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Abstract. Reservoir computing provides a promising approach to effi-
cient training of recurrent neural networks, by exploiting the computa-
tional properties of the reservoir structure. Various approaches, ranging
from suitable initialization to reservoir optimization by training have
been proposed. In this paper we take a closer look at short-term memory
capacity, introduced by Jaeger in case of echo state networks. Memory
capacity has recently been investigated with respect to criticality, the so
called edge of chaos, when the network switches from a stable regime
to an unstable dynamic regime. We calculate memory capacity of the
networks for various input data sets, both random and structured, and
show how the data distribution affects the network performance. We also
investigate the effect of reservoir sparsity in this context.

Keywords: echo state network, memory capacity, edge of chaos.

1 Introduction

The reservoir computing (RC) paradigm [9] has turned out to be a computation-
ally efficient approach for online computing in spatiotemporal tasks, compared
to classical recurrent networks suffering from complicated training and slow con-
vergence. RC utilizes appropriate initialization of the input and recurrent part
(reservoir) of the network, and only the memoryless output part (readout) of
the network is trained (in supervised way). More recently, research has also
focused on various ways how to optimize the reservoir properties. Numerous
methods for unsupervised, semi-supervised or supervised optimization methods
have been investigated, see e.g. [9] for a comprehensive survey. In addition, it
has been shown that the computational capabilities of reservoir networks are
maximized when the recurrent layer is close to the border between a stable (or-
dered) and an unstable (chaotic) dynamics regime, the so called edge of chaos,
or criticality [8]. Furthermore, the phase transition between ordered and chaotic
network behavior for the binary (spiking) circuits has been shown to be much
sharper than that of analog circuits [12]. In RC, various quantitative measures
for assessing the network information processing have been proposed. One of the
indicators is memory capacity (MC), introduced and defined by Jaeger [6], as
the ability to reconstruct the past input signal from the immediate state of the

S. Wermter et al. (Eds.): ICANN 2014, LNCS 8681, pp. 41–48, 2014.
c© Springer International Publishing Switzerland 2014
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system. For instance, MC is increased when the reservoir dynamics are enriched
by spreading the eigenvalues of the recurrent weight matrix over a disk [10], or
can become very robust against noise by reservoir orthogonalization [15]. These
results for discrete networks also served as inspiration for reservoir optimization
in continuous-time networks [4]. In this paper, we take a closer look at MC in
the edge of chaos in case of (discrete-time analog) echo state networks (ESNs)
[7] with respect to input data distribution. We calculate MC of the networks for
various input data sets, both random and structured, and show how the statis-
tical properties of data affect network performance. We also test the effect of
reservoir sparsity. Somewhat related research was made in [14], where the mem-
ory (not MC) and the nonlinearity (of the reservoir) were analyzed as a function
of input scaling and spectral radius of ESNs. Some authors have taken a princi-
pled approach by introducing an ESN with minimal complexity and estimating
its MC on a number of widely used benchmark time series [11].

In our simulations, we consider an ESN with a single input. Hence, the acti-
vation of reservoir units is updated according to x(t) = f(Wx(t− 1)+winu(t)),
where f = (f1, ...fN ) are internal unit’s activation functions (typically a sigmoid
or tanh function; we used the latter). W is a matrix of reservoir connections,
win is a vector of input weights and u(t) is the (single) input. We considered
linear outputs (readout), so the network output is computed as y(t) = Woutx(t)
and output weights can be computed offline via linear regression.

2 Estimating the Criticality in Input-Driven ESN

The common way how to determine whether a dynamical system has ordered
or chaotic dynamics, is to look at the average sensitivity to perturbations of
the initial conditions [1,3]. If the system is in ordered state, small differences in
the initial conditions of two otherwise equal systems should eventually vanish.
In chaotic state, they will persist and amplify. A measure for the exponential
divergence of two trajectories of a dynamical system in state space with very
small initial separation is the (characteristic) Lyapunov exponent (LE). LE is
defined as λ = liml→∞ ln(γl/γ0)/l, where γ0 is the initial distance between the
perturbed and the unperturbed trajectory (given by their state vectors), γl is
the distance between the two state vectors at time l. Ordered state occurs for
λ < 0, whereas λ > 0 implies chaotic state. Hence, a phase transition occurs
at λ ≈ 0 (the critical point, or the edge of chaos). Since λ is an asymptotic
quantity, it has to be estimated for most dynamical systems. Following [2], we
adopt here the method described in [13, chap. 5.6]. Two equal networks are
simulated for a sufficiently large number of steps, in order to eliminate transient
random initialization effects. Then we proceed as follows:

1. Add a small perturbation ε into a unit of one network. This separates the
state of the perturbed network xp(0) from the state of the unperturbed
network xu(0) by an amount γ0. We used ε = 10−12 as appropriate [13].1

1 The perturbation should be as small as possible, but still large enough so that its
influence will be measurable with limited numerical precision on a computer.
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2. Run the simulation one step and record the resulting state difference (in
Euclidean norm) for this l-th step γl = ‖xu(l)− xp(l)‖.

3. Reset xp(l) to xu(l)+(γ0/γl)(x
p(l)−xu(l)), which keeps the two trajectories

close to each other in order to avoid numerical overflows.

As performed in [13] and [2], γl is added to a running average and steps 2
and 3 are performed repeatedly until the average converges. We repeat these
steps for a total of lmax = 500 times and then average the logarithm of the
distances along the trajectory as λn = 〈ln(γl/γ0)〉. For each tested reservoir
with N units, we calculate N different λn values, choosing a different reservoir
unit to be perturbed each time. The average of these values is (for the simulated
network) then taken as a final estimate of LE (for that network), i.e. λ ≈ 〈λn〉.

3 Memory Capacity of ESN

To evaluate the short-term memory capacity of the networks, we computed the
k-delay memory capacity (MCk) introduced and derived in [6] as

MCk =
cov2(u(t− k), yk(t))

σ2(u(t))σ2(yk(t))
(1)

where u(t − k) is a k-step delayed input, yk(t) = ũ(t − k) is its reconstruction
at the network output (using linear readout), cov denotes covariance (of the
two time series) and σ2 means variance. So the concept of memory is based
on network’s ability to retrieve the past information (for various k) from the
reservoir using the linear combinations of internal unit activations. Hence, the
vector of reconstructed past inputs (from the training set, concatenated in the
matrix U) was computed using the output weight matrix Wout = UX+, where
X+ denotes the pseudoinverse matrix of concatenated state vectors. The overall
short-term memory capacity is approximated as MC =

∑kmax

k=1 MCk. We used
kmax = 100. Jaeger [6] experimented with memory capacity of linear ESNs,
driven by i.i.d. scalar inputs and his main result was that MC ≤ N .

4 Experiments

We experimented with ESNs driven by various types of time series (stochastic
and structured) and calculated the MC as a function of LE. The networks had
N = 150 reservoir units.2 As in [2], we used ESNs whose reservoir weights
were drawn from a normal distribution with zero mean and variance σ2. We
systematically changed σ between simulations such that log σ varied within the
interval [−1.5;−0.5], increasing in steps of 0.1. A more fine-grained resolution
was used close to the edge of chaos, between [−1.2;−0.9]. Here, we increased log
σ in steps of 0.02. For each σ we generated 50 instances of ESN (that slighly
differed in their estimated LE). For all networks, LE was estimated as described

2 We chose this size in order to be able to verify some results presented in [2].
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in Section 2. Input weights were drawn uniformly from the interval [−0.1; 0.1].
In case of stochastic sequences (uniform data), we looked at the effect of the
following parameters on MC: (a) interval shift (given by its mean), (b) interval
length, and (c) sparsity of the reservoir. In case of structured data, we evaluated
MC for various data sets (mostly chaotic).

Fig. 1. Effect of random data interval shift on memory capacity, as a function of the
Lyapunov exponent. From bottom to top: [-1;4], [0;5], [2;7], [5;10]. Larger random values
lead to higher MC that does not clearly peak at the edge of chaos.

Uniform Data. We generated 7000 data points for this time series, discarded
the first 1000 points to get rid of transients, another set of 1000 was used for
calculating Wout and the remaining subset was used for calculating MC (this
resulted in 1000:1000:5000 split). The effect of interval shift is shown in Figure 1.
In the figure, each symbol corresponds to one instance of ESN, characterized by
its LE and MC values.3 It can be seen that larger input values lead to higher
MC. Interestingly, for λ > 0, MC drops gradually (and not sharply, as in some
cases of structured input data shown below). The results are symmetric with
respect to zero, so e.g. the range [−10;−5] leads to the same result as [5; 10].
This is due to the symmetry of the tanh activation function (which preserves
the stability assumptions behind the spectral radius scaling).

Next, the effect of the interval size for zero-mean i.i.d. data is shown in Figure 2
which reveals that the range does matter but only at the edge of chaos. For
smaller intervals, MC reaches the maximum of around 45, as opposed to 30 in
the case of the larger interval. The explanation can probably be sought in the
properties of tanh activation function which saturates at argument values ±3.

It is to be noted that these results hold for tanh activation function. Com-
parison with a unipolar sigmoid f(z) = 1/(1 + exp(−z)), which is also used in
ESNs, reveals much different MC profiles (not shown here due to lack of space).
For various input data intervals (as those used in Figure 1), MC was observed to

3 For each considered σ, the instances of ESN can (slightly) differ in terms of their λ
and MC estimates. Also, two ESN instances with the same λ can differ in their MC.
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Fig. 2. Effect of random data interval size on memory capacity. It can be observed
that the smaller range leads to higher MC, especially at the edge of chaos.

Fig. 3. Memory capacity for structured input data: Mackey–Glass data leads to well-
preserved memory in stable configurations, as opposed to drops in case of the NARMA
dataset

remain approximately constant (ranging from 25 to 85), shifted towards stable
regimes, i.e. without configurations operating at the edge of chaos.

Structured Data. First, we used the well-known Mackey–Glass series, com-
puted by integrating the system du/dt = 0.2u(t− τ)/(1 + u(t− τ)10)− 0.1u(t),
where with τ = 17 we get a slightly chaotic behavior. We had available 1200
generated data points, split in the 200:500:500 ratio.

Second, following [2], we modeled a 30th order nonlinear autoregressive mov-
ing average (NARMA) system, generated by the equation u(t+ 1) = 0.2 u(t) +

0.004 u(t)
∑29

i=0 u(t− i) + 1.5 z(t− 29)z(t)+ 0.001, where the input z(t) has uni-
form distribution from [0;0.5]. For this data set, we use the same size as described
for uniform data (7000 points in total). Results for MC in case of these two data
sets are shown in Figure 3. In case of Mackey-Glass data, at the edge of chaos,
the effect is minimal, so the networks preserve a very good MC also for more
ordered configurations. In case of NARMA data set, MC does increase towards
the edge of chaos. Actually, the MC profile for NARMA looks very similar to the
case of iid. data set in the interval [0;0.5], the reason being that NARMA can still
be viewed as inherently a stochastic (filtered) system because the effect of the
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third, stochastic term is comparable to that of the first (filtering) term. Another
difference between the two time series is in MC decrease in unstable regimes.
Third, we also considered the laser data (in chaotic regime) which is frequently
used in time-series prediction [5]. Here we used the 200:400:400 splitting of the
available data set. Scaling the data series confirms the expectations that this is
useful, as shown in Figure 4.

Fig. 4. Memory capacity for laser data (in chaotic regime). Left: original data, right:
scaled data (divided by 100). It is evident that scaling down not only increases MC at
the edge of chaos but also in stable regimes it leads to memory capacity, which is non-
existent in case of original data in the range of considered reservoir weight distributions.
Of course, the same effect of increased MC could be achieved for original inputs with
apropriate down-scaling of input weights.

Reservoir Sparsity. Last but not least, we investigated the effect of reservoir
sparsity on memory capacity. MC for various sparse reservoirs are shown in
Figure 5. The sparsity values were selected (from the interval 10-100% with a
step 10%) to highlight the differences. It is observed that more significant changes
appear for very sparse reservoirs. Consistently with previous findings [7], the
maximumMC is not affected by sparsity, so in all cases the critical networks have
similar memory capacity.What changes, however, is that the sparser connectivity
pushes the networks toward more stable regimes (with shorter memory span),
as shown by shifting the clowd of points to the left. Hence, it has the tendency
to stabilize the reservoirs.

The second comparison, related to sparsity, relates to one ESN with full con-
nectivity (i.e. withN2 connections in the reservoir) and another network with the
same number of connections but only 20% connectivity, which can be achieved
with approximately N = 335. It is interesting to see in Figure 6 that sparsity
leads to higher MC at the edge of chaos. As shown in Figure 5, sparsity does
not affect the MC profile, so the network with N = 335 units in the reservoir
performs better simply because it is larger, so it can store more inofrmation. On
the other hand, sparsity pushes the network configurations to stable regimes,
as shown by the shifted cloud of points to the left. In all simulations, it was
observed that the values of MC were well below the theoretical limit (N = 150),
including the edge of chaos.
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Fig. 5. Memory capacity for random data, for reservoirs with full connectivity (left)
and 20% connectivity (right). Significant changes in MC profile appear at sparse con-
nectivity below 50%.

Fig. 6. Memory capacity for two networks with the same number of reservoir connec-
tions. The difference in MC in favour of sparse network occurs at the edge of chaos.

5 Conclusion

We focused on memory capacity of echo state networks (with tanh activation
function) at the edge of chaos, and its dependence on input data statistics and
reservoir properties, because these issues have not been sufficiently dealt with
in the literature. The observations can be summarized as follows: For uniformly
distributed input data, the interval shift matters, such that higher values lead
to higher MC. Similarly, the smaller interval range seems to increase MC at the
edge of chaos. In case of structured data, the results vary depending on data
properties. Chaotic Mackey–Glass time series leads to very high MC but the
edge of chaos plays no role, whereas for NARMA data the MC behaves similarly
to uniform data (as explained in the text). In case of chaotic laser data, the data
scaling confirms a desirable effect of increasedMC, consistently with observations
on uniform data. Last but not least, reservoir sparsity appears to affect MC, not
only by increasing the memory at the edge of chaos, but also by shifting the
network configuration towards more stable regimes (with negative Lyapunov
exponents). Taken together, memory capacity is a crucial network property that
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is maximized at the edge of chaos, together with other proposed measures, such
as the information transfer, discussed for instance recently in [2].
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3. Büsing, L., Schrauwen, B., Legenstein, R.: Connectivity, dynamics, and memory in
reservoir computing with binary and analog neurons. Neural Computation 22(5),
1272–1311 (2010)

4. Hermans, M., Schrauwen, B.: Memory in linear recurrent neural networks in con-
tinuous time. Neural Networks 23, 341–355 (2010)

5. Huebner, U., Abraham, N., Weiss, C.: Dimensions and entropies of chaotic inten-
sity pulsations in a single-mode far-infrared NH3 laser. Physics Reviews A 40(11),
6354–6365 (1989)

6. Jaeger, H.: Short term memory in echo state networks. Tech. Rep. GMD Report
152, German National Research Center for Information Technology (2002)

7. Jaeger, H.: Echo state network. Scholarpedia 2(9) (2007)
8. Legenstein, R., Maass, W.: What makes a dynamical system computationally pow-

erful? In: New Directions in Statistical Signal Processing: From Systems to Brain,
pp. 127–154. MIT Press (2007)

9. Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Computer Science Review 3(3), 127–149 (2009)

10. Ozturk, M., Xu, C., Principe, J.: Analysis and design of echo state networks. Neural
Computation 19, 111–138 (2006)
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