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Abstract 

This study investigated whether increased functional connectivity in specific brain 

regions in older adults serves as a compensatory mechanism. Drawing on cognitive ageing 

theories, which state that compensatory activity helps maintain performance despite age-related 

decline, we tested three criteria for compensation: (1) whether regions with increased functional 

connectivity are involved in cognitive functions, (2) whether these regions show grey matter 

loss, and (3) whether functional connectivity correlates with cognitive performance. 

The study included three age groups: Group 1 (N = 79; 25 females, 54 males; aged 20–

25 years), Group 2 (N = 75; 20 females, 55 males; aged 25–40 years, median age group 25–

30), and Group 3 (N = 73; 37 females, 36 males; aged 55–80 years, median age group 65–70). 

Resting-state fMRI data from three age groups were analysed using graph-theoretical 

metrics, focusing on the degree centrality (DC). Structural MRI data were used to assess grey 

matter volume, and the results in the cognitive tests were correlated with changes in DC. Older 

adults showed increased degree centrality in the frontal and parietal regions, which are 

associated with attention, memory, and reasoning. However, these regions did not exhibit grey 

matter reduction or significant correlations with cognitive performance. 

Thus, although age-related changes in brain structure and functional network topology 

were evident, the results did not meet the criteria for compensatory mechanisms. This differs 

from findings from clinical populations in previous studies, suggesting that compensation may 

be more pronounced in the presence of pathology. 

  



  

Abstrakt 

Táto štúdia skúmala, či zvýšená funkčná konektivita v špecifických oblastiach mozgu 

starších dospelých slúži ako kompenzačný mechanizmus. Vychádzajúc z teórií kognitívneho 

starnutia, ktoré uvádzajú, že kompenzačná aktivita pomáha udržať výkon napriek vekovo 

podmienenému poklesu, testovali sme tri kritériá kompenzácie: (1) či oblasti so zvýšenou 

funkčnou konektivitou sú zapojené do kognitívnych funkcií, (2) či tieto oblasti vykazujú stratu 

šedej hmoty a (3) či funkčná konektivita koreluje s kognitívnym výkonom. 

Štúdia zahŕňala tri vekové skupiny: Skupina 1 (N = 79; 25 žien, 54 mužov; vek 20–25 

rokov), Skupina 2 (N = 75; 20 žien, 55 mužov; vek 25–40 rokov, medián vekovej skupiny 25–

30) a Skupina 3 (N = 73; 37 žien, 36 mužov; vek 55–80 rokov, medián vekovej skupiny 65–

70). 

Dáta z resting-state fMRI zo všetkých troch vekových skupín boli analyzované 

pomocou grafoteoretických metrik, so zameraním na stupňovú centrálnosť (degree centrality, 

DC). Štrukturálne MRI dáta slúžili na hodnotenie objemu šedej hmoty a výsledky kognitívnych 

testov boli korelované so zmenami DC. Starší dospelí vykázali zvýšenú stupňovú centrálnosť 

v čelových a parietálnych oblastiach, ktoré sú spojené s pozornosťou, pamäťou a uvažovaním. 

Avšak tieto oblasti nevykazovali zníženie šedej hmoty ani významné korelácie s kognitívnym 

výkonom. 

Napriek tomu, že boli zrejmé vekovo podmienené zmeny v štruktúre mozgu a topológii 

funkčných sietí, výsledky nespĺňali kritériá kompenzačných mechanizmov. Toto sa líši od 

zistení v klinických populáciách v predchádzajúcich štúdiách, čo naznačuje, že kompenzácia 

môže byť výraznejšia v prítomnosti patológie. 
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1.1 Ageing 

The World Health Organisation (WHO) reports on the steady growth of the older population, 

which predicts that 1 in 6 people in the world will be over 60 years old by 2030, and the size of 

this group will increase from 1 billion to 1.4 billion. The number of people aged 80 and above 

is set to triple by 2050, reaching 426 million (WHO, 2022). As can be seen, the world will 

confront the challenge when countries experience an additional burden on their economies, 

healthcare systems, as well as social sectors. 

Older people themselves will go through significant changes that might impact their 

quality of life and overall satisfaction. Advancing through age can be characterised by physical 

alterations such as joint stiffness and decrease in flexibility, loss of muscle mass and strength, 

slower metabolism, the development of chronic diseases, and other factors. Cognitive functions 

are also subject to deterioration. However, it is common to classify them into crystallised and 

fluid abilities, as they exhibit opposite progression throughout the lifespan. Crystalised abilities 

refer to acquired knowledge and skills that are accumulated over their lifetime. Conversely, 

fluid abilities do not depend on prior knowledge and experience, focusing instead on solving 

novel reasoning problems. Studies indicate that while crystallised abilities tend to increase until 

around the age of 60, plateauing until 80, fluid abilities show a declining trajectory starting 

from early adulthood and continuing throughout life (Murman, 2015). Maintaining cognitive 

and physical strength is crucial for preserving the independence of the ageing population. 

Therefore, significant measures must be implemented to overcome these challenges, 

particularly those that are directed at supporting individuals and improving their physical and 

mental well-being. 

1.1.1 Searching for a Definition 

Ageing is studied from various perspectives by different scientific domains, such as 

gerontology, evolutionary biology, genetics, epidemiology, demographics, neuroscience, and 

others. As a result, there are many definitions of ageing. Thus, demography focuses on 

analysing records at regular intervals of the number of deceased individuals and their age, until 

the entire cohort passes away. It allows for the analysis of survival and mortality patterns 

(Bronikowski, 2010). Although this idea is often linked to a person’s chronological age in 

society, it is not directly correlated with it, as the notion of a “typical” older person does not 

accurately reflect the diversity of ageing experiences. Evolutionary biology defines ageing as a 

1 Introduction 
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multifaceted feature that stems from evolutionary biology adaptation, including various factors 

rather than being a singular physiological process (Rose et al., 2012). Although physiology is 

not the only aspect, it constitutes a pivotal part of the definition. Twelve key age-related 

physiological traits have been outlined in mammals: genomic instability, telomere attrition, 

epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-

sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered 

intercellular communication, chronic inflammation, and dysbiosis (López-Otín et al., 2023). As 

these changes occur at the molecular and cellular levels of an organism, the brain is likewise 

susceptible to them. 

One of the possible definitions of brain ageing in neuroscience describes it as a complex 

network of processes, characterised by multifaceted mechanisms that include both localised 

changes and factors from a broader systematic context (Gaspar-Silva, Trigo and Magalhaes, 

2023). The authors highlight in their review the same cellular mechanisms as those that were 

proposed by López-Otín et al. (2023), within the broader context encompassing the processes 

of the entire organism. However, even with a rapidly growing body of research, it is still not 

clear whether these factors are causes or effects of ageing. The fact that different tissues are 

susceptible to alterations related to age with different rates suggests an interconnection between 

the central nervous system and the periphery (Gaspar-Silva, Trigo and Magalhaes, 2023). Thus, 

the complexity of the aspects contributing to the understanding of brain ageing continues to 

grow. The authors highlight that decreased myelination of axon fibres that project to distant 

regions of the brain might affect communication between them and deteriorate the overall 

network communication. The integrity of neuronal, axonal, glial, and neurotransmitting 

functioning is crucial for the maintenance of network operation and cognition. 

With the development of neuroimaging techniques, such as functional magnetic 

resonance imaging (fMRI) and diffusion tensor imaging (DTI), a broad scope of research has 

emerged to explore functional connectivity (FC) and structural connectivity (SC) within the 

brain. This approach conceptualises the brain as interconnected patterns of neural activations 

organised in networks. These patterns can be analysed at micro-, meso-, and macroscale levels. 

It is worth noticing that connectivity relies on the structure, but SC is neither a sufficient nor a 

complete constraint (Friston, 2011). The molecular and cellular changes might affect both age-

related deterioration of grey matter and white matter (Giorgio et al., 2010), resulting in 

structural modifications, and functional alterations in various brain regions. Therefore, studies 

examining variations in functional connections across the lifespan are considered to be 

beneficial in interpreting age-related brain reorganisations. 
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1.1.2 Functional Connectivity Patterns in the Ageing Brain 

Over the recent few decades, research on the ageing brain and FC has gained widespread 

recognition. Data have been obtained from cross-sectional and longitudinal studies, as well as 

task-based and resting-state designs. For instance, the results from the population-based 

Rotterdam Study (Zonneveld et al., 2019) involving 2878 healthy individuals aged between 50 

and 95 years demonstrated a significant decline in within-network connectivity associated with 

older age in the anterior default mode network (DMN), ventral attention network, and 

sensorimotor network. Conversely, an increase in FC was observed in the visual network. 

Furthermore, between-network connectivity showed patterns of both increased and decreased 

(anti-) correlations. A longitudinal study in a group of healthy 16 ageing individuals (mean age 

= 74.38  4.52) over 4 years reported a decline in FC within the frontoparietal network (FPN), 

and the salience network (SN), while no change in the DMN (Oschmann and Gawryluk, 2020). 

Meanwhile, another longitudinal investigation analysed 34 cognitively normal subjects (mean 

age = 78.27 ± 3.14) over 4 years and demonstrated a reduction in FC in the DMN, and the dorsal 

attention network (DAN), and an increase in the left insular and left supplementary motor area 

(SMA) (Li et al., 2020). Varangis Burns, Habeck and Stern (2020) examined the effects of 

ageing on FC in 11 tasks reflecting 4 cognitive domains (vocabulary, processing speed, fluid 

reasoning, and episodic memory). They found that task choice can significantly influence the 

results of FC analysis. The decline in within-network connectivity correlates with age, although 

the cognitive task can alter the presence and magnitude of the effects. It also revealed a decrease 

in between-network FC with age. The variations in the investigation outcomes can be attributed 

to the methodological approaches employed. For example, the choice of the region-based versus 

whole-brain connectivity analysis or the selection of the parcellation technique will 

significantly affect the results. 

Overall, the substantial scope of evidence from rs-fMRI research implies the 

modifications in the whole-brain connectivity patterns as well as within some large-scale 

networks (Sala-Llonch, Bartrés-Faz and Junqué, 2015). In this review, the authors highlighted 

the overall reduction of FC in older adults compared to young ones, emphasising the difference 

in the trajectory of the changes in tasks and at rest. In a systematic review by Deery et al. (2023) 

on resting-state functional networks, findings revealed a decline in within-network and 

increased between-network FC associated with age. Moreover, older adults demonstrated 

diminished segregation and modularity of the brain regions, as well as decreased hub function 

and lateralisation, alongside a shift from posterior to anterior brain activity. These results align 

with prevailing theories of cognitive ageing. Although the main hypotheses were formulated to 
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explain changes in task performance, they are also applicable to the resting-state patterns of 

alteration. 

1.1.3 Theories of Cognitive Ageing 

It may be reasonable to highlight two main hypotheses of cognitive ageing, as they serve as the 

basis for other frameworks designed to illustrate conceptual models of brain ageing. Firstly, the 

dedifferentiation framework, proposed in the first half of the twentieth century, suggests that 

cognitive abilities differentiate in early adolescence, maintain through adulthood, and 

dedifferentiate in late life (Hülür et al., 2015). When applied from a network perspective, brain 

regions demonstrate more diffused, less selective, and specific interactions. It may indicate the 

ability of structurally distinct components of the network system to comparably contribute to a 

particular outcome, offering functional flexibility (Deery et al., 2023). Secondly, the 

compensatory hypothesis assumes that older subjects recruit higher levels of functional 

activation to maintain comparable performance under increasing task demands, which may 

serve as a compensational mechanism for age-related alterations (Reuter-Lorenz and Cappell, 

2008). The prefrontal regions usually display the highest overactivation in seniors.  

Indeed, two pivotal phenomena of age effects on the brain known as HAROLD and 

PASA might be noticeable manifestations of dedifferentiation and compensation. The 

hemispheric asymmetry reduction in older age (HAROLD) describes a tendency of reduction 

in lateralisation of the brain activity during task performance in the PFC in older individuals 

(Cabeza, 2002). The posterior-anterior shift in ageing (PASA) represents an age-related 

decrease of the activity in the occipitotemporal regions of the brain. At the same time, there is 

a corresponding increase in the frontal areas. 

Drawing upon the hypotheses described above, the scaffolding theory of ageing and 

cognition (STAC) views ageing as a negative interplay of such indices as functional 

deterioration and neural challenges. External factors that can have both positive and negative 

effects on the brain function and structure, combined with a beneficial process called 

compensatory scaffolding. The deterioration related to the atrophy of GM and WM, depletion 

of dopamine, and maladaptive brain activity is counteracted by the activation of additional 

neural pathways, which provide extra computational support (Reuter-Lorenz and Park, 2014). 

The model was revised based on the evidence from multiple studies by adding a variable called 

the life course of ageing that allows the experience, education, genetics, and environment to 

directly influence brain function and structure as well as the compensatory scaffolding. 

Another framework that took into account the discrepancy between age-related changes 

and pathology was proposed by Stern (2012). The Cognitive reserve (CR) concept suggests that 
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the application of pre-existing cognitive strategies in the brain will aid in confronting 

pathological states occurring with age or disease even when the brain reserve is constant. 

Therefore, individuals with a higher cognitive reserve are expected to experience fewer adverse 

effects of damage, which was supported by extensive epidemiological and later neuroimaging 

studies. Subjects with higher levels of education, occupational attainment, and engagement in 

diverse leisure activities are associated with longer-maintained cognitive performance in later 

life. 

The theory of coordination dynamics proposed by Tognoli and Kelso (2014) describes 

the dynamics of cognitive, behavioural, and social functions as real-time coordination 

supported by metastability. Metastable dynamics is a key mechanism that enables the 

coexistence of the tendency of brain regions to maintain a balance between segregating their 

specialised functions and simultaneously integrating multiple functions (Deery et al., 2023). 

Taken together, despite the differences in applied analytical approaches and 

multidirectional patterns of brain network activation, general patterns associated with age can 

be distinguished. There is a significant deterioration in different cognitive domains related to 

older age, such as executive functions, memory, and processing speed. Structural and functional 

modifications are present in the ageing brain. Although the underlying mechanisms are still not 

fully understood, the empirical evidence for the changes in grey and white matter integrity, 

amyloid deposits, vascular disease, and dopamine depletion implies the alteration in the brain 

structure that, in turn, can be a contributing but not sufficient factor for alterations in brain 

functioning. The findings from fMRI studies reveal an overall decrease in within-network FC 

and enhanced between-network connectivity patterns. The functional network organisation 

displays a major shift in activation from posterior to anterior areas, overactivation in some 

regions, as well as lateralisation in the hemispheres which might serve as compensatory 

mechanisms of the ageing brain. These changes may exhibit linear and positive (U-shaped) and 

negative quadratic trajectories in FC across the lifespan depending on the inter- or intra-

connections among the networks. The inflexion points are usually observed in about the fourth 

or fifth decades of life. Starting from early adulthood, when networks display more segregated 

and functionally localised region activation, they transition to more interconnected network 

interactions. One of the most extensively reported networks associated with the ageing brain is 

the DMN, which appears to be one of the most compromised networks with age. FC between 

the DMN areas decreases with the progression of age, although the correlation with other 

networks grows stronger. 
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1.2 Overview of Functional and Structural Network Analyses and 

Graph Theory in Neuroscience 

1.2.1 Brain Connectivity 

The human brain is comprised of almost one hundred billion interconnected neurons along with 

glial cells, which makes it one of the most complex systems. This creates an exceptionally 

challenging endeavour to understand the mechanisms underlying cognitive and behavioural 

functions. Therefore, it is reasonable to conceptualise the organisation of the brain as a network-

based architecture. The units may represent individual or ensembles of neurons exhibiting 

various interconnected patterns. However, it is important to distinguish between different types 

of these links.  

Structural connectivity (SC) represents physical connections between brain regions via 

white matter tracts. Functional connectivity (FC) is the coordinated information exchange of 

spatially separated brain regions in order to allow integrative and higher-order functions. 

Functional connectivity is defined as the temporal dependency of neuronal activation patterns 

of anatomically separated brain regions. Effective connectivity, in turn, aims to establish causal 

interactions between units by measuring the directional influence of one neural population on 

another (Erol and Hunyadi, 2022). Each approach reveals different properties of connections 

between neural populations, which makes it beneficial to consider a combination of various 

analytical techniques to analyse such multifactorial processes as ageing. 

1.2.1.1 Structural Connectivity 

The common technique for quantitatively measuring SC is diffusion-weighted MRI (DWI), 

which uses strong diffusion-sensitising magnetic gradients as part of the pulse sequence to 

analyse water diffusion of WM (see Figure 1.1, reproduced from Figure 5 in Karaarslan and 

Arslan, 2008). Various magnetic field gradients are applied to measure how water molecules 

move. If water diffuses freely in the medium between two gradient pulses, the phase shift 

occurs, and the net magnetisation changes, leading to dephasing and a reduction in net 

magnetisation, which results in a signal loss in the direction of the gradient. To acquire more 

detailed information from DWI, the Diffusion Tensor Imaging (DTI) model is used. It provides 

information about the magnitude and directionality of water molecule movement. The key 

indices that are extracted from a tensor include Mean Diffusivity (MD), Fractional Anisotropy 

(FA), Axial Diffusivity (AD), and Radial Diffusivity (RD) (Jones, 2010). 

Research on changes in SC across the lifespan revealed that FA, which indicates the 

preferable directionality of diffusion, decreases with age. Meanwhile, MD, a measure of overall 
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diffusion strength, and RD, a myelin integrity marker, increase with age (Westlye et al., 2010). 

On the other hand, there is a strong concern about interpreting the results of these metrics as 

reliable indicators of SC. Several factors can modulate the direction of diffusion anisotropy: the 

axon diameter distribution, the axon density, and, specifically, how axons are spatially related 

to each other within one voxel. If axons are oriented in multiple directions within a single voxel, 

it will lead to a reduced FA index, although it may reflect a fibre complexity rather than a 

reduction in structural connectivity (Jones, 2010). 

 

Figure 1.1. MRI images of a 58-year-old female patient with a high-grade glial tumour and gliomatosis cerebri.  

(a) FLAIR sequence shows tumoral infiltration in the left cingulate gyrus and bilateral basal ganglia; (b) Post-contrast T1-

weighted image reveals enhancement in the same regions; (c) Diffusion-weighted image (DWI) shows high signal intensity;(d) 

Apparent diffusion coefficient (ADC) map indicates increased diffusivity (reproduced from Karaarslan and Arslan (2008), 

Figure 5) 

 

Another common technique for analysing structural imaging is voxel-based 

morphometry (VBM), which measures the variation in GM (as shown in Figure 1.2 A, 

reproduced from Figure 1 in Kurth, Luders and Gaser, 2015). It enables a voxel-wise 

comparison of the volume of GM between two groups of subjects. Its advantage is that it 

thoroughly evaluates the anatomical differences across the entire brain without being limited to 

a specific structure. It represents a statistical comparison of segmented GM volumes (Ashburner 

and Friston, 2000). In the study comparing older adults (N = 14, mean age =71) to a middle-

aged group (N = 16, mean age = 41), the results revealed a reduction of GM volume in the 

frontal, temporal, parietal and occipital regions (areas associated with executive functions and 

language) along with decreased performance in the related cognitive test (Ramanoël et al., 

2018). 

1.2.1.2 Functional Connectivity 

It is common to classify methods into model-based and model-free approaches. In model-based 

connectivity, one or more regions of interest (ROI) are selected to identify a link between these 
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regions and the rest of the network. The connections are established based on the predefined 

parameters such as the number of regions, statistical thresholds, and the assumption of a linear 

relationship in FC. Connectivity matrices can be built using the cross-correlation approach, 

which is typically applied without considering phase shifts between signals due to its high 

computational cost (as illustrated in Figure 1.2 B, reproduced from Figure 3 in Milano, Guzzi 

and Cannataro, 2019). However, these methods may show high correlations driven by 

physiological artefacts, such as breathing and cardiac rhythms. The coherence approach is 

developed to mitigate this issue. Statistical parametric mapping uses General Linear Models 

(GLM) to identify regional brain activation patterns and Gaussian random field theory to 

account for multiple comparisons. It was originally used for task-based fMRI, but it was also 

adopted for rs-fMRI. Model-free analysis does not require any prior knowledge of specific 

regions and can be useful for identifying non-linear relationships (Farahani, Karwowski and 

Lighthall, 2019). It is carried out using either decomposition techniques, such as principal 

component analysis and independent component analysis (ICA), or clustering methods, such as 

hierarchical clustering, fuzzy c-means, and mutual information (Kucikova et al., 2023). 

A B 

  

Figure 1.2. (A) Workflow of voxel-based morphometry (VBM) analysis. High-resolution T1-weighted images are 

bias-corrected, segmented into tissue types, and grey matter maps are normalised to a standard template. After smoothing, 

statistical tests are applied voxel-wise to identify significant effects (reproduced from Kurth, Luders and and Gaser (2015), 

Figure 1). (B) Data flow in functional connectivity analysis. fMRI data are first parcellated into brain regions, from which time 

series are extracted. Functional connections (edges) are then computed between region pairs to construct a connectivity matrix 

(reproduced from Milano, Guzzi and Cannataro (2019), Figure 3). 
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1.2.2 Graph Theory 

Graph theory is extensively applied across numerous disciplines, including physics, biology, 

chemistry, social sciences, and more. It is no surprise that network science has been embraced 

by neuroscience, as it offers tools for topological description, quantitative analysis, and 

understanding the complexity of network organisations. 

The implementation of this method is based on the idea that the brain can be modelled 

by the graph of interconnected nodes. Depending on the purposes of the analysis, nodes can 

represent an individual neuron, a group of neurons, or a brain region. They can be defined on 

functional or structural data parcellation, or derived using data-driven methods, such as 

boundary detection and clustering patterns of connectivity. Edges in the graph correspond to 

the connections between these nodes. They can have binary or weighted values, where binary 

values indicate the presence or absence of a connection, and weighted values assign the strength 

to the connection. They can also be directed or undirected, providing a directional relationship 

between the nodes (Sporns, 2018). A correlation matrix is generated after applying one of the 

connectivity methods and determining the threshold. This allows the application of various 

graph metrics to analyse the network’s topology. 

According to Rubinov and Sporns (2010 ), most measures can be classified as global 

and local. Those which describe individual elements of the network are considered to exhibit 

local properties, and the distribution of elements reveals network-level characteristics. Global 

measures can provide insights into how the network is organised, including functional 

segregation and integration of information flow. Segregation determines how strongly the 

elements are grouped into distinct clusters. Functional segregation reflects specialised neural 

processing, while structural segregation shows the possibility of functional segregation. The 

basic measures that quantify it are the clustering coefficient (CC) and modularity (M). CC 

shows the proportion of nodes’ neighbours that are also connected (as seen in Figure 1.3, 

reproduced from Figure 3 in Tanglay et al., 2023). M assesses the strength of community 

structure, measuring how well the network is divided into modules with dense intra-group and 

sparse inter-group connections. 

Integration shows how effectively the network facilitates global information flow. Path 

length (PL) measures the average distance between nodes. In SC, it can identify the network's 

potential for functional integration between regions. However, in FC, it does not directly 

quantify the information flow and must be interpreted with caution. The metric of functional 

integration is the characteristic path length, indicating the average shortest path length. Global 

efficiency (GE) is its inverse index, which characterises how efficiently the network facilitates 

information exchange. 
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Figure 1.3. Illustration of key network centrality measures. Brain nodes (a) are connected by structural or functional 

edges (b). Examples include degree (c), betweenness (d), closeness (e), participation coefficient (f), PageRank (g), and 

eigenvector centrality (h), each highlighting different aspects of a node’s importance. Path length (i) reflects network efficiency 

(reproduced from Tanglay et al. (2023), Figure 3). 

 

Small-worldness (SM) is another well-known characteristic that describes the balance 

between segregation and integration. The topology of such a network can demonstrate high 

clustering among neighbours and short average path lengths. Yet, this single statistic should not 

be used in isolation to measure segregation and integration, as functional networks exhibit 

higher segregation but lower integration in comparison to anatomical networks. 

Measures of centrality evaluate the importance of nodes in the network. Nodes with 

high degree are considered as hubs. The degree indicates how many connections a node has, 

while other various metrics, such as the within-modular degree z-score, participation 

coefficient, closeness centrality, and betweenness centrality, describe other aspects of node 

importance. However, they can have different interpretations, regarding functional and 

structural networks. Since FC reveals statistical dependencies among regions rather than direct 

anatomical connections, path-based measures may not always reflect the node’s structural 

significance as a facilitator of information flow, as functional connections can be independent 

of physical pathways. 

The assortativity coefficient is a graph metric that quantifies the tendency of nodes to 

connect to other nodes with similar degree. The positive correlation indicates that the network 

has resilient interconnected high-degree hubs. The negative correlation shows the widely 

distributed and vulnerable hubs. 

It is important to mention that network architecture depends on the network's basic 

elements, such as the number of nodes, edges, and degree distributions. To obtain meaningful 

statistics, the networks should be compared to a null-hypothesis network, a baseline with the 

same network elements (e.g., degree distributions) but random connections, (Rubinov and 

Sporns, 2010). 
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Farahani, Karwowski and Lighthall (2019) in the systematic review, note that some 

studies have shown that age-related changes in brain networks, which are associated with the 

alterations in highly connected hub areas of the DMN, attentional, sensorimotor, and visual 

networks in rs-fMRI. Local efficiency and the rich club coefficient increased until adulthood 

but declined with ageing, while global efficiency remained unchanged. The inverse trajectory 

of long and short connections suggests continuous network reorganisation over time. 

Modularity presents inconsistent results, with some studies reporting minimal change and 

others indicating a linear decrease. An intriguing finding was that intra-modular communication 

increased during a semantic decision-making task, while inter-modular communication was 

more pronounced at rest, a pattern also observed in the language network. Moreover, the nodal 

degree of the DMN correlated with cognitive performance when comparing a resting state with 

an attentional task. 

1.3 The aim of the research, research questions, and hypothesis 

The brain is not an invariant system; rather, its fundamental nature is to be highly adaptive and 

responsive to changes in the environment and the body’s internal state. However, how these 

alterations occur throughout the lifespan remains unclear. According to the prevailing view, the 

decline in cognitive abilities is inversely related to age. At the same time, some evidence 

indicates that the trajectory of these relations can depict negative quadratic patterns, with peak 

performance occurring in the fourth decade. Meanwhile, these processes do not occur in all 

regions simultaneously. On the contrary, activity decreases in some regions while others exhibit 

increases (see Section 1.1.2). In the compensatory hypothesis, these mechanisms are thought to 

compensate for the age-related changes in structural connectivity. Regions demonstrate less 

selective interactions within networks and increased integration between them (see Section 

1.1.3). 

Although the model of compensation has been widely utilised in the literature, it remains 

poorly defined, as its definition depends on the level of analysis to which it is applied. Behfar 

et al., (2020) proposed four criteria to indicate compensatory mechanisms in the resting-state 

studies. First, the functional connectivity of the region must increase significantly. Second, this 

brain region must simultaneously exhibit a decline in neural integrity. Third, this region must 

be associated with cognitive functions. Fourth, to distinguish compensatory activation from 

random or maladaptive activation, the increase in functional connectivity must be positively 

correlated with cognitive performance. Research indicated a compensatory effect in participants 

with mild cognitive impairment but not in healthy senior controls. The lack of significant 

correlation between the degree centrality (DC) and cognitive test scores might reflect weaker 
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compensation in the ageing population, as the changes are not as profound as in the clinical 

population, or it might be a result of the limited size of this group. 

This study aims to investigate age-related differences in network organisation and their 

compensatory effects on the network organisation by assessing differences in functional and 

structural connectivity patterns and their correlation with cognitive performance in older and 

younger adults. We are posing the following questions: 

1. Do older adults exhibit increased functional connectivity in specific brain 

regions associated with cognitive functions as a compensatory mechanism compared to 

younger adults? 

2. Do those brain regions demonstrate a reduction in GM volume in older adults? 

3. Is there any correlation between the graph theory metrics of functional 

connectivity in those regions and cognitive test scores in older adults? 
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Our study uses the MPI-Leipzeg Mind-Brain-Body (LEMON) publicly available dataset, which 

includes multimodal data from healthy participants across different ages (MPI-Leipzig_Mind-

Brain-Body - OpenNeuro, 2017). The data were acquired cross-sectionally for 227 volunteers 

in Leipzig, Germany, between 2013 and 2015 to study the mind-body-emotion interaction 

(Babayan et al., 2019). The dataset provides a variety of neuroimaging data, psychological 

measures, demographic data, cognitive tests and physiological measures, but for the purpose of 

this research, only the Magnetic Resonance Imaging (MRI) data and cognitive tests were used. 

The LEMON data were collected consistently with the Declaration of Helsinki and with 

approval of the local ethical committee at the medical faculty of the University of Leipzig. 

Data acquisition occurred over two rounds. On the first day, participants underwent 

structural and functional MRI scanning using a 3 Tesla Siemens Magnetom Verio scanner. 

Sequences included resting-state fMRI, quantitative T1-weighted MP2RAGE, T2-weighted, 

FLAIR, SWI/QSM, and DWI imaging. Cardiovascular parameters (heart rate, blood pressure, 

respiration) were continuously monitored during resting-state fMRI. Additional assessments 

included anthropometrics, blood sampling, and urine drug screening. 

On the second assessment day, participants completed a resting-state EEG session and 

a battery of psychological assessments covering cognitive performance, emotional and 

personality traits, and psychiatric symptoms. Instruments included the Standardised Clinical 

Interview for DSM IV, Hamilton Depression Scale, Borderline Symptoms List, and various 

standardised questionnaires. 

2.1 Participants 

The full sample consisted of 227 participants divided into a younger group (N = 153, 45 

females, 108 males, age range: 20 – 35 years, mean age = 25.1, SD = 3.1) and an older group 

(N = 74, 37 females, 37 males, age range: 59 – 77 years, mean age = 67.6, SD = 4.7), as can be 

seen in Figure 2.1. However, for the purposes of our study, we split the subjects into three age 

groups: Group 1 (N = 79, 25 females, 54 males, 20–25 years), Group 2 (N = 75, 20 females, 55 

males, age range 25-40, median group is 25-30), and Group 3 (N = 73, 37 females, 36 males, 

age range 55-80 years, median group is 65-70 years). This grouping was chosen first of all to 

capture more subtle differences in the effect of ageing on the brain and second to maintain 

approximately the same number of participants in each group to preserve the statistical power.. 

The exact age of the subjects is not provided in the study; rather, they are grouped into age 

2 Methods 
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ranges. Participants were recruited through public advertisements and university networks. The 

recruitment was conducted in two phases: a telephone pre-screening using a semi-structured 

interview and a subsequent on-site screening conducted by study physicians to ensure no 

exclusion criteria were met. 

 

 

Figure 2.1. Number of male and female participants in each age group. Each bar represents the number of individuals 

in a specific age group, separated by gender: blue bars correspond to male participants and pink bars to female participants. 

2.2 MRI Acquisition and Preprocessing 

The MRI data were acquired using a 3 Tesla Siemens MAGNETOM Verio scanner (Siemens 

Healthcare GmbH, Erlangen, Germany) equipped with a 32-channel head coil. The scanning 

protocol remained stable throughout the data collection period, with no major maintenance or 

software updates affecting data consistency. 

Functional images were acquired using a T2*-weighted multiband echo planar imaging 

(EPI) BOLD sequence. Acquisition parameters were: TR = 1400 ms; total volumes = 657; total 

acquisition time = 15 minutes 30 seconds. Images were angulated -15° from the AC-PC line to 

optimise coverage. During rs-fMRI, participants were instructed to remain awake, keep their 

eyes open, and fixate on a low-contrast cross. Although no physiological confirmation of 

wakefulness was collected, participants were asked to stay awake throughout the scan. To 

correct for geometric distortions, gradient echo field maps and two pairs of reversed phase-

encoded spin echo images were acquired. 

A Magnetisation-Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) sequence 

was acquired for high-resolution structural imaging (1 mm isotropic). These T1-weighted 

images, free from confounding influences such as proton density and T2*, are optimal for 

morphometric analyses (e.g., cortical thickness, voxel-based morphometry). Acquisition time 
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for MP2RAGE was 8 minutes 22 seconds. Additionally, a standard T2-weighted volume (1 mm 

isotropic) was acquired in 4 minutes 43 seconds. 

The preprocessing steps were implemented in the FMRIB Software Library (FSL; Smith 

et al., 2004; Jenkinson et al., 2012) and the CONN software (Nieto-Castanon, 2020; Nieto-

Castanon and Whitfield-Gabrieli, 2022). Although the LEMON study provides for the analysis 

both the raw data and preprocessed data, we chose to work with the raw data and design a 

custom preprocessing pipeline according to the objectives of our research questions. 

There is no golden standard preprocessing pipeline that could be adopted for rs-fMRI; 

the optimal approach, if such exists, depends on both the characteristics of the study population 

and the specific research objectives. Notably, the choice and the order of the preprocessing 

steps can significantly affect the outcomes of functional connectivity analysis and graph metrics 

(Aurich et al., 2015). In our study, we compared participants from different age groups, 

including adults over 70 years old. Previous research has shown that older adults tend to exhibit 

head motion during scanning, which can lead to false correlations in functional connectivity 

metrics (Kato et al., 2020). Such motion-related artefacts can be especially problematic for 

graph analysis, as they may change the structure of the network by artificially increasing the 

number of nodes and edges. Another topic of ongoing debate in the neuroimaging community 

is the use of global signal regression (GSR). GSR is used to reduce noise by removing signals 

that are shared across the whole brain. However, this step, by removing shared variance across 

the brain, moves the mean of the distribution towards zero, which can introduce negative 

correlations and alter true relationships between the regions (Saad et al., 2012). Thus, GSR 

should be applied with caution. 

To improve the analysis of the functional data, we conducted further steps of the data 

preprocessing in FSL software using both FSL GUI and customised scripts. Imaging 

registration and distortion correction were performed by FEAT GUI (Smith et al., 2004). The 

first stage of the neuroimaging preprocessing requires the removal of the skull tissue from the 

sMRI. In the LEMON study, MR2RAGE was acquired to improve the resolution. However, the 

canonical BET tool in FSL could not properly perform skull stripping due to the presence of 

the non-brain background signal. For these reasons, we took an alternative approach using a 

publicly available MATLAB script (Kashyap, 2021) to generate a clean T1-weighted image. 

We removed the first five volumes of the functional data for the signal stabilisation. Motion 

correction was performed with MCFLIRT, and geometric distortions were corrected using B0 

with field map data (dwell time = 0.67 ms; unwarp direction = y-). Spatial smoothing, slice-

timing correction were disabled as can be applied to resting state data (Kucikova et al., 2023). 

Functional registration to subjects’ high-resolution structural data was performed using 
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boundary-based registration (BBR; Greve and Fischl, 2009), after which nonlinear registration 

to the MNI standard space using FNIRT was applied. To remove physiological noise from the 

functional data, we applied independent component analysis (ICA; Beckmann et al., 2005) 

using MELODIC to automatically identify noise components, which were removed using 

FMRIB’s ICA-based Xnoiseifier (FIX) with a trained classifier (Griffanti et al., 2017). We 

adopted this approach based on previous studies that demonstrated its effectiveness in removing 

motion-related noise (Parkes et al., 2018), which is important in group comparisons consisting 

of different ages. The denoised time series were band-passed filtered in the frequency range 

between 0.01 and 0.1 Hz. The temporal denoising step was applied outside of FSL in Nipype 

Python (adopting the code Bandpass filtering: different outputs from FSL and nipype custom 

function - Neuro Questions, 2017), as the results were different from the raw data (see Figure 

2.2). To enable group-level analysis, all images were normalised to the MNI space with 2mm 

isotropic resolution. 

 

Figure 2.2. Comparison of power spectral density (PSD) across different preprocessing approaches. The blue line 

represents the raw data, the green line shows data filtered using FSL’s default band-pass filtering, and the yellow line represents 

data filtered using a NumPy implementation. 

 

The structural data was preprocessed with the FAST tool (FMRIB’s Automated 

Segmentation Tool; (Zhang, Brady and Smith, 2001), and included segmentation of T1-

weighted images into grey matter, white matter, and cerebrospinal fluid (CSF), using bias field 

correction and spatial smoothing to improve the accuracy. Segmented images of different tissue 

types were normalised to the same MNI space as functional data. 

After finishing functional and structural data preprocessing in FSL, we continued our 

analysis in the CONN toolbox to apply first-level and second-level analysis. After uploading 

the data, we visually inspected it and excluded it from the analysis one participant from Group 

3 due to compromised structural data quality. Thus, there were 226 participants for further 

analysis. We also conducted a quality data control assessment and observed that some data were 

not normally distributed. To solve this issue, we additionally applied the regression of the CSF 
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signal. After this step, the quality control metrics showed that the data distribution was 

normalised. Functional connectivity was computed using ROI-to-ROI analysis in CONN with 

the application of a general linear model to assess connectivity in the predefined regions. 

2.3 Graph theory analysis 

According to the definition of the compensatory mechanism given in section 1.3, we use the 

degree centrality (DC) as a graph-theoretical measure to quantify group differences in 

functional connectivity. DC shows how many connections a brain region (node) has with other 

regions within a network. The CONN toolbox supports a group-level ROI-to-ROI analysis of 

this metric and other graph measures, such as global efficiency, local efficiency, clustering 

coefficient, and the characteristic path length. In CONN, these metrics are computed from 

unweighted, undirectional graphs, where nodes represent ROIs and edges correspond to 

functional connections that surpassed a threshold. The toolbox provides the Harvard-Oxford 

atlas with 132 ROIs as a default parcelation scheme. However, the number of regions of interest 

can considerably influence network properties, and an insufficient number of ROIs may lead to 

an underrepresentation of relationships between regions (Stanley et al., 2013). We implemented 

the Brainnetome Atlas, which is a high-resolution, connectivity-based atlas with 210 cortical 

and 36 subcortical regions (Fan et al., 2016). This atlas also allows correlating brain anatomy 

with psychological and cognitive functions. For each subject, a ROI-to-ROI adjacency matrix 

(RRC) was generated from denoised data, representing the level of functional connectivity 

between each pair of nodes. Each element is defined as the Fisher-transformed bivariate 

correlation coefficient between the BOLD time series of two ROIs, where each ROI’s time 

series is the averaged signal of all voxels in this region (Nieto-Castanon, 2020). 

RRC matrix was thresholded by using the concept of network cost (Cost), which is the 

proportion of the retained supra-thresholded connections to the total possible number of 

connections (Khazaee, Ebrahimzadeh and Babajani-Feremi, 2016). This value ranges from 0 

(no connections) to 1 (a completely connected graph). Lower Cost values remove many edges, 

which may result in a disconnected graph, while higher Cost values keep weak connections that 

can make a graph denser with less significant connections. To determine an optimal threshold, 

we identify the maximised global cost efficiency (GCE), which is calculated as: 

 𝐺𝐶𝐸 = 𝐺𝐸 − 𝐶𝑜𝑠𝑡 (2.1) 
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(2.2) 

Where 𝐺𝐸 is the overall global efficiency, 𝐺𝐸𝑖  is the global efficiency at a node 𝑖, 𝐷 is 

the shortest-path distance matrix, and 𝑁 is the number of nodes in the graph. 
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We determined the optimal Cost value that maximises GCE (see Equation (2.1) by 

evaluating GE for every subject and Cost values ranging from 0.05 to 0.31 with a step size of 

0.01 (Behfar et al., 2020). As can be seen in Figure 2.3, the optimal Cost was at 0.19, giving 

the highest GCE at approximately 0.37. 

 

Figure 2.3. Average global cost efficiency (GCE) plotted against network cost (Cost) across all subjects. The green 

curve represents the mean GCE values, while the red dot indicates the Cost value at which the maximum GCE was achieved. 

 

Subsequently, we applied this optimal value to the RRC matrix to ensure the balance 

between network density and efficiency. 

Finally, we conducted the graph theory analysis at the group level. We exported the 

graph measures after conducting a between-group analysis on three groups of participants: 

younger adults (Group 1), early middle-aged adults (Group 2), and older adults (Group 3). The 

differences were determined using two-tailed t-tests with a p < 0.05 (FDR-corrected) in three 

separate contrasts: Group 3 vs. Group 1, Group 3 vs. Group 2, and Group 1 vs. Group 2. DCs 

with significantly higher values were extracted for further correlation analysis with the 

performance on cognitive tests. 

We applied the same steps to extract the values of global efficiency GE (as shown in 

Equation (2.2), local efficiency LE (see Equation (2.3), clustering coefficient CC (see 

Equation (2.4), and average path length PL (Equation (2.5). These metrics are defined in CONN 

(Nieto-Castanon, 2020) as: 
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Where d represents a degree of each node, D denotes the shortest-path distance matrix 

within the local subgraph consisting of each node’s i immediate neighbours j, k and the 

connections among them, and LE is the Local Efficiency of a graph. 

 

The formulas for CC are: 
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Where d denotes the degree of each node, A represents the adjacency matrix of the local 

subgraph formed by a node’s i neighbours j, k and the connections among them, and CC is the 

clustering coefficient of a graph. The formulas for PL are: 
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Where D is the shortest-path distance matrix, N is the total number of nodes in a graph, 

and 𝑃L is the average path distance of a graph. 

2.4 Grey Matter Volume Analysis 

According to our hypothesis, a compensatory mechanism occurs when a region exhibits both 

increased functional connectivity and a reduction of grey matter (GM). Thus, we conducted a 

volumetric comparison of GM between different age groups. The preprocessing of T1-weighted 

images was conducted using FSL tools and custom bash scripts to prepare for the ROI-based 

morphometric analysis. 

The brain-extracted GM images were segmented and normalised to the Montreal 

Neurological Institute (MNI) space. Subsequently, they were combined to create a group-

average template. This template was smoothed using a Gaussian kernel with a 2 mm full-width 

at half-maximum (FWHM) to support the next step of nonlinear registration. Then, each 

individual’s GM image was nonlinearly aligned to the smoothed group template using FNIRT 

(FMRIB’s Non-linear Image Registration Tool). The warp fields generated during this 

registration were used to compute Jacobian determinant maps, which quantify local changes in 

the volume. These maps were applied to modulate the registered GM images, ensuring that the 

original tissue volumes were preserved. In the final step, the modulated images were smoothed 
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using an 8 mm FWHM Gaussian kernel to improve signal-to-noise ratio and account for 

anatomical differences across participants. GM volume was extracted for each ROI for further 

statistical analysis. 

To assess GM volume differences among groups, we applied a general linear model for 

each ROI with the total intracranial volume (TIV) as a covariate to take into account differences 

in the brain size. TIV was calculated as the sum of the grey matter, white matter, and 

cerebrospinal fluid. To examine differences in the grey matter (GM) volume between age 

groups across brain regions, we ran a separate statistical test for each region of interest (ROI), 

taking into account differences in the brain size by including the total intracranial volume (TIV) 

as a covariate. For regions where GM volume followed a normal distribution, we used linear 

regression to model the GM volume based on age group and TIV. We then used ANOVA to 

test whether the age group had a significant effect. For regions where the GM data were not 

normally distributed, we first removed the effect of TIV by calculating residuals from a linear 

regression. We then compared these residuals between age groups using the Kruskal-Wallis 

test, a non-parametric method. We corrected all p-values for multiple comparisons using the 

false discovery rate (FDR) method. For regions showing significant group differences after 

correction, we did post-hoc tests to compare the older adults with each of the younger groups. 

These comparisons used independent t-tests (for normal regions) or Mann–Whitney U tests (for 

non-normal regions) on the TIV-corrected GM values. Only the regions where older adults had 

significantly lower GM volume than at least one younger group were included in the final 

summary and visualisation. 

2.5 Cognitive Performance Correlation 

To check our hypothesis on the compensatory effects in the ageing brain, we performed the 

final analysis step, where we investigated the relationship between the degree centrality (DC) 

in brain regions and cognitive performance, specifically within the older adults (Group 3). 

During the acquisition of the data, multiple cognitive tests were conducted. The 

California Verbal Learning Task assesses verbal learning and memory. The Test of Attentional 

Performance measures different aspects of attention and working memory, including alertness, 

the ability to handle conflicting information, and short-term memory processing. The Trail 

Making Test evaluates cognitive flexibility, attention, and executive functioning. The 

Vocabulary Test assesses verbal intelligence and language comprehension. The Performance 

Testing System, Subtest 3, measures fluid intelligence. Lastly, the Regensburger Word Fluency 

Test measures verbal fluency. We examined correlations with all of the cognitive tests based 
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on the assumption that different brain regions exhibiting increased DC may be functionally 

related to different cognitive abilities. 

DC values were extracted from RRC matrices at a cost threshold of 0.19 and z-scored 

across the subjects. The cognitive variable of interest was performance on a cognitive test, 

which was also z-scored. To control for potential confounding effects of age, as Group 3 

included a wide range of ages (see Figure 2.1), we used multiple linear regression. For each 

ROI, a model was fitted with DC as the dependent variable and cognitive performance and age 

range as independent variables. To account for multiple comparisons across ROIs, we applied 

false discovery rate (FDR) correction to the resulting p-values. Only ROIs with FDR-corrected 

p-values below 0.05 were considered statistically significant. 
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We analysed rs-fMRI, structural magnetic resonance imaging (sMRI) and cognitive test data 

from 226 participants. Participants were categorised into Group 1 (younger adults), Group 2 

(early middle-aged adults), and Group 3 (older adults). Group comparisons were performed 

across these cohorts. In the following sections, comparisons between Group 1 and Group 2 are 

not discussed further, as no statistically significant differences were observed. 

3.1 ROIs with a Significant Increase in DC between Groups 

Second-level analyses were performed using the CONN toolbox to assess group differences 

between Group 3 vs. Group 1 and Group 3 vs. Group 2. Regions of interest (ROIs) were defined 

based on the Brainnetome Atlas. Their anatomical correspondence to Brodmann areas (BAs) is 

provided in Appendix A. Network-based statistics were employed, and the degree centrality 

(DC) was used as the primary graph-theoretical metric. Statistical results were thresholded at p 

< 0.05 and FDR-corrected (two-sided) to account for multiple comparisons. 

We observed an increase in DC in Group 3 compared to Group 1 in 43 ROIs (as seen in 

Figure 3.1, the left column). These regions are in the frontal lobe (23 ROIs), the parietal lobe 

(17 ROIs), two are in the limbic lobe, and one is in the occipital lobe. Most of these ROIs 

exhibited an increased DC in both left and right hemispheres. These bilateral ROIs are located 

in the precentral upper gyrus (PrG), specifically upper limbs and trunk regions, the precentral 

lobule (PCL), in all lower limb regions, the middle frontal gyrus (MFG; BA A9/46d, A46, A8vl, 

and A10l), most regions of the superior parietal lobule (SPL; BA A7r, A5l, A7pc, and A7ip), the 

post central gyrus (PoG; upper limb, head and face regions, and trunk), and the precuneus 

(Pcun; BA A5m). The regions with increased DC that were located only in one of the 

hemispheres were the PrG (head and face region and BA A6cdl in the left hemisphere), the 

ventral part of the right MFG (BA  A9_46v_r), the right superior frontal gyrus (SFG) in the 

medial areas (BA A8m_r and A9m_r) and dorsolateral area (BA A6dl_r), the right inferior 

frontal gyrus (IFG; BA A44op_r), the right caudal area of the inferior parietal lobule (IPL; BA 

A40c_r) and the left rostrodorsal area of the IPL (BA A39rd_l), the caudal area of the SPL (BA 

A7c), the right caudal area (BA A23c_r) and dorsal area (BA A23d_r) of the cingulate gyrus 

(CG), and the right lateral occipital cortex (LOcC; BA V5/MT_plus). 

 

 

  

3 Results 
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A   

  
B  

  
C  

  
D  

  
Figure 3.1. Group differences in the degree centrality (DC) visualised on the 3D brain models using the CONN 

toolbox. Each row presents a different view of the brain: superior (A), anterior (B), right lateral (C), and left lateral (D). The 

left column in each row shows regions with significant DC differences between Group 3 and Group 1, and the right column 

shows differences between Group 3 and Group 2. Red dots indicate regions of increased DC in Group 3 relative to the 

comparison group, while blue dots indicate decreased DC. Statistical results are based on the second-level general linear model 

(GLM) comparisons, with significance assessed using two-tailed tests and corrected for multiple comparisons using false 

discovery rate (FDR) correction at p < 0.05. 
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We also observed increased DC in Group 3 compared to Group 2 in 32 ROIs (as shown 

in Figure 3.1, the right column). These regions were distributed across the frontal lobe (18 

ROIs), parietal lobe (11 ROIs), limbic lobe (2 ROIs), and occipital lobe (1 ROI). Most regions 

showed increased centrality bilaterally. These regions are located in the MFG (BA A9/46d, A46, 

A9/46v, and A8vl), the precentral upper gyrus (specifically upper limbs and trunk regions; BA 

A4ul, and A4t), the postcentral area of the SPL (BA A7pc), the trunk area of the PoG (BA 

A1/2/3tru), and the Pcun (BA A5m). Among the regions with increased DC that were lateralised 

to a single hemisphere were the lateral part of the left MFG (BA A10l), the PCL (lower limb 

regions; BA A1/2/3ll_l, A4ll_r ), the right IFG (BA A44op), the right superior frontal gyrus in 

the dorsolateral area (BA A6dl), the caudal dorsolateral PrG (BA A6cdl in the left hemisphere), 

the right SPL of the rostral, lateral, and intraparietal areas (BA A7r, A5l, and A7ip), the right 

caudal area (BA A40c) and left rostrodorsal (BA A39rd) areas of the IPL, the left caudal cuneus 

gyrus of the medio ventral occipital cortex (BA cCunG), and the right pregenual area (BA A32p) 

and dorsal area (BA A23d) of the cingulate gyrus. 

3.2 ROI Morphometric Analysis of the Grey Matter 

According to the hypothesis presented in Section 1.3, a key criterion for identifying a region of 

interest (ROI) as exhibiting compensatory mechanisms is the presence of increased degree 

centrality (DC) alongside the decreased grey matter volume. The ROI-based morphometry 

analysis, corrected for multiple comparisons using the false discovery rate (FDR), revealed 16 

ROIs in the comparison between Group 3 and Group 1 that exhibited both increased DC and 

reduced GM volume. Similarly, 9 ROIs were identified in the comparison between Group 3 and 

Group 2. However, after adjusting for the total intracranial volume (TIV), these differences 

were no longer statistically significant in either GM volume or DC. ROIs that demonstrated 

GM reduction without a corresponding increase in DC are illustrated in Figure 3.2. Each violin 

plot shows the distribution of GM volume from a linear regression model with TIV as a 

covariate. In these ROIs, Group 3 displayed a significant decrease in GM compared to younger 

adults. Positive residuals indicate higher GM volume than expected based on TIV, while 

negative values indicate lower GM volume than expected. 

We also examined whether GM volume correlates with the TIV across different age 

groups to account for the possibility that increases in cerebrospinal fluid (CSF) volume and 

decreases in GM and white matter (WM) volumes may occur while maintaining a relatively 

constant total brain volume (as shown in Figure 3.3). 
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Figure 3.2. Grey matter volume differences in selected ROIs based on the Brainnetome Atlas. The figure illustrates 

grey matter volume across groups for: the medial area of the right superior temporal gyrus (STG_R_6_1), the rostroventral and 

lateroventral areas of the right fusiform gyrus (FuG_R_3_1 and FuG_R_3_3), the rostral and posterior areas of the right 

parahippocampal gyrus (PhG_R_6_1 and PhG_R_6_3), the ventral caudal area of the right basal ganglia (BG_R_6_1), and the 

left posterior parietal thalamus (Tha_L_8_5). Statistical significance was assessed using ANCOVA with the total intracranial 

volume (TIV) as a covariate. Significance levels are denoted as follows: p < 0.05 (*), p < 0.01 (**), p < 0.005 (***), and p < 

0.001 (****), all FDR-corrected. 
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Figure 3.3. Grey matter (GM) volume as a function of total intracranial volume (TIV) across age groups. Regression 

lines are shown for younger (20–25, red), middle-aged (25–40, blue), and older adults (55–80, green) to assess whether age-

related GM changes are independent of TIV. 

 

The regions that showed a significant decrease in GM are the medial area of the right 

superior temporal gyrus (STG, BA A38m), the rostroventral and lateroventral areas of the right 

fusiform gyrus (FuG; BA A20rv and A37lv), the rostral area of the right parahippocampal gyrus 

(PhG; BA A35/36r), the right posterior parahippocampal gyrus (BA TL), the ventral caudal area 

of the right basal ganglia (BG; BA vCa), and the left posterior parietal thalamus (Tha; BA 

Pptha). 

3.3 Correlation Analysis between ROIs with Increased DC and 

Cognitive Tests 

We assessed all six cognitive tests administered during data acquisition, as ROIs with increased 

DC are known to support various cognitive functions, including working memory, attention, 

spatial processing, and reasoning. No significant correlations were observed after correcting for 

multiple comparisons, with one exception: performance on the Regensburger 

Wortflüssigkeitstest (RWT) significantly correlated with the DC of the right Parahippocampal 

Gyrus (as illustrated in Figure 3.4). The plot shows the relationship between degree centrality 

and the number of correctly produced S-words in RWT (both z-scored). A linear regression 

model controlling for different age distributions in Group 3 revealed a significant negative 

association (β = –0.44, p = 0.033), suggesting that lower verbal fluency was associated with 

higher centrality in this region. However, this region did not exhibit increased DC across the 

group comparisons and was therefore not included in the hypothesis-driven analysis. 
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Figure 3.4. Correlation between degree centrality in the right Parahippocampal Gyrus (BN_Atlas_246.cluster110) 

and verbal fluency in older adults (Group 3). Each dot represents one participant. The x-axis shows the z-scored number of 

correctly produced S-words in the Regensburger Wortflüssigkeitstest (RWT), and the y-axis shows z-scored degree centrality 

in this region. A linear regression model controlling for age revealed a significant negative association (β = –0.44, pFDR = 

0.033). 

3.4 Global Efficiency, Local Efficiency, Clustering Coefficient, 

Characteristic Path Length, and Decreased Degree Centrality 

All statistical tests reported below were corrected for multiple comparisons using the false 

discovery rate (FDR) method, with a significance threshold of p < 0.05 (FDR-corrected, two-

tailed). 

Although the overall differences in the Global Efficiency (GE) between Group 3 and 

Group 1 or Group 2 were not statistically significant after correction for multiple comparisons, 

a considerable number of ROIs exhibited differences at the nodal level (Appendix D). 

We identified 93 ROIs that showed differences in GE between Group 3 and Group 1 

(see Figure 3.5, the left column). These regions were distributed across several brain lobes: 25 

ROIs in the temporal lobe, all exhibiting a pronounced negative pattern; 12 ROIs in the parietal 

lobe, showing a marked positive tendency; 19 ROIs in the frontal lobe, mostly displaying a 

clear positive inclination except for the orbital gyrus, which showed a negative trend; 9 ROIs 

in the insular cortex, with a robust negative trend; 2 ROIs in the limbic lobe, both with a 

negative pattern; 21 ROIs in the subcortical nuclei, all exhibiting a consistently negative profile; 

and 1 ROI in the occipital lobe, which showed a negative trend. These regions included most 

areas of the bilateral parahippocampal gyri, fusiform gyri, superior and inferior temporal gyri, 

and somatomotor regions such as the lower limb, upper limb, and trunk representations of the 

paracentral lobules. Additional affected areas comprised the middle and inferior frontal gyri, 

the orbital gyri, the entire insular cortex, the majority of thalamic subregions, the amygdala, the 

basal ganglia, and the rostral portion of the hippocampus. 
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Figure 3.5. Group differences in the global efficiency (GE) visualised on 3D brain models using the CONN toolbox. 

Each row displays a different brain view: superior (A), anterior (B), right lateral (C), and left lateral (D). The left column in 

each row highlights regions with significant GE differences between Group 3 and Group 1, while the right column shows 

differences between Group 3 and Group 2. Red dots indicate regions where Group 3 shows increased GE relative to the 

comparison group, and blue dots indicate decreased efficiency. Statistical comparisons were performed using second-level 

general linear models (GLMs), with significance assessed using two-tailed tests and corrected for multiple comparisons via 

false discovery rate (FDR) correction at p < 0.05. 
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In the comparison between Group 3 and Group 2, GE differed significantly across 60 

ROIs (Figure 3.5, the right column and 0). These included 14 ROIs in the subcortical nuclei 

with a negative predominant trend, 9 ROIs in the parietal lobe, predominantly with positive 

trends except for the rostroventral inferior parietal lobule; 12 ROIs in the temporal lobe, all 

showing a clear negative inclination; and 15 ROIs in the frontal lobe, most of which exhibited 

a positive trend, with the exception of all areas of the orbital gyrus and the dorsal portion of the 

inferior frontal gyrus, which showed negative effects. Additionally, 8 ROIs in the insular lobe 

displayed a predominantly negative trend. Finally, the right rostroventral cingulate gyrus and 

the caudal cuneus of the medioventral occipital cortex showed a negative and a positive trend, 

respectively. These regions included bilateral amygdalae, multiple thalamic clusters, bilateral 

parahippocampal and hippocampal gyri, the basal ganglia, the cingulate gyrus, bilateral 

postcentral and precentral gyri, superior and inferior parietal lobules, and bilateral middle 

frontal gyri. 

In the comparison between Group 3 and Group 1, the local efficiency (LE) was 

significantly increased across a broad set of brain regions (see Figure 3.6, the left column). The 

most prominent effects were found bilaterally in the insular cortex (7 ROIs) and in the parietal 

lobe (12 ROIs), including the superior and inferior parietal lobules, bilateral precuneus, and 

postcentral gyrus. Significant increases were also observed in the temporal lobe (10 ROIs), 

involving the fusiform gyrus, superior and inferior temporal gyri, and parahippocampal gyrus. 

In the frontal lobe (9 ROIs), higher LE was found in the superior and middle frontal gyri 

as well as the orbital gyrus. Additional effects were present in the limbic lobe (4 ROIs), 

particularly in the cingulate gyrus, and in the occipital lobe (3 ROIs), specifically the lateral 

occipital cortex. 

When assessing group differences between Group 3 and Group 2, the local efficiency 

(LE) was significantly increased in 14 cortical regions (as shown in Figure 3.6, the right column 

and shown in Error! Reference source not found.). The most pronounced effects were observed 

bilaterally in the parietal lobe, including the superior parietal lobule (SPL_L_5_4, SPL_R_5_4) 

and the right postcentral gyrus (PoG_R_4_3). In the temporal lobe, significant increases were 

found in five regions, encompassing the inferior and middle temporal gyri (ITG_L_7_6, 

ITG_R_7_5, MTG_R_4_3, MTG_R_4_1). Additionally, elevated LE was detected in three 

regions of the insular cortex (INS_L_6_4, INS_R_6_4, INS_R_6_1), the left superior frontal 

gyrus (SFG_L_7_6), and the right cingulate gyrus (CG_R_7_4). 

We also examined differences in the clustering coefficient (CC) between Group 3 and 

Group 1. This comparison revealed a significant increase in CC across a wide range of brain 

regions, encompassing 52 ROIs (as seen in Figure 3.7, the left column and Appendix H). 
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B  

  
Figure 3.6. Group differences in the LE visualised on the 3D brain models using the CONN toolbox. Each row 

presents a different view of the brain: right lateral (A), and left lateral (B). The left column in each row shows regions with 

significant LE differences between Group 3 and Group 1, and the right column shows differences between Group 3 and Group 

2. Red dots indicate regions of increased LE in Group 3 relative to the comparison group. Statistical results are based on second-

level general linear model (GLM) comparisons, with significance assessed using two-tailed tests and corrected for multiple 

comparisons using false discovery rate correction at p < 0.05. 

 

The most notable increases were observed bilaterally in the insular cortex (7 ROIs) and across 

the parietal lobe (13 ROIs), including the superior and inferior parietal lobules, the bilateral 

precuneus, and the postcentral gyrus. Significant elevations in CC were also detected in the 

temporal lobe (11 ROIs), involving the fusiform gyrus, superior, middle, and inferior temporal 

gyri, and the parahippocampal gyrus. In the frontal lobe (11 ROIs), higher CC values were 

identified in the orbital gyrus, as well as in the superior and middle frontal gyri. Additional 

regions showing increased CC included areas of the limbic lobe (6 ROIs), particularly the 

cingulate gyrus, the occipital lobe (3 ROIs), specifically the lateral occipital cortex, and the 

right thalamus. 

When comparing Group 3 to Group 1, the clustering coefficient (CC) was significantly 

elevated in 25 cortical regions (as seen in Figure 3.7, the right column and Appendix I). The 

most prominent changes appeared primarily unilaterally in the parietal lobe (6 ROIs), involving 

the superior and inferior parietal lobules as well as the right postcentral gyrus. In the temporal 

lobe, increases were observed in eight areas, including regions of the inferior and middle 

temporal gyri, and the fusiform gyrus. Higher CC values were also detected in three insular 
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regions, two regions of the superior frontal gyrus, three regions of the orbital gyrus, and three 

areas within the cingulate cortex. 

A  

  
B  

  
C  

  
Figure 3.7. Group differences in CC visualised on 3D brain models using the CONN toolbox. Each row presents a 

different view of the brain: superior (A), right lateral (B), and left lateral (C). The left column in each row shows regions with 

significant CC differences between Group 3 and Group 1, and the right column shows differences between Group 3 and Group 

2. Red dots indicate regions of increased CC in Group 3 relative to the comparison group. Statistical results are based on 

second-level general linear model (GLM) comparisons, with significance assessed using two-tailed tests and corrected for 

multiple comparisons using false discovery rate correction at p < 0.05. 

 

The comparison of the characteristic path length (PL) between Group 3 and Group 1 

revealed significant differences across 77 regions of interest (as illustrated in Figure 3.8, the 

left column and Appendix J). The majority of these regions exhibited positive beta values, 

indicating higher PL in Group 3 relative to Group 1. These increases were widespread, 

encompassing 22 subcortical ROIs, 27 ROIs within the temporal lobe, 12 in the insular cortex, 

9 in the frontal lobe, 2 in the left inferior parietal lobule, 3 in the cingulate gyrus, as well as the 

right medio-ventral occipital cortex and the left lateral occipital cortex. In contrast, only three 
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regions showed a reduction in PL in Group 3: the left and right paracentral lobules and the left 

precentral gyrus. 

We investigated differences in average pathway values between Group 3 and Group 2 

(Figure 3.8, the right column and Appendix K). Several specific regions exhibited significant 

differences. The most pronounced increases were found in the left and right amygdala. In 

addition, elevated pathway values were observed in subcortical nuclei (8 ROIs), the temporal 

lobe (12 ROIs), and bilateral insular subregions (8 ROIs). Two regions within the orbital gyrus 

also showed significant increases, along with one region in the cingulate gyrus. Notably, only 

a single region – the left middle ventral occipital cortex – showed a significant decrease in 

pathway values. 

A  

  
B  

  
Figure 3.8. Group differences in the characteristic path length (PL) visualised on 3D brain models using the CONN 

toolbox. Each row displays a different brain view: right lateral (A) and left lateral (B). The left column in each row highlights 

regions with significant PL differences between Group 3 and Group 1, while the right column shows differences between Group 

3 and Group 2. Red dots indicate regions where Group 3 shows increased PL relative to the comparison group, and blue dots 

indicate decreased. Statistical comparisons were performed using second-level general linear models (GLMs), with significance 

assessed using two-tailed tests and corrected for multiple comparisons via false discovery rate (FDR) correction at p < 0.05. 
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The primary aim of this study was to examine whether older adults exhibit compensatory 

mechanisms in functional brain networks by increasing functional connectivity in regions that 

show grey matter atrophy, while maintaining a positive association with cognitive performance. 

The criteria for identifying compensation were based on the framework proposed by Behfar et 

al. (2020), who explored this phenomenon in healthy ageing individuals and those with 

prodromal Alzheimer’s disease. According to these criteria, a brain region is considered to 

reflect a compensatory mechanism if it shows (1) a significant increase in functional 

connectivity, measured using the graph-theoretical metric of degree centrality, and (2) a positive 

relationship with cognitive function. Additionally, these regions must simultaneously exhibit a 

decline in grey matter volume. 

4.1 Interpretation of Key Findings 

The graph-theoretical analysis of ROI-to-ROI connectivity matrices revealed several regions 

with increased degree centrality in both comparisons: older adults (N = 73, age range 55-80 

years, median group is 65-70 years) vs. younger adults (N = 79, age range 20-25 years) and 

older adults vs. early middle-aged adults (N = 75, age range 25-40, median group is 25-30). 

The frontal lobe showed the highest concentration of such regions. Notably, the middle frontal 

gyrus demonstrated increased centrality and is functionally linked to social cognition, working 

memory, explicit memory, and reasoning, based on the BrainMap database (Fox and Lancaster, 

2002; Fox et al., 2005), which supports the functional annotation in the Brainnetome Atlas. 

The left precentral gyrus, involved in action execution, speech production, shape 

discrimination, and spatial cognition, also showed increased degree centrality. Additional 

frontal regions with increased DC include the superior frontal gyrus, associated with working 

memory, attention, and action inhibition, and the inferior frontal gyrus, linked to time-related 

cognitive processes. 

The parietal lobe also showed a substantial number of regions with increased DC in 

comparison with both younger groups, particularly in the superior parietal lobule and the 

precuneus. These areas are involved in a wide range of cognitive functions, including spatial 

cognition, attention, reasoning, action imagination, somatic processing, working memory, 

motion and colour perception, and social cognition. 

Finally, in the limbic lobe, increased DC was detected in the cingulate gyrus compared 

to both younger groups, a region functionally associated with emotion, social cognition, explicit 

4 Discussion 
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memory, attention, and action inhibition. The medioventral occipital cortex, which also 

exhibited elevated degree centrality, is linked to semantic aspects of language processing. 

This analysis allowed us to identify regions that meet the criteria for increased 

functional connectivity. Notably, the areas with the most prominent increases in degree 

centrality are functionally associated with action imagination and execution, bodily sensations, 

proprioception, motor learning, somatosensory processing, and pain perception. Furthermore, 

the comparison between older and younger adults revealed greater differences in regions linked 

to somatic functions such as bodily sensations and proprioception. In contrast, the comparison 

between older and early middle-aged adults showed more pronounced changes in areas related 

to both cognitive processes and somatic functions. 

In the subsequent phase of our study, we conducted a comparison of GM volumes across 

age three groups. Previous research has consistently demonstrated that ageing is associated with 

reductions in both grey and white matter volumes, accompanied by an increase in cerebrospinal 

fluid volume (Podgórski et al., 2021). This structural decline is a critical criterion in the 

definition of a compensatory mechanism, which is used in our study, where regions become 

more functionally interconnected even though they are structurally degrading, suggesting the 

compensatory adaptation of the brain. 

The methodology chosen to assess GM volume loss significantly influences the 

detection of such changes. Voxel-based morphometry (VBM) offers a whole-brain, voxel-wise 

analysis capable of detecting brain tissue atrophy. In contrast, the ROI-based morphometry 

focuses on predefined areas, which may limit sensitivity (Seyedi et al., 2020). Despite this 

limitation, we chose the ROI-based method because it allowed for a more straightforward 

comparison between structural and functional data in the same regions. 

Our findings revealed significant GM volume reductions in several brain regions among 

older adults compared to younger groups. However, after adjusting for total intracranial volume 

(TIV), only specific areas maintained significant group differences: the right medial superior 

temporal gyrus, right rostroventral and lateroventral fusiform gyrus, right rostral and posterior 

parahippocampal gyrus, right ventral caudal basal ganglia, and left posterior parietal thalamus. 

All these regions are located in the right temporal lobe and lie in close proximity to one another. 

These regions are functionally associated with explicit memory, semantic and orthographic 

processing of words, emotional responses such as anger and fear, and the visual perception of 

shape. In older adults, they exhibited increased characteristic path length and decreased global 

efficiency, suggesting less efficient communication within the broader network, potentially 

because of the structural grey matter changes. However, the observed increases in local 

efficiency and clustering coefficient may reflect a compensatory reorganisation at the local 
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level, where neighbouring nodes become more interconnected to compensate for the reduced 

whole network efficiency. 

Nevertheless, none of these regions showed increased degree centrality, which is a key 

criterion for identifying compensatory mechanisms in our study. As such, they do not meet the 

criteria to be considered as exhibiting compensatory effects in the ageing brain defined in the 

previous study. However, the results of the increased clustering coefficient and decreased GM 

volume in some particular regions might suggest the importance of considering compensation 

as not relying solely on the strength of a region’s overall connectivity, but also on how well its 

neighbouring regions are interconnected. 

On the other hand, the fact that the grey matter loss did not remain significant after 

adjusting for TIV may indicate that the structural changes associated with ageing are relatively 

subtle and not substantial enough compared to younger and early middle-aged adults. Healthy 

ageing, unlike neuropathological conditions such as traumatic brain injury, stroke, Alzheimer’s 

disease, or Parkinson’s disease, does not typically lead to severe deterioration of brain tissue. 

In the final phase of our study, we explored whether any specific brain regions in older 

adults showed an increased number of functional connections (nodes) compared to other 

groups. We also examined whether such increases were associated with performance on a 

battery of cognitive tests. As suggested by the previous study, a compensatory mechanism in 

the ageing brain should be reflected in better cognitive performance. 

Since the regions with increased degree centrality were functionally linked to domains 

such as explicit and working memory, language, and attention, we tested for associations with 

verbal learning, attention, cognitive flexibility, crystallised intelligence, and fluid intelligence. 

However, no significant correlations were found, except for a negative correlation between 

performance on the Regensburger Word Fluency Test and connectivity in the right rostral 

parahippocampal gyrus. 

In this task, participants were asked to produce as many German words as possible 

beginning with the letter “S,” serving as a measure of verbal fluency. Despite this finding, the 

right rostral parahippocampal gyrus did not show increased degree centrality and, therefore, did 

not meet our criteria for a compensatory region. Nonetheless, it is worth noting that this area 

did exhibit increased local connectivity. 

Although the Brainnetome Atlas does not list behavioural associations for the right 

rostral parahippocampal gyrus, the left parahippocampal gyrus is functionally linked to explicit 

memory, semantic processing, and social cognition. While this is speculative, it raises the 

possibility that the right-hemisphere counterpart may play an analogous role. 



 48 

 

It is important to note that Behfar et al. (2020) compared senior healthy controls and 

individuals diagnosed with mild cognitive impairment in their study. They also report the lack 

of significant correlations between the results of cognitive tests and functional connectivity in 

the control group, in contrast to the patient group. It can imply that in healthy ageing 

populations, cognitive test results may not exhibit a straightforward or linear relationship with 

functional connectivity, and the within-group differences, such as life experience and education 

level, may significantly affect the results in the ageing population. Conversely, patients with 

severe and profound neurological changes might exhibit clearer differences. 

Overall, answering our research questions, we found the regions of interest in older 

adults that showed increased functional connectivity compared to younger adults. These regions 

are associated with diverse cognitive functions, but the correlation with performance in 

cognitive tests was not found. There was also no significant grey matter loss in those regions. 

These findings may suggest that the criteria used to define a compensatory mechanism may be 

more applicable to severe conditions such as neurodegenerative diseases, and may not 

adequately capture the more subtle changes that occur in the healthy ageing brain. 

Further analysis of graph metrics was conducted to identify group differences in 

network topology. No significant differences were observed between the younger and early 

middle-aged groups. In contrast, extensive alterations in topological organisation were found 

in older adults, affecting multiple brain regions. However, these alterations were observed only 

at the regional level, as the network-level analyses did not reach significance after false 

discovery rate correction. 

Temporal lobes bilaterally exhibited consistent patterns: reduced global efficiency and 

increased characteristic path length in all regions, showing significant changes. This pattern 

suggests a decline in integrative processing and long-range communication. Interestingly, these 

same regions showed increased local efficiency and clustering coefficient, indicating a potential 

compensatory mechanism at the level of local neighbourhoods. 

Subcortical regions, however, demonstrated reduced global efficiency without 

concurrent increases in local efficiency or clustering, suggesting overall impaired 

communication both globally and locally. 

In the insular lobe, all areas showed a decline in global communication simultaneously 

with increases in local efficiency and clustering in several regions. These regions are 

functionally associated with action inhibition, sensory experiences of the body that involve 

unpleasant feelings as a consequence of injuries, disease, or emotional disorders, the sense of 

tasting and the emotion of disgust. Yet, when comparing older adults with early middle-aged 
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individuals, only the ventral granular insular and hypergranular insular cortex showed 

significant increases at the local level. 

Frontal regions displayed mixed patterns. The orbital gyrus and left inferior frontal 

gyrus showed reduced global efficiency and increased characteristic path lengths. These regions 

are implicated in emotional processing, particularly fear and sadness, as well as in gustatory 

perception, explicit memory, olfactory processing, and speech functions. Within the orbital 

gyrus, some areas also had increased neighbour clustering, but without a corresponding rise in 

local efficiency, except for the lateral orbital gyrus (Brodmann area A11l). This suggests limited 

compensatory improvement in local information exchange. These regions are associated with 

gustation, emotion, and semantic processing. In contrast, regions such as the precentral gyrus, 

paracentral lobule, and middle frontal gyrus demonstrated increased global efficiency. The 

paracentral lobules and the precentral gyri related to action execution, action imagination, and 

motor learning demonstrated increased global efficiency. Moreover, the paracentral lobule 

enhanced local efficiency in the clusters. The superior and middle frontal gyri also showed 

enhanced local efficiency and neighbour clustering compared to younger adults, though these 

differences were not evident when compared to early middle-aged adults. Only the superior 

frontal gyrus showed increased neighbour interconnectivity in this latter comparison. These 

regions are associated with such cognitive functions as explicit and working memory, attention, 

reasoning, action inhibition, and social cognition. 

In the parietal lobe, most areas showed increased global efficiency in older adults, with 

exceptions in specific subregions of the inferior parietal cortex (e.g., A39rv and A40rv), which 

did not follow this trend. Nevertheless, both areas with and without increased global efficiency 

demonstrated improvements in local efficiency and clustering. Functionally, they are associated 

with memory, reasoning, attention, spatial cognition, as well as perception of shape, action 

imagination and execution, speech execution, and somatic cognition. 

Cingulate regions exhibited reduced global efficiency but enhanced local metrics, 

including both local efficiency and neighbour clustering, suggesting localised compensatory 

adaptations. 

Contrary to typical findings in ageing studies, occipital regions did not show widespread 

decline. This observation is surprising in the context of the PASA (posterior-anterior shift in 

ageing) hypothesis, which describes a functional shift from posterior to frontal brain regions 

with age. Only the rostral lingual gyrus (medioventral occipital cortex) showed reduced global 

efficiency in older adults compared to younger ones. In contrast, the lateral occipital cortex 

exhibited increased local efficiency and neighbour clustering in older adults, and the left caudal 

cuneus gyrus showed elevated global efficiency. However, the medial superior occipital gyrus 
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demonstrated increased average path length, indicating reduced global integration in this 

region. 

Overall, our findings suggest that ageing does not follow a uniform pattern of neural 

change across the entire brain. Instead, the data reveal a decline in global efficiency within the 

temporal lobes and subcortical regions, pointing to reduced capacity for information integration 

and exchange, and simultaneously, enhanced global and local efficiency in some regions of the 

frontal and parietal lobes. Notably, disruptions in subcortical structures such as the thalamus, 

basal ganglia, and amygdala may have consequent effects on cortical connectivity. In contrast, 

increased global and local efficiency in regions involved in emotional processing, motor 

execution, interoception, proprioception, memory, attention, and inhibitory control may reflect 

a compensatory response to subcortical deterioration. From the perspective of compensatory 

mechanisms, future research should examine the functional interplay between subcortical and 

cortical networks. ROI-based morphometry also indicated grey matter loss in the right ventral 

caudal basal ganglia, linked to cognition, emotion, and gustation, and in the left posterior 

parietal thalamus, associated with colour perception and motor function. These structural 

changes should be examined more closely in further investigation. 

4.2 Limitations 

Our study utilised an open-source dataset; hence, we had no control over the acquisition 

protocols. One of the most significant limitations is the distribution of age within the cohort. 

To address this, we divided the participants into three age groups (young, early middle-aged, 

and older adults) with approximately equal numbers in each group to preserve statistical power. 

However, the older adult group included a broad age range, from individuals in the late middle-

age range (approximately 55–65 years) to those over 75 years. This heterogeneity may have 

introduced variability that could influence both functional and structural analyses. In addition, 

the sample was not well balanced in terms of gender, with a predominance of male participants 

in the younger and early middle-aged groups, which could also affect the results. This factor 

could also influence the absence of correlation between graph metrics and the performance on 

cognitive tests. 

Another limitation concerns the use of an atlas-based region of interest (ROI) approach 

for both functional and structural analyses. While this method allows for direct comparison 

across modalities, it may lack the spatial resolution necessary to detect subtle group differences 

in the grey matter volume (Hayasaka and Laurienti, 2010). Future research should consider 

using voxel-based functional connectivity analyses to enable more precise comparisons 

between structural and functional data. Notably, the preprocessing pipeline applied here was 
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originally developed for voxel-wise functional connectivity, and this approach may be used in 

future studies. 

The choice of the preprocessing pipeline and the sequence of steps can significantly 

influence the interpretation of the results, and it is an ongoing discussion among the 

neuroimaging research community on the usage of such approaches as global signal regression, 

which can distort group differences (Saad et al., 2012). 

The use of the CONN toolbox also introduced some methodological limitations. 

Specifically, it limited our functional connectivity analysis to ROI-to-ROI methods, as this is 

the only connectivity type within CONN that supports graph theory measures. Moreover, the 

toolbox restricts the range of available graph metrics and does not support the use of certain 

measures, such as the small-world index, which could provide additional insight into the 

network properties. 

4.3 Future work 

Due to limitations attributed to the use of the CONN toolbox, which allows only ROI-to-ROI 

graph-theoretical analysis, future work may benefit from applying voxel-to-voxel functional 

connectivity analysis followed by graph-theoretical characterisation. Taking into account the 

sensitivity of such analysis to the choice of parcellation schemes of the brain, it would be fruitful 

to compare the results of the topological properties of the brain in different ages, depending on 

the method of parcellation. While ROI-based approaches are commonly used in neuroimaging, 

voxel-wise analyses are less frequent due to their computational demands. However, 

investigating compensatory mechanisms in ageing and neuropathological conditions may 

require the higher resolution analysis of the data that the voxel-based approach can offer 

(McCarthy, Benuskova and Franz, 2014). This method can also improve the compatibility of 

different modality comparisons and allow the application of voxel-based morphometry, which 

can indicate subtle structural changes. 

We also believe that the separation of the participants into high- and low-motion groups 

can increase the reliability of the functional connectivity analysis. In ageing research, motion-

related noise is a significant concern, as it may produce spurious correlations in the data. Some 

studies report fewer age-related differences in graph metrics after accounting for motion (Kato 

et al., 2020). This suggests that division into high and low motion groups may reveal more 

accurate findings. 

Additionally, future research should examine connectivity between cortical and 

subcortical regions. Seed-to-ROI analysis can show how subcortical regions that displayed loss 
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of grey matter and a negative correlation with the cognitive test are correlated with the cortical 

regions. 

Finally, while our current study is cross-sectional, such phenomena as compensatory 

mechanisms in the ageing brain require longitudinal designs that can reveal topological changes 

over time. 

4.4 Interdisciplinarity 

This study is conducted in the field of cognitive neuroscience and implements computational 

approaches, including advanced neuroimaging data analysis and a machine learning algorithm 

for data preprocessing. By combining these methods, we aimed to establish the relationships 

between functional changes in the ageing brain and cognitive performance, linking 

neuroscience, computational methods, and cognitive psychology. 
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This research aimed to investigate whether older adults exhibit functional connectivity in 

particular regions compared to younger adults as a compensatory mechanism. To consider it as 

compensation, we asked several questions: whether these regions are associated with cognitive 

functions; whether these regions demonstrate a decrease in grey matter volume, and whether 

the increase in functional connectivity correlates with the performance on cognitive tests. 

In the theoretical part of the thesis, we explored possible definitions of brain ageing and 

physiological characteristics that accompany this process. Brain ageing is a multifaceted 

phenomenon involving both localised and large-scale changes across different regions, which 

may in turn influence the overall network communication at both structural and functional 

levels. Cognitive ageing theories propose that with age, brain activity becomes less specialised, 

and compensatory mechanisms help maintain cognitive performance. Frameworks such as 

HAROLD, PASA, STAC, and cognitive reserve explain how the brain adapts through increased 

bilateral activity, a shift of activity toward frontal regions, reliance on supportive pathways, and 

sustained engagement in cognitive activity throughout life. We also considered methods that 

have been suggested as effective in studying these processes, such as structural and functional 

analysis. Thus, based on the theories described in the Introduction (see sections 1.1.3 and 1.2) 

and adopting the definition of compensatory mechanisms given by (Behfar et al., 2020), we 

intended to analyse whether the brain regions with increased degree centrality in older adults 

compared to younger adults will also exhibit the loss of grey matter volume in the same regions 

and will correlate with the performance in cognitive tests. 

We tested our assumptions by analysing graph-theoretical metrics across the three age 

groups. We applied general linear model analysis to resting-state fMRI data to examine 

functional connectivity between predefined regions of interest and compute connectivity 

matrices. We also applied the region-based morphometry of the structural MRI data to evaluate 

the grey matter loss in the regions with increased functional connectivity. To finalise our 

investigation, we explored the correlation between cognitive performance in psychological tests 

and the regions with increased degree centrality as a measure of connectivity of a node with the 

rest of the nodes. Finally, we compared other graph-theoretical metrics, such as the global 

efficiency, local efficiency, cluster coefficient, and average path length. 

We found out that the older group displayed increased degree centrality in the frontal 

lobe and parietal lobe, which are associated with different cognitive functions such as attention, 

memory, spatial cognition, reasoning, and social cognition. Although we identified the loss of 

5 Conclusion 
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grey matter in the temporal lobe and certain subcortical regions, we did not find a reduction in 

grey matter volume within the regions showing increased degree centrality, nor did we find 

significant correlations with cognitive test performance. Therefore, according to our definition, 

these findings did not support the presence of compensatory mechanisms in the regions with 

enhanced functional connectivity. 

Our study showed that despite age-related changes in the topological properties of the 

functional brain organisation and structural alterations were observed, these changes do not 

fulfil the established criteria of compensatory mechanisms. The previous studies that applied 

these criteria and identified compensatory regions were conducted on clinical populations, 

which may be an important factor influencing their findings. 
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Appendix A Brainnetome Atlas Subregions Table 

Lobe Gyrus 
Left and Right 

Hemisphere 

Lab

el 

ID.L 

Lab

el 

ID.

R 

Anatomical and modified 

Cyto-architectonic 

descriptions 

lh.M

NI 

(X,Y,

Z) 

rh.M

NI 

(X,Y,

Z) 

Frontal 

Lobe 

SFG, 

Superior 

Frontal 

Gyrus 

SFG_L(R)_7_1 1 2 A8m, medial area 8 

-5 

,15, 

54  

7, 16, 

54  

SFG_L(R)_7_2 3 4 A8dl, dorsolateral area 8 

-18, 

24, 

53  

22, 

26, 51  

SFG_L(R)_7_3 5 6 A9l, lateral area 9 

-11, 

49, 

40  

13, 

48, 40  

SFG_L(R)_7_4 7 8 A6dl, dorsolateral area 6 
-18, -

1, 65  

20, 4, 

64  

SFG_L(R)_7_5 9 10 A6m, medial area 6 
-6, -5, 

58  

7, -4, 

60  

SFG_L(R)_7_6 11 12 A9m,medial area 9 

-5, 

36, 

38  

6, 38, 

35  

SFG_L(R)_7_7 13 14 A10m, medial area 10 

-8, 

56, 

15  

8, 58, 

13  

MFG, 

Middle 

Frontal 

Gyrus 

MFG_L(R)_7_1 15 16 A9/46d, dorsal area 9/46 

-27, 

43, 

31  

30, 

37, 36  

MFG_L(R)_7_2 17 18 
IFJ, inferior frontal 

junction 

-42, 

13, 

36  

42, 

11, 39  

MFG_L(R)_7_3 19 20 A46, area 46 

-28, 

56, 

12  

28, 

55, 17  

MFG_L(R)_7_4 21 22 A9/46v, ventral area 9/46  

-41, 

41, 

16  

42, 

44, 14  

MFG_L(R)_7_5 23 24 A8vl, ventrolateral area 8 

-33, 

23, 

45  

42, 

27, 39  

MFG_L(R)_7_6 25 26 A6vl, ventrolateral area 6 
-32, 

4, 55  

34, 8, 

54  

MFG_L(R)_7_7 27 28 A10l, lateral area10 
-26, 

60, -6  

25, 

61, -4  

IFG, 

Inferior 

Frontal 

Gyrus 

IFG_L(R)_6_1 29 30 A44d,dorsal area 44 

-46, 

13, 

24  

45, 

16, 25  

IFG_L(R)_6_2 31 32 IFS, inferior frontal sulcus 

-47, 

32, 

14  

48, 

35, 13  

IFG_L(R)_6_3 33 34 A45c, caudal area 45 

-53, 

23, 

11  

54, 

24, 12  

IFG_L(R)_6_4 35 36 A45r, rostral area 45 
-49, 

36, -3  

51, 

36, -1  

IFG_L(R)_6_5 37 38 A44op, opercular area 44 
-39, 

23, 4  

42, 

22, 3  

IFG_L(R)_6_6 39 40 A44v, ventral area 44 
-52, 

13, 6  

54, 

14, 11  
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OrG, 

Orbital 

Gyrus 

OrG_L(R)_6_1 41 42 A14m, medial area 14 
-7, 

54, -7  

6, 47, 

-7  

OrG_L(R)_6_2 43 44 
A12/47o, orbital area 

12/47 

-36, 

33, -

16  

40, 

39, -

14  

OrG_L(R)_6_3 45 46 A11l, lateral area 11 

-23, 

38, -

18  

23, 

36, -

18  

OrG_L(R)_6_4 47 48 A11m, medial area 11 

-6, 

52, -

19  

6, 57, 

-16  

OrG_L(R)_6_5 49 50 A13, area 13 

-10, 

18, -

19  

9, 20, 

-19  

OrG_L(R)_6_6 51 52 A12/47l, lateral area 12/47 
-41, 

32, -9  

42, 

31, -9  

PrG, 

Precentral 

Gyrus  

PrG_L(R)_6_1 53 54 
A4hf, area 4(head and face 

region) 

-49, -

8, 39  

55, -2, 

33  

PrG_L(R)_6_2 55 56 
A6cdl, caudal dorsolateral 

area 6 

-32, -

9, 58  

33, -7, 

57  

PrG_L(R)_6_3 57 58 
A4ul, area 4(upper limb 

region) 

-26, -

25, 

63  

34, -

19, 59  

PrG_L(R)_6_4 59 60 A4t, area 4(trunk region) 

-13, -

20, 

73  

15, -

22, 71  

PrG_L(R)_6_5 61 62 
A4tl, area 4(tongue and 

larynx region) 

-52, 

0, 8  

54, 4, 

9  

PrG_L(R)_6_6 63 64 
A6cvl, caudal 

ventrolateral area 6 

-49, 

5, 30  

51, 7, 

30  

PCL, 

Paracentral 

Lobule 

PCL_L(R)_2_1 65 66 
A1/2/3ll, area1/2/3 (lower 

limb region) 

-8, -

38, 

58  

10, -

34, 54  

PCL_L(R)_2_2 67 68 
A4ll, area 4, (lower limb 

region) 

-4, -

23, 

61  

5, -21, 

61  

Temporal 

Lobe 

STG, 

Superior 

Temporal 

Gyrus 

STG_L(R)_6_1 69 70 A38m, medial area 38 

-32, 

14, -

34  

31, 

15, -

34  

STG_L(R)_6_2 71 72 A41/42, area 41/42 

-54, -

32, 

12  

54, -

24, 11  

STG_L(R)_6_3 73 74 TE1.0 and TE1.2 
-50, -

11, 1  

51, -4, 

-1  

STG_L(R)_6_4 75 76 A22c, caudal area 22 
-62, -

33, 7  

66, -

20, 6  

STG_L(R)_6_5 77 78 A38l, lateral area 38 

-45, 

11, -

20  

47, 

12, -

20  

STG_L(R)_6_6 79 80 A22r, rostral area 22 
-55, -

3, -10  

56, -

12, -5  

MTG, 

Middle 

Temporal 

Gyrus 

MTG_L(R)_4_1 81 82 A21c, caudal area 21 

-65, -

30, -

12  

65, -

29, -

13  

MTG_L(R)_4_2 83 84 A21r, rostral area 21 
-53, 

2, -30  

51, 6, 

-32  

MTG_L(R)_4_3 85 86 A37dl, dorsolateral area37 
-59, -

58, 4  

60, -

53, 3  

MTG_L(R)_4_4 87 88 
aSTS, anterior superior 

temporal sulcus 

-58, -

20, -9  

58, -

16, -

10  
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ITG, 

Inferior 

Temporal 

Gyrus 

ITG_L(R)_7_1 89 90 
A20iv, intermediate 

ventral area 20 

-45, -

26, -

27  

46, -

14, -

33  

ITG_L(R)_7_2 91 92 
A37elv, extreme 

lateroventral area37 

-51, -

57, -

15  

53, -

52, -

18  

ITG_L(R)_7_3 93 94 A20r, rostral area 20 
-43, -

2, -41  

40, 0, 

-43  

ITG_L(R)_7_4 95 96 
A20il, intermediate lateral 

area 20 

-56, -

16, -

28  

55, -

11, -

32  

ITG_L(R)_7_5 97 98 
A37vl, ventrolateral area 

37 

-55, -

60, -6  

54, -

57, -8  

ITG_L(R)_7_6 99 100 
A20cl, caudolateral of 

area 20 

-59, -

42, -

16  

61, -

40, -

17  

ITG_L(R)_7_7 101 102 
A20cv, caudoventral of 

area 20 

-55, -

31, -

27  

54, -

31, -

26  

FuG, 

Fusiform 

Gyrus 

FuG_L(R)_3_1 103 104 
A20rv, rostroventral area 

20 

-33, -

16, -

32  

33, -

15, -

34  

FuG_L(R)_3_2 105 106 
A37mv, medioventral 

area37 

-31, -

64, -

14  

31, -

62, -

14  

FuG_L(R)_3_3 107 108 
A37lv, lateroventral 

area37 

-42, -

51, -

17  

43, -

49, -

19  

PhG, 

Parahippoc

ampal 

Gyrus 

PhG_L(R)_6_1 109 110 
A35/36r, rostral area 

35/36 

-27, -

7, -34  

28, -8, 

-33  

PhG_L(R)_6_2 111 112 
A35/36c, caudal area 

35/36 

-25, -

25, -

26  

26, -

23, -

27  

PhG_L(R)_6_3 113 114 

TL, area TL (lateral 

PPHC, posterior 

parahippocampal gyrus) 

-28, -

32, -

18  

30, -

30, -

18  

PhG_L(R)_6_4 115 116 
A28/34, area 28/34 (EC, 

entorhinal cortex) 

-19, -

12, -

30  

19, -

10, -

30  

PhG_L(R)_6_5 117 118 
TI, area TI(temporal 

agranular insular cortex) 

-23, 

2, -32  

22, 1, 

-36  

PhG_L(R)_6_6 119 120 
TH, area TH (medial 

PPHC) 

-17, -

39, -

10  

19, -

36, -

11  

pSTS, 

posterior 

Superior 

Temporal 

Sulcus 

pSTS_L(R)_2_1 121 122 
rpSTS, rostroposterior 

superior temporal sulcus 

-54, -

40, 4  

53, -

37, 3  

pSTS_L(R)_2_2 123 124 
cpSTS, caudoposterior 

superior temporal sulcus 

-52, -

50, 

11  

57, -

40, 12  

Parietal 

Lobe 

SPL, 

Superior 

Parietal 

Lobule 

SPL_L(R)_5_1 125 126 A7r, rostral area 7 

-16, -

60, 

63  

19, -

57, 65  

SPL_L(R)_5_2 127 128 A7c, caudal area 7 

-15, -

71, 

52  

19, -

69, 54  

SPL_L(R)_5_3 129 130 A5l, lateral area 5 

-33, -

47, 

50  

35, -

42, 54  

SPL_L(R)_5_4 131 132 A7pc, postcentral area 7 

-22, -

47, 

65  

23, -

43, 67  
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SPL_L(R)_5_5 133 134 
A7ip, intraparietal area 

7(hIP3) 

-27, -

59, 

54  

31, -

54, 53  

IPL, 

Inferior 

Parietal 

Lobule 

IPL_L(R)_6_1 135 136 
A39c, caudal area 

39(PGp) 

-34, -

80, 

29  

45, -

71, 20  

IPL_L(R)_6_2 137 138 
A39rd, rostrodorsal area 

39(Hip3) 

-38, -

61, 

46  

39, -

65, 44  

IPL_L(R)_6_3 139 140 
A40rd, rostrodorsal area 

40(PFt) 

-51, -

33, 

42  

47, -

35, 45  

IPL_L(R)_6_4 141 142 
A40c, caudal area 

40(PFm) 

-56, -

49, 

38  

57, -

44, 38  

IPL_L(R)_6_5 143 144 
A39rv, rostroventral area 

39(PGa) 

-47, -

65, 

26  

53, -

54, 25  

IPL_L(R)_6_6 145 146 
A40rv, rostroventral area 

40(PFop) 

-53, -

31, 

23  

55, -

26, 26  

Pcun, 

Precuneus 

PCun_L(R)_4_1 147 148 A7m, medial area 7(PEp) 

-5, -

63, 

51  

6, -65, 

51  

PCun_L(R)_4_2 149 150 A5m, medial area 5(PEm) 

-8, -

47, 

57  

7, -47, 

58  

PCun_L(R)_4_3 151 152 

dmPOS, dorsomedial 

parietooccipital  sulcus(P

Er)  

-12, -

67, 

25  

16, -

64, 25  

PCun_L(R)_4_4 153 154 A31, area 31 (Lc1) 

-6, -

55, 

34  

6, -54, 

35  

PoG, 

Postcentral 

Gyrus 

PoG_L(R)_4_1 155 156 

A1/2/3ulhf, area 

1/2/3(upper limb, head 

and face region) 

-50, -

16, 

43  

50, -

14, 44  

PoG_L(R)_4_2 157 158 

A1/2/3tonIa, area 

1/2/3(tongue and larynx 

region) 

-56, -

14, 

16  

56, -

10, 15  

PoG_L(R)_4_3 159 160 A2, area 2 

-46, -

30, 

50  

48, -

24, 48  

PoG_L(R)_4_4 161 162 
A1/2/3tru, area1/2/3(trunk 

region) 

-21, -

35, 

68  

20, -

33, 69  

Insular 

Lobe 

INS, Insular 

Gyrus 

INS_L(R)_6_1 163 164 G, hypergranular insula 

-36, -

20, 

10  

37, -

18, 8  

INS_L(R)_6_2 165 166 
vIa, ventral agranular 

insula 

-32, 

14, -

13  

33, 

14, -

13  

INS_L(R)_6_3 167 168 
dIa, dorsal agranular 

insula 

-34, 

18, 1  

36, 

18, 1  

INS_L(R)_6_4 169 170 

vId/vIg, ventral 

dysgranular and granular 

insula 

-38, -

4, -9  

39, -2, 

-9  

INS_L(R)_6_5 171 172 dIg, dorsal granular insula 
-38, -

8, 8  

39, -7, 

8  

INS_L(R)_6_6 173 174 
dId, dorsal dysgranular 

insula 

-38, 

5, 5  

38, 5, 

5  
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Limbic 

Lobe 

CG, 

Cingulate 

Gyrus 

CG_L(R)_7_1 175 176 A23d, dorsal area 23 

-4, -

39, 

31  

4, -37, 

32  

CG_L(R)_7_2 177 178 
A24rv, rostroventral area 

24 

-3, 8, 

25  

5, 22, 

12  

CG_L(R)_7_3 179 180 A32p, pregenual area 32 

-6, 

34, 

21  

5, 28, 

27  

CG_L(R)_7_4 181 182 A23v, ventral area 23 

-8, -

47, 

10  

9, -44, 

11  

CG_L(R)_7_5 183 184 
A24cd, caudodorsal area 

24 

-5, 7, 

37  

4, 6, 

38  

CG_L(R)_7_6 185 186 A23c, caudal area 23 

-7, -

23, 

41  

6, -20, 

40  

CG_L(R)_7_7 187 188 A32sg, subgenual area 32 
-4, 

39, -2  

5, 41, 

6  

Occipital 

Lobe 

MVOcC, 

MedioVent

ral 

Occipital 

Cortex 

MVOcC 

_L(R)_5_1 
189 190 

cLinG, caudal lingual 

gyrus 

-11, -

82, -

11  

10, -

85, -9  

MVOcC 

_L(R)_5_2 
191 192 

rCunG, rostral cuneus 

gyrus 

-5, -

81, 

10  

7, -76, 

11  

MVOcC 

_L(R)_5_3 
193 194 

cCunG, caudal cuneus 

gyrus 

-6, -

94, 1  

8, -90, 

12  

MVOcC 

_L(R)_5_4 
195 196 

rLinG, rostral lingual 

gyrus 

-17, -

60, -6  

18, -

60, -7  

MVOcC 

_L(R)_5_5 
197 198 

vmPOS,ventromedial 

parietooccipital sulcus 

-13, -

68, 

12  

15, -

63, 12  

LOcC, 

lateral 

Occipital 

Cortex 

LOcC_L(R)_4_1 199 200 
mOccG, middle occipital 

gyrus 

-31, -

89, 

11  

34, -

86, 11  

LOcC _L(R)_4_2 201 202 V5/MT+, area V5/MT+ 
-46, -

74, 3  

48, -

70, -1  

LOcC _L(R)_4_3 203 204 
OPC, occipital polar 

cortex 

-18, -

99, 2  

22, -

97, 4  

LOcC_L(R)_4_4 205 206 
iOccG, inferior occipital 

gyrus 

-30, -

88, -

12  

32, -

85, -

12  

LOcC _L(R)_2_1 207 208 
msOccG, medial superior 

occipital gyrus 

-11, -

88, 

31  

16, -

85, 34  

LOcC _L(R)_2_2 209 210 
lsOccG, lateral superior 

occipital gyrus 

-22, -

77, 

36  

29, -

75, 36  

Subcortic

al Nuclei 

Amyg, 

Amygdala 

Amyg_L(R)_2_1 211 212 mAmyg, medial amygdala 
-19, -

2, -20  

19, -2, 

-19  

Amyg_L(R)_2_2 213 214 lAmyg, lateral amygdala 
-27, -

4, -20  

28, -3, 

-20  

Hipp, 

Hippocamp

us 

Hipp_L(R)_2_1 215 216 
rHipp, rostral 

hippocampus 

-22, -

14, -

19  

22, -

12, -

20  

Hipp_L(R)_2_2 217 218 
cHipp, caudal 

hippocampus 

-28, -

30, -

10  

29, -

27, -

10  

BG, Basal 

Ganglia 

BG_L(R)_6_1 219 220 vCa, ventral caudate 
-12, 

14, 0  

15, 

14, -2  

BG_L(R)_6_2 221 222 GP, globus pallidus 
-22, -

2, 4  

22, -2, 

3  
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BG_L(R)_6_3 223 224 NAC, nucleus accumbens 
-17, 

3, -9  

15, 8, 

-9  

BG_L(R)_6_4 225 226 
vmPu, ventromedial 

putamen 

-23, 

7, -4  

22, 8, 

-1  

BG_L(R)_6_5 227 228 dCa, dorsal caudate 
-14, 

2, 16  

14, 5, 

14  

BG_L(R)_6_6 229 230 dlPu, dorsolateral putamen 
-28, -

5, 2  

29, -3, 

1  

Tha, 

Thalamus 

Tha_L(R)_8_1 231 232 
mPFtha, medial pre-

frontal thalamus 

-7, -

12, 5  

7, -11, 

6  

Tha_L(R)_8_2 233 234 
mPMtha, pre-motor 

thalamus 

-18, -

13, 3  

12, -

14, 1  

Tha_L(R)_8_3 235 236 Stha, sensory thalamus 
-18, -

23, 4  

18, -

22, 3  

Tha_L(R)_8_4 237 238 
rTtha, rostral temporal 

thalamus 

-7, -

14, 7  

3, -13, 

5  

Tha_L(R)_8_5 239 240 
PPtha, posterior parietal 

thalamus 

-16, -

24, 6  

15, -

25, 6  

Tha_L(R)_8_6 241 242 Otha, occipital thalamus 
-15, -

28, 4  

13, -

27, 8  

Tha_L(R)_8_7 243 244 
cTtha, caudal temporal 

thalamus 

-12, -

22, 

13  

10, -

14, 14  

Tha_L(R)_8_8 245 246 
lPFtha, lateral pre-frontal 

thalamus 

-11, -

14, 2  

13, -

16, 7  
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Appendix B Regions of Interest with a Significant Difference 

in Degree Centrality between Older Adults and Younger Adults 

ROI beta T dof p-unc p-FDR 

network 0.0 nan 150 nan nan 

SPL_L_5_4 13.74 7.88 150 0.0 0.0 

SPL_R_5_1 11.58 6.25 150 0.0 0.0 

PrG_R_6_4 12.78 6.01 150 0.0 1e-06 

PCL_R_2_2 12.22 5.76 150 0.0 2e-06 

PCL_L_2_2 12.25 5.75 150 0.0 2e-06 

PCL_L_2_1 11.65 5.44 150 0.0 9e-06 

Tha_R_8_3 -13.39 -5.35 150 0.0 1e-05 

PoG_L_4_4 10.18 5.34 150 0.0 1e-05 

IPL_R_6_4 8.66 5.04 150 1e-06 3.6e-05 

PrG_L_6_3 10.3 4.83 150 3e-06 8.1e-05 

PrG_L_6_4 11.01 4.79 150 4e-06 8.9e-05 

PoG_R_4_4 9.03 4.72 150 5e-06 0.00011 

PhG_R_6_3 -9.6 -4.62 150 8e-06 0.000154 

MFG_R_7_5 7.25 4.38 150 2.2e-05 0.000385 

PrG_R_6_3 9.87 4.36 150 2.4e-05 0.000385 

PhG_L_6_3 -9.09 -4.35 150 2.5e-05 0.000385 

SPL_R_5_4 7.68 4.31 150 2.9e-05 0.000418 

Tha_L_8_3 -10.1 -4.23 150 4e-05 0.000541 

PCun_L_4_2 8.95 4.22 150 4.2e-05 0.000541 

MFG_R_7_3 8.32 4.2 150 4.6e-05 0.00057 

MFG_L_7_3 7.69 4.13 150 6e-05 0.000699 

MFG_R_7_1 7.97 4.03 150 8.9e-05 0.000984 

INS_R_6_1 -8.11 -4.02 150 9.2e-05 0.000984 

ITG_L_7_1 -10.26 -3.88 150 0.000158 0.001619 

Tha_R_8_2 -8.63 -3.77 150 0.000233 0.002171 

Tha_R_8_4 -9.4 -3.77 150 0.000235 0.002171 

PCL_R_2_1 7.41 3.77 150 0.000238 0.002171 

PhG_L_6_1 -10.12 -3.64 150 0.000369 0.003239 

PhG_L_6_6 -7.13 -3.63 150 0.000382 0.003239 

PhG_R_6_6 -6.9 -3.61 150 0.000413 0.003386 

SPL_R_5_5 6.25 3.6 150 0.000434 0.003442 

MFG_L_7_1 7.22 3.59 150 0.000449 0.003451 

FuG_L_3_1 -8.38 -3.5 150 0.000612 0.004562 

MFG_R_7_4 6.67 3.48 150 0.000663 0.004795 

Tha_L_8_8 -8.01 -3.39 150 0.000891 0.006266 

SPL_L_5_1 6.51 3.38 150 0.000932 0.006372 

PCun_R_4_2 7.39 3.37 150 0.00097 0.006449 

INS_L_6_4 -8.44 -3.34 150 0.001062 0.006872 

BG_R_6_3 -7.11 -3.32 150 0.001117 0.007046 

SFG_R_7_4 7.24 3.3 150 0.0012 0.007378 

PoG_R_4_1 7.87 3.29 150 0.001251 0.007504 

INS_R_6_2 -8.42 -3.27 150 0.001316 0.007706 

STG_L_6_1 -7.6 -3.22 150 0.001566 0.008959 

PhG_R_6_2 -7.32 -3.09 150 0.002392 0.013372 

SFG_R_7_1 6.38 3.07 150 0.002551 0.013947 

IFG_R_6_5 6.2 3.06 150 0.002612 0.013969 

Tha_L_8_5 -7.03 -3.01 150 0.003067 0.016052 

ITG_L_7_7 -6.86 -3.0 150 0.003208 0.016439 

PrG_L_6_2 6.56 2.97 150 0.003472 0.017208 

Amyg_L_2_1 -8.53 -2.97 150 0.003499 0.017208 

SPL_R_5_3 6.42 2.96 150 0.003568 0.017208 

MFG_L_7_7 5.15 2.94 150 0.003754 0.017758 

SFG_R_7_6 5.34 2.93 150 0.003886 0.017815 

Amyg_R_2_1 -7.78 -2.93 150 0.003911 0.017815 
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CG_R_7_6 5.13 2.88 150 0.00457 0.020439 

Tha_R_8_8 -6.04 -2.84 150 0.005212 0.022882 

PoG_L_4_1 6.65 2.83 150 0.005302 0.022882 

MFG_L_7_5 4.47 2.82 150 0.005521 0.023415 

IPL_L_6_2 4.87 2.79 150 0.006023 0.025112 

PhG_L_6_2 -6.91 -2.76 150 0.006482 0.026577 

CG_R_7_1 4.55 2.73 150 0.007144 0.028202 

Tha_L_8_2 -6.17 -2.72 150 0.007399 0.028202 

IFG_L_6_2 -5.8 -2.71 150 0.007502 0.028202 

INS_L_6_2 -6.55 -2.71 150 0.00754 0.028202 

BG_L_6_2 -6.38 -2.71 150 0.007549 0.028202 

SPL_L_5_5 5.0 2.71 150 0.007566 0.028202 

SPL_R_5_2 4.15 2.69 150 0.007857 0.028849 

MTG_R_4_2 -4.97 -2.64 150 0.00911 0.032957 

BG_L_6_3 -5.74 -2.62 150 0.009566 0.034105 

INS_L_6_1 -4.78 -2.62 150 0.009739 0.034227 

PrG_L_6_1 6.23 2.59 150 0.010459 0.03624 

MFG_R_7_7 4.39 2.52 150 0.01264 0.042651 

LOcC _R_4_2 5.21 2.52 150 0.012657 0.042651 

IFG_L_6_1 -5.45 -2.49 150 0.013751 0.045713 

SPL_L_5_3 4.53 2.46 150 0.015098 0.049523 

Note. ROIs = Regions of Interest from the Brainnetome Atlas. The table shows the results of second-level group 

comparison (Group 3 > Group 1) for the degree centrality. Beta indicates the effect size (difference in DC between 

groups); T is the T-statistic from the general linear model; dof = degrees of freedom; p-unc = uncorrected p-value; 

p-values are two-tailed; p-FDR = p-value corrected for multiple comparisons using the false discovery rate (FDR). 
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Appendix C Regions of Interest with a Significant Difference 

in Degree Centrality between Older Adults and Early Middle-

Aged Adults 

ROI beta T dof p-unc p-FDR 

network -0.0 nan 145 nan nan 

SPL_L_5_4 13.54 6.83 145 0.0 0.0 

PoG_L_4_4 10.03 5.05 145 1e-06 0.000157 

SPL_R_5_1 9.35 4.68 145 7e-06 0.000414 

IPL_L_6_2 7.91 4.67 145 7e-06 0.000414 

INS_L_6_2 -11.95 -4.55 145 1.1e-05 0.000511 

MFG_R_7_5 7.32 4.53 145 1.2e-05 0.000511 

Amyg_R_2_1 -11.03 -4.39 145 2.2e-05 0.000697 

Amyg_L_2_1 -12.39 -4.37 145 2.4e-05 0.000697 

SPL_R_5_4 8.53 4.35 145 2.6e-05 0.000697 

Tha_R_8_3 -10.78 -4.3 145 3.1e-05 0.00076 

Tha_R_8_4 -11.17 -4.22 145 4.3e-05 0.000969 

INS_R_6_1 -8.38 -3.95 145 0.000121 0.002478 

Tha_R_8_2 -9.63 -3.92 145 0.000137 0.002599 

PoG_R_4_4 8.2 3.83 145 0.000192 0.003377 

MFG_L_7_3 7.4 3.75 145 0.000257 0.003671 

PhG_R_6_3 -7.14 -3.74 145 0.00026 0.003671 

SPL_R_5_5 6.61 3.74 145 0.000261 0.003671 

MFG_L_7_7 7.12 3.72 145 0.000282 0.003671 

INS_R_6_2 -10.54 -3.72 145 0.000284 0.003671 

Tha_L_8_5 -9.28 -3.63 145 0.000389 0.004779 

CG_R_7_2 -8.16 -3.58 145 0.000476 0.005529 

SPL_R_5_3 7.49 3.56 145 0.000495 0.005529 

MFG_R_7_1 7.0 3.54 145 0.000547 0.005853 

MFG_R_7_4 6.91 3.52 145 0.000585 0.005909 

MFG_L_7_1 7.09 3.51 145 0.000601 0.005909 

PCL_L_2_1 7.6 3.45 145 0.000734 0.006945 

PrG_L_6_3 7.54 3.41 145 0.000856 0.007797 

MFG_L_7_5 5.29 3.38 145 0.000933 0.008201 

Tha_L_8_8 -8.5 -3.35 145 0.001047 0.008663 

Tha_L_8_3 -8.46 -3.34 145 0.001056 0.008663 

PrG_R_6_3 7.69 3.31 145 0.001161 0.009215 

PrG_R_6_4 7.65 3.28 145 0.001311 0.010075 

PhG_L_6_3 -6.39 -3.15 145 0.002011 0.014989 

INS_L_6_4 -7.65 -3.04 145 0.002833 0.019665 

PCun_L_4_2 6.28 3.03 145 0.002858 0.019665 

Hipp_L_2_1 -7.01 -3.03 145 0.002878 0.019665 

MVOcC _L_5_3 5.62 2.89 145 0.004434 0.029482 

PCL_R_2_2 6.5 2.87 145 0.004714 0.030138 

PCun_R_4_2 6.13 2.86 145 0.00481 0.030138 

IPL_R_6_4 5.23 2.86 145 0.0049 0.030138 

STG_R_6_5 -6.47 -2.83 145 0.005295 0.031767 

PrG_L_6_4 6.56 2.82 145 0.005524 0.031937 

MFG_R_7_3 6.15 2.81 145 0.005583 0.031937 

INS_L_6_1 -5.3 -2.8 145 0.005762 0.031937 

IFG_R_6_5 5.82 2.8 145 0.005842 0.031937 

OrG_L_6_5 -8.69 -2.78 145 0.006106 0.032656 

SFG_R_7_4 5.95 2.77 145 0.006356 0.033265 

MFG_L_7_4 4.62 2.7 145 0.007697 0.039449 

PrG_L_6_2 6.19 2.66 145 0.008805 0.044203 

BG_L_6_2 -5.82 -2.64 145 0.009194 0.045236 

CG_R_7_1 4.42 2.62 145 0.009663 0.046045 

MTG_R_4_4 -5.13 -2.61 145 0.009877 0.046045 
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CG_R_7_3 4.81 2.61 145 0.00992 0.046045 

PhG_L_6_1 -7.21 -2.58 145 0.010935 0.049816 

Note. ROIs = Regions of Interest from the Brainnetome Atlas. The table shows the results of second-level group 

comparison (Group 3 > Group 2) for the degree centrality. Beta indicates the effect size (difference in DC between 

groups); T is the T-statistic from the general linear model; dof = degrees of freedom; p-unc = uncorrected p-value; 

p-values are two-tailed; p-FDR = p-value corrected for multiple comparisons using the false discovery rate (FDR). 
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Appendix D Regions of Interest with a Significant Difference 

in Global Efficiency between Older Adults and Younger Adults 

ROI beta T dof p-unc p-FDR 

network -0.01 -2.69 150 0.007949 nan 

PhG_R_6_6 -0.03 -5.74 150 0.0 1.2e-05 

SPL_L_5_4 0.02 5.54 150 0.0 1.6e-05 

PCL_R_2_2 0.03 5.35 150 0.0 2.6e-05 

PhG_L_6_3 -0.03 -5.13 150 1e-06 5.1e-05 

PCL_L_2_2 0.02 5.09 150 1e-06 5.1e-05 

PrG_R_6_4 0.02 5.05 150 1e-06 5.2e-05 

Tha_R_8_4 -0.03 -5.01 150 2e-06 5.4e-05 

Tha_R_8_3 -0.05 -4.92 150 2e-06 6.8e-05 

INS_R_6_1 -0.03 -4.73 150 5e-06 0.000131 

PhG_R_6_3 -0.03 -4.72 150 5e-06 0.000131 

SPL_R_5_1 0.02 4.64 150 7e-06 0.000167 

PhG_L_6_1 -0.04 -4.5 150 1.4e-05 0.000281 

FuG_L_3_1 -0.03 -4.47 150 1.6e-05 0.000288 

PrG_L_6_4 0.02 4.45 150 1.6e-05 0.000288 

PhG_L_6_6 -0.03 -4.39 150 2.1e-05 0.000342 

ITG_L_7_1 -0.05 -4.36 150 2.4e-05 0.00035 

Tha_R_8_2 -0.03 -4.36 150 2.4e-05 0.00035 

STG_R_6_3 -0.02 -4.34 150 2.6e-05 0.000362 

PrG_L_6_3 0.02 4.25 150 3.8e-05 0.000469 

Amyg_L_2_1 -0.03 -4.25 150 3.8e-05 0.000469 

PoG_L_4_4 0.02 4.19 150 4.8e-05 0.000546 

INS_L_6_4 -0.03 -4.18 150 4.9e-05 0.000546 

PoG_R_4_4 0.02 4.13 150 5.9e-05 0.000632 

INS_L_6_5 -0.02 -4.1 150 6.8e-05 0.000696 

INS_L_6_1 -0.02 -4.08 150 7.2e-05 0.000706 

PCL_L_2_1 0.02 4.02 150 9.3e-05 0.000879 

Tha_L_8_3 -0.06 -3.9 150 0.000143 0.001303 

INS_R_6_2 -0.04 -3.84 150 0.000179 0.001576 

STG_L_6_3 -0.02 -3.77 150 0.000236 0.002005 

STG_L_6_1 -0.02 -3.61 150 0.00042 0.003442 

Amyg_R_2_1 -0.03 -3.56 150 0.000497 0.00386 

FuG_R_3_1 -0.02 -3.55 150 0.000513 0.00386 

Tha_R_8_5 -0.02 -3.55 150 0.000518 0.00386 

STG_R_6_2 -0.02 -3.52 150 0.000567 0.003925 

Tha_R_8_8 -0.02 -3.52 150 0.000571 0.003925 

Tha_L_8_8 -0.03 -3.52 150 0.000574 0.003925 

PrG_R_6_3 0.02 3.48 150 0.000659 0.004359 

Tha_L_8_5 -0.03 -3.47 150 0.000673 0.004359 

Tha_L_8_6 -0.02 -3.45 150 0.000738 0.00457 

ITG_L_7_7 -0.04 -3.44 150 0.000743 0.00457 

MFG_R_7_1 0.02 3.38 150 0.000928 0.005448 

PhG_R_6_2 -0.04 -3.38 150 0.00093 0.005448 

MFG_R_7_3 0.02 3.3 150 0.001218 0.006967 

BG_R_6_3 -0.02 -3.29 150 0.001254 0.006984 

INS_R_6_5 -0.02 -3.28 150 0.001277 0.006984 

Hipp_R_2_1 -0.02 -3.18 150 0.001818 0.009722 

STG_L_6_5 -0.02 -3.15 150 0.001966 0.010289 

BG_R_6_2 -0.02 -3.13 150 0.002126 0.010894 

MTG_R_4_2 -0.01 -3.11 150 0.002252 0.011307 

IFG_L_6_1 -0.02 -3.08 150 0.002454 0.011756 

IPL_R_6_4 0.01 3.08 150 0.002466 0.011756 

Tha_L_8_2 -0.03 -3.08 150 0.002485 0.011756 

INS_R_6_6 -0.02 -3.03 150 0.002851 0.013231 

IFG_L_6_2 -0.02 -3.01 150 0.003038 0.013841 

Hipp_L_2_1 -0.02 -2.97 150 0.003456 0.015457 
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INS_R_6_4 -0.02 -2.96 150 0.003595 0.015794 

FuG_R_3_2 -0.01 -2.94 150 0.003745 0.016164 

OrG_L_6_5 -0.03 -2.9 150 0.004284 0.01817 

OrG_L_6_3 -0.02 -2.89 150 0.004401 0.018349 

PhG_L_6_2 -0.04 -2.88 150 0.004509 0.018489 

BG_L_6_3 -0.02 -2.87 150 0.00469 0.018914 

PoG_R_4_1 0.01 2.86 150 0.004844 0.019143 

IPL_L_6_5 -0.01 -2.86 150 0.004903 0.019143 

BG_L_6_2 -0.02 -2.84 150 0.005095 0.019582 

INS_L_6_2 -0.03 -2.8 150 0.005707 0.021598 

MFG_L_7_3 0.01 2.76 150 0.006518 0.024262 

FuG_R_3_3 -0.01 -2.75 150 0.006608 0.024262 

PhG_L_6_4 -0.04 -2.69 150 0.007868 0.028463 

ITG_R_7_1 -0.02 -2.64 150 0.009113 0.032489 

MFG_R_7_5 0.01 2.63 150 0.00934 0.032823 

MFG_L_7_1 0.01 2.62 150 0.009808 0.033984 

IPL_L_6_3 -0.01 -2.56 150 0.011385 0.038597 

Amyg_L_2_2 -0.02 -2.56 150 0.011453 0.038597 

PCun_L_4_2 0.01 2.55 150 0.011852 0.0394 

BG_L_6_4 -0.02 -2.54 150 0.012099 0.039684 

SFG_R_7_4 0.01 2.53 150 0.012568 0.04068 

BG_L_6_1 -0.02 -2.51 150 0.01307 0.041756 

MTG_L_4_3 -0.01 -2.51 150 0.01325 0.041789 

MVOcC _R_5_4 -0.02 -2.5 150 0.013625 0.041924 

CG_R_7_2 -0.02 -2.5 150 0.013634 0.041924 

STG_R_6_5 -0.01 -2.48 150 0.014382 0.043665 

PhG_R_6_1 -0.03 -2.47 150 0.014729 0.043665 

OrG_R_6_3 -0.01 -2.47 150 0.014732 0.043665 

CG_L_7_4 -0.01 -2.45 150 0.015604 0.045699 

pSTS_R_2_2 -0.01 -2.43 150 0.016308 0.047196 

PoG_L_4_1 0.01 2.41 150 0.017019 0.048681 

OrG_L_6_2 -0.01 -2.41 150 0.017319 0.048846 

SPL_R_5_4 0.01 2.4 150 0.017571 0.048846 

PCun_R_4_2 0.01 2.4 150 0.017672 0.048846 

Note. ROIs = Regions of Interest from the Brainnetome Atlas. The table shows the results of second-level group 

comparison (Group 3 > Group 1) for the global efficiency (GE). Beta indicates the effect size (difference in GE 

between groups); T is the T-statistic from the general linear model; dof = degrees of freedom; p-unc = uncorrected 

p-value; p-values are two-tailed; p-FDR = p-value corrected for multiple comparisons using the false discovery 

rate (FDR). 
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Appendix E Regions of Interest with a Significant Difference 

in Global Efficiency between Older Adults and Early Middle-

Aged Adults 

ROI beta T dof p-unc p-FDR 

network -0.0 -1.85 145 0.065675 nan 

Amyg_L_2_1 -0.04 -5.39 145 0.0 5.8e-05 

Amyg_R_2_1 -0.03 -5.27 145 0.0 5.8e-05 

SPL_L_5_4 0.03 5.19 145 1e-06 5.8e-05 

Tha_R_8_4 -0.03 -5.07 145 1e-06 7.3e-05 

PoG_L_4_4 0.02 4.51 145 1.3e-05 0.00066 

INS_R_6_1 -0.03 -4.45 145 1.7e-05 0.000696 

Tha_R_8_2 -0.03 -4.12 145 6.3e-05 0.001935 

PhG_R_6_3 -0.03 -4.12 145 6.3e-05 0.001935 

SPL_R_5_1 0.02 4.07 145 7.8e-05 0.002133 

INS_L_6_1 -0.02 -3.92 145 0.000139 0.003184 

PhG_L_6_3 -0.02 -3.91 145 0.000142 0.003184 

Tha_L_8_5 -0.03 -3.87 145 0.000165 0.003379 

Hipp_L_2_1 -0.02 -3.77 145 0.000233 0.004406 

MVOcC _L_5_3 0.02 3.73 145 0.000279 0.004903 

INS_R_6_2 -0.04 -3.63 145 0.000393 0.00644 

INS_L_6_2 -0.04 -3.59 145 0.000455 0.006957 

STG_R_6_5 -0.02 -3.57 145 0.000481 0.006957 

PoG_R_4_4 0.02 3.53 145 0.000559 0.007646 

INS_L_6_5 -0.02 -3.47 145 0.000695 0.009001 

Tha_L_8_3 -0.06 -3.42 145 0.000807 0.009931 

INS_L_6_4 -0.03 -3.38 145 0.000934 0.010942 

Tha_L_8_8 -0.03 -3.28 145 0.001321 0.014768 

PhG_R_6_6 -0.02 -3.21 145 0.001613 0.017022 

MFG_R_7_5 0.01 3.21 145 0.001661 0.017022 

MFG_L_7_3 0.02 3.18 145 0.001773 0.017446 

IPL_L_6_2 0.01 3.17 145 0.001851 0.017514 

CG_R_7_2 -0.03 -3.14 145 0.002021 0.01841 

MFG_R_7_1 0.02 3.12 145 0.002214 0.019449 

IPL_L_6_6 -0.01 -3.04 145 0.002789 0.023656 

MFG_L_7_1 0.02 3.02 145 0.003029 0.024841 

SPL_R_5_4 0.01 2.98 145 0.003381 0.025635 

ITG_L_7_1 -0.03 -2.96 145 0.0036 0.025635 

MTG_R_4_4 -0.01 -2.96 145 0.003619 0.025635 

BG_L_6_2 -0.02 -2.95 145 0.003708 0.025635 

OrG_L_6_5 -0.04 -2.95 145 0.003734 0.025635 

Hipp_R_2_1 -0.02 -2.95 145 0.003751 0.025635 

STG_R_6_6 -0.01 -2.93 145 0.003991 0.026146 

PCL_L_2_1 0.02 2.92 145 0.004039 0.026146 

PrG_R_6_3 0.02 2.84 145 0.005158 0.032534 

PrG_L_6_3 0.01 2.81 145 0.005651 0.034561 

Hipp_R_2_2 -0.02 -2.8 145 0.00576 0.034561 

INS_R_6_5 -0.02 -2.78 145 0.006123 0.035862 

OrG_L_6_2 -0.02 -2.77 145 0.00632 0.036156 

Tha_R_8_3 -0.04 -2.73 145 0.007077 0.039566 

INS_R_6_4 -0.02 -2.71 145 0.007573 0.041398 

STG_R_6_4 -0.01 -2.68 145 0.008202 0.043863 

FuG_L_3_1 -0.02 -2.65 145 0.008922 0.045538 

MTG_R_4_2 -0.01 -2.65 145 0.009042 0.045538 

Tha_R_8_8 -0.02 -2.64 145 0.009071 0.045538 

PhG_L_6_6 -0.02 -2.63 145 0.009491 0.046694 

SPL_R_5_5 0.01 2.6 145 0.010317 0.047293 

SPL_R_5_3 0.01 2.6 145 0.010325 0.047293 

Tha_R_8_5 -0.02 -2.6 145 0.010388 0.047293 
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MFG_R_7_3 0.01 2.6 145 0.010408 0.047293 

PrG_L_6_2 0.01 2.58 145 0.010753 0.047293 

MFG_L_7_7 0.01 2.58 145 0.010887 0.047293 

IFG_L_6_1 -0.01 -2.58 145 0.010958 0.047293 

PhG_L_6_4 -0.04 -2.57 145 0.01124 0.047406 

PCL_R_2_2 0.01 2.56 145 0.01137 0.047406 

PrG_R_6_4 0.01 2.54 145 0.012055 0.049424 

Note. ROIs = Regions of Interest from the Brainnetome Atlas. The table shows the results of second-level group 

comparison (Group 3 > Group 2) for the global efficiency (GE). Beta indicates the effect size (difference in GE 

between groups); T is the T-statistic from the general linear model; dof = degrees of freedom; p-unc = uncorrected 

p-value; p-values are two-tailed; p-FDR = p-value corrected for multiple comparisons using the false discovery 

rate (FDR). 
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Appendix F Regions of Interest with a Significant Difference 

in Local Efficiency between Older Adults and Younger Adults 

ROI beta T dof p-unc p-FDR 

network 0.01 2.34 150 0.020767 nan 

INS_L_6_4 0.04 5.64 150 0.0 1.3e-05 

SPL_L_5_4 0.04 5.59 150 0.0 1.3e-05 

SPL_R_5_4 0.04 5.05 150 1e-06 0.000106 

INS_R_6_4 0.03 4.48 150 1.5e-05 0.000921 

FuG_L_3_3 0.03 4.07 150 7.5e-05 0.003707 

CG_R_7_6 0.03 3.93 150 0.00013 0.005013 

PoG_R_4_3 0.03 3.89 150 0.000151 0.005013 

MFG_R_7_1 0.03 3.86 150 0.000171 0.005013 

SFG_R_7_4 0.03 3.84 150 0.000183 0.005013 

INS_R_6_1 0.03 3.65 149 0.000359 0.008835 

PoG_L_4_3 0.03 3.61 150 0.000412 0.009221 

ITG_R_7_5 0.02 3.57 150 0.000488 0.009451 

STG_R_6_2 0.03 3.54 150 0.000536 0.009451 

OrG_L_6_3 0.03 3.54 150 0.000538 0.009451 

INS_R_6_3 0.02 3.48 150 0.000665 0.010611 

STG_R_6_3 0.03 3.47 150 0.00069 0.010611 

PhG_R_6_6 0.03 3.44 150 0.000745 0.010677 

INS_L_6_5 0.03 3.42 150 0.000794 0.010677 

PCun_L_4_2 0.03 3.41 150 0.000825 0.010677 

SPL_R_5_1 0.02 3.39 150 0.000901 0.010921 

INS_L_6_1 0.03 3.37 150 0.00094 0.010921 

PCL_R_2_1 0.03 3.36 150 0.000977 0.010921 

OrG_R_6_3 0.02 3.34 150 0.001075 0.011496 

LOcC _R_4_2 0.03 3.29 150 0.00123 0.012609 

FuG_R_3_3 0.03 3.22 150 0.001578 0.015531 

OrG_L_6_5 0.03 3.19 149 0.001763 0.01668 

STG_L_6_3 0.02 3.17 150 0.001876 0.017091 

SFG_L_7_6 0.02 3.15 150 0.001948 0.017115 

ITG_R_7_2 0.03 3.12 150 0.002161 0.018331 

IPL_L_6_5 0.02 3.03 150 0.002838 0.022901 

MTG_R_4_1 0.02 3.03 150 0.002909 0.022901 

PCun_R_4_2 0.02 3.02 150 0.002979 0.022901 

INS_L_6_3 0.02 3.01 150 0.003102 0.023122 

IPL_R_6_2 0.02 2.99 150 0.003281 0.023496 

CG_L_7_7 0.02 2.98 150 0.003343 0.023496 

MFG_R_7_3 0.02 2.96 150 0.003581 0.024186 

CG_R_7_4 0.02 2.95 150 0.003638 0.024186 

MFG_L_7_1 0.02 2.94 150 0.003812 0.024679 

SPL_R_5_5 0.02 2.93 150 0.003938 0.02484 

IPL_R_6_3 0.02 2.79 150 0.005916 0.036385 

LOcC _R_2_2 0.02 2.75 150 0.006634 0.039802 

LOcC _L_2_1 0.02 2.74 150 0.006936 0.040624 

ITG_L_7_6 0.02 2.73 150 0.007113 0.040691 

IPL_R_6_4 0.01 2.71 150 0.007484 0.041843 

CG_L_7_6 0.02 2.69 150 0.007897 0.043168 

Note. ROIs = Regions of Interest from the Brainnetome Atlas. The table shows the results of second-level group 

comparison (Group 3 > Group 1) for the local efficiency (LE). Beta indicates the effect size (difference in LE 

between groups); T is the T-statistic from the general linear model; dof = degrees of freedom; p-unc = uncorrected 

p-value; p-values are two-tailed; p-FDR = p-value corrected for multiple comparisons using the false discovery 

rate (FDR). 
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Appendix G Regions of Interest with a Significant Difference 

in Local Efficiency between Older Adults and Early Middle-

Aged Adults 

ROI beta T dof p-unc p-FDR 

network 0.01 1.66 145 0.098821 nan 

SPL_R_5_4 0.04 4.92 145 2e-06 0.000577 

INS_L_6_4 0.03 4.16 145 5.4e-05 0.006612 

SFG_L_7_6 0.02 3.99 145 0.000104 0.008526 

ITG_L_7_6 0.03 3.81 145 0.000208 0.010439 

ITG_R_7_5 0.02 3.76 145 0.000245 0.010439 

SPL_L_5_4 0.03 3.72 145 0.000279 0.010439 

IPL_R_6_2 0.02 3.71 145 0.000297 0.010439 

MTG_R_4_3 0.03 3.56 145 0.000499 0.015331 

INS_R_6_4 0.03 3.31 145 0.001194 0.03118 

INS_R_6_1 0.03 3.29 144 0.001267 0.03118 

ITG_R_7_6 0.02 3.24 145 0.001485 0.033202 

CG_R_7_4 0.02 3.13 145 0.002118 0.041446 

PoG_R_4_3 0.03 3.12 145 0.00219 0.041446 

MTG_R_4_1 0.02 3.06 145 0.002605 0.045775 

Note. ROIs = Regions of Interest from the Brainnetome Atlas. The table shows the results of second-level group 

comparison (Group 3 > Group 2) for the local efficiency (LE). Beta indicates the effect size (difference in LE 

between groups); T is the T-statistic from the general linear model; dof = degrees of freedom; p-unc = uncorrected 

p-value; p-values are two-tailed; p-FDR = p-value corrected for multiple comparisons using the false discovery 

rate (FDR). 
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Appendix H Regions of Interest with a Significant Difference 

in Clustering Coefficient between Older Adults and Younger 

Adults 

ROI beta T dof p-unc p-FDR 

network 0.02 2.96 150 0.003545 nan 

INS_L_6_4 0.08 6.09 150 0.0 2e-06 

SPL_L_5_4 0.08 5.48 150 0.0 2.1e-05 

SPL_R_5_4 0.08 5.03 150 1e-06 0.000112 

INS_R_6_4 0.06 4.56 150 1.1e-05 0.000663 

FuG_L_3_3 0.05 4.36 150 2.4e-05 0.001182 

PoG_R_4_3 0.06 4.06 150 7.8e-05 0.003066 

OrG_L_6_3 0.05 4.03 150 8.7e-05 0.003066 

PhG_R_6_6 0.06 4.0 150 0.0001 0.003066 

SFG_R_7_4 0.05 3.93 150 0.000131 0.00354 

OrG_R_6_3 0.05 3.9 150 0.000144 0.00354 

OrG_L_6_5 0.07 3.88 149 0.000159 0.003555 

MFG_R_7_1 0.05 3.81 150 0.000199 0.003817 

CG_R_7_6 0.05 3.8 150 0.000213 0.003817 

INS_R_6_1 0.06 3.79 149 0.000218 0.003817 

INS_R_6_3 0.04 3.77 150 0.000233 0.003817 

INS_L_6_1 0.06 3.62 150 0.000404 0.005586 

PoG_L_4_3 0.06 3.62 150 0.000406 0.005586 

ITG_R_7_5 0.04 3.62 150 0.000409 0.005586 

STG_R_6_2 0.06 3.57 150 0.000485 0.006281 

INS_L_6_5 0.06 3.55 150 0.000518 0.006314 

STG_R_6_3 0.05 3.54 150 0.000539 0.006314 

PCun_L_4_2 0.05 3.46 150 0.000699 0.007816 

SPL_R_5_1 0.04 3.39 150 0.000884 0.009456 

FuG_R_3_3 0.05 3.33 150 0.001083 0.011105 

LOcC _R_4_2 0.05 3.31 150 0.001179 0.011597 

STG_L_6_3 0.05 3.28 150 0.001298 0.012279 

PCL_R_2_1 0.05 3.26 150 0.001398 0.012734 

CG_L_7_6 0.05 3.2 150 0.001676 0.014157 

IPL_L_6_5 0.04 3.2 150 0.001691 0.014157 

CG_L_7_7 0.04 3.19 150 0.001726 0.014157 

ITG_L_7_6 0.04 3.12 150 0.002157 0.017108 

ITG_R_7_2 0.05 3.1 150 0.002332 0.017108 

SFG_L_7_6 0.03 3.1 150 0.002337 0.017108 

PCun_R_4_2 0.05 3.09 150 0.00241 0.017108 

MTG_R_4_1 0.04 3.08 150 0.002434 0.017108 

LOcC _L_2_1 0.05 3.07 150 0.002504 0.017108 

INS_L_6_3 0.04 3.05 150 0.002689 0.017877 

IPL_R_6_2 0.03 3.04 150 0.002766 0.017906 

CG_R_7_4 0.04 3.0 150 0.00314 0.019807 

MFG_L_7_1 0.04 2.95 150 0.003633 0.022185 

SPL_R_5_5 0.04 2.95 150 0.003697 0.022185 

IPL_R_6_3 0.03 2.93 150 0.003953 0.023154 

CG_L_7_2 0.04 2.86 149 0.004855 0.027773 

CG_R_7_2 0.04 2.81 149 0.005598 0.031299 

LOcC _R_2_2 0.04 2.77 150 0.006376 0.034853 

MFG_R_7_3 0.03 2.7 150 0.007627 0.040788 

SPL_R_5_3 0.04 2.69 150 0.007866 0.04117 

PhG_L_6_6 0.04 2.68 150 0.008265 0.04236 

Tha_R_8_4 0.05 2.65 150 0.009 0.045186 

OrG_L_6_2 0.03 2.63 150 0.009386 0.046179 

IPL_R_6_4 0.03 2.62 150 0.009746 0.047008 

MFG_L_7_4 0.03 2.6 150 0.010365 0.049034 

Note. ROIs = Regions of Interest from the Brainnetome Atlas. The table shows the results of second-level group comparison 

(Group 3 > Group 1) for the cluster coefficient (CC). Beta indicates the effect size (difference in CC between groups); T is the 

T-statistic from the general linear model; dof = degrees of freedom; p-unc = uncorrected p-value; p-values are two-tailed; p-

FDR = p-value corrected for multiple comparisons using the false discovery rate (FDR). 
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Appendix I Regions of Interest with a Significant Difference 

in Clustering Coefficient between Older Adults and Early 

Middle-Aged Adults 

ROI beta T dof p-unc p-FDR 

network 0.02 2.2 145 0.029578 nan 

SPL_R_5_4 0.07 4.81 145 4e-06 0.000925 

INS_L_6_4 0.07 4.57 145 1e-05 0.001253 

ITG_L_7_6 0.05 4.16 145 5.4e-05 0.0044 

INS_R_6_4 0.06 4.02 145 9.3e-05 0.004802 

SFG_L_7_6 0.04 4.01 145 9.8e-05 0.004802 

ITG_R_7_5 0.04 3.81 145 0.000206 0.008203 

IPL_R_6_2 0.04 3.77 145 0.000233 0.008203 

SPL_L_5_4 0.06 3.65 145 0.000362 0.011135 

MTG_R_4_3 0.05 3.54 145 0.000547 0.014957 

ITG_R_7_6 0.04 3.5 145 0.000625 0.015383 

INS_R_6_1 0.06 3.42 144 0.000805 0.018013 

PoG_R_4_3 0.05 3.25 145 0.001425 0.029205 

ITG_R_7_2 0.06 3.19 145 0.001754 0.03241 

CG_L_7_6 0.05 3.15 145 0.001957 0.03241 

SPL_R_5_3 0.05 3.15 145 0.001989 0.03241 

CG_R_7_6 0.04 3.11 145 0.002223 0.03241 

OrG_R_6_3 0.04 3.11 145 0.00224 0.03241 

MTG_R_4_1 0.04 3.09 145 0.002437 0.033224 

FuG_R_3_1 0.05 3.06 145 0.002601 0.033224 

FuG_L_3_3 0.04 3.05 145 0.002701 0.033224 

OrG_L_6_6 0.03 3.01 145 0.003047 0.035695 

SPL_R_5_1 0.04 2.96 145 0.003571 0.039931 

CG_R_7_4 0.03 2.92 145 0.003999 0.042774 

SFG_R_7_6 0.03 2.88 145 0.004527 0.046401 

OrG_L_6_2 0.04 2.86 145 0.004864 0.047866 

Note. ROIs = Regions of Interest from the Brainnetome Atlas. The table shows the results of second-level group 

comparison (Group 3 > Group 2) for the cluster coefficient (CC). Beta indicates the effect size (difference in CC 

between groups); T is the T-statistic from the general linear model; dof = degrees of freedom; p-unc = uncorrected 

p-value; p-values are two-tailed; p-FDR = p-value corrected for multiple comparisons using the false discovery 

rate (FDR). 
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Appendix J Regions of Interest with a Significant Difference 

in Average Path Distance between Older Adults and Younger 

Adults 

ROI beta T dof p-unc p-FDR 

network 0.03 2.58 150 0.010968 nan 

PhG_R_6_6 0.14 6.0 150 0.0 3e-06 

PhG_L_6_3 0.11 5.04 150 1e-06 0.000121 

STG_R_6_3 0.09 5.02 150 1e-06 0.000121 

Tha_R_8_3 0.17 4.81 149 4e-06 0.000229 

Tha_R_8_4 0.12 4.7 150 6e-06 0.000266 

ITG_L_7_1 0.16 4.68 149 6e-06 0.000266 

PhG_L_6_1 0.18 4.59 150 9e-06 0.000303 

INS_L_6_4 0.11 4.53 150 1.2e-05 0.000303 

FuG_L_3_1 0.1 4.53 150 1.2e-05 0.000303 

Amyg_L_2_1 0.11 4.52 150 1.2e-05 0.000303 

STG_R_6_2 0.08 4.42 150 1.9e-05 0.000417 

STG_L_6_3 0.07 4.4 150 2e-05 0.000417 

INS_L_6_1 0.09 4.31 150 3e-05 0.00056 

INS_L_6_5 0.09 4.28 150 3.4e-05 0.000582 

INS_R_6_1 0.12 4.25 150 3.7e-05 0.000582 

PhG_R_6_3 0.12 4.25 150 3.8e-05 0.000582 

PhG_L_6_6 0.12 4.19 150 4.8e-05 0.000688 

Tha_R_8_2 0.11 4.08 150 7.4e-05 0.001007 

OrG_L_6_3 0.08 3.85 150 0.000172 0.002132 

FuG_R_3_1 0.1 3.85 150 0.000173 0.002132 

Tha_L_8_6 0.11 3.66 150 0.000351 0.00411 

INS_R_6_2 0.16 3.58 150 0.000463 0.005179 

INS_R_6_4 0.08 3.55 150 0.000515 0.00551 

Hipp_R_2_1 0.08 3.53 150 0.000554 0.005675 

FuG_L_3_3 0.05 3.46 150 0.00071 0.006982 

Tha_R_8_5 0.09 3.45 150 0.00074 0.007001 

ITG_L_7_7 0.14 3.39 149 0.000892 0.007851 

OrG_L_6_5 0.12 3.39 149 0.000894 0.007851 

INS_R_6_5 0.07 3.38 150 0.000932 0.007906 

FuG_R_3_2 0.07 3.34 150 0.001072 0.008787 

OrG_R_6_3 0.07 3.3 150 0.001222 0.009697 

FuG_R_3_3 0.06 3.28 150 0.001308 0.010056 

INS_R_6_6 0.06 3.21 150 0.001614 0.012031 

PhG_R_6_2 0.13 3.19 148 0.00172 0.012447 

STG_L_6_1 0.07 3.15 150 0.001955 0.013421 

MTG_L_4_3 0.05 3.15 150 0.001964 0.013421 

STG_L_6_5 0.07 3.14 150 0.002062 0.013708 

PCL_R_2_2 -0.06 -3.07 150 0.002542 0.016457 

ITG_R_7_1 0.12 3.05 150 0.00268 0.01664 

Amyg_R_2_1 0.09 3.05 150 0.002706 0.01664 

STG_R_6_4 0.05 3.04 150 0.002816 0.016897 

Tha_R_8_8 0.07 3.0 150 0.003128 0.018319 

Hipp_L_2_1 0.07 2.98 150 0.003372 0.019293 

Tha_L_8_5 0.1 2.96 150 0.003586 0.020049 

Amyg_L_2_2 0.11 2.95 150 0.003715 0.020306 

BG_R_6_2 0.1 2.93 150 0.00389 0.0208 

CG_R_7_2 0.07 2.91 149 0.004213 0.021832 

Tha_L_8_8 0.1 2.9 150 0.00426 0.021832 

Tha_L_8_4 0.06 2.88 150 0.004513 0.022377 

pSTS_R_2_2 0.05 2.88 150 0.004548 0.022377 

Tha_L_8_2 0.11 2.85 149 0.004921 0.023739 

IFG_L_6_1 0.05 2.85 150 0.005025 0.02377 

STG_L_6_2 0.05 2.79 150 0.00589 0.026979 



 81 

 

MVOcC 

_R_5_4 

0.07 2.79 150 0.005979 0.026979 

IPL_L_6_5 0.05 2.78 150 0.006045 0.026979 

Tha_L_8_3 0.13 2.78 145 0.006205 0.026979 

IPL_L_6_3 0.04 2.77 150 0.006354 0.026979 

INS_R_6_3 0.05 2.77 150 0.006388 0.026979 

INS_L_6_2 0.09 2.76 149 0.00647 0.026979 

BG_R_6_3 0.09 2.75 150 0.006716 0.027103 

CG_L_7_4 0.06 2.75 150 0.006721 0.027103 

MTG_R_4_2 0.04 2.74 150 0.006961 0.027621 

PrG_L_6_4 -0.05 -2.73 150 0.007095 0.027703 

OrG_L_6_2 0.06 2.7 150 0.007706 0.02962 

BG_L_6_4 0.07 2.68 150 0.008088 0.030435 

STG_R_6_6 0.04 2.68 150 0.008166 0.030435 

PCL_L_2_2 -0.05 -2.67 150 0.008393 0.030816 

STG_R_6_5 0.05 2.6 150 0.010194 0.036879 

LOcC _L_2_1 0.05 2.6 150 0.010398 0.03707 

IFG_L_6_2 0.05 2.58 150 0.010811 0.037992 

INS_L_6_3 0.05 2.54 150 0.012239 0.042405 

BG_L_6_2 0.08 2.51 150 0.01324 0.044767 

ITG_L_7_6 0.05 2.5 150 0.013542 0.044767 

CG_L_7_2 0.06 2.5 149 0.013585 0.044767 

BG_L_6_3 0.09 2.5 150 0.013649 0.044767 

INS_L_6_6 0.04 2.45 150 0.015355 0.049703 

Hipp_R_2_2 0.08 2.45 150 0.015574 0.049757 

Note. ROIs = Regions of Interest from the Brainnetome Atlas. The table shows the results of second-level group 

comparison (Group 3 > Group 1) for the average path distance (PL). Beta indicates the effect size (difference in 

PL between groups); T is the T-statistic from the general linear model; dof = degrees of freedom; p-unc = 

uncorrected p-value; p-values are two-tailed; p-FDR = p-value corrected for multiple comparisons using the false 

discovery rate (FDR). 
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Appendix K Regions of Interest with a Significant Difference 

in Average Path Distance between Older Adults and Early 

Middle-Aged Adults 

ROI beta T dof p-unc p-FDR 

network 0.03 1.75 145 0.081833 nan 

Amyg_L_2_1 0.12 5.07 145 1e-06 0.000292 

Amyg_R_2_1 0.11 4.55 145 1.1e-05 0.001406 

Tha_R_8_4 0.12 4.42 145 1.9e-05 0.00156 

PhG_L_6_1 0.16 4.03 144 9.1e-05 0.005204 

PhG_L_6_3 0.09 3.93 145 0.000132 0.005204 

INS_R_6_1 0.11 3.92 145 0.000137 0.005204 

INS_L_6_1 0.08 3.88 145 0.000159 0.005204 

PhG_R_6_3 0.11 3.86 145 0.000169 0.005204 

Tha_R_8_2 0.11 3.57 145 0.000476 0.012781 

INS_L_6_5 0.08 3.55 145 0.00052 0.012781 

MVOcC 

_L_5_3 

-0.09 -3.47 145 0.000695 0.01486 

PhG_R_6_2 0.14 3.46 142 0.000725 0.01486 

Hipp_L_2_1 0.08 3.42 145 0.00081 0.015333 

PhG_R_6_6 0.09 3.35 145 0.001045 0.018369 

INS_L_6_4 0.09 3.31 145 0.001188 0.019482 

Tha_R_8_3 0.14 3.27 143 0.00136 0.019777 

CG_R_7_2 0.07 3.27 144 0.001367 0.019777 

OrG_L_6_2 0.07 3.21 145 0.001655 0.022624 

Tha_L_8_5 0.11 3.16 145 0.001937 0.024935 

INS_R_6_4 0.07 3.14 145 0.002027 0.024935 

INS_R_6_5 0.07 3.05 145 0.002721 0.031869 

INS_L_6_2 0.1 3.03 144 0.002914 0.032589 

FuG_L_3_1 0.07 2.99 145 0.003238 0.034631 

STG_R_6_5 0.06 2.94 145 0.003859 0.039552 

STG_R_6_4 0.05 2.89 145 0.004451 0.04073 

Hipp_R_2_2 0.09 2.89 145 0.00448 0.04073 

ITG_L_7_1 0.11 2.88 144 0.00459 0.04073 

FuG_R_3_1 0.08 2.87 145 0.004765 0.04073 

INS_R_6_2 0.15 2.86 145 0.004801 0.04073 

OrG_L_6_5 0.11 2.84 144 0.005238 0.042953 

STG_R_6_3 0.06 2.79 145 0.005937 0.047117 

STG_R_6_6 0.04 2.76 145 0.006465 0.049697 

Note. ROIs = Regions of Interest from the Brainnetome Atlas. The table shows the results of second-level group 

comparison (Group 3 > Group 2) for the average path distance (PL). Beta indicates the effect size (difference in 

PL between groups); T is the T-statistic from the general linear model; dof = degrees of freedom; p-unc = 

uncorrected p-value; p-values are two-tailed; p-FDR = p-value corrected for multiple comparisons using the false 

discovery rate (FDR). 
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