set of 

possible actions, 𝑃 denotes probability of a transition from state 𝑆 to so a successor state 𝑆′ 

when taking some action 𝑎, 𝑅 denotes expectation of a reward if agent performs an action 

𝑎 in state 𝑠 and 𝛾 denotes a discount factor 𝛾 ∈ [0,1] which is introduced to reduce 

importance of future rewards. Formally we can express the state transition probability 𝑃 

and the reward transition probability 𝑅 by the following equations, where 𝐸 denotes 

expectation.  

𝑃𝑠𝑠′
𝑎 =  𝑝[𝑆𝑡+1 = 𝑠′| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

𝑅𝑠
𝑎 =  𝐸[𝑅𝑡+1| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

A large number of RL problems can be modeled using Markov decision process 

formalism, for example: 

 decision making in board games such as backgammon, chess or Go, 

 decision making in many computer games where current screen depicts the whole 

game space, such as Packman, Tetris or Breakout, 

 control of autonomous vehicles, 

 control of humanoid robots. 

  

Considering the large number of real world problems that can be modeled using a Markov 

decision process and current state of RL research, in the rest of the work we will be 

considering only problems that are modeled using Markov decision process. However, 

there are many problems where the environment is not assumed to be fully observable that 

cannot be modeled by Markov decision process. This kind of problems can be modeled 



4 
 

using partially observable Markov decision process. We consider RL problems with 

partially observable environment to be an interesting and beneficial avenue for future 

research. 

Besides the environment in which a RL agent operates, there are three major 

components of RL agents. These components are: 

 policy, which defines agent’s behavior 

 value function which defines how good or bad each state and/or each action is, 

 a model which is the representation of dynamics of agent’s environment. 

 

We will now describe each of these components from the perspective of Markov decision 

process formalism. 

Policy is a function that defines the behavior of a RL agent in some environment. In the 

case of fully observable environments, policy is only dependent on the current state of 

environment. Thus policy can be defined as a function 𝜋 that maps states of an 

environment to actions. Policy can be either deterministic in which agent always takes the 

same action if it is in particular state, or stochastic, in which agent takes some action in 

particular state with certain probability. Therefore we can define deterministic and 

stochastic policies by the following equations. 

𝜋(𝑠) = 𝑎 

𝜋(𝑎|𝑠) = 𝑝[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠] 

Given some known Markov decision process and a stochastic policy 𝜋, we can now define 

state transition probability 𝑃𝑠𝑠′
𝜋  and reward transition probability 𝑅𝑠

𝜋 in the following way. 

𝑃𝑠𝑠′
𝜋 =  ∑ 𝜋(𝑎|𝑠)𝑃𝑠𝑠′

𝑎

𝑎 ∈ 𝐴

 

𝑅𝑠
𝜋 =  ∑ 𝜋(𝑎|𝑠)𝑅𝑠

𝑎

𝑎 ∈ 𝐴

 

Value function “informs” our RL agent of “goodness” or “badness” of some particular 

state of an environment. There are two basic types of value functions. The first type is the 

so-called state-value function 𝑉𝜋(𝑠) which is defined as an expected cumulative discounted 

reward (return) from some state 𝑠 and then following a policy 𝜋. State-value function can 

be expressed using following equation where 𝐺𝑡 denotes a return or an expected 

cumulative discounted reward and 𝑇 denotes final time step at the end of an episode. 

 



5 
 

𝑉𝜋(𝑠) =  𝐸𝜋[𝐺𝑡| 𝑆𝑡 = 𝑠] 

𝐺𝑡 =  𝑅𝑡+1 +  𝛾𝑅𝑡+2 +  𝛾2𝑅𝑡+3 + ⋯ + 𝛾𝑇−1𝑅𝑇  

The second type of value function is the so-called action-value function 𝑄𝜋(𝑠) which is 

defined as an expected cumulative discounted reward (return) from some state 𝑠, when our 

agent took an action 𝑎 and then followed a policy 𝜋. 

𝑄𝜋(𝑠, 𝑎) =  𝐸𝜋[𝐺𝑡| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

𝐺𝑡 =  𝑅𝑡+1 +  𝛾𝑅𝑡+2 +  𝛾2𝑅𝑡+3 + ⋯ + 𝛾𝑇−1𝑅𝑇 

Both value functions 𝑉𝜋(𝑠) and 𝑄𝜋(𝑠) have a recursive property that can be used to derive 

the value for each state 𝑆𝑡. Specifically, return at time step t can be decomposed into an 

immediate reward 𝑅𝑡+1 and a discounted reward received from the next time step until the 

end of episode which is just the discounted value of the next state 𝑆𝑡+1.  

𝑉𝜋(𝑠) =  𝐸𝜋[𝑅𝑡+1 +  𝛾𝑉𝜋(𝑆𝑡+1)| 𝑆𝑡 = 𝑠] 

𝑄𝜋(𝑠, 𝑎) =  𝐸𝜋[𝑅𝑡+1 +  𝛾𝑄𝜋(𝑆𝑡+1, 𝐴𝑡+1)| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

These two equations are known as Bellman expectation equations for 𝑉𝜋(𝑠) and 𝑄𝜋(𝑠) and 

can be used to find value functions of states of Markov decision processes using several 

techniques that we will discuss in next subchapter. By finding a value function for a 

particular state and a policy, we can also derive optimal value function that specifies best 

possible performance of an agent in a particular Markov decision process. Optimal state-

value function 𝑉∗(𝑠) and action-value function 𝑄∗(𝑠, 𝑎) is simply defined as a maximum 

value function over all policies. 

𝑉∗(𝑠) =  max
𝜋

𝑉𝜋(𝑠) 

𝑄∗(𝑠, 𝑎) =  max
𝜋

𝑄𝜋(𝑠, 𝑎) 

If we find 𝑄∗(𝑠, 𝑎), we can also determine an optimal policy for the given Markov decision 

process by selecting an action with the highest optimal action-value function.  

𝑎∗ =  argmax
𝑎 ∈ 𝐴

𝑄∗(𝑠, 𝑎) 

In the next subchapter, we will define basic RL methods that can be used to find optimal 

value functions and policies in Markov decision processes. 

 

 

 

 

 



6 
 

1.2 Basic reinforcement learning methods 

 

There are several methods commonly used in RL for evaluating and finding optimal 

policies. Among these methods are dynamic programming, Monte-Carlo methods, TD-

learning, SARSA and Q-learning.  

Dynamic programming methods assume complete knowledge of the dynamics of a 

Markov decision process, that is to say, that we have to know state transition probabilities 

𝑃𝑠𝑠′
𝑎  and reward transition probabilities 𝑅𝑠

𝑎 for every state in a Markov decision process. 

This assumption is unrealistic for most real-world problems due to the high number of 

possible states or even continuous states in real-world environments. Therefore, this 

method can only be used for solving smaller problems with manageable number of states 

and known dynamics. Considering that Deep RL aims to solve real world problems where 

dynamics of underlying Markov decision process in unknown, we will not consider 

methods based on dynamic programming. Instead we will move forward to algorithms that 

can achieve model-free prediction and control in environments with unknown underlying 

Markov decision processes.  

The algorithm often used for model free prediction and control in RL problems is 

Monte-Carlo method. Using Monte-Carlo methods it is possible to approximate or learn a 

value function or an action-value function directly from episodes of experience without 

knowing the underlying dynamics of a given Markov decision process. First we will 

consider Monte-Carlo policy evaluation where the goal is to learn a value function 𝑉𝜋(𝑠). 

Monte-Carlo agent explores the state space of an underlying Markov decision process by 

sampling episodes of experience using a policy 𝜋, which results in the stream of state-

action pairs and rewards 𝑆1,𝐴1,𝑅2,𝑆2,𝐴2,𝑅3,, … , 𝑆𝑘. Based on this stream of experience, the 

agent will approximate the value function 𝑉𝜋(𝑠), which is defined as an expected 

cumulative discounted reward given some state 𝑠, by calculating an empirical mean return. 

We can calculate an empirical mean return either by first-visit method or by every-visit 

method. First-visit method can be summarized as follows: 

 every time some particular state 𝑠 is visited by the agent for the first time during an 

episode, increment the counter C for the given state 𝐶(𝑠)  ← 𝐶(𝑠) + 1, and 

 increment the total return for that state 𝑇(𝑠) ← 𝑇(𝑠) + 𝐺𝑡, 

 estimate the value of that state 𝑉(𝑠) by calculating the empirical mean return for that 

state 𝑉(𝑠) = 𝑇(𝑠)/𝐶(𝑠), 



7 
 

 repeat previous three steps for every new episode, 

 by the law of large numbers, when 𝐶(𝑠)  →  ∞, empirical mean return for every state 

converges to the value function for that state, given a policy 𝑉(𝑠) →  𝑉𝜋(𝑠)  

 

In every-visit method incremental mean is calculated every time step when that state is 

visited during an episode. This method also converges to true value function for a given 

state and a policy 𝑉𝜋(𝑠). This method can be augmented by using incremental Monte-Carlo 

updates so we can compute an empirical mean return incrementally without keeping track 

of an incremental total return 𝑇(𝑠). This algorithm is the same as in every-visit method, the 

difference being the value update in which the value of state 𝑆𝑡 is updated in the direction 

of difference between a true return and an expected return scaled by the total number of 

visits of that particular state. 

𝑉(𝑆𝑡) = 𝑉(𝑆𝑡) + (𝐺𝑡 − 𝑉(𝑆𝑡))/𝐶(𝑆𝑡) 

Using incremental Monte-Carlo updates, we can not only evaluate a policy 𝜋, but also 

improve our policy, by incrementally updating a action-value function 𝑄(𝑆𝑡, 𝐴𝑡) instead of 

the value function. Incremental Monte-Carlo policy updating can be summarized in the 

following way: 

 every time some particular state 𝑆 is visited and an action 𝐴 is performed by the agent 

during the episode, increment counter C for the given state and action 𝐶(𝑆𝑡, 𝐴𝑡)  ←

𝐶(𝑆𝑡, 𝐴𝑡)  + 1, and 

 estimate the action-value function 𝑄(𝑆𝑡, 𝐴𝑡) by updating the action-value function in 

the direction of difference between a true return and an expected return scaled by the 

total number of visits of that particular state when action 𝐴𝑡 was taken 

𝑄(𝑆𝑡, 𝐴𝑡) = 𝑄(𝑆𝑡, 𝐴𝑡) + (𝐺𝑡 − 𝑄(𝑆𝑡, 𝐴𝑡))/𝐶(𝑆𝑡, 𝐴𝑡) 

 update our policy by acting 𝜖-greedily with respect to updated action-value function 

𝜋 ←  𝜖-greedy(𝑄), 

 repeat previous three steps for every new episode, 

 by the law of large numbers when 𝐶(𝑆𝑡, 𝐴𝑡) →  ∞, action-value function converges to 

an optimal action-value function 𝑄(𝑆, 𝐴)  →  𝑄∗(𝑆, 𝐴) 

 

Although Monte-Carlo methods are in practice quite effective in solving  RL 

problems, these methods depend on calculating true return 𝐺𝑡 which means, that agent has 

to sample from a Markov decision process until it reaches the end of episode, which in 



8 
 

practice can dramatically slow down the convergence process. Relying on true return 𝐺𝑡 

also means that this method only works for episodic environments that terminate after 

finite amount of steps. In the next section we will focus on Temporal-Difference learning 

that addresses many of the shortcomings of Monte-Carlo methods. 

Temporal-Difference (TD) learning [2] is one of the most popular algorithms in 

reinforcement learning. The main advantage of this algorithm over Monte-Carlo methods 

is that TD learning can learn online from incomplete sequences of experience. Thus it can 

potentially speed up learning, because it does not rely on true return 𝐺𝑡 in value function 

update and can be used in continuing non-terminating enviroments. Instead of true return 

𝐺𝑡, TD learning uses TD error updates 𝛿𝑡 that are computed incrementally every time some 

state 𝑆𝑡 is visited.  

𝛿𝑡 =  𝑅𝑡+1 +  𝛾𝑉(𝑆𝑡+1) −  𝑉(𝑆𝑡) 

We can see that this update fully exploits recursive property of the value function 𝑉(𝑆𝑡). 

TD update also replaces true return 𝐺𝑡 with estimated return 𝑅𝑡+1 +  𝛾𝑉(𝑆𝑡+1) which 

makes incremental on-line learning possible. TD value function update rule can thus be 

expressed in the following way, where 𝛼 is the learning rate. 

𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡)  +  𝛼(𝑅𝑡+1 +  𝛾𝑉(𝑆𝑡+1) −  𝑉(𝑆𝑡)) 

This version of TD-learning is known as TD(0) and like Monte-Carlo methods, it 

converges to the true value function for a given policy 𝑉𝜋(𝑠). TD(0) approximates true 

value function by “looking” one step in the future unlike Monte-Carlo methods that has to 

sample complete trajectories of experiences from current time step until the end of episode 

in order to compute true return 𝐺𝑡. Besides one-step TD learning there is a class of 

algorithms that combine TD-learning and Monte-Carlo method. N-step return TD learning 

combines Monte-Carlo and TD-learning by calculating true return for 𝑛 future step and 

then approximating true return from step 𝑛. This method uses the so-called n-step return 

𝐺𝑡
(𝑛)

 instead of true return when updating value function. 

𝐺𝑡
(𝑛)

=  𝑅𝑡+1 +  𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ + 𝛾𝑛−1𝑅𝑡+𝑛 +  𝛾𝑛𝑉(𝑆𝑡+𝑛) 

We can see that if we select 𝑛 = 1, our TD-target is equivalent to TD(0) target. On the 

other hand, if we select 𝑛 = ∞, TD-target is equivalent to the true return 𝐺𝑡 in Monte-

Carlo update.  

𝐺𝑡
(1)

=  𝑅𝑡+1 +  𝛾𝑉(𝑆𝑡+1) 

𝐺𝑡
(∞)

=  𝑅𝑡+1 +  𝛾𝑅𝑡+2 +  𝛾2𝑅𝑡+3 + ⋯ + 𝛾𝑇−1𝑅𝑇 

 



9 
 

By selecting 𝑛 we can effectively combine Monte-Carlo method and TD-learning and in 

theory combine best of the both worlds depending on a RL problem we want to solve. 

Value function update for n-step return thus has the following form 

𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡)  +  𝛼(𝐺𝑡
(𝑛)

−  𝑉(𝑆𝑡)) 

Another variant of n-step return algorithm is TD(λ). This algorithm is based on the n-

step return, one difference being that the TD(λ) algorithm averages all returns in N-step 

return 𝐺𝑡
(𝑛)

 by geometrically weighting the return 𝐺𝑡
(𝑛)

 by factor λ ∈ (0,1). N-step return 

and value function update in TD(λ) have the following form 

𝐺𝑡
𝜆 = (1 − 𝜆) ∑ 𝜆𝑛−1𝐺𝑡

(𝑛)

∞

𝑛=1

 

𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡)  +  𝛼(𝐺𝑡
𝜆 −  𝑉(𝑆𝑡)) 

We can see that by selecting λ = 1 we get an update that is equivalent to Monte-Carlo 

update and by selecting λ = 0 we get an update that is equivalent to TD(0) update.  

Although by using TD(λ) algorithm we can combine Monte-Carlo learning with TD(0) 

algorithm, necessity of calculating n-step return 𝐺𝑡
(𝑛)

 by sampling real experience from 

underlying Markov decision process means that we lose on-line updating capability of 

TD(0) algorithm. By introducing the quantity called eligibility traces 𝐸𝑡(𝑠) into the TD(0) 

value update, we can effectively combine TD(0) algorithm with Monte-Carlo algorithm 

and use on-line updates as in TD(0). Eligibility trace is an accumulator that is incremented 

every time some state 𝑠 is visited in the environment. In each visit the total accumulated 

eligibility trace for some state 𝑠 is also discounted by factor 𝛾 and weighted by factor λ. 

Thus we can define the eligibility trace for state 𝑠 at time step 𝑡 in the following way 

𝐸0(𝑠) = 0 

𝐸𝑡(𝑠) =  𝛾𝜆𝐸𝑡−1(𝑠) + 1(𝑆𝑡 = 𝑠) 

Another advantage of using eligibility traces is that by using them we can better address 

the credit assignment problem. Credit assignment problem describes a situation when a 

reward that is caused by agent’s action or is associated with certain state is delivered by the 

environment with a high temporal delay. This can lead to a situation where reward that is 

associated with distant state or action only very weakly affects this state or action, which 

can have a negative impact on the speed of convergence. By incrementing an accumulator 

every time some state 𝑆𝑡 is visited we take into account frequency heuristic that assigns 

credit to more frequently visited states. On the other hand, we also take into account 



10 
 

recency heuristic that assigns more credit to more recent states, by temporally discounting 

states by weight factor λ. 

Value function update for TD(λ) algorithm with eligibility traces thus has the following 

form 

𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡)  +  𝛼𝐸𝑡(𝑠)(𝑅𝑡+1 +  𝛾𝑉(𝑆𝑡+1) −  𝑉(𝑆𝑡)) 

Similarly to TD(λ) algorithm without eligibility traces, when λ = 0 TD(λ) with 

eligibility traces is equivalent to TD(0) update and when λ = 1, it is equivalent to every 

visit Monte-Carlo update.  

 So far we only discussed Temporal-Difference methods for value function 

updating. TD learning can also be used for improving policy of RL agents. Policy 

improvement technique based on a TD-update rule is called SARSA algorithm (State-

Action-Reward-State-Action) [3]. The update rule for SARSA algorithm is identical to 

update rule used in TD-learning, but instead of the value function 𝑉(𝑆𝑡) we are updating 

action-value function 𝑄(𝑆𝑡, 𝐴𝑡). The basic SARSA algorithm that uses updates similar to 

TD(0) updates, can be summarized in the following way: 

 at the start of training, arbitrarily initialize 𝑄 values for every state-action pair, 

 at each time step 𝑡 in the episode select action 𝐴𝑡 based on state 𝑆𝑡 by acting 𝜖-greedly 

with respect to action-value function 𝑄, 

 perform action 𝐴𝑡, observe reward from environment 𝑅𝑡+1 and next state 𝑆𝑡+1, 

 select next action 𝐴𝑡+1 based on state 𝑆𝑡+1 by acting 𝜖-greedly with respect to action-

value function 𝑄, 

 update the action-value function in the direction of TD-error  

𝑄(𝑆𝑡𝐴𝑡) ← 𝑄(𝑆𝑡,𝐴𝑡)  +  𝛼(𝑅𝑡+1 +  𝛾𝑄(𝑆𝑡+1𝐴𝑡+1) −  𝑄(𝑆𝑡,𝐴𝑡)), 

 𝑆𝑡  ←  𝑆𝑡+1 , 𝐴𝑡  ←  𝐴𝑡+1. 

 

As in Temporal-Difference learning, there are methods combining SARSA updates 

with Monte-Carlo updates known as n-step SARSA and SARSA(λ). N-step SARSA 

updates uses the same principle as n-step TD-updates but replaces n-step return 𝐺𝑡
(𝑛)

 with 

n-step Q-return 𝑞𝑡
(𝑛)

. 

𝑞𝑡
(𝑛)

=  𝑅𝑡+1 +  𝛾𝑅𝑡+2 +  𝛾2𝑅𝑡+3 + ⋯ + 𝛾𝑛−1𝑅𝑡+𝑛 +  𝛾𝑛𝑄(𝑆𝑡+𝑛)  

𝑄(𝑆𝑡𝐴𝑡) ← 𝑄(𝑆𝑡,𝐴𝑡)  +  𝛼(𝑞𝑡
(𝑛)

−  𝑄(𝑆𝑡,𝐴𝑡)) 

 



11 
 

In SARSA(λ) we replace geometrically the weighted return 𝐺𝑡
𝜆 by geometrically 

weighted Q-return 𝑞𝑡
𝜆.  

 

𝑞𝑡
𝜆 = (1 − 𝜆) ∑ 𝜆𝑛−1𝑞𝑡

(𝑛)

∞

𝑛=1

 

𝑄(𝑆𝑡𝐴𝑡) ← 𝑄(𝑆𝑡,𝐴𝑡)  +  𝛼(𝑞𝑡
𝜆 −  𝑄(𝑆𝑡,𝐴𝑡)) 

In SARSA(λ) with eligibility traces, 𝐸(𝑆, 𝐴) are calculated for each state and action 

pair as 

𝐸𝑡(𝑠, 𝑎) =  𝛾𝜆𝐸𝑡−1(𝑠, 𝑎) + 1(𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎) 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡)  +  𝛼𝐸𝑡(𝑠, 𝑎)(𝑅𝑡+1 +  𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) −  𝑄(𝑆𝑡, 𝐴𝑡)) 

So far we have only examined RL algorithms that learn from the same policy being 

used to generate actions in an environment. This is called on-policy learning and has 

several disadvantages. One of the main disadvantages is inability to learn from past 

experience generated from previous policies which is very important for Deep Q-Learning 

algorithm discussed in the next chapter. Other disadvantages include inability to learn the 

optimal policy while following some exploratory policy, or inability to learn by observing 

other agents in the same environment. We will now consider algorithms that deal with 

these disadvantages, namely algorithms that can perform off-policy learning.  

Both TD-learning and Monte-Carlo methods can be adapted to off-policy learning by 

the method called Importance Sampling. We will not consider these methods, instead we 

will focus on one of the most popular RL algorithm that is the basis of Deep Q-learning, 

namely Q-learning [4]. Q-learning enables learning the action-value function 𝑄(𝑆𝑡, 𝐴𝑡) off-

policy by selecting action 𝐴𝑡 using some behavior policy 𝜇(∙ |𝑆𝑡) but using an alternative 

action 𝐴′ generated by different (target) policy 𝜋(∙ |𝑆𝑡) in the computation of TD-error. 

This setup makes it possible to learn both behavior and target policies simultaneously. This 

is advantageous in situations where behavior and target policy are different, for example 

when we use 𝜖-greedy policy as behavior policy and greedy policy as target policy. We can 

define 𝜖-greedy policy as a policy in which our agent performs random action with 

probability 𝜖 and greedy action selected by target policy with probability 1 − 𝜖. This 

policy is useful in situations where we know that our target policy is not yet close to an 

optimal policy and we want to make sure that our agent sufficiently explores the state-

action space. Another situation where Q-learning is advantageous is the situation where we 

want to simultaneously learn behavior and target policies with different parameters for 



12 
 

example in Deep Q-learning. We can now define Q-learning update procedure assuming 

that we use greedy target policy 𝜋(𝑆𝑡+1) =  argmax
𝑎′

𝑄(𝑆𝑡+1, 𝑎′) and a 𝜖-greedy behaviour 

policy 𝜇(𝑆𝑡+1), where 𝑎′ is a set of alternative actions. 

𝛿𝑡 =  𝑅𝑡+1 +  𝛾𝑄 (𝑆𝑡+1, argmax
𝑎′

𝑄(𝑆𝑡+1, 𝑎′) ) −  𝑄(𝑆𝑡, 𝐴𝑡) =  

=  𝑅𝑡+1 + max 𝛾
𝑎′

𝑄(𝑆𝑡+1, 𝑎′) −  𝑄(𝑆𝑡, 𝐴𝑡) 

𝑄(𝑆𝑡𝐴𝑡) ← 𝑄(𝑆𝑡,𝐴𝑡)  +  𝛼𝛿𝑡 

In subchapter 1.3 we will discuss significance of reinforcement learning in animal and 

human cognition and evidence of RL mechanisms in the brain.  

 

1.3 Reinforcement learning in the brain 

 

Rewards are one of the most important concepts in both machine and human/animal 

decision making. It is possible that the main reason why brain evolved is that it allows 

much more effective acquisition of food, water and mating partners which can be 

represented as rewards. In other words, brains make animals and humans learn how to 

select, approach and consume the best rewards for survival and reproduction by identifying 

reward value of objects and situations that are needed to acquire these rewards [5].  

There are two basic types of rewards, namely primary homeostatic and reproductive 

rewards and nonprimary rewards [5]. Primary rewards are basic rewards like food, liquids 

and activities necessary for mating and caring for offspring that are necessary for survival 

of individual and gene propagation. Nonprimary rewards can be defined as rewards that 

support and enhance primary rewards. These rewards often have no homeostatic or 

reproductive value by themselves but pursuing them may support acquisition of primary 

rewards in indirect ways. For example, money is not rewarding in itself but acquisition of 

money enhances the chance of acquiring better food or mating partners making money 

rewarding by association with primary rewards. Both types of rewards have three distinct 

components, namely sensory components, salience components and value component [5]. 

Sensory components such as color, smell, texture of rewarding objects or combination of 

these components enable identification of the rewarding objects or situations in the 

environment. Salience components include physical salience, novelty and surprise salience 

and motivational salience and their main function is to direct attention towards rewarding 

objects or situations. Value component determines the “goodness” of specific object or 



13 
 

situation and mediates behavioral reinforcing, approach generation and emotional effects 

of rewards. These components combined together ensure maximal reward acquisition.  

 

 

Figure 1. Basic reward components [5]. 

 

Successful acquisition of rewards requires not only their identification, but also 

prediction of their occurrence and behavior that leads to reward acquisition. There is a 

large body of evidence that neurons in ventral tagmental area (VTA) and substantia nigra 

(SN) are responsible for the processing of rewarding stimuli [6]. These mid-brain 

structures send their axons to structures responsible for goal-directed behavior, motivation 

and executive processes, for example frontal cortex, striatum and nucleus accumbens.  

The evidence supporting the role of VTA and SN in reward processing comes from 

single cell recordings from dopamine neurons in these areas. In these experiments, an 

animal is presented with rewarding stimuli, called unconditioned stimuli, in the form of 

small quantities of sweet juice or other kinds of food, which results in short phasic 

activation of dopamine neurons in these areas. If we modify this experiment by presenting 

some cue in the form of visual or auditory stimuli without intrinsic rewarding properties 

before actual rewarding stimuli, dopamine neurons in these areas start to change their 

behavior to these stimuli. After multiple pairings of cues and rewards dopamine neurons 

change the time of their phasic activation from the time of actual reward delivery to the 

time of cue delivery as depicted in Figure 2. So previously unrewarding stimuli or cues 

become the predictors of reward called the conditioned stimuli. After this training when the 

rewarding stimuli is not presented after the conditioned stimuli, the activity of dopamine 

neurons is substantially decreased at the time of expected reward stimuli delivery. The 

activation of dopamine neurons also increases with the expected magnitude of reward [7]. 

In Figure 3 we can see that the activity of dopamine neurons at the onset of conditioned 

stimuli scales with an expectation of reward, defined as the probability of reward times the 



14 
 

amount of reward represented by sweet fluid given to subjects (Macaque monkey). This 

behavior of dopamine neurons in VTA and SN indicates that activity of dopamine neurons 

in these areas encodes the difference between the predicted reward and the time of its 

delivery and the actual reward and its time of delivery [6]. 

 

Figure 2. Dopamine neurons change the time of their phasic activation from the time of actual reward 

delivery (top) to the time of cue delivery (middle). If no reward occurs, phasic activation at the expected time 

of reward delivery is lowered (bottom) [6]. 

 

 

Figure 3. Activity of dopamine neurons at the onset of conditioned stimuli scales with expectation of reward. 

Volume of a sweet fluid administered to a Macaque monkey increases from left to right. Dopamine neuron 

responses also increase with higher dosages of sweet fluid [7]. 

 

Behavior of dopamine neurons in VTA and SN is consistent with Temporal-Difference 

RL algorithm [6]. If we look at the activity of dopamine neurons in VTA and SN through 

the prism of TD algorithm, we could say that the output of these neurons at the time of 

reward stimuli delivery represents TD-error updates 𝛿𝑡 and the activity at the time of cue 



15 
 

delivery represents the prediction of this cue, in other words, the discounted sum of 

rewards that animal would get by being in a particular state 𝑉(𝑆𝑡)). 

Besides the phasic dopamine response explained above, there exists another smaller 

dopamine response that precedes the reward prediction error signal. This response occurs 

before dopamine neurons have identified reward value of stimulus and appears to reflect 

physical, motivational and surprise salience and may reflect early assumptions about novel 

potentially rewarding events [5]. These initial and secondary dopamine responses are two 

basic reward components coded by dopamine neurons in VTA and SN, as depicted in 

Figure 4.  

 

 

Figure 4.Stimulus detection and reward prediction components of overall dopamine response [5]. 

 

Phasic dopamine reward signal is only one of many functions of dopamine in the brain. 

We will not address these other functions in this work. We think that the fact that one of 

the functions of dopamine neurons, namely reward prediction error signaling, can be 

explained by  RL theory, illustrates the significance of RL in the context of both animal 

and machine decision making. 

In the next chapter, we will discuss RL methods that can be applied do broad spectra of 

real-world decision making problems, namely Deep Q-learning methods and their possible 

extensions.  

 

 

 



16 
 

2. Deep Q-learning 

 

2.1 Value function approximation 

 

In previous sections we discussed basic RL algorithms. We assumed that there exists some 

state-value function 𝑉(𝑠) or action-value function 𝑄(𝑠, 𝑎) for every possible state or state-

action pair in which case we can represent these value functions by a lookup table. If we 

want to solve complex real-world tasks using reinforcement learning, we have to address 

the fact that most real-world tasks have environments that have large amount of states or 

even infinite amount of states in the case of continuous environments. Storing these states 

in a lookup table and learning the value of each state or state-action pair is simply not 

practical. For example, in robotics we deal with continuous environments and continuous 

action spaces. Even classic board games with discrete state spaces have far more states 

than are practical or even possible to store in lookup table or evaluate. For example the 

game of Go with a large 19x19 board has 10170 possible states, which is more than there 

are atoms in the observable universe. The solution to this problem is to use a function 

approximator with some parameters 𝑤 to approximate the value function 𝑉𝜋(𝑠) or the 

action-value function 𝑄𝜋(𝑠, 𝑎). 

𝑣(𝑠, 𝑤) ≈  𝑉𝜋(𝑠) 

𝑞(𝑠, 𝑎, 𝑤) ≈  𝑄𝜋(𝑠, 𝑎) 

Using a function approximator allows us to learn the parameter vector 𝑤 from 

observations of the environment and then generalize to unseen states of the environment.  

There are many potential function approximation algorithms, for example neural 

networks, linear combination of features, support vector machines, nearest neighbor, 

genetic algorithms or decision trees. Considering the recent advancements in the neural 

network research and the state of the art performance of neural networks on challenging 

tasks such as image or voice recognition, we will only consider neural network based value 

function approximation methods in this work, although we think that using other function 

approximation methods is a viable direction for future research.  

Neural networks are currently among the most popular machine learning methods. We 

think that neural networks are a good choice for approximating action-value functions due 

to the fact, that neural networks with at least one hidden layer are universal function 

approximators [8]. Also neural networks are currently the state-of-the-art models in many 



17 
 

challenging machine learning tasks such as large-scale image classification [9], large-scale 

video classification [10] and sentence classification [11]. We think that the state-of-the-art 

performance of neural networks on these tasks makes modern neural networks an attractive 

choice for value-function and action-value function approximators, particularly for RL 

tasks where the state of the environment is represented by a sequence of pictures or words.  

We are not aware of single universally accepted definition of neural networks but all 

neural network models share some characteristics such as presence of interconnected basic 

computational units (neurons), which are connected to each other via a set of adaptable 

parameters called weights. Each computational unit in a neural network evaluates function 

of its input. The whole network of interconnected computational units then represents a 

composite function 𝑓, otherwise known as the network function, that transforms an input 

space 𝑋 to an output space 𝑌. 

𝑓 ∶  𝑋 → 𝑌 

By observing examples of 𝑋, the neural network has to “learn” an optimal set of 

weights so that the network function 𝑓 is able to correctly transform the input to the output 

even for examples of 𝑋 that the network did not encounter before. The basic computation 

that every neuron in neural network represents is the sum of inputs 𝑥 to that particular 

neuron weighted by weights 𝑤 that corresponds to particular input. Usually there is also 

some nonlinearity 𝜎, otherwise called the activation function, applied to this weighted sum. 

The output of particular neuron in the network 𝑦 can thus be expressed the following way, 

where 𝑏 denotes bias of a particular neuron: 

𝑦 =  𝜎(∑ 𝑤𝑖

𝑛

𝑖=1

𝑥𝑖 + 𝑏) 

There are several types of activation functions, but among the most widely used 

activation functions are the sigmoid, hyperbolic tangent, softmax or rectified linear unit 

activation functions.  

Learning in the context of neural networks is performed by a learning algorithm, which 

has to find some set of weights so that the output of a neural network is as close to the 

correct output as possible. More formally, the learning algorithm has to find a set of 

weights that minimize some measure of correctness of the output of the neural network 

called the cost function. The cost function is often task-specific, but for many 

classification-based tasks mean squared error or cross-entropy is used. Given a training set 

of 𝑝 training examples and corresponding vectors of correct labels 𝑡 and network outputs 



18 
 

𝑜, we can define the mean squared error (𝑀𝑆𝐸) cost function and the cross-entropy 

(𝐶𝐸) cost function in the following way: 

𝑀𝑆𝐸 =  
1

2𝑝
∑(𝑜(𝑖) −  𝑡(𝑖))2

𝑝

𝑖=1

 

𝐶𝐸 =  − ∑[ 𝑡(𝑖) ln 𝑜(𝑖)

𝑝

𝑖=1

+ (1 −  𝑡(𝑖)) ln(1 − 𝑜(𝑖))] 

Several learning algorithms can be used for training neural networks, for example 

evolutionary algorithms, simulated annealing or expectation-maximization algorithms. In 

this work we will consider only the most commonly used algorithm used for training 

neural networks, namely error backpropagation (BP). The BP algorithm, discovered 

independently by Paul Werbos [12] and David Rumelhart [13], makes efficient training of 

neural networks with multiple hidden layers possible. The core principle of BP is to use the 

gradient descent optimization method for iteratively finding a combination of weight 

parameters that minimize the cost function, i.e. maximize the performance of the neural 

network. The BP algorithm can be divided into following steps: 

 forward pass, in which the output of network is calculated from the training data, 

 evaluation of the cost function 𝐸, 

 calculation of the gradient of the cost function with respect to every weight parameter 

of neural network ∇𝐸 = (
𝜕𝐸

𝜕𝑤1
,

𝜕𝐸

𝜕𝑤2
, … ,

𝜕𝐸

𝜕𝑤𝑙
), 

 each weight and a bias in neural network is updated by subtracting gradient scaled by 

learning constant 𝛼 from the value of weight 𝑤𝑙
𝑡+1 =  𝑤𝑙

𝑡 −  𝛼
𝜕𝐸

𝜕𝑤𝑙
𝑡. 

There are several popular variants of the gradient descent algorithm that can be used in 

the conjunction with the BP algorithm for calculating gradients. Most of these algorithms 

are substantially faster than the standard gradient descent. Among the most widely used 

variants of the gradient descent algorithm are AdaGrad [14], AdaDelta [15], ADAM 

optimizer [16] or stochastic gradient descent.  



19 
 

 

 

Figure 5. Comparison of various gradient descent optimizers on CIFAR10 datasets, left: first three epochs, 

right: 45 epochs. [16] 

 

There are several neural network architectures that can be used for approximating the 

value and the action-value function, for example the multilayer perceptron, convolutional 

networks or recurrent neural networks. One of the most commonly used neural network 

architectures are the convolutional neural networks developed by Yann Le Cun for the use 

in automatic handwritten digit recognition system [17]. Architecture of the convolutional 

layers is inspired by the receptive field arrangement of neurons in the primary visual cortex 

which was first discovered in seminal work by Hubel and Wiesel on the topic of functional 

architecture of cat’s visual cortex [18]. Each neuron in a convolutional layer is connected 

with a small region of the input. This small region can be seen as analogous to receptive 

field of the neurons in the primary visual cortex. When presented with an input image, the 

weight matrix of each neuron in a convolutional layer is convolved with overlapping 

regions of the input to form feature maps that contain the response of each neuron in that 

layer. This arrangement of neurons is able to tolerate various translations in the original 

input and can make better use of the local characteristics of the input. The max pooling 

layers are often inserted between two convolutional layers. These layers pool together the 

outputs of neighboring neurons by selecting only maximum activation of neurons in 

predefined locations in the feature map. Final processing in convolutional neural networks 

is usually done by multilayer perceptrons. Similarly to the multilayer perceptrons, 

convolutional networks are trained using standard BP algorithm. Architectures based on 

convolutional neural networks are currently the state-of-the-art models in the natural image 



20 
 

recognition with a performance rivaling that of the human labelers [19], which makes them 

a good candidate for the value function and the action-value function approximation in the 

cases where the state of the environment is represented by a picture or a sequence of 

pictures. 

 

 

Figure 6. Example of a convolutional neural network architecture [20]. 

 

 

Figure 7. Example of convolutional layer architecture, each neuron (circles in the volume on right side) is 

connected to a small receptive field in input space (right) (from http://cs231n.github.io/convolutional-

networks). 

 

Another commonly used neural network architecture are recurrent neural networks. 

These networks can be used for modeling sequential data where inputs at the different time 

steps are dependent upon each other, which can be helpful in tasks such as time-series 

prediction, prediction of the next word in the sentence, machine translation, speech 

recognition or generating image description. The most common variant of recurrent neural 

networks used today is Long Short-Term Memory [21], which makes training recurrent 

neural networks that process extended time intervals possible.  

In subchapter 2.2 we will discuss recent algorithm called Deep Q-learning [22], [23], 

which uses deep convolutional neural networks for approximation of action-value function. 

This algorithm was successfully used for playing a wide variety of simple computer games 



21 
 

directly from the picture representation of game states without any feature engineering or 

an access to the underlying game logic which is similar to the way humans learn to play 

games and perform actions in real-world environments.  

 

2.2 Deep Q-learning for discrete action spaces 

 

Deep Q-learning algorithm, developed by Mnih et al. (2013), aims to provide a practical 

way to apply RL principles in complex environments. This algorithm uses deep 

convolutional neural network 𝑄 with parameters 𝜃 as an action-value function 

approximator and uses Q-learning updates for updating the parameters of neural network. 

The authors of Deep Q-learning algorithm used the collection of 50 classic Atari 2600 

games to test the performance of this algorithm. The goal of Deep Q-learning algorithm 

was to learn the optimal policy for each of these games directly from the visual 

representation of the game state using the same neural network architecture across all 

games.  

Nonlinear function approximators are known to lead to instability when used in an 

action-value function approximation due to the correlations in the sequences of 

observations of the environment states, sensitivity of the policy to the small changes in Q-

value updates and the correlations between action-values and target values [23]. Deep Q- 

learning addresses these instabilities using two key ideas. First, Deep Q-learning uses 

experience replay which stores transitions of states 𝑠𝑡, actions 𝑎𝑡, rewards 𝑟𝑡 and states at 

the next time step 𝑠𝑡+1 in replay memory 𝐷 and at the time of learning samples random 

batches of transitions from this memory. This sampling strategy removes correlations in 

sequences of experience and improves the stability of the algorithm. 

𝑒𝑡 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) 

𝐷 = {𝑒1, 𝑒2, … , 𝑒𝑡} 

Second, Deep Q-learning uses secondary deep convolutional network �̂� with 

parameters 𝜃− to generate Q-value target. This second network is updated periodically by 

copying parameters of the action-value function approximator. This results in quasi-stable 

Q-value target, which furthermore improves the stability of the algorithm.  

The input to the action-value function approximation network 𝑄 is the representation of 

the state of the environment in the form of pictures generated by the computer game. Each 

state consists of four most recent frames from the game. This is because we want our 



22 
 

action-value function approximator to learn to react to a changing environment. For 

example, many classic computer games such as Pong, Breakout or Space Invaders are 

physics based games in which the agent has to infer the trajectory of objects in the game. 

Because a trajectory can only be approximated and predicted using more than one frame 

from the game, Deep Q-learning uses multiple frames from the game to approximate the 

action-value function. The output of action-value function approximator 𝑄 is a discrete set 

of valid actions for a particular game. Actions are selected according to 𝜀-greedy strategy, 

with gradually decreasing value of 𝜀. The figure below represents the convolutional neural 

network used as an action-value function approximator 𝑄. 

 

 

Figure 8. Neural network architecture used by Deep Q-learning (Mnih et al. 2015). Input to the network 

consists of 84x84x4 pixel array that contains 4 most recent game screens. The network consists of 3 

convolutional layers, 2 fully connected layers and output layer with one output for each valid action [23]. 

  

 

We can now define Deep Q-learning algorithm [23]: 

 Initialize replay memory D to capacity N, 

 Initialize the action-value function approximator 𝑄 with random weights 𝜃 

 initialize target action-value function approximator �̂� by copying weights from 𝑄, 

𝜃− =  𝜃 

o for episode = 1 to M do 

 get initial state 𝑠1 from the game 

 for 𝑡 = 1 until terminal state do 



23 
 

 with probability 𝜀 select random action 𝑎𝑡, otherwise select 

𝑎𝑡 =  argmax
𝑎

𝑄(𝑠𝑡, 𝑎; 𝜃) 

 execute action 𝑎𝑡 in the game and observe reward 𝑟𝑡 and state 

𝑠𝑡+1 

 store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in replay memory 𝐷 

 after every 𝑈 actions do 

o sample random batch of transitions (𝑠𝑗, 𝑎𝑗 , 𝑟𝑗, 𝑠𝑗+1) 

from replay memory 𝐷 

o for every transition in batch set 𝑌𝑗 =  𝑟𝑗 if episode 𝑗 +

1 is terminal episode, otherwise 𝑌𝑗 = 𝑟𝑗 +

 𝛾 max
𝑎′

�̂�(𝑠𝑗, 𝑎′; 𝜃−) 

o compute cost function 𝐸 = (𝑌𝑗 −  𝑄(𝑠𝑡, 𝑎; 𝜃))2 

o update every parameter 𝜃𝑙 in 𝑄, 𝜃𝑙 =  𝜃𝑙 −  𝛼
𝜕𝐸

𝜕𝜃𝑙
 

o every 𝐶 updates do 𝜃− =  𝜃 

 end for 

 end for 

Deep Q-learning was able to achieve a performance that rivaled and in many cases 

surpassed human performance in most Atari 2600 games it was tested on. It also surpassed 

the performance of other state-of-the-art RL algorithms in this domain. Comparison of the 

performance of Deep Q-learning algorithm on different games can be seen in Figure 9. 

 



24 
 

 

Figure 9. Comparison of performance of Deep Q-learning algorithm on various Atari 2600 games in 

percentage of human performance [23]. 

 

There are several variants of Deep Q-learning algorithm that try to address some of the 

shortcomings of the original algorithm. One of the variants is Double Deep Q-learning 

[24], which addresses the tendency to overestimate Q-values by original Deep Q-learning 

algorithm. According to Hasselt et al., this overestimation is due to the max operator in 

standard Deep Q-learning algorithm, which uses the same parameters both to select and 

evaluate an action [24]. To prevent this overestimation, Double Deep Q-learning algorithm 

decouples the action selection and the action evaluation by evaluating greedy policy using 

the policy network 𝑄 and estimating the value of this policy using target network �̂�. 

Double Deep Q-learning algorithm is therefore the same as Deep Q-learning, with the 

difference being only in the computation of the target value 𝑌𝑗. 

𝑌𝑗
𝐷𝑄𝑁 = 𝑟𝑗 +  𝛾 max

𝑎′
�̂�(𝑠𝑗, 𝑎′; 𝜃−) 

𝑌𝑗
𝐷𝑜𝑢𝑏𝑙𝑒𝐷𝑄𝑁 = 𝑟𝑗 +  𝛾�̂�(𝑠𝑗, argmax

𝑎
𝑄(𝑠𝑗, 𝑎; 𝜃) ; 𝜃−) 

Another variant is the Deep Q-learning with prioritized experience replay [25]. This 

algorithm is designed so that more “important” transitions from replay memory are 



25 
 

sampled more frequently as opposed to standard Deep Q-learning where transitions are 

sampled randomly. Combined with Double Deep Q-learning, this algorithm outperformed 

standard Deep Q-learning on 41 out of 49 Atari 2600 games [25]. 

In subchapter 2.3 we focus on Deep Q-learning-based algorithm for continuous action 

spaces.  

 

2.3 Deep Q-learning for continuous action spaces 

 

Deep Q-learning algorithm from the previous subchapter was demonstrated to be effective 

in learning powerful policies in many domains directly from high-dimensional pixel 

representations of an environment. However, it can only learn policies for discrete low- 

dimensional action spaces. Therefore it is not directly applicable for RL problems with 

continuous action spaces such as autonomous driving, robotic limb control or controlling a 

character in the first-person shooter game. Although it is theoretically possible to discretize 

continuous action spaces, this approach is not practical even for relatively low-dimensional 

action spaces. For example if we coarsely discretized action space of a humanoid robot 

such as the iCub with 53 degrees of freedom so that each degree of freedom would have 

only 2 possible values, we would need 253 output neurons.  

For RL problems with continuous action spaces we need to separately approximate the 

value of every action and state pair and the agent’s policy. Reinforcement learning 

algorithm that is designed to cope with this kind of task is called the actor-critic. Actor-

critic based algorithms generally contain two sets of function approximators. The actor 

selects an appropriate action based on the current state of the environment. The critic 

evaluates the value of the current state of the environment and an action selected by the 

actor. The parameters of the actor are then updated in the direction of policy gradient.  

Recent work by Lillicrap et al. shows how to combine actor-critic approach with Deep 

Q-learning [26]. Using their algorithm called Deep Deterministic Policy Gradient it is 

possible to use deep neural networks as a function approximator in RL problems with 

continuous action spaces. Instead of one deep neural network that approximates the action-

value function based on the state of the environment, actor-critic uses two networks, one as 

the actor network 𝜇 with parameters 𝜃𝜇, the second as the critic network 𝑄 with parameters 

𝜃𝑄 . Similarly to the Deep Q-learning, there are periodically updated target networks for 

both the actor network �̂� and the critic network �̂� that stabilize the learning. Target 



26 
 

networks slowly track actor and critic networks, with parameter 𝜏 determining what 

fraction of the parameters of the actor and the critic networks is updated. The critic 

network parameters are updated using Q-learning update as in Deep Q-learning. The actor 

network is updated using Deterministic Policy Gradient method [27].  

Deep Deterministic Policy Gradient algorithm can be defined following way [26]. 

 Initialize replay memory D to capacity N, 

 initialize critic network 𝑄 with random weights 𝜃𝑄 and actor network 𝜇 with 

random weights 𝜃𝜇, 

 initialize target networks �̂� and �̂� with weights 𝜃𝑄−
=  𝜃𝑄, 𝜃𝜇−

=  𝜃𝜇 

o for episode = 1 to M do 

 initialize random process 𝜌 for action exploration 

 get initial state 𝑠1 from the game 

 for 𝑡 = 1 until terminal state do 

 select action 𝑎𝑡 =  𝜇(𝑠𝑡; 𝜃𝜇) +  𝜌𝑡 

 execute action 𝑎𝑡 in the game and observe reward 𝑟𝑡 and state 

𝑠𝑡+1 

 store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in replay memory 𝐷 

 after every 𝑈 actions do 

o sample random batch of transitions (𝑠𝑗, 𝑎𝑗 , 𝑟𝑗, 𝑠𝑗+1) 

from replay memory 𝐷 

o for every transition in batch set 𝑌𝑗 =  𝑟𝑗 if episode 𝑗 +

1 is terminal episode, otherwise 𝑌𝑗 = 𝑟𝑗 +

 𝛾 �̂�(𝑠𝑗, �̂�(𝑠𝑗+1; 𝜃𝜇−
); 𝜃𝑄−

) 

o evaluate the cost function 𝐸 = (𝑌𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗; 𝜃𝑄))2 

o update every parameter 𝜃𝑙
𝑄

 in 𝑄, 𝜃𝑙
𝑄  =  𝜃𝑙

𝑄  −  𝛼
𝜕𝐸

𝜕𝜃𝑙
𝑄

 
 

o update every weight parameter 𝜃𝑙
𝜇

 in 𝜇, 𝜃𝑙
𝜇

= 𝜃𝑙
𝜇

 −

 ∇𝑎 𝑄(𝑠𝑗 , 𝜇(𝑠𝑗; 𝜃𝜇); 𝜃𝑙
𝑄

)∇𝜃𝜇𝜇(𝑠𝑗; 𝜃𝜇)  

o every 𝐶 updates do 𝜃𝑄−
=  𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄−

, 𝜃𝜇−
=

 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇−
 

 end for 

 end for 



27 
 

Deep Deterministic Policy Gradient method was tested on multiple  RL tasks such as 

cart-pole swing-up task, reaching task, monopoded balancing tasks, two locomotion task 

and driving tasks in Torcs driving simulator. Both the low- dimensional environments (for 

example in the form of joint angles and positions) and the high-dimensional environments 

(pixel representation of the environment) were used in the training of this algorithm.  

 

 

Figure 10. Examples of tasks used for testing of the Deep Deterministic Policy Gradient. From left to right: 

the cartpole swing-up task, a reaching task, a gasp and move task, a puck-hitting task, a monoped balancing 

task, two locomotion tasks and Torcs driving simulator [26]. 

 

For comparison, two baselines were used, the first baseline being uniform random 

policy and the second baseline being planning algorithm with the access to underlying 

physical model of the particular task. On every task Deep Deterministic Policy Gradient 

outperformed uniform random policy. On most tasks Deep Deterministic Policy Gradient 

managed to approach the performance of benchmark planning algorithm with access to 

underlying physical model, even surpassing it on some tasks.  

 

 

Figure 11. Performance curves for several RL problems using different variants of Deep Deterministic 

Policy Gradient during the training: Deep Deterministic Policy Gradient (light gray), Deep Deterministic 

Policy Gradient with target network (dark gray), Deep Deterministic Policy Gradient with target network 

and batch normalization (green), Deep Deterministic Policy Gradient with target network from pixel input 

(blue). Scores are normalized so that 0 is the performance of uniform random policy and 1 is the 

performance of benchmark planning algorithm [26]. 

 

In this subchapter and previous subchapter 2.2, we have discussed the Deep Q- learning 

algorithm, which was successfully applied to complex RL problems that require learning 

policies from high-dimensional inputs in both discrete and continuous action spaces. In 



28 
 

subchapter 2.4, we will discuss possible extensions of neural network based RL algorithms 

like Deep Q-learning so that these algorithms can “think” more like animals and humans. 

 

2.4 Possible extensions of Deep Q-learning 

 

We consider Deep Q-learning to be a big advancement in the field of RL and the artificial 

intelligence in general. Learning behavior policies directly from high-dimensional 

representation of the environment with only minimal prior knowledge is an important first 

step towards artificial agents that act and learn with human-like flexibility. Despite the 

human-like, or in some cases even superhuman, performance of Deep Q-learning on 

certain RL tasks, there are many differences between the performance of people and deep 

RL algorithms like Deep Q-learning. These differences are illustrated in Figure 12. 

 

 

Figure 12. Relationship between the amount of training time and the performance on Atari 2600 game 

Frostbite. DQN+ denotes Deep Q-learning with prioritized experience replay [28]. 

 

We can see that although Deep Q-learning with prioritized experience replay can 

achieve nearly human-level performance in relatively complex Atari 2600 game called 

Frostbite, the amount of time it takes for the Deep Q-learning to approach human-level 

performance is much higher. An average person can learn the rules of the game in the 

order of minutes. Deep Q-learning needs more than 300 hours of game experience to reach 

its peak performance. The amount of time or training data needed for the Deep Q-learning 

to achieve peak performance significantly limits the flexibility of the agent. This is a 

common trait of all current neural network models, including the Deep Q-learning. 

Although this may not be a problem in situations where the algorithm has an access to the 



29 
 

large amount of training data, for example in simulated environments or in supervised 

learning problems like image recognition, it may be a problem in a real-world scenarios 

where the environment does not provide the agent with a large amount of experience. For 

example, it may not be practical or even economical to allocate hundreds of hours to teach 

a hypothetical household robot to perform a single simple task, such as washing dishes or 

cleaning the table, not to mention more complex tasks we perform every day that people 

can learn effortlessly. Another problem may be the generalization abilities of neural 

network based algorithms. People can perform the same task even if the details of the task 

change. For example, people could play the game of Pong even if the visual representation 

of background, ball or paddles changed, without learning the game anew. Neural network 

based algorithms could potentially do the same, but we would have to provide a large 

number of examples for each different task in order to make the algorithm generalize well 

across the same task with a different visual representation. Considering the enormous 

amount of different tasks a competent agent has to master in real-world environment, this 

approach would be highly impractical. Instead, we would need to endow our agent with 

some core competences that enable humans and animals to successfully perform tasks in a 

changing environment and rapidly learn new tasks when necessary.  

Lake et al. identified some of the core cognitive competences or “ingredients” of the 

human intelligence that are necessary for artificial agents in order to act as competent 

agents in the environment [28]. Among these core competences are: 

 developmental start-up software, 

 learning by rapid building of the models of environment and 

 fast thinking. 

The term developmental start-up software refers to the intuitive understanding of 

several domains that is necessary for further cognitive development of a child. Among the 

most important parts of the developmental start-up software are intuitive physics and 

intuitive psychology.  

Intuitive physics can be characterized as an ability to understand the basic properties 

and behavior of objects. Two-month old infants already have certain expectations about the 

objects in the environment, for example that objects move along the smooth path do not 

randomly appear and disappear out of existence, do not penetrate each other and do not act 

on distance [28]. Six-month old infants have basic understanding of physical properties of 

different objects and hold different expectations for solid, soft or liquid objects [28]. One-

year old infants have developed basic understanding of concepts such as inertia, support, 



30 
 

containment and collision [28]. All of these basic abilities make predictions about physical 

objects possible. Deep learning system that possesses these capabilities would have to be 

able to approximate physical properties of objects. Based on these properties, it would 

have to be able to predict the behavior of these objects and behavior of systems that these 

objects are part of and generalize to objects that the system has never seen before based on 

the similarities between seen and unseen objects. In Figure 13 we provide an example of a 

task that such a system would have to be able to solve.  

 

 

Figure 13. Example of a task that the deep learning system with an understanding of intuitive physics 

(intuitive physics engine) would have to solve. Based on the visual representation of the scene on the left, it 

would have to determine the physical properties of the objects in the structure, determine the stability of such 

a structure and predict what will be the final configuration of objects after the structure had collapsed [28]. 

 

The term intuitive psychology refers to the ability of infants to distinguish agents from 

inanimate objects, identify goals and general behavioral tendencies in other agents and the 

ability to distinguish between anti-social, neutral and pro-social agents [28]. Endowing 

deep learning system with this set of abilities is potentially an even more challenging task 

than endowing such an agent with intuitive physics. Similarly to intuitive physics, the 

artificial agent would have to learn to identify properties of other agents such as long- and 

short-term goals, habits, emotions, personality traits and relationship between the agent and 

other agents. Artificial agent would also have to predict behavior of other agents and 

generalize to agents it has never met before.  

Learning by rapid building of the models of environment is a key competence of agents 

such as human beings that makes fast learning of new concepts possible. Unlike modern 

machine learning algorithms, children and adults are able to learn new concepts even from 

one example. This ability is called one-shot learning and so far has been impossible to 



31 
 

achieve in modern neural network based machine learning algorithms. People are also 

capable of generating new examples of novel categories from one example. Lake et al. 

identified three key competences that are necessary for rapid building of models of 

environment: compositionality, causality and learning to learn [28].  

The term compositionality refers to the ability to learn or to construct a large number of 

representations from a finite set of primitives. Real-world objects and environments can be 

parsed into the set of primitives and spatiotemporal relations between these primitives. An 

artificial agent endowed with the notion of compositionality has to be able to parse an 

environment into primitives that can then be used to classify novel objects and situations 

into categories, only after one exposure to a novel object or situation. Such an agent also 

has to be able to produce novel examples of some category by combining primitives into 

novel instances of a particular object.  

Causality refers to the ability to model processes that produce perceptual observations, 

in other words, to create generative models of an environment. This concept is also 

strongly related to the concept of compositionality in the sense that generative models can 

use primitives to construct generative models of the environment. 

The term learning to learn refers to the ability to accelerate the learning of some 

concept or tasks by using priors (parameters) learned on a similar or a related concept or 

task. This term is also called the transfer learning or the multitask learning.  

The last core competence that we will consider is fast thinking, which simply refers to 

the ability of the human mind to rapidly understand the state of the surrounding 

environment and to select appropriate actions to achieve some set of goals. 

Recent advances in the field of deep learning made it possible for researchers to start to 

emulate some of the core competences we talked about. In the area of intuitive physics, 

Lerer et al. used deep convolutional neural networks to learn physical behavior of both 

virtual and simulated objects [29]. They managed to train an artificial neural network to 

both predict the stability of stacked boxes (if they are likely to fall or not) and to visualize 

the final position of boxes after they fell. Prediction performance was comparable to 

human participants in the case of physical boxes, and higher than human participants in the 

case of virtual boxes. The trained network was also able to generalize to the number of 

boxes it had not been trained on. As with other neural network approaches, the number of 

training examples needed to achieve a high level of accuracy was in the thousands, and the 

model was not able to generalize well to the situations where the number of boxes deviated 

significantly from the number of boxes in training examples. 



32 
 

 

Figure 14. Architecture of the deep learning model used in Lerer et al. The input to the neural network model 

was a picture of boxes configuration (left). The network was trained to simultaneously output the probability 

of the box structure falling, the mask with the position of the boxes and the position of the boxes after the 

structure had collapsed (right) [29]. 

 

The task of learning compositionality can be subdivided into detecting object 

candidates in the environment and detecting essential part of objects in the environment. 

Both of these tasks can be tackled by deep learning approaches. Pinheiro et al. used a deep 

neural network model to detect objects in the natural scenes and produce segmentation 

mask for potential objects in the scene [30]. Their approach achieved the state-of-the-art 

results in the image segmentation benchmarks PASCAL VOC and COCO. Their approach 

also achieved impressive generalization capabilities where the network that was trained 

only on the subset of all object categories was able to segment images almost as well as the 

network that was trained on all categories.  

 

 

 

Figure 15. Segmentation proposals from Pinheiro et al. Incorrect segmentation proposals are marked with 

red outline [30]. 



33 
 

 

Another approach to generating a segmentation mask for potential objects in the scene 

by Chen et al. used a deep convolutional neural network and conditional random fields 

[31]. They managed to achieve the segmentation accuracy on real-world scenes similar to 

Pinheiro et al.. 

Tsogkas et al. used a similar approach to Chen at al. (deep convolutional neural 

networks and conditional random fields) for detecting parts of objects (semantic part 

segmentation) [32]. Although they managed to achieve high object part segmentation 

accuracy, they trained their model separately for each object category. A more general 

approach to semantic part segmentation would be to train a single deep learning model to 

segment previously unseen objects into parts. Such a model could make the categorization 

of new objects faster by reducing the dimensionality of input into object classifier.  

 

 

Figure 16. Left: Object segmentation results on pedestrian images dataset. From top to bottom: original 

images, results from benchmark model, convolutional neural network score, convolutional neural network 

with conditional random fields score, ground truth. Right: Object segmentation results from PASCAL-Parts 

dataset for different objects and animals. From left to right: original image, convolutional neural network 

score, convolutional neural network with conditional random fields score, ground truth [32].  

 

Deep learning models that are able to learn generative models of environment are 

currently among the most researched topics in the field of deep learning. One example is 

the Deep Recurrent Attentive Writer [33]. This model uses a deep recurrent neural network 

with an attention mechanism to generate novel instances of various objects in pictures for 

example handwritten digits, street house numbers or natural objects.  



34 
 

 

 

Figure 17. Left: The process of generation of street house numbers in which the red rectangle represents the 

attention window where the network is currently generating the image. Right: Examples of generated images 

from the CIFAR dataset. The rightmost column represents the nearest example from the dataset to the 

column beside it [33]. 

 

Another example of a deep generative model is Deep Convolutional Inverse Graphics 

Network [34]. This model uses convolutional encoder to learn the series of latent variables, 

such as pose, light or shape, that represent graphics code for images it was trained on. 

Convolutional decoder is then used to generate pictures of objects with some property 

changed. For example, incrementally changing one latent variable for input picture, for 

example orientation, results in the network generating pictures that depict the object in the 

picture from different viewpoints.  

 

 

Figure 18. Reconstructed images that result from varying latent variable corresponding to elevation (left) 

and azimuth (right) [34]. 

 



35 
 

Another interesting work by Oh et al. used an encoder-decoder architecture similar to 

Deep Convolutional Inverse Graphics Network to predict future frames in Atari 2600 

games [35]. Subsequently they tested the quality of predictions of their model by using 

predicted frames as an input to Deep Q-learning network from Mnih et al. and compared 

the performance of this network when the true frames generated by simulator were used as 

an input versus when the predicted frames were used as an input. Although the 

performance of Deep Q-learning controller was degraded by using predicted frames, in 

many games the performance was still well above the random score and even approaching 

performance of the network with true frames from the simulator when the timescale of 

prediction was not too long. Despite the fact that this model can successfully predict the 

dynamics of subset of Atari 2600 games, it is limited when it comes to generalization, due 

to the necessary retraining for every new game.  

 

 

Figure 19. Performance of Deep Q-learning algorithm on 5 different Atari 2600 games. Emulator refers to 

the performance of Deep Q-learning network with true frames, Rand corresponds to the performance of 

random policy, MLP corresponds to multilayer perceptron predictor model with actions taken and last frame 

as an input, naFt corresponds to MLP with only the last frame as an input, Feedforward corresponds to 

encoder-decoder frame predictor architecture and Recurrent corresponds to recurrent encoder-decoder 

frame predictor architecture. The X axis denotes the number of time steps of prediction (timescale) and Y 

axis denotes the average score from 30 episodes of play [35]. 

 

Learning to learn or transfer learning can be achieved in multiple ways in deep learning 

models. One technique reuses weights from an already trained neural network model and 

then retrains this model on a similar task leaving most of the parameters fixed during 

training. The reasoning behind this technique is that parameters of neural network models 

closer to the input encode general features that can be applied on similar tasks. For 

example, a convolutional neural network model trained to recognize pictures of cars, can 

be used to recognize pictures of cats with retraining only the last fully connected layer of 

the network. This is because the parameters in the layers closer to the input may recognize 

general features useful for recognizing any image for example edges or textures. Another 

technique of transfer learning is similar to the previous technique, but instead of leaving 



36 
 

parameters closer to the input fixed, we would fine-tune the parameters trained on a similar 

task. 

Parisotto et al. recently developed a Deep Q-learning approach that incorporates the 

learning-to-learn technique called Actor-Mimic [36]. Actor-Mimic uses two sets of Deep 

Q-learning networks. One is the so-called expert network that is trained only on one 

particular task (one Atari 2600 game). The other is the so-called multitask policy network 

that is used to learn multiple policies for a different task. This is achieved by two objective 

methods, the policy regression method and the feature regression method. Policy 

regression objective method uses cross-entropy cost between the outputs of the expert 

network and multitask policy network to learn the policy of the expert network. Feature 

regression objective method uses a separate regression network that predicts the activations 

of particular parameter layer (features) in the expert network from the activations of 

equivalent parameters in multitask policy network. Mean square error between these 

activations is then back propagated through the regression network and multitask policy 

network. This forces the parameters in the multitask network to incorporate information 

from the expert network beneficial for the particular task. The final objective that is used 

for training of multitask network is simply the combination of the feature regression 

objective and the policy regression objective. Intuitively we can think of the policy 

regression objective as a teacher who teaches multitask network the best way to act 

(policy), while we can think of the feature regression objective as a teacher who teaches 

the multitask network why it should act in a particular way. The multitask network was 

able to achieve performance similar to the expert network on many Atari 2600 games 

while having the same amount of parameters as the expert network. When the parameters 

of the multitask network were used as a starting point to learn a previously unseen task, in 

many tasks it managed to significantly reduce the training time and at the same time it 

managed to achieve the same score as the expert network. This was especially true for 

tasks that were conceptually similar, for example in tasks requiring the control of paddles 

that are used for interaction with a virtual ball (Breakout and Video Pinball).  

 



37 
 

 

Figure 20. Comparison between the performance of Actor-Mimic algorithm and standard Deep  Q-learning 

algorithm. The X axis corresponds to the number of training frames in millions. The Y axis corresponds to 

game scores. Random denotes the performance of randomly initialized network, AMN-Policy denotes the 

performance of network initialized with parameters from the multitask network with policy regression 

objective, AMN-Feature denotes the performance of a network initialized with parameters from the multitask 

network with policy regression objective and feature regression objective [36]. 

 

We think that all deep learning techniques mentioned above can potentially be used for 

enhancing the performance of a Deep Q-learning and other deep learning based RL 

algorithms. This can theoretically be done in several ways.  

First, we could use methods such as those in [30], [31] and [32] to segment the 

representation of the environment into important elements and thus reduce the 

dimensionality of the representation of the environment. For example, in the domain of 

Atari 2600 games we could train a deep learning model to segment the game screens to 

elements that are common across different games such as background, enemies, projectiles 

and other common elements of the environment. In the domain of self-driving cars we 

could segment the video input into important elements such as pedestrians, roads, other 

vehicles, obstacles or road signs. Preprocessed segmented representation of the 

environment can subsequently be used as an input to a deep RL system such as Deep Q-

learning. We suspect that by reducing the dimensionality of the representation of the 

environment we could increase the performance and decrease the training time of a deep 

RL system because such a system would not have to relearn important elements of the 

environment for every new task.  

Second, we could use generative and predictive models such as in [29], [33], [34] and 

[35] to learn to predict the behavior of the important elements of the environment. Model 

predictions could be used to generate artificial training data in cases where the 

environment does not provide the agent with enough training data due to the relative rarity 



38 
 

of important events such as collisions in driving environment or other rare events that 

could potentially damage or benefit the agent or the environment.  

Third, we could use transfer learning techniques such as the Actor-Mimic to speed up 

the training of deep reinforcement learning, generative and segmentation models by 

leveraging model parameters acquired while training on similar tasks. 

How closely can we emulate the flexibility of human and animal minds using deep 

learning techniques mentioned in this subchapter is an open scientific question that we plan 

to explore in future work. Although it is possible, that the current deep learning models are 

too data inefficient to be an effective approach to emulating key components of human 

cognition, we think that by improving upon these techniques by incorporating methods 

mentioned in this subchapter, deep RL methods can become a practical solution for some 

tasks such as computer controlled driving, controlling in-game characters or training 

artificial agents to perform repetitive manual tasks in real-world environments.  

In Chapter 3, we will evaluate the performance of a Deep Q-learning agent on a small 

subset of RL tasks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  



39 
 

3. Computational experiments in deep reinforcement learning 

 

We have three main objectives that we want to achieve in this chapter. First, we want to 

replicate the results from [22] on a small subset of Atari 2600 games. Second, we want to 

test whether a more sophisticated learning algorithm (in comparison to learning algorithm 

used in [22] and [23]) can improve the speed of convergence of the Deep Q-learning 

algorithm. Third, we want to test whether simple transfer learning techniques mentioned in 

Chapter 2 can be used to improve the speed of convergence of this algorithm. Because of 

the high computational demands of Deep Q-learning algorithm and a limited time, we only 

performed 7 experiments described further in this chapter. 

We have used our own implementation of Deep Q-learning algorithm as described in 

[22] and [23]. Experiments were performed using the Python programming language and 

the Tensor Flow machine learning library on a Linux-based computer with an Intel 4770k 

CPU, 16 GB of RAM and a NVidia GTX 980Ti GPU. All neural network computations 

were performed on NVidia GPU which substantially reduced the runtime of experiments. 

Game interface was provided by the Python library called the Arcade Learning 

Environment [37].  

We tried to keep all parameters of the experiment as close as possible to parameters 

from [22]. Below we list the key parameters that were kept constant across all experiments. 

 Network architecture, 

 number of neurons in the model, 

 learning rate = 0.00025, 

 replay memory size measured in game steps (transitions) = 1 000 000, 

 number of game transitions used as an input to the network = 4, 

 frame size in pixels = 84x84x1 

 action repeat value = 4 (number of frames where previously selected action is 

repeated; these frames are not stored in replay memory or used as an input to the 

neural network) 

 update frequency of the action-value function approximation network 𝑄 measured 

in the number of actions selected by the algorithm from the last update = 4 

 C = 10 000 (update frequency of the target network �̂� measured in the number of 

updates to the action-value function approximation network 𝑄 since the last 

update) 



40 
 

 number of  updates to the action-value function approximation network 𝑄 after 

which the performance of the Deep Q-learning algorithm is tested = 50 000 

 number of test transitions used for calculating average score per game = 10 000 

 𝜀 = annealed from 1 at the start to 0,1 during the first 1 000 000 transitions, 

 𝛾 = 0.99, 

 size of the mini batch = 32, 

 initial number of random transitions used to populate replay memory = 50 000, 

 total number of game steps (transitions) used in training = 8 000 000. 

 

The network architecture is identical to the architecture used in [22] and [23]. In Figure 

21 we provide a detailed specification of the network architecture. Both the action-value 

function approximation network 𝑄 and the target network �̂� share the same architecture.  

 

Layer name Type Number of 

neurons 

Kernel size Stride Activation 

function 

h_conv1 Convolutional 32 8x8 4 ReLU 

h_conv2 Convolutional 64 4x4 2 ReLU 

h_conv3 Convolutional 64 3x3 1 ReLU 

h_fc1 Fully connected 512 x x ReLU 

h_fc2 Fully connected Depends on the 

number of actions 

x x Linear 

Figure 21. Deep Q-network architecture specification. 

 

In Figure 22 we provide parameter descriptions and the key results for each experiment. 

The third column refers to the learning algorithm, i.e. the variant of the gradient descent 

algorithm used for training. Both Deep Q-learning algorithms from [22] and [23] use the 

RMSprop algorithm. We tried to improve upon results from [22] and [23] by utilizing the 

ADAM learning algorithm that was shown to converge faster and achieve higher accuracy 

than RSMprop and other gradient based algorithms for training neural networks in a wide 

variety of classification tasks [16]. The fourth column refers to weight initialization 

method we used at the onset of training. RAND refers to the initialization technique used 

in [22] and [23] which initialized weights as a random number with a mean 0 and standard 

deviation 0.01 and biases as a constant with a value 0.1. XAVIER refers to the weight 

initialization by Glorot et al. (2010) which was shown to provide more accurate starting 



41 
 

point that can improve the speed of convergence of neural network models in many real 

world tasks [38]. This weight initialization technique initializes all weights as a random 

number with a mean 0 and a standard deviation  √𝑓𝑎𝑛𝐼𝑛 where 𝑓𝑎𝑛𝐼𝑛 refers to the 

number of inputs to the neuron that is being initialized. Biases are initialized as a constant 

with a value 0.1. PONG-1 and PONG-2 refer to initializations where all layers except the 

output layer are initialized by copying weights from the network, previously trained on a 

conceptually similar task. More specifically, we wanted to test our hypothesis that weights 

trained on a conceptually similar tasks (Pong) could be a better starting point for neural 

network learning algorithm and could improve the speed of convergence. Both Pong and 

Breakout are similar in that the player controls paddles that are used for the control of the 

virtual ball. However, these games differ in the goals. In Pong the player has to prevent the 

ball from going outside the game screen on his side and tries to strike the ball outside of 

the screen at the opponent’s side. In Breakout the player tries to break as many tiles at the 

top of the screen as possible while trying to prevent the ball from striking the ground. In 

PONG-1 we copied the weights from the network trained on the game of Pong to the 

network that was supposed to learn the game of Breakout and fixed the parameters during 

learning, letting only the last fully connected layer learn. In PONG-2 we did the same but 

permitted the learning of the rest of parameters during training. The best scores for human 

players are taken from [23] and reflect the average score calculated from 20 games with a 

maximum length of 5 minutes per game. Human testers were also allowed to train on every 

game for 2 hours and were not permitted to pause the game during the evaluation. We 

chose the best scores from [22] instead of [23] as our baseline for performance comparison 

because in the former the algorithm was trained on 10 million frames instead of 50 million 

frames, which is closer to 8 million frames used in our Deep Q-learning implementation. 

 

 

 

 

 

 

 

 

 



42 
 

Experiment 

number 

Game Learning 

algorithm 

Weight 

initialization 

Best 

score 

(human) 

Best 

score 

DQN 

from 

[22] 

Best score (our 

implementation) 

Runtime 

(in 

hours) 

1 Breakout RMSprop RAND 31.8 168 150 20.42 

2 Breakout ADAM XAVIER 31.8 168 245.5 20.7 

3 Space 

Invaders 

ADAM XAVIER 1652 581 778.57 19.89 

4 Pong ADAM XAVIER 9.3 20 24 21.09 

5 Breakout ADAM PONG-1 31.8 168 11.6 17.43 

6 Breakout ADAM PONG-2 31.8 168 59.88 20.57 

7 Breakout ADAM XAVIER 31.8 168 11.4 20.53 

Figure 22. Key parameters and results for the experiments we performed. 

 

From Figure 22 we can see that our implementation of Deep Q-learning, which is 

identical to the original implementation from [22] (Experiment 1), achieves similar 

performance as the original implementation. When we substitute the learning algorithm 

and the initialization technique from the original implementation for XAVIER 

initialization and ADAM learning algorithm (Experiment 2) we can see that the best score 

improves substantially without a significant increase in runtime. As shown in Figure 23, 

the usage of ADAM learning algorithm and XAVIER initialization also significantly 

improves the speed of convergence. Both Experiment 1 and Experiment 2 show super-

human performance of Deep Q-learning in the Breakout game.  

 



43 
 

 

Figure 23. Comparison of the speeds of convergence in Experiment 1 and Experiment 2. 

 

We can also see that the combination of ADAM and XAVIER algorithms improves the 

results for the games Space Invaders and Pong. In Pong game our implementation achieved 

super-human performance. In Space Invaders our implementation failed to achieve human-

level performance although we think that with an additional training time it would also 

achieve human-level performance as shown in [23]. We can see the convergence graphs 

for these two games below in Figures 24. and 25.. 

 

 

Figure 24. Speed of convergence in Experiment 3. 

 



44 
 

 

Figure 25. Speed of convergence in Experiment 4. 

 

From the convergence graphs for Experiments 1 and 2 we can see that although the 

convergence speed is much higher in Experiment 2, the convergence is also quite unstable 

which can be seen as “dips” in performance in the right side of the graph. On the other 

hand, Experiment 1 converges much slower but is more stable than Experiment 2. If we 

trained our algorithm longer, this could result in better performance of the original 

algorithm. We plan to test this hypothesis in the future work. During our experiments we 

also discovered a curious case of instability that resulted in a poor performance of our 

implementation. This can be illustrated in Experiment 7 which is identical to Experiment 2. 

Despite the identical experimental setup, Experiment 7 did not converge at all. We do not 

know the exact cause or the frequency of occurrence of this “glitch” due to the small 

number of experiments we performed, but we think that this phenomena is worth further 

investigation. 

 



45 
 

 

Figure 26. Comparison of the speeds of convergence in Experiment 2 and Experiment 7. 

 

In Experiments 5 and 6 we tried to test the basic transfer learning techniques that rely 

on initializing weights by copying weights from an already trained network. As we can see 

from the Figure 27, neither experiment exhibited good convergence properties. Experiment 

5 did not show any signs of convergence during learning. We think that this is because the 

simple retraining of the output layer could not utilize the features learned on a similar task. 

The features learned on a similar task are probably not general enough, i.e. these features 

are fine-tuned to the specific task they were originally trained on. In conclusion, the 

observation from the task of image recognition that it is often possible to retrain only the 

output layer in order for the neural network to learn to recognize novel objects does not 

apply to the control task performed by the Deep Q-learning algorithm. Experiment 6 where 

we trained all layers instead of only the output layer, showed some signs of convergence, 

but overall the initialization technique only slowed down the convergence, instead of 

speeding it up. We think that during training the network first had to “unlearn” the features 

from a similar task, which slowed down the convergence. Overall we think that more 

sophisticated techniques have to be deployed in order to utilize transfer learning in the 

context of learning control policies by deep neural networks such as the Actor-Mimic 

technique mentioned in Chapter 2.  

 



46 
 

 

Figure 27. Comparison of the speeds of convergence in Experiment 2, Experiment 5 and Experiment 6. 

 

There are some experiments that we wish we were able to perform in this work, but we 

were unable to do so, due to the lack of time and computational resources. For example, 

we would like to modify the network architecture used in Deep Q-learning by using more 

complex and deeper architectures. Judging from the research in the field of image 

recognition, where more complex and deeper architectures generally improve the 

performance of neural network systems, using more complex and deeper architectures 

might improve the results presented in this work. These architectures also come with a 

steep rise in a computational cost and considering the amount of training data generated by 

computer games, their utilization was simply not practical at the time of writing of this 

thesis.  In future work we also wish to test the performance of Deep Q-learning algorithm 

on other, more sophisticated games, such as first person shooters, as well as in the domain 

of continuous control, for example in robotic control tasks. We would also like to test 

whether the techniques mentioned in Chapter 2 could improve the performance of this 

algorithm.  

 

 

 

 

 

 



47 
 

Conclusion 

 

In Chapter 1 we examined the theoretical basis of reinforcement learning problems in 

general and basic RL algorithms with a focus on the model-free prediction and control. 

One of these algorithms is the Q-learning algorithm that is the basis of the update rule used 

in the Deep Q-learning algorithm. In this chapter we also examined the biological 

significance of RL and highlighted the evidence that the behavior of dopamine neurons in 

VTA and SN is consistent with Temporal-Difference RL algorithm. 

In Chapter 2 we introduced the concept of value function approximation and provided 

an overview of how could modern deep learning methods make learning control policies 

from the high-dimensional representations of complex environments possible. In this 

chapter we also analyzed several Deep Q-learning algorithms both in the domain of 

discrete action spaces and in the domain of continuous action spaces. Finally, we 

introduced several methods from the realm of deep learning that could potentially be used 

to “emulate” some of the core cognitive competences of human and animal minds that are 

necessary for artificial agents in order to act as competent agents in the environment. 

In Chapter 3 we provided the results of several experiments in Deep Q-learning. For 

these experiments we used our own implementation of Deep Q-learning algorithm. We 

managed to replicate the results from Mnih et al. (2013) for the Breakout game. We also 

managed to improve the original results from Mnih et al. (2013) in Breakout, Space 

Invaders and Pong games by using a different learning algorithm and the weight 

initialization technique. We also tested two different transfer learning techniques that are 

used in the domain of object recognition. We found out that these techniques are not 

suitable in the domain of Deep Q-learning and concluded that more sophisticated transfer 

learning techniques, such as those mentioned in Chapter 2, are necessary for this domain. 

Designing competent artificial agents is one of the main goals of artificial intelligence. 

Historically this was proven to be an extremely challenging task due to the complexity of 

real world environments. We do not know if the current methods of deep learning or 

reinforcement learning are themselves capable of bringing us closer to this goal. It is 

possible that these techniques are just too inefficient. We think that inefficiency is the main 

disadvantage of current deep learning algorithms as demonstrated by the time and the 

amount of data needed by Deep Q-learning agents in order to perform well. The amount of 

training data could perhaps be reduced by endowing deep RL agent with core cognitive 



48 
 

competences by utilizing techniques from Chapter 2 of this work. It might be that even by 

utilizing these techniques the deep learning approach might not lead to competent artificial 

agents. We believe that answering this question is a viable avenue for future research. Even 

if deep learning methods eventually fail to bring us closer to competent artificial agents, 

we believe that this line of research might at least point us to the right direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

References 

 

[1] C. Szepesvári, Algorithms for reinforcement learning. Morgan & Claypool 

Publishers, 2010. 

 

[2]R. Sutton, "Learning to predict by the methods of temporal differences", Machine 

Learning, vol. 3, no. 1, pp. 9-44, 1988. 

 

[3] G. A. Rummery, M. Niranjan, "On-Line Q-Learning Using Connectionist Systems", 

Citeseer.ist.psu.edu, 1994. [Online]. Available: 

http://citeseer.ist.psu.edu/viewdoc/summary? doi=10.1.1.17.2539. 

 

[4] C. Watkins, "Learning from delayed rewards", Ph.D thesis, King's College, 1989. 

 

[5] W. Schultz, "Neuronal Reward and Decision Signals: From Theories to Data", 

Physiology Review, vol. 95, no. 3, pp. 853-951, 2015. 

 

[6] W. Schultz, P. Dayan and P. Montague, "A Neural Substrate of Prediction and 

Reward", Science, vol. 275, no. 5306, pp. 1593-1599, 1997. 

 

[7] P. Tobler, "Adaptive Coding of Reward Value by Dopamine Neurons", Science, 

vol. 307, no. 5715, pp. 1642-1645, 2005. 

 

[8] K. Hornik, "Approximation capabilities of multilayer feedforward networks", 

Neural Networks, vol. 4, no. 2, pp. 251-257, 1991. 

 

[9] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, "Rethinking the 

Inception Architecture for Computer Vision", Arxiv.org, 2015. [Online]. Available: 

http://arxiv.org/abs/1512.00567. 

 

 

 

http://citeseer.ist.psu.edu/viewdoc/summary
http://arxiv.org/abs/1512.00567


50 
 

[10] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar and L. Fei-Fei, 

"Large-scale Video Classification with Convolutional Neural Networks", Cv-

foundation.org, 2014. [Online]. Available: 

http://www.cvfoundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-

scale_Video_Classification_2014_CVPR_paper.html.  

 

[11] Y. Kim, "Convolutional Neural Networks for Sentence Classification", Arxiv.org, 

2014. [Online]. Available: http://arxiv.org/abs/1408.5882. 

 

[12] P. Werbos, "Beyond regression: new tools for prediction and analysis in the 

behavioral sciences", Ph.D thesis, Harvard University, 1974. 

 

[13] D. Rumelhart, G. Hinton and R. Williams, "Learning representations by back-

propagating errors", Nature, vol. 323, no. 6088, pp. 533-536, 1986. 

 

[14] J. Duchi, E. Hazan and Y. Singer, "Adaptive Subgradient Methods for Online 

Learning and Stochastic Optimization", Journal of Machine Learning Research, vol. 12, 

pp. 2121-2159, 2011. 

 

[15] M. Zeiler, "ADADELTA: An Adaptive Learning Rate Method", Arxiv.org, 2012. 

[Online]. Available: http://arxiv.org/abs/1212.5701. 

 

[16] D. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization", Arxiv.org, 

2014. [Online]. Available: http://arxiv.org/abs/1412.6980. 

 

[17] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard and L. 

Jackel, "Backpropagation Applied to Handwritten Zip Code Recognition", Neural 

Computation, vol. 1, no. 4, pp. 541-551, 1989. 

 

[18] D. Hubel and T. Wiesel, "Receptive fields, binocular interaction and functional 

architecture in the cat's visual cortex", Journal of Physiology, vol. 160, no. 1, pp. 106-154, 

1962. 

 

http://www.cvfoundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
http://www.cvfoundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1412.6980


51 
 

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. 

Karpathy, A. Khosla, M. Bernstein, A. Berg and L. Fei-Fei, "ImageNet Large Scale Visual 

Recognition Challenge", Arxiv.org, 2014. [Online]. Available: 

http://arxiv.org/abs/1409.0575. 

 

[20] A. Krizhevsky, I. Sutskever and G. Hinton, "ImageNet classification with deep 

convolutional neural networks", Advances in Neural Information Processing Systems, 

2012. 

 

[21] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory", Neural 

Computation, vol. 9, no. 8, pp. 1735-1780, 1997. 

 

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and 

M. Riedmiller, "Playing Atari with Deep Reinforcement Learning", Arxiv.org, 2013. 

[Online]. Available: http://arxiv.org/abs/1312.5602 . 

 

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. 

Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. 

Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg and D. Hassabis, "Human-level 

control through deep reinforcement learning", Nature, vol. 518, no. 7540, pp. 529-533, 

2015. 

 

[24] H. van Hasselt, A. Guez and D. Silver, "Deep Reinforcement Learning with 

Double Q-learning", Arxiv.org, 2015. [Online]. Available: http://arxiv.org/abs/1509.06461. 

 

[25] T. Schaul, J. Quan, I. Antonoglou and D. Silver, "Prioritized Experience Replay", 

Arxiv.org, 2015. [Online]. Available: http://arxiv.org/abs/1511.05952. 

 

[26] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver and D. 

Wierstra, "Continuous control with deep reinforcement learning", Arxiv.org, 2015. 

[Online]. Available: http://arxiv.org/abs/1509.02971. 

 

[27] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, et al., "Deterministic Policy 

Gradient Algorithms", ICML, Beijing, China. 2014. 

http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1509.02971


52 
 

[28] B. Lake, T. Ullman, J. Tenenbaum and S. Gershman, "Building Machines That 

Learn and Think Like People", Arxiv.org, 2016. [Online]. Available: 

https://arxiv.org/abs/1604.00289. 

 

[29] A. Lerer, S. Gross and R. Fergus, "Learning Physical Intuition of Block Towers by 

Example", Arxiv.org, 2016. [Online]. Available: http://arxiv.org/abs/1603.01312. 

 

[30] P. Pinheiro, R. Collobert and P. Dollar, "Learning to Segment Object Candidates", 

Arxiv.org, 2015. [Online]. Available: http://arxiv.org/abs/1506.06204. 

 

[31] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. Yuille, "Semantic Image 

Segmentation with Deep Convolutional Nets and Fully Connected CRFs", Arxiv.org, 2014. 

[Online]. Available: https://arxiv.org/abs/1412.7062. 

 

[32] S. Tsogkas, I. Kokkinos, G. Papandreou and A. Vedaldi, "Deep Learning for 

Semantic Part Segmentation with High-Level Guidance", Arxiv.org, 2015. [Online]. 

Available: http://arxiv.org/abs/1505.02438. 

 

[33] K. Gregor, I. Danihelka, A. Graves, D. Rezende and D. Wierstra, "DRAW: A 

Recurrent Neural Network For Image Generation", Arxiv.org, 2015. [Online]. Available: 

https://arxiv.org/abs/1502.04623. 

 

[34] T. Kulkarni, W. Whitney, P. Kohli and J. Tenenbaum, "Deep Convolutional 

Inverse Graphics Network", Arxiv.org, 2015. [Online]. Available: 

http://arxiv.org/abs/1503.03167. 

 

[35] J. Oh, X. Guo, H. Lee, R. Lewis and S. Singh, "Action-Conditional Video 

Prediction using Deep Networks in Atari Games", Arxiv.org, 2015. [Online]. Available: 

http://arxiv.org/abs/1507.08750. 

 

[36] E. Parisotto, J. Ba and R. Salakhutdinov, "Actor-Mimic: Deep Multitask and 

Transfer Reinforcement Learning", Arxiv.org, 2015. [Online]. Available:  

http://arxiv.org/abs/1511.06342 

https://arxiv.org/abs/1604.00289
http://arxiv.org/abs/1603.01312
http://arxiv.org/abs/1506.06204
https://arxiv.org/abs/1412.7062
http://arxiv.org/abs/1505.02438
https://arxiv.org/abs/1502.04623
http://arxiv.org/abs/1503.03167
http://arxiv.org/abs/1507.08750
http://arxiv.org/abs/1511.06342


53 
 

[37] M. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, "The Arcade Learning 

Environment: An Evaluation Platform for General Agents", Journal of Artificial 

Intelligence Research, vol. 47, pp. 253-279, 2013. 

 

[38]X.  Glorot and Y.  Bengio, "Understanding the difficulty of training deep 

feedforward neural networks", In Proceedings of the International Conference on Artificial 

Intelligence and Statistics (AISTATS’10). Society for Artificial Intelligence and Statistics, 

2010. 

 

Other sources 

 

D. Silver, "Advanced Topics: Reinforcement Learning (Lectures)", University College 

London, 2015, [Online]. Available: 

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html. 

 

 

 

 

 

 

  

  

 

 

 

 

 

 


