
Application of a Growing Self-Organizing Mapto Thinning of Binary Characters with NoiseIgor Farka�s & Lucius Chud�yInstitute of Measurement ScienceSlovak Academy of SciencesD�ubravsk�a cesta 9, 842 19 Bratislava, Slovakiae-mail:ffarkas,chudyg@neuro.savba.skAbstractWe present an improved version of our thinning algorithm, based on growing SOM-likeapproach, speci�cally Dynamic Cell Structures (DCS). The algorithm creates an output rep-resentation of the pattern in the form of undirected graph possessing the desirable featuresof a skeleton. The line-like graph topology, would otherwise be violated by original DCS, isforced by modi�cations in unit connections' update and winners' search. The algorithm wastested on binary characters and is shown to be robust with respect to boundary noise.1 IntroductionThinning is a fundamental early processing step in pattern analysis. Its purpose is to transformthe original pattern onto a line-like structure, called the skeleton, while preserving the topologicalproperties of the original pattern. The advantages of skeletons are the reduction in the requiredmemory space for storing essential structural information of the pattern, the simpli�cation of datastructures required in processing the patterns, and the reduction in the required processing time.Thinning algorithms have thus been very useful in various applications, e.g. character recognition,�ngerprint recognition, biomedical dignosis etc. (see [8] for references therein).Thinning algorithms are commonly classi�ed according to two viewpoints. Firstly, they caneither be iterative or non-iterative. In iterative techniques, the �nal skeleton results from repetitiveoperations performed on the original pattern. Non-iterative techniques yield the skeleton after asingle pass over the pattern. Secondly, the thinning algorithms are divided into direct or indirect.Direct techniques change the original pattern, e.g. by iterative deletion of individual pixels bysome rule, until the skeleton remains. On the contrary, indirect techniques do not alter the originalpattern, but use their own resources for representing a skeleton.Most of the techniques developed so far belong to direct iterative ones. They are typically basedon various decision rules employed for deletion/retention of examined individual pixel and arefurther subdivided into sequential and parallel algorithms (see [8] for survey).As a matter of fact, it has been shown that indirect techniques can perform better than somewidely recommended direct techniques. The example may be the CBSA algorithm [9], which isbased on fuzzy clustering of the pattern. This method produces cluster centers, which are thenconnected using the adjacency matrix to produce a skeleton. CBSA was shown to be superiormainly in being insensitive to the boundary noise.The only neural-network based method we found in literature { the self-organizing graph (SOG)[1], also performs clustering of the original pattern. It is similar to a one-dimensional self-organizingmap (SOM) [7], but does not exploit its topology. SOG uses time-varying neighbourhood, but doesnot produce the skeleton itself; the resulting centers need further to be linked (which is not a trivial



task). In addition, both CBSA and SOG presume a preset, constant number of units, which requiressome a priori knowledge about the pattern. 1In this paper, we present an improved version of our thinning algorithm, which can be viewed asa growing SOM. In recent years, SOM-like algorithms employing time-varying topology have beendesigned as a powerful method for topological approximation of various data structures [5], [3],[2], [10]. All of these algorithms yield output representation in the form of undirected graph. Ouralgorithm has been derived from Dynamic Cell Structures (DCS) [3], which are not constrainedto �xed graph dimension (as e.g., in the case GCS [5]). Therefore, DCS appear to be suitable tothinning as well. Unlike CBSA or SOG, DCS do not use a �xed number of units, but these areinserted according to the need. However, the direct application of DCS to thinning of charactersis not feasible, due to their varying shape and thickness, which would often cause the violation ofline-like graph topology (i.e., each unit, except for \junctions", has two connections). We testedour algorithm on noisy patterns and demonstrate its robustness with respect to boundary noise.2 Thinning algorithmThe DCS network [3] can be viewed as a graph G = (W;C), where W = fw1;w2; :::;wng is the setof n knots (units) given by their coordinates, wi 2 R2, and C[n�n] is the (symmetric) connectionmatrix de�ning edges in G. Cij = Cji 2 h0; 1i de�nes the strength of the connection between unitsi and j in G (if zero, the connection does not exist).Regarding variability of characters, the main problem with DCS for thinning of patterns is toprevent the �nal graph from violating line-like topology. The most frequent cause of violation isthe presence of m-polygons (the simplest, 3-polygon i-j-k exists, if Cij; Cjk; Cik > 0). 2 Polygonsnaturally emerge during the course of algorithm and would remain due to its attempt to approxi-mate the data distribution (i.e., they mainly appear in thicker arcs of a character or at junctions).Therefore, it is necessary to impose some restrictions upon making connections between units sothat all arcs in the character, independently of their thickness, were approximated by connectedlines only, and more than two neighbors for a knot were allowed only at junctions in the character.Our approach { skeletonizing DCS (S-DCS), includes 3 modi�cation steps and has the followingform:� Initialization: set �; �; �B, �N ; compute �, determine the stopping criterion;- choose randomly v1;v2 and set w1 = v1;w2 = v2; C12 = C21 = 1:� Phase 1: /*DCS*/do ffor (� times) f % repeat inner cycle (IC)getNextExample(v);calculateTwoClosest(v;wB ;wN );updateConnectionStrengths(wB ;wN ; C; �,�);kohonen(wB ;v; �B; �N );updateWinnerResource(�B ); % i.e. ��B+ = kwB � vk2)gaddNewNeuron(); resetResources();g while (!stoppingCriterion());� Phase 2: /*connections' update*/- repeat IC (2� times) with breadthSearch(v;wB ;wN ) and modi�ed Cij update (Eq. 1)� Phase 3: /*�ne tuning*/- repeat IC (without Cij update) with learning rate decay1Though, it must be noted that this also has an advantage: e.g., in using neural networks for character recognition,the data input length should be �xed. This is satis�ed if skeletons of all characters have the same number of centers.2Of course, it is necessary to di�erentiate between undesirable m-polygons and \natural" m-polygons, whichoccur in case of \looped" characters (e.g. �, �). Fortunately, the latter typically have signi�cantly higher m.



The purpose of all three modi�cation steps is briey explained below.(1) Adding a new unit is associated with de�ning the stopping criterion. Rather than quantiza-tion error E used in original DCS, we employ average Euclidean distance between two connectedunits, D = Efkwi�wjkg, for (i; j) jCij > 0. The reason is that we want a line-like approximationof all arcs in the character (which can have varying thickness). Consequently, we thus allow localE's to vary from unit to unit, but tend to have equidistant placement of connected units. Therefore,the new unit is inserted between the two most distant connected units. Placing it according to theratio of their resource values �i; �j, as in original DCS, appeared to be superior to mid-placement,so we adopted this strategy.(2) The purpose of bradth-search (BS) procedure, known from the graph theory, is to get ridof undesirable cross-border connections, 3 which otherwise may remain, if we look for winners interms of Euclidean distance. BS can be interpreted as spreading a wave (in all directions) from thecurrent input over the pattern (black pixels in a 2D grid), until two closest units (B;N ) are found.For the purpose of thinning of noisy patterns, BS must be allowed to visit white pixels as well(however, only those having direct black neighbors in a grid), in order not to by-pass winner(s)currently positioned in \white" position(s). According to simulations, BS is more robust, thoughnot signi�cantly faster than the former calculation of constrained distance [4].(3) Modi�cation in updating C matrix in phase 2 is aimed at removal redundant within-borderconnections (i.e. those making 3-polygons in the graph). 4 Hence, having found B and N , theconnection weights of C are updated as follows:Ckl  8>><>>: 1 : k = B ^ l = N ^ ( ! 9m : Ckm > 0 ^ Clm > 0)Ckl : k = B ^ l = N ^ ( 9m : Ckm > 0 ^ Clm > 0)0 : Ckl < ��:Ckl : otherwise (1)From Eq. 1 it is obvious that setting the winner couple connection CBN = 1 is prevented in thecase when there exists a 3-polygon B-N -m. As a consequence, in such a polygon, the connectionwith the lowest strength will most probably die o�. This strategy, works quite well, but the diedconnection may not always be the one, that \we would like" to be removed. As a consequence, theresulted skeleton can be perturbed in shape, though being topologically correct (see e.g. junctionsat skeletons of �;  ; ! in Fig. 2).3 ResultsWe tested S-DCS on printed Greek characters (MS Windows font). The feasibility of our algorithm(speci�cally, its former version) in the case of noise-less patterns was demonstrated in [4]. Now weaimed at experimenting with noisy patterns. By noise we understand perturbations in the outlineof a pattern, which usually cause deformation or o�shoots (spurious tails) in the �nal skeleton(mainly in direct techniques based on contour following).The noise level was quanti�ed by the percentage of inverted pixels of all outline pixels (reachingthe maximum at 50%, see Fig. 1). The signal-to-boundary noise ratio is de�ned as [6]SBNR = Area[@I]Area[I 0=I] + Area[I=I 0]where I and I0 are respectively noise-free and noisy images, @I is the boundary of I, and \/"denotes the set di�erence. Thus, the error created by boundary noise at a particular SBNR can3A cross-border connection in the graph is the one connecting two directly unconnected parts of the image.4A within-border connection is the one connecting two directly connected parts of the image.



be measured by the normalized quantityme(SBNR) = min�1; Area[S0=S] + Area[S=S 0]2� Area[S] � ;where S and S0 are the resulting skeletons of I and I0, respectively. A highly noise-sensitivealgorithm will yield an me close to 1.We performed multiple runs on Greek characters with various levels of noise. The parameters ofS-DCS were set as folows: connection deletion threshold � = 0:001, forgetting constant � = �pjIj,where jIj denotes the size of the training set (number of black pixels forming the character),� = jIj=2, learning constants �B = 0:2; �N = 0:01. The stopping criterion had to be set manually,D = 6 (for noise-free characters, however, it can be derived from average arc thickness estimate [4]).Producing a skeleton took below 10000 iterations (depending on character), which correspondedto a few seconds of CPU time on 486-based PC. Average results are shown in Table 1. Averageme remains relatively well below 1, and does not signi�cantly grow with decreasing SNBR. Weinterpret this fact as insensitiveness of S-DCS to the noise level. This may not be surprising, asthe knot placement is based on input statistics, and not on precise positions of individual pixels.A few �nal skeletons are displayed in Fig. 2.Noise level (in %) SBNR me(SBNR)10 5.47 � 0.22 0.37 � 0.1020 2.68 � 0.12 0.40 � 0.1030 1.78 � 0.06 0.47 � 0.0940 1.33 � 0.04 0.46 � 0.0650 1.07 � 0.02 0.50 � 0.10Table 1: Experimental results of approximating skeletons of noisy patterns with S-DCS algorithm. Weran 10 simulations for each pattern and each noise level. Corresponding average E = 2:0� 0:1, number ofinserted units per character varied between 15 and 22.
Figure 1: Examples of patterns with 50% boundary noise used in experiments.

Figure 2: Examples of obtained skeletons with S-DCS, trained on patterns from Fig. 1. Graph-to-skeletontransformation procedure was realized by interpolating and integer-rounding to �t the values into the grid.



4 DiscussionThough not compared to other thinning algorithms (which would require the use of the sametraining set), we can make a few statements concerning the properties of S-DCS. According to[11], a good thinning algorithm should satisfy at least these four objective criteria { connectivity,thinness, sensitivity to boundary noise and CPU running time. Regarding these, we can say that:(a) S-DCS produce almost surely connected skeletons. By almost surely we mean that thereoccur cases when a connection happens to be either missing or redundant. The reason may be e.g.that the correct winner is not found with BS procedure, because it currently lies away from thedata area, or \unwanted" connection (of the three in a polygon) dies o� due to Eq. 1 applied inphase 2). (b) The produced skeletons have intrinsically unitary thinness as implies the nature ofthe algorithm, together with the graph-to-skeleton transformation procedure. (c) S-DCS is quiterobust with respect to boundary noise, up to its maximum level, because error me grows slightly.(d) In comparison to direct techniques [11], the speed of S-DCS appears to be a weak point; hence,it is suitable for o�-line thinning tasks only.It may not be surprising that S-DCS share the same virtues and vice as above mentioned CBSA.Their advantage is noise robustness, as can be expected from their stochastic nature. On the otherhand, they are relatively slow in comparison to deterministic direct, especially one-pass techniques.AcknowledgementThis work was supported by the grants from the Slovak Grant Agency for Science (No. 2/2040/95and 95/5305/468).References[1] P. Ahmed. A neural network based dedicated thinning method. Pattern Recognition, 16:585{590,1995.[2] J. Blackmore and R. Miikkulainen. Incremental grid growing: encoding high-dimensional structureinto a two-dimensional feature map. In Proc. of ICNN'93, San Francisco, CA, pages I{450, 1993.[3] J. Bruske and G. Sommer. Dynamic cell structure learns perfectly topology preserving map. NeuralComputation, 7:845{865, 1995.[4] I. Farka�s and L. Chud�y. Modi�ed dynamic cell structures as a thinning algorithm. In P. Sin�c�ak,editor, Proc. of 1-st Slovak Neural Network Symposium, Her�lany, pages 71{80, November 1996.[5] B. Fritzke. Growing cell structures - a self-organizing network for unsupervised and supervised learnig.Neural Networks, 7(9):1441{1460, 1994.[6] B.K. Jang and R.T. Chin. One-pass parallel thinning: analysis, properties, and quantitative evalua-tion. IEEE Trans. Patt. Anal. Machine Intell., 14(11):1129{1140, 1992.[7] T. Kohonen. Self-Organizing Maps. Springer Verlag, 1995.[8] L. Lam, S. Lee, and C.Y. Suen. Thinning methodologies { a comprehensive survey. IEEE Trans.Patt. Anal. Machine Intell., 14(9):869{885, 1992.[9] S. Mahmood, I.S. Abuhaiba, and R.G. Green. Skeletonization of arabic characters using clusteringbased skeletonization algorithm (CBSA). Pattern Recognition, 24(5):453{464, 1991.[10] C. Szepesv�ari and A. L}orincz. Approximate geometry representations and sensory fusion. Neurocom-puting, 12(2-3):267{287, 1996.[11] R.W. Zhou, C. Quek, and G.S. Ng. A novel single-pass thinning algorithm and an e�ective set ofperformance criteria. Pattern Recognition Letters, 16:1267{1275, 1995.


