
Modi�ed Dynamic Cell Structures as a Thinning AlgorithmIgor Farka�s & Lucius Chud�yInstitute of Measurement ScienceSlovak Academy of SciencesD�ubravsk�a cesta 9, 842 19 BratislavaSlovakiae-mail: ffarkas,chudyg@neuro.savba.skAbstractWe provide preliminary results of our thinning algorithm applied to skeletonization ofprinted characters. The algorithm is based on Dynamic Cell Structures (DCS) [2], whichenable the generation of topology-preserving mapping of (generally high-dimensional)input data onto the constructed graph structure. In order to enhance skeletonization,we modify the original DCS algorithm in two subsequent steps. The one consists in con-strained distance calculation in every iteration, the other in \static" graph transformation.Both modi�cations cause the removal of most of the redundant connections resulting thusin character skeletons which are better than those obtained by original DCS.1 IntroductionThinning represents one of the possible preprocessing steps in image analysis. It transformscharacter patterns (usually of binary type and of elongated shape) into line-like structurecalled skeleton. Skeleton is usually considered to be of unitary thickness, since this is a neces-sary requirement of many successive pattern recognition tasks (vectorization of the pattern).The usefulness of the skeleton representation of the pattern follows from the attempt to makea data compression while preserving the topological properties of the pattern and also to facil-itate the extraction of morphological features useful in the successive pattern recognition task.Due to their central role in the preprocessing stage, thinning algorithms have been a very ac-tive area of research from the sixties (more than 300 published papers until now). Applicationareas include: (handwritten) character recognition, classi�cation of cells, chromosomes, X-rayimage analysis, analysis of coronary arteries, processing of bubble-chamber negatives, visualsystem of automaton, �ngerprint classi�cation, quantitative metallography, measurement ofsoil cracking patterns, automatic visual analysis of industrial parts and printed circuit boards(for references see a comprehensive survey [5]).

Thinning techniques can be broadly classi�ed into iterative and non-iterative. The hugemajority of developed methods belong to iterative ones. They delete pixels directly by meansof some proper \expert rules" either in serial (sequential) or parallel manner. Pixels in animage are examined in predetermined order by raster scans (horizontal and/or vertical) or byfollowing contours. The non-iterative techniques (some of them are referred to in literaturealso as indirect) do not change the pattern in the course of processing. They extract some(local) properties of the pattern which reect the topology of the pattern (e.g. link the pixelswith some special properties, estimate distribution of pattern points, etc.). As an examplebelonging to this group we may mention the thinning algorithm [6] which is based on fuzzyclustering of pattern points and the skeleton is constructed by connecting neighbouring clustercenters.The proposed neural network thinning method belongs to the non-iterative group of tech-niques which are based on some type of clustering process. The only neural network approachwe found in literature is Ahmed's self-organizing graph [1], which is derived from the well-known self-organizing map (SOM) [4]. Since the straightforward application of SOM failsto produce good skeletons, the author developed a modi�cation of SOM which enables thetime-varying neuron neighbourhood topology during clustering (learning) in order to capturethe underlying input distribution. Since the neural network topology is chosen to be one-dimensional, yielding thus two direct neighbors for every neuron (except the �rst and the lastones), the clusters represented by neurons can be automatically linked to form the connectedskeleton.Our approach is conceptually similar to the previous one in that it is based on the modi�edversion of topology preserving SOM. However, as a di�erence, our algorithm does not use theprede�ned number of neurons (units), but rather a exible (growing) structure of units that isformed with respect to the shape of input distribution. It exploits the ideas of Dynamic CellStructures (DCS) [2] which are the extension of Growing Cell Structures (GCS) [3]. Both DCSand GCS yield (undirected) graphs, whereas GCS are restricted to preserving graph structurewith �xed, preselected dimension. As a consequence, DCS are more suitable for problems,when we do not have a priori information about the dimensionality of data structure to beapproximated or when the data contain regions with di�erent dimensionalities.Our thinning algorithm is a modi�ed version of DCS, because it is tailored to approxima-tion of character patterns.2 DCS algorithmDynamic Cell Structures is a powerful algorithm for topological approximation of variousdata distributions, including those consisting of disconnected regions. For future reference,its form is briey reviewed here:

initialization;do ffor (� times) fgetNextExample(&v);calculateTwoClosest(v,&wB,&wN);updateConnectionStrengths(wB,wN,�,�);kohonen(w1,v,�B,�N);updateResource(wB,v);gaddNewNeuron();decrementResourceValues(�);g while (!stoppingCriterion());The algorithm is initialized by positioning the �rst two units (whose position is givenby their associated weight vectors w1, w2) to match respectively the points v1, v2, drawnrandomly from input distribution. Further, units 1 and 2 are connected by edge, i.e. theelements A12 = A21 of the (symmetric) connection matrix A, which de�nes the currenttopology of the graph, are set to 1.Now the algorithm enters its outer loop which is repeated until the criterion measuredrops below the certain value. A good measure is for example an average quantization error(Etarget). Within the outer loop, after �nishing the inner one, a unit is inserted to the regionwith the lowest density of units, which is detected by their resource values (expressing units'quantization errors). Speci�cally, it is placed between the unit with the highest resource andone of its direct neighbors (given by the current state of the connection matrix A), accordingto the ratio of their resource values. Subsequently, the resource values of all N units are eitherdecreased (in on-line learning), i.e. �i(t + 1) = �:�i(t), with 1 � i � N; 0 < � < 1, or reset tozero (in o�-line learning, i.e. when the input distribution is static).The inner loop starts with random drawing an input v from the training set, followed by�nding the two units whose weight vectors wB, wN are closest to v in terms of the Euclideandistance. Next, the lateral connections (elements ofA) are updated according to a competitiveHebbian learning rule: connection between the two closest units is enforced, i.e. ABN = 1 1,all other connections are decreased using the forgetting factor �: Aij(t+1) = �:Aij(t). Next,every connection Aij whose value falls below threshold � is removed (Aij = 0).Procedure kohonen(w1,v,�B,�N) adjusts the weight vector of the winner and of its neigh-bors, i.e. �wB = �B :(v�wB) and �wj = �N :(v�wj), for j 2 N (B), where the neighborhoodN (B) = fjjABj > 0; 1 � j � Ng.1This is the former, computationally a bit simpler version of the DCS algorithm. The alternative way ofenforcement sets ABN (t+ 1) = maxfABN (t); yB :yNg, where the units are considered to have a gaussian-likeinput-output function yi = R(kv �wik).

Finally, the winner's resource value, as a measure of local square quantization error, isupdated by adding an increment ��B = kv �wBk2.2.1 Application of DCS to printed charactersOur simulations have shown that the application of original DCS algorithm to printed char-acters yields quite good results, as can be seen in Fig. 1. Speci�cally, if the parameters of thealgorithm (mainly the stopping criterion, � and �) are suitably chosen, the resulting skeletonhas the tendency to consist mostly of one-dimensional lines connected at junctions. Param-eters were set as follows: � = 0:001; � = �pS; � = S=2; � = 0; �B = 0:2; �N = 0:01, where Sdenotes the size of the training set (the number of black pixels in an input image). Probablythe most crucial point | the stopping criterion | needed to be solved with respect to the linethickness of the character in an image, in order to force one-dimensional skeletonization. Thelearning stopped, as soon as the average squared quantization error decreased below certainvalue Etarget. To make the procedure automatic, Etarget was estimated from the average linethickness that was previously also estimated using a simple procedure (in the simulations,on average Etarget = 7). However, as seen in Fig. 1, some of the connections are redundant.Either they connect close, but disconnected regions (e.g. in characters �; ' or �), or they pro-duce unit \polygons", mostly triangles (e.g. in �; �; � or), which violate 1D skeletonization.
Figure 1: Character skeletons obtained by original DCS algorithm. Black lines denote existingconnections between units (white points at the place of graph vertices). Input patterns wererandomly drawn from the shaded areas. For the purpose of display, the essentially oating-point-valued unit coordinates were rounded to integers.

3 The thinning algorithmWe intentionally classify the observed polygons in two categories: cross-boundary polygonsand within-boundary polygons. The polygons of the former type (unlike the latter) have theproperty that at least one of the participating connections passes through the non-inputregion. This is the property that has been exploited in our modi�cation of DCS algorithm.Its goal was to possibly prevent the creation of such connections (including false connections,mentioned above, which do not violate 1D skeletonization).3.1 Removing redundant cross-border connectionsThe modi�cation is based on estimating the constrained Euclidean distance of the units fromthe current input v. By imposed constraint we mean the estimation of the shortest path fromv to a unit without leaving the regions of inputs. Calculation of such a constrained path ingeneral does not appear to be trivial, therefore we chose a simpli�ed algorithm instead. Theidea is sketched in Fig. 2.
Figure 2: Example of the situation when the constrained distance between unit j and inputv is much longer than the Euclidean distance. For explanation see the text.In the case when the connecting line between unit j and input v leaves the input region,we �nd the midpoint among those lying in non-input region (point q). From this point theclosest black pixel is sought in (two mutually opposite) perpendicular directions, of which theminimum is taken. In this way, we get point the p. 2If we denote the Euclidean distances dE(v;wj) = a, dE(q;p) = b and dE(v;p) =dE(p;wj) = c, then the squared constrained distance is approximated using simple trian-gle geometry d2C(v;wj) = 4c2 = 4b2 + a2:Thus, in the algorithm, d2C(v;wj) is computed instead of d2E(v;wj). As an e�ect, unit jbecomes more distant to v than the unit k and therefore, not the connection i-j, but i-2Due to variety of simulations, this searching procedure had to be made more exhaustive. Namely, in bothdirections, the search in done within an angle of 45 degrees (the three dotted lines) in order to make theestimate more robust.

k will be enforced in current iteration. Statistically, this distance constraint will cause theconnection i-j to die o� even though the following inequality may mostly hold during learning:dE(wj; v) < dE(wk; v) for inputs v for which unit i wins the competition.Calculation of constrained distances considerably slows down the learning process. More-over, it is intended for penalizing cross-border connections aimed at their removal. For thetwo reasons, it was applied only in the �nal phase of learning. In our simulations, it replacedthe original procedure calculateTwoClosest(v,&wB,&wN) as soon as the average quantizationerror dropped below 1.5 multiple of Etarget.3.2 Removal of within-boundary polygonsIt may be obvious that the emergence of within-boundary polygons is impossible to hin-der using the above DCS approach with constrained distance calculation. Within-boundarypolygons appear in regions of greater line thickness (note that the stopping criterion refersto average square quantization error). As a matter of fact, the placement of units (and ex-istence of connections between them) is in accordance with tendency of DCS algortihm toapproximate input distribution.We applied a non-neural algorithm, which subsequently, after training, transforms de-tected polygons in the three following steps: (1) add a unit into the center of gravity of thepolygon; (2) connect all units in the polygon with the new unit and (3) remove mutual connec-tions between units (except the new one) in the polygon. However, an undesired side-e�ect,which may appear, is the emergence of new branche(s) (e.g. in bottom character).Due to the above graph-transformation procedure the number of units is increased andalso their distribution may deteriorate. For these reasons, it is followed by �ne-tuning phaseusing procedure kohonen(w1,v,�B,�N), this time with both �B and �N decreasing to zero.In summary, the thinning algorithm consists of 3 phases:1. DCS algorithm with included distance calculation constraint in its �nal phase2. procedure for removal of within-boundary polygons3. �ne-tuning.3.3 Simulation resultsWe performed tests on various sets of printed characters. As an example, we have includedthe Greek alphabet (Fig. 3). Typical duration of processing of one character was in range4000{8000 iterations, taking overall a few seconds on a conventional 486-based PC. Theenhancement of character skeletons can be observed when comparing Fig. 3 with Fig. 1.

Figure 3: Example set of printed characters obtained by proposed thinning algorithm. in eachcouple, the upper row displays the outputs after phase 1, the bottom rows are �nal graphs(after phase 3).4 ConclusionWe provided preliminary results of our hybrid thinning algorithm derived from Dynamic CellStructures. According to our simulations, it is di�cult to obtain 1D skeletons using originalDCS, due to varying thickness of characters, as well as their complicated (curved) structure.Removal of redundant connections could be partially maintained by induced distance eval-uation constraint (cross-border connections). Within-border connections had to be deleted(with a side-e�ect) with a static graph-modi�cation procedure.

AcknowledgementThis work was partially supported by Slovak Grant Agency for Science (grants No. 2/2040/95and No. 95/5305/468).References[1] P. Ahmed. A neural network based dedicated thinning method. Pattern Recognition,16:585{590, 1995.[2] J. Bruske and G. Sommer. Dynamic cell structure learns perfectly topology preservingmap. Neural Computation, 7:845{865, 1995.[3] B. Fritzke. Growing cell structures - a self-organizing network for unsupervised and su-pervised learnig. Neural Networks, 7(9):1441{1460, 1994.[4] T. Kohonen. Self-Organizing Maps. Springer Verlag, 1995.[5] L. Lam, S. Lee, and C.Y. Suen. Thinning methodologies { a comprehensive survey. IEEETrans. on Pattern Analysis and Machine Intelligence, 14(9):869{885, 1992.[6] S. Mahmood, I.S. Abuhaiba, and R.G. Green. Skeletonization of arabic characters us-ing clustering based skeletonization algorithm (CBSA). Pattern Recognition, 24:453{464,1991.

