
Prediction of chaotic time-series usingdynamic cell structures and local linear modelsLucius Chud�y, Igor Farka�s �Institute of Measurement ScienceSlovak Academy of SciencesD�ubravsk�a cesta 9, 842 19 Bratislava, Slovakiae-mail: fchudy,farkasg@neuro.savba.skAbstractWe present a time-series predicton method based on the combination of an unsupervised growingneural network { Dynamic Cell Structures (DCS) and local linear models (LLMs). DCS is used forrepresentation of the attractor of the underlying dynamical system in the form of directed graph andthus provides the proper quantization of the state space data. Whereas such a model provides a highlyaccurate prediction of \simple" data (e.g. Mackey-Glass chaotic data), for data which exhibits socalled di�cult mappings and/or training set is not representative enough (e.g. laser data) it su�ers fromrather poor generalization. We analyse possible reasons for this behavior and propose a regularizationtechnique which is optimized on cross-validation set to improve generalization. We also investigateunit insertion strategies intended to improve the accuracy of LLMs. Finally, we compare our resultswith related approaches.1 IntroductionPrediction of (chaotic) time-series belongs to di�cult information tasks, but enjoys the considerableattention, probably due to its high practical importance. Throughout the last decades, there have beendeveloped two classes of prediction models, based on either conventional methods (linear predictions,polynomial approximations etc.), or more powerful neural networks [1], [2]. Global models attemptto yield a compact representation of an underlying dynamical system and require relatively few tunableparameters. On the other hand, local models lack the property of compactness and are not so economical,but have the ability to adhere to the local shape of an arbitrary surface, which is di�cult especially incases when the dynamical system characteristics vary considerably throughout the state space. Therefore,in a number of cases local models outperform global ones [3].Local models are typically based on the concept of nearest neighbors. Building local mappings in allpoints of reconstructed state space is a time- and memory-consuming process, which led to a natural ideato quantize the state space and build local mappings only in positions given by obtained prototype vectors(Voronoi centers). There have been various local methods proposed, ranging from linear to high-ordernonlinear models. As Farmer and Sidorowich [4] have already shown, local linear models (LLMs), despitetheir simplicity, provide an e�ective and accurate approximation, while high-order polynomials in higherdimensions are not signi�cantly better than the �rst-order ones.For quantization of the state space, in most of the neural networks papers, the self-organizing map(SOM) [5] has been used [6], [7], [8]. Apart from quantization, the SOM attempts to represent thetopology of the approximated data manifold, so it can serve as a visualization tool as well. On theother hand, prede�ned map structure is a disturbing factor in quantization if the map dimension doesnot coincide with the intrinsic dimension of data. Higher approximation exibility is thus o�ered by\structure-free" self-organizing network models, either with prede�ned number of units (prototypes)such as Lloyd and MacQueen's K-means clustering procedure [9], [10], the neural-gas network [11] or,time-varying, incremental neural network structure [12], [13], [14], [15].In this paper, we use the dynamic cell structures (DCS) [15] for incremental quantization of the statespace which is combined with LLMs. This type of unsupervised neural network grows during learning(quantization), until the prede�ned stopping criterion is met.�This work was supported by Slovak Grant Agency for Science, grants No. 2/5088/98 and No. 98/5305/468.



However, such a type of prediction approach su�ers from some inherent drawbacks. First, the quanti-zation process may result in clusters containing patterns with di�erent and conicting \tangents", whichimplies a poor LLM. Second, a di�culty may arise if small clusters emerge. Third, associated with statespace representation, so called di�cult mappings may occur in the traning set (close input patterns mapto distant outputs). Fourth, the problem is if the training set is not representative.We investigate two approaches which aim at minimizing some of these di�culties. The �rst one dealswith possible strategies of exploiting the prediction error during quantization for improvement of theconsistency of LLMs. The second one regularizes the LLMs using the cross-validation set in order toimprove generalization.2 Dynamic cell structuresDCS [15] belong to the category of topology-representing networks, which were previously introducedby Martinetz [16]. DCS network can be viewed as an undirected graph G = (W;C), where W =fw1;w2; :::;wng is the set of n nodes (units) given by their coordinates, wi 2 RD, with D beingthe dimension of input space, and C[n � n] is the (symmetric) connection matrix de�ning edges inG. Cij = Cji � 0 de�nes the strength of the connection between units i and j. Shortly, DCS can beviewed as a topology-preserving vector quantizer.Learning strategy for DCS consists of sequential insertion of units into G, one after each sweep,until the stopping criterion is met (e.g. number of units, quantization error). Sweep is a number (�) ofiterations, each of which comprises a set of network adaptation steps. In each iteration, �rst, an inputis chosen from the training set, x 2 X � RD . Second, the weights of the Euclidean winner and itsneighbors are updated using Kohonen-like rule (with constant learning rates �B ; �N , respectively). Third,all connections are modi�ed: the one between two winners is set to 1, connections falling below thethreshold � are set to zero and all remaining ones are multiplied by 0 < � < 1. Recommended relationin o�-line tasks is � = jXjp�, which presumes setting � = jX j, where jX j denotes the size of the trainingset.Finally, after the sweep, a new unit is inserted into DCS according to units' resources which quantifylocal approximation errors. It is placed (1) either to match the input pattern, which caused the largesterror, or (2) in between the units with the largest and its neighbor with the second largest resource value.In the latter case, resources are proportionally redistributed among the participating three units. Afterunit insertion, new connections are set to 1, and resources are decremented (multiplied by 0 � � < 1) inorder to prevent their overow. In o�-line tasks, it is reasonable to nullify resources after each sweep.As DCS are commonly intended for vector quantization, resources are used to quantify the quantiza-tion error (QE). In our task, however, the proper choice is to update resources based on local predictionerror (PE), to achieve a better prediction model.In addition, in both cases one can use either accumulated or average error (per input pattern). Notethat using PE based insertion supposses an on-line approach, i.e. building LLMs during the quantizationprocess after each sweep. As indicated in our experiments, this approach may improve the accuracy ofLLMs due to \less conicting" patterns within clusters.3 Prediction method3.1 State space quantizationIn time-series prediction, the time-series is �rst embedded into the state space using delay coordinatesx(t) = [x(t); x(t � �); ::: ; x(t� (dE � 1)� ]T ; (1)where x(t) is the value of the time-series at time t, � is a suitable time delay, and dE is the embeddingdimension. Vector x(t) is used to predict the value x(t+�t). Input-output vectors z (used for training)are formed by concatenation as z(t) = [xT (t); x(t +�t)]T :Every unit i 2 G has a vector [wTi (t); wi(t + �t)]T 2 RD associated with it, where its input partwi(t) = [wi1(t); :::; widE (t)]T 2 RdE . State space quantization can in principle be performed in two ways:(1) in input space (based on x's), or (2) in input-output space (based on z's). In both cases, however,the update of wi(t) is performed in RD, i.e. the input-output space. 11The �rst case corresponds in fact to the weight adaptation strategy of constrained topological mapping [17].



The quantization process with DCS starts with two units (placed to be identical with �rst two inputs),and input-output vectors z(t) are presented randomly with respect to time t. Unit insertion process isgoverned either by QE or PE. As a stopping criterion, we used the desired number of units.3.2 Local linear modelsProcess of building LLMs consists of repetition of two main steps: winner search and parameter adapta-tion. Winner B among units is searched comparing only the input parts both of input-output and weightvectors, i.e., B = argmini kx(t)�wi(t)k. Local prediction models for the winner and its neighbors yieldthe coe�cients fai 2 RdEg;8i 2 NB , so that prediction in the neighborhood of winner i is computed asx̂(t+�t) = aTi (x(t) �wi(t)) + wi(t+�t) :Prediction coe�cients ai are computed using standard singular value decomposition (SVD) procedure.3.3 Regularization of LLMsUsing SVD for solving linear set od equations can be an advantage for regularization of the solution,especially in the case of di�cult mappings and/or not representative learning set. Namely, it might beuseful to relax the rigidity of the prediction parameters estimate obtained from the learning set andallow less precise estimate by means of regularization of the pseudoinverse matrix. If the matrix X isdecomposed as X = U�VT , then elements of its e�ective pseudoinverse X+ are computed asx+ij = mXk=1 vikujk�k ; i = 1; :::; dE j = 1; :::; ni ; (2)where ni is the size of i-th Voronoi cluster. Usually, only elements corresponding to relatively very smallsingular values �k are omitted, in order to eliminate noise and numerical errors in computation. Ourmotivation is to improve generalization, so we allow more elements to be ommitted in (2). However,optimal m is di�cult to estimate a priori. We determine this number locally, i.e. separately for everycluster by means of minimizing the PE on the cross-validation set (previously extracted from X ). It isaccomplished by trial and error, i.e. simply by examining local solutions with various m and choosing theone which yields the smallest PE.4 ExperimentsFirst, for the purpose of comparison with other methods, we tested our algorithm on a benchmarktime-series, generated by the Mackey-Glass system [18], which is described by the di�erential equationx0(t) = �0:1x(t)+0:2x(t��)=(1+x(t��)10), where x(t) is the value of the time-series at time t. We useddata available from CMU archive [19], in which case � = 17. For creating the embedded data vectors fortraining and testing, standard values � = 6; dE = 4 were used (in Eq. 1).The second test set was laser data in chaotic regime downloaded from [20]. In this case, we chose� = 1; dE = 15. Prediction accuracy was evaluated by normalized root mean squared error (NRMSE).4.1 ResultsMackey-Glass data. First, the performance of the proposed method was tested on various sizes of theDCS graph, using the �nal number of units nf as a stopping criterion. After quantization of the statespace, LLMs were built. Results are summarized in Table 1. Parameters of the DCS were set by hand asfollows: � = 0:999; � = 200; � = 0; � = 0:001; �B = 0:2; �N = 0:01, jX j = 3000, number of iterations forbuilding LLMs: one pass over X . Inputs were taken in natural order, consecutively with respect to timet. The DCS was trained to predict x(t + 6). In order to predict x(t + 84), the predicted values x̂(t + 6)were fed back iteratively 14 times. Also, in order to see the growth of prediction error in autonomousregime, we included the evol prediction mode, i.e. the network was supplied with the �rst input vector ofthe test set, and the rest of it was estimated during the next (95) iterative predictions. As for insertionstrategies, both QE and PE worked equally well, so we present only QE based one, which is faster.For training, also smaller sets were tried in order to obtain results for comparison with related ap-proaches. Speci�cally, several runs were performed, each using a di�erent 500- or 1000-fraction of X .



Number x(t+ 6) x(t+ 84) evolof units 500 1000 3000 500 1000 3000 500 1000 3000100 0.015 0.013 0.0135 0.048 0.062 0.064 0.20 0.52 0.420200 0.010 0.009 0.0055 0.042 0.048 0.030 0.15 0.29 0.085400 - - 0.0033 - - 0.018 - - 0.082Table 1: NRMSE of prediction for 3 di�erent sizes of DCS and 3 sizes of the Mackey-Glass training set.SVD was used for building LLMs.Laser data. Quantization process based on QE may in some cases lead to improper partitioning ofthe state space with regard to building LLMs. This does not appear to be a problem in case of simpleMackey-Glass signal, but seems to matter in the case of more di�cult laser data. We investigated thestrategy of unit insertion based on PE. Speci�cally, a new unit is inserted in the place of a pattern whichhas caused the largest PE within the cluster with largest PE. To make comparison, we tried also QEbased insertion strategy. Both were combined with two basic unit positions updates { �nding a winnereither in input or input-output space. In Fig. 1 are shown 4 averaged (over 20 random runs) developmentsof NRMSE on X (3000 samples) for above 4 cases. In all cases, DCS developed on QE basis, until 100neurons were inserted (in order to avoid building LLMs for initially very large clusters). This con�gurationserved as a starting con�guration for subsequent comparison. As can be seen, insertion strategies basedon PE speed up learning and this process uctuates less in comparison to QE based strategies.Figure 1 to be inserted here.Figure 1: Averaged NRMSE obtained on training sets of laser data. IN (OUT) stands for quantizationperformed in input (input-output) space, P (Q) stands for PE (QE) based unit insertion. It is evidentthat PE based insertion converges faster and is more stable.Regularization. Although investigated PE insertion strategies lead to the decrease of NRMSE on X(see Fig. 1), they can have minor e�ect on PE on the test set Y (poor generalization, especially forcollapses [21]), mainly in the case of unrepresentative X . This seems to be the case also for laser datawhen even for the best PE insertion strategy the NRMSE on Y considerably uctuates and does notdecrease during training. Proposed regularization of every LLM minimizes the PE on cross-validation setand indirectly also decreases PE on Y . The �nal solution was chosen to minimize the weighted sum ofPE on cross-validation (by a factor of 0.8) and training sets (0.2) during the growth of DCS. In Table 2we present means and standard deviations of NRMSE evaluated on Y during the growth of DCS from100 to 150 neurons for an unregularized LLMs, as well as two regularizations (corresponding to sizes ofcross-validation sets equal to 1/5 and 1/10 fractions of X ). It can be seen that whereas unregularizedsolution leads to a uctuating poor result, regularizations yield much better generalization.NRMSE Reg-0 Reg-5 Reg-10Mean 0.485 0.150 0.140StDev 0.577 0.047 0.027Table 2: Means and standard deviations of NRMSE on laser data test set for unregularized LLMs andtwo regularized solutions. Averaged over 20 random runs.4.2 Comparison to other methodsUsing Mackey-Glass time-series as a benchmark data set, one typically attempts to predict x(t + 84) orx(t+ 85). In the former case, iterative prediction based on x̂(t+ 6) is usually applied.To make comparisons compatible, we focus only on neural networks trained on Mackey-Glass time-series with � = 17. Among the approaches based on self-organized quantization of the state space andlocal linear modelling, we include SOM+SVD [8] and NGN+ALLM 2 [11] methods.2ALLM stands for adaptive LLMs, which is an incremental adaptation of parameters derived from least-squares errorminimization.



As a best result, the NRMSE for SOM+SVD was achieved in con�guration 1225 units/3000 inputs,namely f0.0048,0.022g for predicting fx(t + 6); x(t + 84)g. For smaller maps, errors for 100/3000 weref0.013,0.06g and for 400/3000 f0.01,0.14g. For smaller training sets, 1225/500 resulted in f0.033,0.12gand 1225/1000 in f0.009,0.035g. If we consider our results in con�guration 400/3000, given in Table 1,we can see that DCS+SVD achieves roughly the same NRMSE with 3 times fewer units than SOM. Thismust be due to higher exibility of DCS in approximating (partitioning) nonlinear data manifold.Neural gas network (NGN), alleviates the the above problem, because it is not restricted to any apriori topology either. Reported results for prediction of x(t+90) are approximately as follows: 3 NRMSEin con�gurations nf/�, where � stands for f500,1000,5000g inputs, resulted in f0.266,0.224,0.211g, for200/� in f0.251,0.188,0.158g and for 400/� in f0.298,0.193,0.133g. Since we assume that both DCS andNGN are comparable in their quantization performance, it can be observed that ALLM is less accuratein prediction compared to SVD.Other neural methods, which have been used for predicting Mackey-Glass time series are back-propagation neural network (BPNN) [1], and RAN [22] based on radial basis functions. With BPNNhaving 20 hidden units in a two-layer architecture and training set size 500, the authors reported NRMSEof f0.02,0.06g. RAN trained on 3000 inputs produced the error 0.054, but for direct prediction of x(t+85).Regarding laser data, it is di�cult to compare our results with known results from the literature,since they involve sophisticated preprocessing of primary data and/or high complexity of computation.Sauer's approach [23] involves spline interpolation, low-pass �ltering of data, PCA projection, weightedregression and a huge number of LLMs even for various time prediction horizons. Wan's method [24] isbased on a quite sophisticated and complex FIR feedforward network model with 25-dimensional inputrepresentation and complicated architecture comprising 3 successive layers. The method used in [25]involves weighted PCA, expert combination of linear models and multi-layer perceptrons and adjustableprediction horizon. The main goal of our approach was to investigate the prediction capabilities of a rathersimple model requiring no preprocessing of data. Despite that our results do not compare favourablywith the above mentioned approaches, proposed modi�cations of the basic DCS-LLM method appear tobe successful in improving a very poor prediction on laser data to the acceptable accuracy.5 ConclusionOur results strongly indicate that further improvement of the prediction accuracy of the proposed DSC-LLM model needs a proper preprocessing of primary data either by means of �ltering, interpolationand/or projection of data. These seem to be the crucial factors which inuence prediction generalization.A possible improvement of the DCS-LLM model itself may result from incorporation of the distance tothe subspace of particular LLM for �nding the \nearest" unit. Such a combination of Euclidian distanceand LLM subspace distance might lead to better partitioning of data and thus to more consistent LLMs.References[1] A. Lapedes and R. Farber. Nonlinear signal processing using neural networks: Prediction and system mod-elling. Technical Report LA-UP-87-2662, Los Alamos National Laboratory, 1987.[2] S. Haykin. Neural networks expand SP's horizons. IEEE Signal Processing Magazine, pages 24{49, March1996.[3] A. C. Singer, G. W. Wornell, and A. V. Oppenheim. Codebook prediction: A nonlinear signal modelingparadigm. In Proc. of ICASSP'92, volume V, pages 325{328, 1992.[4] J. D. Farmer and J. J. Sidorowich. Predicting chaotic time series. Physics Review Letters, 59(8):845{848,1987.[5] T. Kohonen. Self-Organizing Maps. Springer Verlag, 1997. second edition.[6] J. Walter, H. Ritter, and K. J. Schulten. Non-linear prediction with self-organizing maps. In Proc. of theIJCNN-90, volume 2, pages 589{594, 1990.[7] J. C. Principe and L. Wang. Non-linear time series modelling with self-organizing feature maps. In Proc. ofthe 1995 Workshop: Neural Networks for Signal Processing V., pages 11{20, 1995.[8] J. Vesanto. Using the SOM and local models in time-series prediction. In Proc. of the WSOM'97: Workshopon Self-Organizing Maps, pages 209{214. Espoo, Finland, 1997.3The values of NRMSE were estimated from the line graph, given in their paper, displaying log(NMSE).
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