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Abstract A software system Gel Analysis System for
Epo (GASepo) has been developed within an international
WADA project. As recent WADA criteria of rEpo positiv-
ity are based on identification of each relevant object (band)
in Epo images, development of suitable methods of image
segmentation and object classification were needed for the
GASepo system. In the paper we address two particular
problems: segmentation of disrupted bands and classification
of the segmented objects into three or two classes. A novel
band projection operator is based on convenient object merg-
ing measures and their discrimination analysis using specifi-
cally generated training set of segmented objects. A weighted
ranks classification method is proposed, which is new in the
field of image classification. It is based on ranks of the values
of a specific criterial function. The weighted ranks classifi-
ers proposed in our paper have been evaluated on real sam-
ples of segmented objects of Epo images and compared to
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1 Introduction

Human erythropoietin (Epo) is a glycoprotein produced
mainly in kidneys whenever a tissue oxygen sensor detects
oxygen depletion. It is responsible for the proliferation of
erythrocytes in the human body. The recent advances in
biotechnology and molecular engineering enabled the pro-
duction of recombinant human erythropoietin (rEpo) by
Chinese hamster ovary cells. In 1990s rEpo has been suc-
cessfully applied to medical treatment of anemia attributable
to renal failure. The possibility of relatively cheap production
of rEpo has catalyzed its misuse as a doping substance. In
endurance sports, the main performance-limiting factor is the
oxygen-carrying capacity of the blood. rEpo boosts athletic
performance up to 10% by increasing the number of erythro-
cytes. The International Olympic Committee added rEpo to
its “List of prohibited substances” in 1990, though no method
existed at that time to detect it in body fluids. Doping with
erythropoetic proteins such as epoietin alfa, beta and darbe-
poietin alfa is one of the most complex issues, faced by sport
authorities today.

Previous research has shown that recombinant Epo
differs from human Epo in post-translational modifications
[5,22,27]. This difference manifests itself in different charge
ratios of sugar moieties. It was found that for detection of
such small differences, electrophoretic approaches to
molecule separation are suitable [8–10,21]. Especially,
isoelectric focusing (IEF, [14,15,18,24]) proved to be a
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Fig. 1 An example of an Epo gel image

method of choice. However, due to very low concentrations
of endogenous and recombinant Epo among all the other
proteins, present in human urine, the detection of rEpo is
very difficult.

A method for detecting rEpo in urine by electrophore-
sis was first published in 2001 [13]. Lasne introduced an
IEF method coupled with a technique that reduced the non-
specific binding that accompanied immunoblotting. This
technique (called double-blotting—DB) led to a practical
method that is used nowadays to detect epoietin alfa, beta
and darbepoietin alfa in the urine of athletes. The process
involves separation of Epo isoforms on a polyacrylamide gel
followed by the transfer of the proteins onto a thin mem-
brane. Detection of the isoforms is done by a chemilumi-
nescence reaction after incubation of a second antibody, an
enzyme catalyst and luminescent reagent. After analog or
digital imaging, a typical pattern of lanes (vertical stripes) is
finally generated. As can be seen in Fig. 1, the lanes comprise
bands (spots of deposits) of individual isoforms, which have
been separated by pH gradient. When a sample containing
rEpo (upper part of the first lane in Fig. 1 with 4–6 bands at
different pH positions) is subjected to IEF, a shift to more
basic isoforms is observed compared to endogenous Epo.
When urine with natural Epo is submitted to the same pro-
cess (lanes 3–7 in Fig. 1), the individual bands (7–15 bands)
are separated. These endogeneous bands partially overlap the
region of those belonging to rEpo (lanes 3–7 in Fig. 1, in the
lane 3 the positive case of doping is detected). The detection
of rEpo in presence of endogenous Epo was initially based
on setting the reference cut-off line (col) and on compari-
son of intensity sums above col in the sample and standard
lanes.

Based on a discussion, having been performed in Dop-
ing Control (DC) community after the DB technique had
been introduced, World Anti-Doping Agency (WADA) elab-
orated and approved in 2003 an advanced set of criteria for
rEpo positivity. These criteria utilize col and identification of

individual bands, performed on digital Epo images. They are
based on measuring intensity characteristics of the bands,
evaluation of positions and order of three most intensive
bands over the col in a sample lane in comparison to three
most intensive bands over the col in the standard (reference)
lane. WADA formulated also a requirement to support the
evaluation of the rEpo positivity criteria by a specific and
suitable software tools with the following basic functional-
ities:

– Filtering and correction of defects and geometrical dis-
tortions encountered in Epo images,

– identification of individual bands,
– quantification of band properties,
– determination of the reference cut-off-line,
– documentation of the results of image analysis.

A verdict on rEpo positivity can ultimately be approved only
by a responsible DC expert, therefore the main purpose of
the required software was to enable a user-friendly coop-
eration in the process of Epo image analysis and to provide
the expert with proper visual and quantitative information rel-
evant for the legally significant verdict. To provide a
systematic basis for computerized quantitative analysis
of Epo images and to contribute to the process of standardi-
zation and harmonization of Epo DC within WADA accred-
ited laboratories worldwide, a project granted by WADA
has been carried out in the recent years in ARC Seibersdorf
research GmbH. As a result of this project a software sys-
tem GASepo ([4], http://www.antidoping.at/epo) has been
developed.

Due to high irregularities of relevant objects and back-
ground in Epo images on one hand, and due to WADA requ-
irements to reproducibility of the image analysis results, on
the other hand, a number of specific problems of digital
image processing and analysis had to be explored. A part
of these problems were solved by algorithms which were
suitable modifications and adaptations of the algorithms we
had developed for another project of DNA gel image analy-
sis [2]. In particular, for noise suppression we implemented
a modified GDD (Geometry-Driven Diffusion) filtering [1],
for correction of global geometric distortions we used an
improved version of image raster rectification [2,4]. Further,
we developed an algorithm for robust calculation of the refer-
ence cut-off line [3] and an algorithm for correction of back-
ground intensity inhomogeneity in each lane [4]. There were
two problems that needed special research: (1) band segmen-
tation, and (2) classification of segmented objects into band
and artefact classes.

The former operation is aimed at identification of each
individual band required by WADA criteria. Due to the above
mentioned Epo image characteristic features, the band
segmentation represents very difficult problem. Thus, every
segmentation algorithm generates, besides true bands, also
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artefacts. Presence of artefacts can make visual analysis very
tedious. A remedy is offered by introducing an additional
band classification operation that makes possible to sepa-
rate and delete artefacts. So that these two operations consti-
tuted an essential part of the GASepo software development.
They provide a DC expert with maximum reliable support-
ing information and minimum interactive load for correcting
imperfect analysis results. At the same time, the GASepo
is sufficiently flexible to enable incorporation of modified
WADA criteria using a future feedback from the Epo doping
control practice.

In this paper we outline a compound multilevel segmenta-
tion algorithm [19] and we present its improvement. The core
of the paper is concentrated on the derivation of a weighted
ranks (WR) classification method, novel in the field of image
classification. We carry out a detailed comparative study of
the proposed classifier to several most popular classifiers
when applied to the testing set of segmented objects in Epo
images.

The paper is organized as follows. In Sect. 2 we provide
a brief review of the band segmentation algorithm and pres-
ent an improvement of its part responsible for segmenting
disrupted bands. In Sect. 3 we characterize statistical proper-
ties of input data for classification, and provide the informa-
tion on training data generation and on evaluation measures.
Section 4 is dedicated to theoretical background of the WR
classification into two classes, as well as to multisample dis-
criminant procedure. Here the basic information is also given
about other classification methods involved in our compar-
ison study. In Sect. 5 the proposed and compared classifi-
ers are applied to two classification tasks relevant for band
classification in Epo images. The misclassification errors are
evaluated.

2 Band segmentation in Epo images

Computer tests with Epo images showed that in spite of
the correction of degradation effects in the preprocessing
stage, the application of common edge detectors or adaptive
thresholding techniques to band segmentation does not yield
satisfactory results. Therefore, in [19] we developed a com-
pound multilevel segmentation method for solving the fol-
lowing crucial cases of band degradation: (1) blurred bands,
(2) bands which are merged into a one-blob object, and (3)
bands which are represented by separate individual objects.
Actual results obtained by the first release of the GASepo
software revealed a necessity to improve the important part of
the segmentation procedure oriented towards merging disin-
tegrated band parts. We will briefly describe the structure and
basic functions of individual elements of the band segmen-
tation. Our attention will then be focused on the improved
algorithm.

2.1 Threefold LoG filtering

In general, the bands in Epo images are objects with oblong
and curved shape whose boundaries can be characterized
as pixels with local maxima of intensity gradients. For seg-
mentation of such objects the rotationally symmetric Lapla-
cian of Gaussian (LoG) filter is convenient. Due to variable
sizes of bands, different levels of their smearing and pres-
ence of various local defects in Epo images, the LoG oper-
ation with a selected single size of the window and a fixed
value of the parameter σ yields results which are not satis-
factory. It appeared that several different windows and val-
ues of σ were needed to be used simultaneously. Based on
extensive computer experiments, we proposed three LoG fil-
ters with the following window sizes and values of σ : w1 =
15 × 5 (σ1 = 2), w2 = 15 × 15 (σ2 = 2), w3 = 25 × 25
(σ3 = 4).

2.2 Thresholding of filtered data

The second step of the proposed segmentation method is a
binarization of the filtered lane images Li (x, y). The exper-
iments on a set of Epo images showed that zero crossing of
the results of individual LoG applications, that is conven-
tionally used for edge detection, does not provide optimum
choice. As intensities inside the bands are relatively homoge-
neous, instead of zero crossing, we proposed to binarize the
filtered results by their thresholding. The thresholded masks
Oi (x, y) are given as

Oi (x, y) =
{

1 if Li(x, y) ≤ β ,

0 otherwise.

The choice of the threshold value β, which should be fixed
for all Epo images to be analyzed by the GASepo system,
is not trivial task. Some threshold values result in producing
all true bands accompanied by a great number of artefacts.
Decreasing the threshold value reduces the number of these
artefacts at the expense of missing true bands. For illustration,
an example of thresholding with three different thresholds is
given in Fig. 2. As will be discussed later on, for one filtered
image we actually need two binary images: one for represen-
tation of normal bands, and another one for representation of
segments comprising several merged bands. A special opera-
tion was therefore designed to properly segment such bands.
It is based on this binary representation and uses morpho-
logical dilation operation. Based on computer experiments
with hundreds of Epo images common in Epo doping-
control, we have found the optimum value for the first thresh-
old: α = −0.001, and the optimum value for the second
threshold: β = −0.0001.
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Fig. 2 An example of thresholding a LoG-filtered lane image by three
different threshold values β1,2,3 = 0,−0.0005,−0.002

2.3 Combination of the binary images obtained after
thresholding the LoG filter results

Application of LoG filters with various values of the param-
eter σ and window sizes followed by thresholding results in
segmented objects (masks Oi ) of different area. The overall
tendency observed is preferring the objects with larger area
than is the area of the corresponding bands. To reflect the dif-
ferences in band shape and in their intensity characteristics,
we proposed to combine the results of the first two steps by
the operation of a logical product of the distinct masks Oi :
O(x, y) = ∧

i Oi (x, y).

2.4 Region growing of small band masks within larger
masks

The application of the threefold LoG operation, threshold-
ing, and logical mask combination, to blurred bands enables
maximization of the number of true positives that is important
for doping positivity criteria. For solving a problem of satu-
rated (glued) bands, we developed another algorithm. Unfor-
tunately, for these bands no optimum threshold value exists
that could be applied to each Epo image being analyzed.
Smaller values (e.g. α = −0.001 in Fig. 3) produce a binary
image in which not all constituents of saturated bands are seg-
mented properly. On the other hand, greater threshold values
(e.g. β = −0.0001 in Fig. 3) lead to undersegmentation. The
solution consists in using morphological dilation for a spe-
cific region growing operation. It starts from smaller (over-
segmented) objects—seeds which are embedded into a larger
mask. Thus, identity of band parts is preserved and a proper
area is achieved by dilation of these objects up to the outer

Fig. 3 An example of thresholding by two threshold values (α =
−0.001, β = −0.0001) which produces objects represented either by
individual bands (threshold α) or by one saturated blob (threshold β)

boundary, or up to the next dilated object. The dilation with
the 3×3 structure element of ones was used. The merging
of separate band segments, that represents the third crucial
segmentation problem, is described in the following Section.

2.5 Merging of objects which represent one band

In some cases, the degradation of the gel image may cause
that bands in the segmented image are represented by several
separated objects. To resolve this particular problem, i.e. to
ensure that an identical index is assigned to all objects belong-
ing to one band, we initially developed a special algorithm,
called band projection.

We denote Pi the horizontal projection of every region
mask Ri of a segmented object in the lane. This mask is equal
to 1 if the pixel (x, y) belongs to the i th region, otherwise
it is equal to zero. Then the projection Pi of the mask Ri is
defined for the range y ∈ Y of all vertical indices in the lane
as the function

Pi (y) =
∑

x

Ri (x, y). (1)

For any two objects obji , obj j , the following subsets of
indices y are defined: Ωi = {y ∈ Y : Pi (y) �= 0} and
Ω j = {y ∈ Y : Pj (y) �= 0}. The intersection of these two
index sets, Ωi ∩ Ω j , is denoted by Ωc. For the definition of
the criteria for merging of two segmented objects obji , obj j
with Ωc �= ∅, we consider the sum Sc of projections:

Sc =
∑
y∈Ωc

min{Pi (y), Pj (y)}. (2)
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Fig. 4 Quantities defined for
merging criteria

Then the coefficients coef1 and coef2 are defined by the for-
mulae:

coef1 = Sc∑
y∈Ωi

Pi (y)
, coef2 = Sc∑

y∈Ω j
Pj (y)

. (3)

A simple merging criterion was defined in [19] as: if (coef1 >

0.5 & coef2 > 0.5) then merge obji & obj j . After the
first release of the GASepo software was distributed to Beta
testers in DC labs, it appeared that besides properly merged
band fragments, a number of artefacts were also merged
together or with other band fragments. This resulted in con-
siderable deterioration of classification of the segmented
objects and increased the number of necessary user interven-
tions. Since there is a permanent interest to minimize user
intervention in the GASepo system, a need to improve the
projection operation arose. As will be described in Sect. 3,
for the supervised approach we developed a special proce-
dure of training set generation that made use of the already
existing GASepo system. A priori information on geometri-
cal properties of bands and artefacts, derived from the train-
ing set of segmented objects, served us for extension of the
band projection operation. In general, the artefacts can have
arbitrary shapes, they can be oblong in horizontal as well
as vertical direction; whereas bands have the tendency to be
oblong exceptionally in horizontal direction and they differ
in their shape only minimally. Their thickness is very close
because they actually originated from one ideal band that had
been disrupted in the course of Epo image acquisition. The
definition of the additional measures for bands and artefacts
should take into account these differences.

We introduce the following additional measures of two
segmented objects which have non-empty overlap, Ωc (see
Fig. 4):

– BoxAreai , the area of the smallest circumscribed rectan-
gle (band box Bbi) for the object obji; similarly BoxArea j

for the object objj (band box Bbj),
– BoxAreaAll , the area of the smallest rectangle (Bball)

circumscribing both objects,
– Areai and Area j as number of pixels of the objects obji

and objj, respectively,
– horizontal coordinates xci and xc j of the centroids of both

objects,
– distances of object band boxes from the left margin of the

lane: li , ri , l j , r j (see Fig. 4).

The lane width is denoted as w. Using these measures of
objects with non-empty Ωc, we define four additional coef-
ficients:

coef3 = (BoxAreai + BoxArea j )/BoxAreaAll,

coef4 = abs(xci − xc j )/w,

coef5 =
{

Areai/Area j if Areai < Area j ,

Area j/Areai otherwise,

coef6 =
{

abs(l j − ri )/w if li < l j ,

abs(li − r j )/w otherwise.

The ideal goal of the operation of object merging is to allow
merging only for segmented objects that are parts of one band.
However, due to a great variety of geometrical properties of
segmented objects with overlapping projections, this goal is
not achievable. We can only try to maximize the number
of such cases, and, conversely, to minimize the number of
merged artefacts. As a suitable basis for searching
optimum threshold values of merging coefficients we used
the training set of bands and artefacts. We applied the sta-
tistical method of discrimination analysis, see, e.g. [25], to
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all introduced coefficients with values calculated separately
for the bands and artefacts. First, we select from the training
set all object pairs which manifested non-empty overlap Ωc.
This set is then partitioned into two subsets: the set B of all
pairs constituted by parts of bands, and the set A of all pairs of
artefacts. The values of merging measures are calculated for
the sets B and A separately. The histograms of relative fre-
quencies of these values represent empirical probability dis-
tributions of the corresponding measures. For the choice of
the threshold Tk of the given measure (coefk, k = 1, . . . , 6),
the sum of histogram bins corresponding to the measure val-
ues coefk < Tk (or coefk > Tk) represents the percentage
erra of erroneously merged objects (for artefact pairs) or the
percentage errb of erroneously non-merged (for band pairs)
objects. The optimum threshold value Tk is searched for as
such a value of coefk for which the weighted sum of both
errors reaches its minimum: wb.errb + wa .erra = min ,

where wb is the weight of non-merged bands, and wa is the
weight of erroneously merged artefacts. Based on the anal-
ysis of the results of the computer experiments with vari-
ous values of the weights wb, wa , we found optimum values
wb = 0.7 and wa = 0.3. Having found the optimum thresh-
old values for the merging coefficients, we define the final
criterion of merging:

if (coef1 > 0.7 and coef2 > 0.5 and coef3 > 0.5) or

(coef1 > 0.7 and coef2 > 0.5 and

coef4 > 0.3 and coef5 < 0.4 and coef6 < 0.2)

then

merge obji & objj.

The application of the improved merging part of the com-
pound multilevel band segmentation to a set of Epo images
yielded approximately 30% decrease of the number of cases
with erroneously merged artefacts. In Fig. 5 the flowchart of
the complete algorithm of band segmentation in Epo images
is displayed.

3 Characterization of input data set for classification

The improved segmentation procedure described above max-
imizes the number of obtained segmented true bands. Strong
irregularities in Epo image background and intensity fluc-
tuations within bands cause that a number of artefacts and
mixed objects (i.e. bands merged with the artefacts) are still
generated. In Fig. 6 the result of the band segmentation using
GASepo is illustrated. As can be seen, all relevant bands in
the lanes have been detected. However, disturbing artefacts
appear in crucial areas of the lanes. These artefacts have to
be excluded from the subsequent Epo image analysis. To
separate them from the set of all segmented objects we have
designed a post-segmentation classification procedure that

Fig. 5 The scheme of basic segmentation operations

needs quantitative characterization of objects to be classi-
fied.

3.1 Quantitative measures of properties of segmented
objects

For characterization of geometrical and shape properties
of the segmented objects, which are represented as labeled
regions in each lane, we have chosen five common mea-
sures (implemented, e.g. in the MATLAB) which are used
for binary images. Due to specific nature of the bands in Epo
images we introduced three additional measures. They use
the following quantities:

– BoundingBox: the smallest rectangle containing the seg-
mented object.

– x_width, y_width: the sizes of the BoundingBox.
– Laxis: the distance of the central vertical axis of the given

lane image from the y-axis.
– LaneArea: the number of all pixels in the given lane

image.
– Area: the number of pixels belonging to the given object.
– Centroidx,y: the coordinates of the center of mass of the

given object.
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Fig. 6 Illustration of the
segmentation results. Groups of
the remaining artefacts are
marked by closed dashed curves

– Perimeter: the number of boundary pixels of the given
object.

Based on these terms, the following measures of the objects
are defined:

– Relative Area: RelArea = Area/LaneArea.
– Band Box Ratio: BBRatio = y_width/x_width.
– Eccentricity: Eccentr, the eccentricity of the ellipse that

has the same second moments as the object; it is the ratio
of the distance between the the foci of the ellipse and its
major axis length.

– Orientation: Orientn, the angle (in degrees) between the
x-axis and the major axis of the ellipse that has the same
second moments as the object.

– Solidity: Solidit, the proportion of the pixels in the Bound-
ingBox.

– Centroid Eccentricity: CentrEcc = abs(Laxis −
Centroidx ).

– Boundary Complexity: ObjBndComx = 2 ∗ (x_width +
y_width)/Perimeter.

– Band Box Fullness: BBFuls=Area/(x_width∗ y_width).

3.2 Normality test

Since optimality properties of some classical discrimination
procedures are related to the assumption that the observations
have normal distribution, we tested the hypothesis that the
data we process are normally distributed. Testing the multi-
variate normality is usually carried out by the Mardia test.

Table 1 Critical constants for the Mardia test and for the Lilieforth test

α 0.1 0.05 0.01

Mardia test 140.2326 146.5674 158.9502

Lilieforth test 0.819 0.895 1.035

Its critical values are given in Table 1. When applied to
4091 artefacts included in the considered training dataset, the
Mardia test statistic gives the value A = 63658, and when
applied to 1789 bands, the value A = 64383 is obtained.
Thus, in both cases the critical values from Table 1 are clearly
exceeded and hence the hypothesis, that the data (either the
artefacts or the bands) form a Gaussian population, is rejected.

Even though the data do not come from the multivariate
normal distribution, it is still possible that they have some
properties of the normal distribution. An important property
of the normal distribution is that its coordinates have univar-
iate normal distribution. To find out whether this is true for
our observed data, we tested whether single coordinates of
the observations follow normal distribution. The test was car-
ried out by means of the Lilieforth test. The critical values of
this test are given in Table 1. The observed values exceeded
the critical constants from Table 1 and hence the hypothesis
that the single quantity has normal distribution is rejected
(with the exception of BBFuls of bands where 0.6491 <

0.819). Consequently, employing the above mentioned tests
of normality we can reject the hypothesis that the considered
training data come from population with multivariate
normal distribution. Consequently, it could be expected that
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the classical discrimination procedures which have the
optimum properties under normality assumptions, like, e.g.
the standard Fisher linear classifier, will not reach the opti-
mum properties for the considered data set.

3.3 Generation of training and testing sets

Supervised classification utilizes a priori information rep-
resented by the values of features of known objects. As in
our case the objects to be classified are generated by the
GASepo system, an expert classification should be related to
the segmented objects already provided by this system (i.e.
using no ideal segmentation made by an expert). We prepared
an auxiliary program environment in which the tools avail-
able in the GASepo system itself could be used. More than
200 lanes originating from Epo images provided by several
DC labs were used for generation of segmented objects. An
expert classified obtained objects into three classes: artefacts,
bands, and mixed objects. We obtained altogether: 4091 arte-
facts (labeled by A), 1789 bands (labeled by B), and 97 mixed
objects (labeled by C).

To perform correct evaluation of all classifiers on a unified
basis (i.e. not admitting any apparent error rate), each of the
input data sets of known artefacts, bands, and mixed objects
was randomly partitioned into two subsets: 60% of objects
in each subset served as a training sample set, and 40% as a
testing set. In the evaluation of classifier performance, mean
misclassification errors averaged over 100 simulations for
each individual classifier were used.

3.4 Misclassification measures

As will be described in the following section we have focused
on two basic classification problems: (1) classification of the
segmented objects into three classes: A-artefacts, B-bands,
and C-mixed objects, and (2) classification of the segmented
objects into two classes: artefacts and bands. For character-
ization of classification success we have used relative and
overall misclassification errors and their standard deviations
(std) (as error ± std). The following denotation for relative
misclassification errors is used:

– P(A|A)—proportion of the artefacts correctly classified
as artefacts,

– P(B|A)—proportion of the artefacts misclassified as
bands,

– P(C |A)—proportion of the artefacts misclassified as
mixed objects,

– P(A|B)—proportion of the bands misclassified as
artefacts,

– P(B|B)—proportion of the bands correctly classified as
bands,

– P(C |B)—proportion of the bands misclassified as mixed
objects,

– P(A|C)—proportion of the mixed objects misclassified
as artefacts,

– P(B|C)—proportion of the mixed objects misclassified
as bands,

– P(C |C)—proportion of the mixed objects correctly clas-
sified as mixed objects.

We denote the overall misclassification errors as follows:

– P(error |A)—overall error of misclassified artefacts,
– P(error |B)—overall error of misclassified bands,
– P(error |C)—overall error of misclassified mixed

objects.
– P(error)—overall misclassification error. It is given as

P(error) = P(A)P(error |A) + P(B)P(error |B)

+P(C)P(error |C),

where P(A), P(B), and P(C) represent the probabilities that
a randomly chosen object is of type A, B or C , respectively.
In practice we estimate these probabilities by relative fre-
quencies of objects of the given class present in the input
data set.

4 Classification of segmented objects in Epo
images—Theory

We have accomplished a number of tests with segmentation
of Epo images generated in practice of DC labs worldwide.
Based on the analysis of types of segmented objects obtained
we concluded that besides two basic types, i.e. bands and
artefacts, there is a certain number of objects which are con-
stituted by artefacts merged with band parts or whole bands.
These mixed objects can influence throughput of Epo image
analysis by the GASepo system and therefore we were inter-
ested if it is possible to design a classifier that could per-
form an acceptable classification into three given classes of
segmented objects. A novel adaptation of the WR statisti-
cal approach suitable for application to our task has been
developed. Since the original method is formulated for two-
class problem of classification, we first provide the basic
information on the design of WR classifier for two classes.
Then the mathematical results are extended to the design of a
multisample discriminant procedure. The performance of the
novel classifier applied to the task of band classification in
Epo images should be compared to the performance of other
most popular classifiers. We have chosen Fisher linear clas-
sifier (FLC), the classifier based on support vector machine
(SVM), and the neural net classifier based on multilayer
perceptron (MLP). The basic information on application of
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these classifiers to our problem is also provided in this sec-
tion. Its structure will preserve the concept of the WR theory
development, i.e. after considering the standard cases of two
classes, the methods are extended to more classes.

4.1 Weighted ranks classification

The WR classification is a non-parametric procedure of dis-
criminant analysis and the only assumption hidden in its
design is that the observed vector data come from the popula-
tions with continuous distribution (which can be interpreted
as the property that no two observed objects are identical, i.e.
they are different in some respect). This procedure has been
implemented in accordance with [23].

4.1.1 The weighted ranks procedure for the classification
problem into two classes

This procedure is a modification of the method presented in
[6], when a recorded observation has to be allocated to one
of two populations, in our case either to the class A of arte-
facts or to the class B of bands. Suppose that n1 denotes the
number of observed artefacts and n2 the number of observed
bands. The procedure consists in adding the tested segmented
object to the set of the artefacts, computing values of the dis-
criminant function for all observations from this extended set
and then finding the rank R1 of the value corresponding to
the classified object; in the second step the tested segmented
object is added to the set of the bands and the rank R2 is com-
puted. The object is allocated to the population i = 1 (arte-
facts) or i = 2 (bands) for which the ratio w(i)Ri/(1 + ni )

is larger; here w(1) is the weight of the first class (artefacts)
and w(2) is the weight of the second class (bands). It follows
from the comments in [6] that if w(1) = w(2) = 1, then
procedure of such a type handles the classes in an identical
way and therefore the resulting misclassification errors are
approximately equal. In order to obtain a smaller misclassi-
fication error, we included into the decision process the use
of weights. The weights w(1) = 1, w(2) = n2/(n1 + n2)

were chosen to emphasize the role of larger training set of
artefacts. Since w(2) < 1, the artefacts will be classified cor-
rectly more often and, as n1 > n2, this will result in a smaller
total error. We remark that this procedure is a special q = 2
sample case of the general q-sample WR rule, described in
detail in the next Section.

4.1.2 The weighted ranks method for multisample
discriminant procedure

As mentioned already, within the design of the GASepo sys-
tem, a classification of segmented objects into three classes
was of our interest. To apply the WR classifier to this initial

task, it is necessary to extend the principle of the two-sample
WR rule to a multisample discriminant version.

Suppose that Xi = (Xi1, . . . , Xini ) is a sample from some
distribution Πi on the p-dimensional Euclidean space R p,
i = 1, . . . , q, and Z denotes the p-dimensional vector which
is subjected to classification, i.e. it has to be assigned to one
of the populations Π1, . . . ,Πq . Let

w = [w(1), . . . , w(q)]
be some suitably chosen positive numbers, which will be
referred to as weights. For all i = 1, . . . , q we construct the
criterial function Di (U) by attaching the classified vector Z
to the i th sample Xi in the following way. We put

X̃i = 1

ni + 1

⎛
⎝ ni∑

j=1

Xi j + Z

⎞
⎠ ,

S̃i = 1

ni + 1

⎛
⎝ ni∑

j=1

(Xi j − X̃i)(Xi j − X̃i)
′

+ (Z − X̃i)(Z − X̃i)
′
⎞
⎠ ,

(4)

and for all r = 1, . . . , q, r �= i

X̄r = 1

nr

nr∑
j=1

Xr j , Sr = 1

nr

nr∑
j=1

(Xr j − X̄r)(Xr j −X̄r)
′. (5)

Further, let

t̃i (U) = (U − X̃i)
′ (S̃i )

−1(U − X̃i),

M(U) = min
r=1,...,q, r �=i

(U − X̄r)
′ (Sr)

−1(U − X̄r).

Form the criterial function by the formula

Di (U) =
⎧⎨
⎩

log

(
M(U)

t̃i (U)

)
if M(U) ≤ t̃i (U),

M(U) − t̃i (U) if M(U) > t̃i (U).

(6)

By means of this function we compute the ranks Ri (Z),
Ri (Xi1), Ri (Xi2), …, Ri (Xini ) of the numbers Di (Z),
Di (Xi1), Di (Xi2), …, Di (Xini ) in their increasing ordering.
The resulting rule is

if w(i)
Ri (Z)

ni + 1
= max

j=1,...,q

(
w( j)

R j (Z)

n j + 1

)
decide Z ∈ Πi .

(7)

In case this is true for more than one i , choose the index i for
which the number ni of observations is the largest. The simu-
lations have been performed for a suitable choice of weights,
that is

w(i) =
{

1 if p̂i = max
k=1,...,q

p̂k,

p̂i otherwise,
(8)
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which in the 2-sample case coincide with the weights descri-
bed in the previous section, here p̂i=ni/n and n= ∑k

j=1 n j .
We remark, that for q = 2 in [6] the target discriminant

function is the Fisher linear discriminant function, which cor-
responds to the case of equal covariance matrices. In [20] the
possible occurrence of different covariance matrices is taken
into account by using the target discriminant function which
is a convex mixture of the Fisher linear discriminant function
and the quadratic discriminant function. In this method we
use Mahalanobis distances of the classified vector Z from
the underlying training sets; this is in line with the remark in
[6], where it is observed that any continuous target function
D can be used as the discriminant function provided that the
samples are treated symmetrically and D(Z1), . . . , D(Zn)

are different with probability 1 for a sample from the contin-
uous distribution on R p.

For particular GASepo data, the derived multisample dis-
criminat decision rule utilizes three training sets consisting
of n1 objects A, n2 objects B and n3 objects C . It consists
in carrying out three steps analogous to the previous ones.
In the j th step the recorded observation (tested segmented
object) is added to the corresponding training set (artefacts,
bands, or mixed objects) consisting of n j objects, then val-
ues of the discriminant function are computed for all n j + 1
observations from this extended j th set and the rank R j of
the value corresponding to the classified object is found. The
object is allocated to the i th category, if

w(i)
Ri

ni + 1
= max

j=1,2,3
w( j)

R j

n j + 1
.

In this decision rule, w( j) is the weight assigned to the j th
category, and it should be chosen by the user. In accordance
with simulations from various theoretical distributions, we
employed weights computed from the relative sample sizes

p̂1 = n1

n
, p̂2 = n2

n
, p̂3 = n3

n
,

where n = n1 +n2 +n3 is the total sample size. The weights
we have used are defined by the formula

w( j) =
{

1 if p̂ j = max{ p̂1, p̂2, p̂3},
p̂ j otherwise.

This method (with q = 3) is a particular case of the general
q-sample version of the WR procedure.

4.2 Fisher linear classification

4.2.1 Classification into two classes

The Fisher linear classifier (FLC) is a well-known method
based on separating the classes (Ω0,Ω1) by a hyperplane
cT y + d. We just note here that we use it in a form that does
not require the assumption of normality and/or a common

Fig. 7 Three different schemes for a 2-stage classification into three
classes using an FLC at each stage

covariance matrix in the classes. The Fisher criterion leads
to the following discrimination rule, see [25],

y ∈ Ω0 if g(y) = (m0 − m1)
T (1/2(Σ0 + Σ1))

−1 y > T,

y ∈ Ω1 if g(y) = (m0 − m1)
T (1/2(Σ0 + Σ1))

−1 y < T,

(9)

where m0, m1 and Σ0, Σ1 are the means and the covariance
matrices of the populations of the two classes, respectively,
and the threshold T is appointed to control the misclassifi-
cation rate of Ω1 at level α. In practice, m0, m1, Σ0, Σ1 are
replaced by their sample counterparts.

4.2.2 Classification into three classes

The generalization of FLC to a multiclass case (without
assuming normality and a common covariance matrix for all
classes) can be done through employing a multistage classi-
fication that involves distinguishing between only two clas-
ses at each stage. Namely, in a 3-class problem with classes
denoted A, B, C , 2-stage classification schemes, as depicted
in Fig. 7, may be used.

4.3 Classification using the support vector machine

4.3.1 Classification into two classes

The principle of SVM [7,26] for binary classification is to
find a hyperplane in the sample space that maximizes the
margin, i.e. the distance of the nearest training sample to
the hyperplane—equal for both classes. This corresponds to
the structural minimization principle that minimizes a trade-
off between the empirical error and complexity of class of
approximating functions to avoid overfitting. This leads to a
quadratic programming problem where the minimized func-
tion is an upper bound of the generalization error of a decision
hyperplane.
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4.3.2 Classification into three classes

The one-against-one method of generalization of binary clas-
sification to a multiclass case is used.

4.4 Classification based on a multilayer perceptron

4.4.1 Classification into two classes

The multilayer perceptrons (MLPs) are standard neural net-
work models used for classification tasks. When properly
trained, an MLP has a potential to separate classes with
non-linear decision boundaries. Unlike classical statistical
methods, learning methods for MLPs do not directly rest on
assumptions about data (such as normality of input data),
[11]. In this application we found it sufficient to employ a
perceptron with a single layer of hidden neurons (a two-layer
perceptron). For binary classification, we used one logistic
output neuron, whose high activation indicates predicting one
class and low activation the other class. Learning with logis-
tic outputs is based on minimization of the squared output
error.

4.4.2 Classification into three classes

For classification into three classes, we chose three output
neurons, each representing one class. The output neurons had
the softmax activation function and the rest of the perceptron
model remained unchanged. The error to be minimized was
based on the cross-entropy between the target distribution
and the actual output distribution.

5 Classification of segmented objects in Epo images:
evaluation

5.1 Classification into three classes

As outlined in the introduction to the previous section, our
primary interest is to explore possibilities of the proposed
WR classifier to classify the data of Epo image segmentation
into three classes. We are also interested in comparison of
its performance to the performance of selected three classifi-
ers. For this purpose a set of real Epo images (see Sect. 3.3)
was analyzed by an expert using a preliminary version of the
GASepo system. The obtained input data set has the follow-
ing structure:

population 1: artefacts A m1 = 4091 objects,
population 2: bands B m2=1789 objects,
population 3: mixed objects C m3 = 97 objects.

(10)

Table 2 Average misclassification rates (±standard deviation) and their
decomposition using WR method for three classes

P(error) 0.054 ± 0.0039 P(A|B) 0.060 ± 0.0087

P(error |A) 0.028 ± 0.0053 P(B|B) 0.934 ± 0.0097

P(error |B) 0.066 ± 0.0097 P(C |B) 0.006 ± 0.0031

P(error |C) 0.932 ± 0.0399 P(A|C) 0.050 ± 0.0351

P(A|A) 0.972 ± 0.0053 P(B|C) 0.882 ± 0.0453

P(B|A) 0.027 ± 0.0051 P(C |C) 0.068 ± 0.0395

P(C |A) 0.001 ± 0.0008

5.1.1 Weighted ranks approach

Table 2 shows various misclassification rates based on the
WR method. While the misclassification rates for classes A
and B may be considered acceptable, the misclassification
rate for the class C is too high. Practically none of the
C-class objects was correctly recognized (the most of the
mixed objects have been classified as bands).

5.1.2 Fisher linear classifier

Following Sect. 4.2.2 and the schemes in Fig. 7, in case of the
scheme I (the other two cases are similar), for Ω1 = B and
Ω0 = A ∪C , function g1 was constructed with T1 appointed
at level α1. Next, taking into consideration the data in the
training set belonging only to the classes A or C , g2 was
constructed with Ω1 = A and Ω0 = C and T2 appointed at
level α2.

Table 3 displays the results. For the scheme I the best
result (with regard to the total error) was obtained for α1 =
0.08, α2 = 0.01. However, while P(error |A) and P(error
|B) may be considered acceptable, P(error |C) is too high.
In fact, none of the objects from C was correctly recognized.
Looking at P(A|C) and P(B|C) we see that the main prob-
lem lies in distinguishing the class C from B. In this view,
the scheme I is not optimal for managing the proportions of
misclassification rates of the classes B and C . This is done
easier using the schemes II or III. Table 3 shows that total
errors for the scheme II with α1 = 0.95, α2 = 0.08, and for
the scheme III with α1 = 0.03, α2 = 0.01 are comparable to
the ones obtained for the scheme I, α1 = 0.08, α2 = 0.01.

Although P(error |C) is less than 1 in these situations, it is
still unacceptably high. As the scheme II allows for a direct
control over the proportion of misclassified objects from C ,
we used it to further illustrate the problems in distinguishing
between B and C . Pressing P(error |C) down to 30 % (α1 =
0.30) resulted in a considerable increase of P(error |B) (nat-
urally leading to increase of the total error). From the results
obtained we may conclude that the classes B and C are not
well discernible.
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Table 3 Average
misclassification
rates(±standard deviation) and
their decomposition obtained
using the FLC and the 2-stage
classification schemes

Scheme/α1/α2 I/0.08/0.01 II/0.95/0.08 II/0.30/0.08 III/0.03/0.01

P(error) 0.056 ± 0.0032 0.058 ± 0.0035 0.113 ± 0.0080 0.058 ± 0.0038

P(error |A) 0.023 ± 0.0034 0.026 ± 0.0041 0.030 ± 0.0043 0.030 ± 0.0055

P(error |B) 0.081 ± 0.0119 0.082 ± 0.0117 0.289 ± 0.0305 0.081 ± 0.0092

P(error |C) 1.0 ± 0.0 0.952 ± 0.0454 0.338 ± 0.0962 0.835 ± 0.0621

P(A|A) 0.977 ± 0.0034 0.974 ± 0.0041 0.970 ± 0.0043 0.970 ± 0.0055

P(B|A) 0.023 ± 0.0034 0.023 ± 0.0040 0.014 ± 0.0030 0.025 ± 0.0053

P(C |A) 0.0 ± 0.0 0.003 ± 0.0014 0.017 ± 0.0031 0.005 ± 0.0026

P(A|B) 0.081 ± 0.0119 0.081 ± 0.0118 0.080 ± 0.0117 0.072 ± 0.0085

P(B|B) 0.919 ± 0.0119 0.918 ± 0.0117 0.711 ± 0.0305 0.919 ± 0.0092

P(C |B) 0.0 ± 0.0 0.001 ± 0.0012 0.209 ± 0.0291 0.009 ± 0.0041

P(A|C) 0.024 ± 0.0192 0.024 ± 0.0192 0.024 ± 0.0192 0.024 ± 0.0192

P(B|C) 0.976 ± 0.0192 0.928 ± 0.0486 0.315 ± 0.0936 0.811 ± 0.0668

P(C |C) 0.0 ± 0.0 0.048 ± 0.0454 0.662 ± 0.0962 0.165 ± 0.0621

Table 4 Average misclassification rates ( ± standard deviation) and
their decomposition using SVM for three classes

P(error) 0.045 ± 0.0032 P(A|B) 0.054 ± 0.0078

P(error |A) 0.018 ± 0.0036 P(B|B) 0.946 ± 0.0079

P(error |B) 0.054 ± 0.0079 P(C |B) 0.000 ± 0.0001

P(error |C) 0.985 ± 0.0163 P(A|C) 0.098 ± 0.0444

P(A|A) 0.982 ± 0.0036 P(B|C) 0.886 ± 0.0418

P(B|A) 0.018 ± 0.0034 P(C |C) 0.015 ± 0.0163

P(C |A) 0.001 ± 0.0007

5.1.3 Support vector machine classifier

We used the LIBSVM software [7] and its Matlab version.
As in [12], the SVM was applied in all cases to data linearly
scaled to a common interval. We used the Gaussian kernel.
The averaged results of 100 runs of SVM for three classes
are displayed in Table 4. The class A, as the most frequent
label, is the best recognizable class by SVM method. The
objects from the class C with the smallest number of sam-
ples are almost unrecognizable by the method and they are
predominantly classified as being from the class B.

5.1.4 Multilayer perceptron classifier

We trained the MLP with the scaled conjugate gradients
(SCG) algorithm [16] implemented within the Netlab tool-
box [17]. All parameters were kept their default values as
specified in the toolbox. Polak–Ribiére formula was used for
update of (conjugate) search directions. The SCG algorithm
usually converged within 100 iterations.

Table 5 shows different misclassification rates for the best
case (regarding the total error), i.e. the 8-6-3 perceptron.
While the misclassification rates for classes A and B may be
considered acceptable, the misclassification rate for the class

Table 5 Average misclassification rates ( ± standard deviation) and
their decomposition using MLP for three classes

P(error) 0.050 ± 0.0036 P(A|B) 0.054 ± 0.0082
P(error |A) 0.026 ± 0.0048 P(B|B) 0.946 ± 0.0082

P(error |B) 0.054 ± 0.0082 P(C |B) 0.000 ± 0.0001

P(error |C) 0.999 ± 0.0036 P(A|C) 0.063 ± 0.0393

P(A|A) 0.974 ± 0.0048 P(B|C) 0.937 ± 0.0397

P(B|A) 0.026 ± 0.0048 P(C |C) 0.001 ± 0.0037

P(C |A) 0.000 ± 0.0000

C is too high, practically none of the C objects was correctly
recognized. This is likely due to a very low relative size of
class C . Looking at P(A|C) and P(B|C) reveals that most
of C patterns (mixed objects) are classified as bands. Since
other models suffer from the same problem, this raised the
question whether C class should be considered separately.

5.1.5 Discussion

Based on the above results, it is clear that the overall probabil-
ity of misclassification, P(error), is quite low and acceptable
for the given application with its minimum 0.045 ± 0.0032
for the classifier based on the SVM method and its maxi-
mum value 0.113 ± 0.008 for the FLC calculated under the
scheme II/0.30/0.08. However, all of the considered classi-
fiers failed to correctly classify the objects from the class C
(mixed objects). The probability of misclassification of such
objects, i.e. P(error |C), is unacceptably high (approaching
100% of all considered cases) with its minimum 0.338±0.04
for the FLC calculated under the scheme II/0.30/0.08 and
its maximum 1.0 ± 0.0 for the FLC calculated under the
scheme I/0.08/0.01. This result corresponds to our expecta-
tion based on preliminary analysis of the conditional distri-
butions of the considered measures. This analysis led us to
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Table 6 Average
misclassification rates
( ± standard deviation) and their
decomposition obtained using
WR, FLC with α = 0.08, SVM
and MLP method with mixed
objects eliminated from the
training set

WR FLC SVM MLP

P(error) 0.034 ± 0.0033 0.043 ± 0.0040 0.028 ± 0.0030 0.034 ± 0.0038

P(error |A) 0.020 ± 0.0036 0.027 ± 0.0041 0.017 ± 0.0033 0.026 ± 0.0051

P(error |B) 0.066 ± 0.0106 0.078 ± 0.0145 0.052 ± 0.0084 0.053 ± 0.0087

P(A|A) 0.980 ± 0.0036 0.973 ± 0.0041 0.982 ± 0.0033 0.973 ± 0.0051

P(B|A) 0.020 ± 0.0036 0.027 ± 0.0041 0.018 ± 0.0033 0.026 ± 0.0051

P(A|B) 0.066 ± 0.0106 0.078 ± 0.0145 0.052 ± 0.0084 0.053 ± 0.0087

P(B|B) 0.934 ± 0.0106 0.922 ± 0.0145 0.948 ± 0.0084 0.947 ± 0.0087

P(A|C) 0.089 ± 0.0066 0.021 ± 0.0000 0.101 ± 0.0094 0.062 ± 0.0233

P(B|C) 0.911 ± 0.0066 0.979 ± 0.0000 0.899 ± 0.0094 0.938 ± 0.0233

the conclusion that the classification into three classes does
not provide desired results and the idea to implement a suit-
able classifier of this type into the GASepo system has to
be abandoned. Consequently, it was necessary to restrict the
classification methods to two classes, in particular the arte-
facts A and the bands B. There are two possibilities how to
do this job in accordance with Epo image analysis priority:
(1) to simply eliminate the class C from the input data set,
or (2) to add the mixed objects to the class B of bands.

5.2 Classification into two classes. CASE 1: the mixed
objects are eliminated from the training set

In this particular case the input data set has been modified to
have the following structure:

population 1: artefacts A m1 = 4091 objects,
population 2: bands B m2 = 1789 objects.

5.2.1 Weighted ranks approach

In this case a training set consisting of 60% of artefacts and
training set consisting of 60% of bands were randomly cho-
sen and all the remaining observations were classified by
means of the WR rule. The obtained results are presented in
Table 6. We can see that this classification leads to a total
error 20% smaller when compared to Table 2.

5.2.2 Fisher linear classifier

Following the previous notation, the FLC was constructed
with Ω0 = A, Ω1 = B and different values of α. Table 6
shows the results for the best case (with regard to the total
error) achieved, α = 0.08. Analogously to the WR method,
the total error of classification into two classes decreased.

5.2.3 Support vector machine classifier

The averaged results of 100 runs of SVM for two classes with
mixed objects eliminated from the training set are listed in
Table 6. Elimination of C objects from the training set leads
to decrease of overall error in comparison to the classifica-
tion into three classes. The percentage of tested C objects
classified as B slightly increased.

5.2.4 Multilayer perceptron classifier

Table 6 shows the proportions of different misclassification
rates for the best, 8-6-1 case (regarding the total error). It can
be seen that, as with other models, the exclusion of mixed
objects from training decreased the total error by 1.6%. As
with three classes, most of the C objects are classified as
bands.

5.3 Classification into two classes. CASE 2: the mixed
objects are added to the class of bands in the training set

Adding the mixed objects to the class of bands leads to the
following modification of the input data set:

population 1: artefacts A m1 = 4091 objects,
population 2: bands B m2 = 1886 objects.

5.3.1 Weighted ranks approach

The obtained misclassification errors are presented in Table 7.
We can see that this yields a slight increase in the percentage
of the wrong decision when compared with Table 6.

5.3.2 Fisher linear classifier

Following the previous notation, the FLC was constructed
with Ω0 = A and Ω1 = B. Table 7 shows the results for
the best case (as to the total error) achieved. Comparison of
this Table to Table 6 shows that the inclusion of the objects
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Table 7 Average
misclassification rates
( ± standard deviation) and their
decomposition obtained using
WR, FLC with α = 0.08, SVM,
and MLP method, mixed objects
were added to the class of bands
in the training set

WR FLC SVM MLP

P(error) 0.035 ± 0.0031 0.043 ± 0.0034 0.030 ± 0.0034 0.034 ± 0.0031

P(error |A) 0.021 ± 0.0039 0.024 ± 0.0038 0.019 ± 0.0037 0.026 ± 0.0049

P(error |B) 0.066 ± 0.0095 0.085 ± 0.0121 0.053 ± 0.0080 0.053 ± 0.0083

P(A|A) 0.979 ± 0.0039 0.976 ± 0.0038 0.981 ± 0.0037 0.974 ± 0.0049

P(B|A) 0.021 ± 0.0039 0.024 ± 0.0038 0.019 ± 0.0037 0.026 ± 0.0049

P(A|B) 0.066 ± 0.0095 0.085 ± 0.0121 0.053 ± 0.0080 0.053 ± 0.0083

P(B|B) 0.934 ± 0.0095 0.915 ± 0.0121 0.947 ± 0.0080 0.947 ± 0.0083

P(A|C) 0.080 ± 0.0431 0.024 ± 0.0192 0.086 ± 0.0437 0.056 ± 0.0389

P(B|C) 0.920 ± 0.0439 0.976 ± 0.0192 0.914 ± 0.0437 0.944 ± 0.0389

from C into B in the training set did not much influence the
results.

5.3.3 Support vector machine classifier

The averaged results of 100 runs of SVM for two classes
with mixed objects added to the class of bands are given in
Table 7. There are no significant differences in comparison
to Table 6.

5.3.4 Classifier based on multilayer perceptron

Table 7 shows the proportions of different misclassification
rates for the best, 8-6-1 case. These results show that the alter-
native training strategy with two classes leads to practically
identical results as in the CASE 1.

5.3.5 Discussion

Based on the misclassification errors of all compared classi-
fiers related to the CASE 1 (Table 6) and CASE 2 (Table 7),
the following conclusions can be drawn:

– The modification of the training procedure, either by elim-
ination of the mixed objects or by adding them to the
class B, yields comparable misclassification errors; the
first way is recommended for its simplicity.

– Solving the modified classification task for two classes
(artefacts and bands) by the novel WR classifier yields
the second least value of the overall misclassification error
(0.034 for the CASE 1).

– In both cases the mixed objects are mostly classified as
band objects, so that the final interactive separation of
band parts from the artefacts can be confined to the class
of the bands.

5.4 An illustration of the segmentation and classification
results in the final documentation of rEpo positivity
tests performed by the GASepo system

In Fig. 8 two copies of an Epo image are documented together
with the intensity profiles and tables of numerical character-
istics of the incriminated lanes (N.4 of positive case, N.2 of
negative case). The result of band segmentation operation
is apparent from labeled bands. The result of classification
operation is articulated implicitly, i.e. all segmented objects
classified as artefacts have been automatically removed from
the visual presentation. Two cut-off-lines are depicted (in
each copy):—the upper one for epoietin alfa,—the lower one
for darbepoietin alfa. In the positive case, detected in the
lane N.4, the crucial bands which are located above the col
(marked by an ellipse) represent the most intensive bands
above the col within this lane (see a dashed rectangle in the
top table). On the contrary, in the negative case, detected
in the lane N.2, the intensity characteristics of the bands,
located above the col (marked by another ellipse) are dis-
persed throughout the ordered values given in the bottom
table.

6 Conclusion

In 2004 an international project of the Gel Analysis System
for Epo doping-control (GASepo) was approved by World
Anti-Doping Agency. The goal of this project is to develop a
software system that could be used as a standardized objective
tool for Epo image analysis carried out in everyday practice
of WADA-accredited doping control laboratories. During the
development of this system [4] we encountered two main
problems: object segmentation in digital Epo images, and
classification of segmented objects.

In the paper the basic approach to the first problem is
described that represents a compound multilevel procedure
including several image processing algorithms. We have
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Fig. 8 An illustration of the
positive and negative results of
the rEpo positivity test
performed via the GASepo
system in which band
segmentation and classification
operations have been
incorporated

concentrated on an improvement of the important band pro-
jection operator that is dedicated to resolve frequent prob-
lems with disrupted bands. The novelty of this approach can
be characterized by the following points.

– Four additional measures of disrupted band parts and arte-
facts with the goal to increase the number of correctly
merged band parts and to decrease the number of improp-
erly merged artefact parts.

– The tools incorporated in the GASepo system for user
interactive analysis were utilized for expert classification
of segmented objects into several object classes.

– The obtained expert knowledge enabled us to carry out
discrimination analysis for each of six measures using
the histograms of their values calculated separately for
the artefacts and bands.

– Optimum thresholds of the object merging measures have
been found and incorporated into the final decision rule;
the results for the given set of Epo images which served
for the generation of the input dataset showed 30%
improvement in merging separate parts of the individual
bands.

The proposed improved algorithm has been implemented
in the GASepo software.

In Sect. 4.1 a WR classification method, novel in the
field of image classification, is introduced. It is based on
ranks of the values of criterial function that involves Maha-
lanobis distances generated by the given data populations.

The weights are included into the decision process with the
aim to achieve a smaller total error. In the case of two clas-
ses the rule is a modification of the Broffitt–Randless–Hogg
rule. The generalization to its multiclass counterpart is pro-
posed. The weights should be chosen by the user. The par-
ticular choice yielding good results is found. The both WR
approaches are suitable for any classification tasks beyond
the application area discussed in the paper, especially if the
normality assumptions are critically violated.

The WR classifiers proposed in our paper have been eval-
uated on real samples of segmented objects of Epo images.
They have been compared to three selected well known clas-
sifiers: Fisher linear classifier, Support Vector Machine, and
Multilayer Perceptron.

For the initial problem of three classes (artefacts, bands,
and mixed objects in segmented Epo images), it turned out
that no classifier is able to discriminate the class of mixed
objects satisfactorily. Therefore, we have reduced the initial
problem to classification into two basic classes of artefacts
and bands. Two possibilities of doing so have been explored.
We have shown that for all classifiers, no significant differ-
ences between these two approaches were obtained. The WR
classifier reached misclassification errors smaller than in the
case of other classifiers, except vector support machine. How-
ever, it should be emphasized, that the WR classifier does
not require incorporation of any additional program pack-
age in the GASepo software. As majority of operations in
GASepo have to be performed in real time, such a software
solution would cause undesired extension of the Epo image
analysis.
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