
In Proc. of the 28th Annual Conf. of Cog. Science Society, Vancouver, pp. 1275-1280, 2006

Recurrent Networks and Natural Language: Exploiting

Self-organization

Igor Farkaš (ifarkas@coli.uni-sb.de)
Matthew W. Crocker (crocker@coli.uni-sb.de)
Department of Computational Linguistics and Phonetics

Saarland University, Saarbrücken, D-66041, Germany

Abstract

Prediction is believed to be an important cognitive com-
ponent in natural language processing. Within connec-
tionist approaches, Elman’s simple recurrent network
has been used for this task with considerable success,
especially on small scale problems. However, it has been
appreciated for some time that supervised gradient-
based learning models have difficulties with scaling up,
because their learning becomes very time-consuming for
larger data sets. In this paper, we explore an alter-
native neural network architecture that exploits self-
organization. The prediction task is effectively split into
separate stages of self-organized context representation
and subsequent association with the next-word target
distribution. We compare various prediction models and
show, in the task of learning a language generated by
stochastic context-free grammar, that self-organization
can lead to higher accuracy, faster training, greater ro-
bustness and more transparent internal representations,
when compared to Elman’s network.

Introduction

Recurrent neural networks have been traditionally used
in various tasks that involve time-dependent data. The
best known architecture is the Simple Recurrent Net-
work (SRN; Elman, 1990) that has been employed in
a variety of tasks, including language learning by pre-
diction (e.g. Elman, 1991; Servan-Schreiber et al., 1991;
Rohde and Plaut, 1997; Christiansen and Chater, 1999).
Supervised learning of temporal dependencies by predic-
tion typically involves error gradient learning algorithms
of which various forms have been proposed (see Pearl-
mutter, 1995, for overview). Despite their considerable
success, the supervised learning approaches are difficult
to scale up to realistic tasks due to learning complexity.
One common aspect of these methods is that via error
back-propagation they optimize the internal states of a
recurrent network to a particular task. In the prediction
task this implies that both internal states and predic-
tions are optimized using the same learning mechanism.

Here we explore an alternative avenue along which
we split the whole task into two subtasks and treat
them independently. Hence, we first optimize internal
states, and then we associate these with desired pre-
dictions. Optimizing internal states consists in build-
ing temporal context representations and since it is not
driven by supervision, it can potentially benefit from self-
organization. Self-organized temporal context learning
is expected not only to facilitate the learning process

but has also been argued to have a greater biological
plausibility. There have been a number of unsupervised
methods proposed during the last decade (see overview
in Barreto et al., 2003; Hammer et al., 2004a). Here we
focus on two models, namely Recursive Self-Organizing
Map (RecSOM; Voegtlin, 2002) and feedforward Sard-
Net (James and Miikkulainen, 1995) that represent, in
a sense, complementary approaches to representation
of the temporal context. RecSOM has been shown to
demonstrate a rich repertoire of dynamic behavior when
trained on a complex symbolic sequence such as natural
language text (Tiňo and Farkaš, 2005). Similarly, it has
been shown that SardNet, when added as a parallel input
preprocessing module to a supervised recurrent network,
enhances the processing capacity of a neural network in
a shift-reduce parsing task (Mayberry and Miikkulainen,
1999).

Once the context representations are optimized with
a chosen self-organizing module, we associate them with
desired predictions using a supervised learning module.
We tested two such modules. One is a simple counting
method that builds independent prediction distributions
for all units in the map. The other is a single-layer per-
ceptron trained by the error delta rule.

Simulation methods

Self-organization of temporal context

For temporal context learning, we explored two basic
self-organizing modules – RecSOM and SardNet – as well
as a combination of the two, which we called RecSOM-
sard. We describe them all in more detail below.

Recursive Self-Organizing Map The architecture
of the RecSOM model is shown in Figure 1 (without the
top layer). Each map neuron i ∈ {1, 2, ..., N} has two
weight vectors associated with it: wi ∈ R

n linked with
an n-dimensional input s(t), and ci ∈ R

N linked with
the context y(t− 1) = (y1(t− 1), y2(t− 1), ..., yN(t− 1)),
containing map activations yi(t − 1) from the previous
time step. The output of a neuron i at time t is computed
as yi(t) = exp(−di(t)), where

di(t) = α · ‖s(t)−wi‖
2 + β · ‖y(t− 1)− ci‖

2

with ‖ · ‖ denoting the Euclidean norm. Parameters α >
0 and β > 0 respectively influence the effect of the input
and the context upon a neuron’s profile. Both weight

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

������
������
������
������

������
������
������
������ y(t)

wi

s(t)

ci
y(t−1)

y’(t)

Figure 1: RecSOMsard architecture. The bottom part
(without the top layer) represents Recursive SOM. Solid
lines represent trainable connections, dashed line repre-
sents one-to-one copy of the activity vector y. In Rec-
SOMsard, y is transformed to y’ in the top layer by a
mechanism described in the text.

vectors can be updated using the same form of learning
rule (Voegtlin, 2002):

∆wi = γ · hik · (s(t)−wi),

∆ci = γ · hik · (y(t − 1)− ci),

where k is an index of the best matching unit (‘winner’)
at time t, (i.e. the unit with the highest activation yk(t))
and 0 < γ < 1 is the learning rate. Neighborhood func-
tion hik is a Gaussian on the distance d(i, k) of units
i and k in the map: hik = exp{−d(i, k)2/σ2(t)}. Pa-
rameter σ linearly decreases in time to allow for forming
topographic representation of input sequences.

As a result of self-organization, RecSOM units learn
to topographically represent temporal contexts (sub-
sequences). Specifically, it has been shown that the
context-based input representations typically become or-
ganized in a Markovian manner: Subsequences sharing
a common suffix are mapped close to each other (Tiňo
et al., 2005). At the same time, a more complex input se-
quence can lead to more complex, non-Markovian behav-
ior (Tiňo and Farkaš, 2005). Learning in recursive self-
organizing networks (such as RecSOM) has been shown
to approximate stochastic gradient descent driven by in-
put data (Hammer et al., 2004b). Due to recurrency,
the process of weight optimization can be thought of as
temporally enhanced vector quantization.

SardNet The alternative model, SardNet (Sequential
Activation Retention and Decay Network; James and
Miikkulainen, 1995), has an architecture and mechanism
very similar to the standard SOM (Kohonen, 1990). Un-
like RecSOM, it does not have a recursive architecture,
so it learns to unambiguously represent the sequences as
distributed activation patterns over the map. For each
input, the winner is assigned the activation of 1.0 and the
activations of all other units representing previous inputs
in the current sequence are decayed via yi ← κyi using
a preset decay factor 0 ≪ κ < 1. Once the unit is acti-
vated, it is removed from competition and cannot repre-
sent later input in the current sequence. Forcing other
(neighboring) units to participate in the representation

allows each unit to represent different inputs depending
on the context, which leads to an efficient representation
of sequences, and also generalizes well to new sequences.

RecSOMsard This combined model has the RecSOM
architecture and processing, but adds on a SardNet-like
output preprocessing to be fed to a prediction module
(see Figure 1). RecSOM outputs are replaced during
processing by spatially distributed representations of the
context. In each iteration, the winner’s activation yk in
RecSOM is transformed to a focused Gaussian profile
y′

i = exp{−d(i, k)2/σ2
y} centered arround the winner k,

and previous activations in the top layer are decayed
via y′ ← λy′ (as in SardNet). At boundaries between se-
quences, all activations y′ are reset to zero. This SardNet
feature establishes that the activation vector y(t) with
mostly unimodal shape is transformed to a distributed
activation vector y′(t) whose number of peaks equals the
position of a current word in a sentence (see Figure 2). In
this manner, the context in RecSOMsard becomes rep-
resented both spatially (due to SardNet) and temporally
(due to RecSOM). 1

the girls who see dogs walk .

Figure 2: RecSOMsard activation patterns during a sen-
tence processing.

Next-word prediction modules
We employed two next-word supervised prediction mod-
ules built on top of the outputs of the trained context-
representation module.

W-module The Winner-based prediction module uses
the matrix U (of size N×n) of counters, which are selec-
tively updated during a single epoch through the training
data set, after the training has been completed. For each
input st, the winner i is found and its counter U(i, st+1)
corresponding to the next word st+1 is incremented by
one. At the end of the epoch, the rows of U are normal-
ized using L1-norm to be interpretable as unit’s predic-
tion probability vectors. Hence, in W-module the pre-
diction in each step is retrieved locally, from the winner’s
probability distribution vector.

P-module The Perceptron-based prediction module
uses n softmax outputs, which allows for the outputs
to be interpreted as prediction probabilities. In soft-
max, the output of the perceptron unit j is computed
as zj = exp(netj)/

∑
l exp(netl), where the total input

of unit j is netj =
∑

i vjiyi. Perceptron weights are
updated via the delta rule as

∆vji = η(t)yi(dj − zj)

with targets dj being one-hot encoded, and learning rate
η(t) linearly decreasing to zero. Unlike W-module, P-

1the latter being the case, because each winner in Rec-
SOM best matches the current input in a particular temporal
context

module involves a true learning algorithm, so it requires
multiple epochs of training, rather than one.

Models
Using a complete cross-design of the above context-
learning and next-word prediction modules, we end up
with six possible models exploiting the self-organization
in the context learning stage. Not all of these models
can be expected to work well, such as SardNet com-
bined with W-module (SardNet-W), in which tempo-
ral information is lost. All models were evaluated for
comparison and were compared with Elman’s SRN as
well as statistical bigram and trigram models (Stolcke,
2002). The SRN was matched in architecture with Rec-
SOM and hence, was a two-layer network using N hidden
units with sigmoidal activation function but like the P-
module, it had n softmax output units. The SRN was
trained using online stochastic gradient descent to min-
imize cross-entropy between outputs and corresponding
targets. Error was not back propagated through time,
only through the current time step.

Training data
We used SLG (Rohde, 2002) to generate sentences con-
structed by a moderately complex stochastic context-
free grammar specified in Table 1. The choice of the
grammar was motivated by the use of child-directed sen-
tences (following Christiansen and Dale, 2001) enriched
with recursive structures, as used in earlier works on
SRN in next-word prediction tasks (Elman, 1993; Ro-
hde and Plaut, 1997). Our grammar included three pri-
mary sentence types: declarative, interrogative, and im-
perative. Each type consisted of a variety of common
utterances. Declarative sentences most frequently ap-
peared as transitive or intransitive verb constructions,
but also included predication using the copula. Inter-
rogative sentences were composed of wh-questions and
questions formed by using auxiliary verbs. Imperatives
were the simplest class of sentences, appearing as intran-
sitive or transitive verb phrases. We controlled subject-
verb agreement, as well as appropriate determiners ac-
companying nouns. The sentences obeyed a number of
semantic constraints, similar to those used in Rohde and
Plaut (1997). Regarding recursive sentences, we did not
follow the ‘starting small’ scenario, hypothesized by El-
man (1993), as we believe it would not be beneficial to
the networks (Rohde and Plaut, 1997). Sentences longer
than 16 words were discarded in generating the corpus,
but these were so rare (< 0.1%) that their loss should
have negligible effects. The lexicon contained 72 words
including the end-of-sentence marker.

Parameters
Using the above grammar, we generated 10,000 sen-
tences. Each model was run 10 times, using a differ-
ent training set comprising a randomly chosen subset
of 50% of total sentences (the complementary subset
was used for testing). On average, the training set con-
tained 30867 words and testing set 23148 words (we re-
moved duplicate sentences from the testing sets). In each
model, we experimented with a number of parameters to

Table 1: The stochastic context-free grammar used to
generate training corpora.
S → Declar (.75) | Interrog (.2) | Imper (.05);

Declar → SP VP (.85) | NP-Adj (.1) | That-NP (.05);

SP → NP | NP RC;

RC → who VI | who VT SP | who SP VT;

NP-Adj → NP is/are/were Adj;

That-NP → that/those is/are/were NP;

Interrog → Wh-Qn (.65) | Aux-Qn (.35);

Wh-Qn → where/who is/are/were NP | where/who/what
do/does NP VP;

Aux-Qn → do/does NP VP | do/does NP wanna VP |
is/are/were NP Adj;

Imper → VP;

VP → VI | VT NP;
ART → ”” | a | the;

NP → ART ADJ N;
ADJ → ”” (.5) | Adj;

obtain the best performance. Each input to the networks
contained a localist representation of a word. Hence, all
neural network models had n = 72 input units. Rec-
SOM(sard) and SardNet contained N = 18×18 neurons
and their weights were randomly initialized within the
interval [0.4; 0.6]. Other parameters for models with self-
organization were as follows: α = 3, β = 0.6, γ = 0.1, σ :
8 → 0.5, σy = 1, κ = 0.9 and λ = 0.8. Weights of the
P-module were trained for 8 epochs with η : 0.3→ 0.03.
RecSOM output activations and SRN context-layer acti-
vations were not reset between sentences, since sentence
boundaries were clearly detectable by end-of-sentence
marker. The weights in the SRN were intialized within
the interval [-0.1; 0.1], it had 324 hidden units, a learn-
ing rate set to 0.05, and no momentum. Higher learning
rate for the SRN (to speed up convergence) had a desta-
bilizing effect and mostly resulted in a somewhat higher
testing error. On the other hand, lower learning rates did
not lead to further decrease of the testing error (during
100 epochs of training). Varying the size of the hidden-
layer did not lead to significant improvement either. All
models were trained for maximum 10 epochs, except for
the SRN that needed at least 30 epochs to sufficiently
converge. 2

Results

First, we evaluated each trained model M in terms of
its normalized negative log-likelihood (NNL) using the
testing data. It is computed as

NNLM(Stst) =
−1

Ltst − 1

Ltst−1∑

t=1

logn PM(st+1|Ct)

where Ct = s1s2...st is the context at time t, and Ltst

is the length of the testing sequence. The higher the
predictive probabilities assigned to the actual next sym-
bols are, the smaller the NNL is. The NNL measure
can be viewed as a quantification of a statistical average

2In terms of actual implementation, one cycle for training
SRN took somewhat longer than that of any self-organizing
module coupled with a prediction module.

0 1 2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Epoch

M
ea

n
N

N
L

RecSOM−W
RecSOM−P
SardNet−P
RecSOMsard−P
Srn

Figure 3: Mean NNLs for various prediction models.
SRN was actually trained for 30 epochs, but is aligned
with other curves to facilitate comparison. Error bars
around means (not shown) were below 0.01.

of ‘surprise’ experienced by the model upon seeing the
sequence.

The NNL is a standard measure used in prediction,
but due to the ambiguity in grammar, more candidates
should be predicted (which is not captured by the NNL).
For this reason, we also used an alternative measure that
assesses the entire prediction vectors. One such measure
is the mean cosine between the actual and the optimal
prediction vectors (calculated from the grammar).

Figure 3 shows the mean NNL for selected models, as
a function of training epochs. It is evident that all mod-
els learn, but to different degrees of accuracy. Several
observations can be made: First, RecSOMsard-P model
achieves the best performance, which may be both due
to its spatio-temporal representation of the context and
due to the P-module (the means difference of the paired
t-test was significant at p<10−9 compared to RecSOM-
W). This claim is supported by the second observation,
that the NNL of RecSOMsard-P further decreases dur-
ing the last 3 epochs of training which occurs when the
neighborhood radius σ drops sufficiently (below 1) to
allow for fine-tuning of RecSOM units. This is also ob-
served in RecSOM-P whose map units have recurrent
connections, but not in case of feedforward SardNet-
P. Third, the SRN has comparable performance to that
of RecSOM-W and SardNet-P (mutual mean differences
n.s.), while RecSOM-P has significantly the poorest ac-
curacy (e.g. p<10−6 compared to SardNet-P).

The corresponding Figure 4 displays the mean cosines
for these models and is quite consistent with the previ-
ous figure. However, the cosines lead to at least two new
observations: The first relates to the individual contri-
butions of both processing stages in the models that can
lead to higher accuracy. According to the NNL, both
RecSOM-W and SardNet-P have similar performance,
but in terms of cosines SardNet-P is significantly bet-

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Epoch

M
ea

n
co

si
ne

RecSOM−W
RecSOM−P
SardNet−P
RecSOMsard−P
Srn

Figure 4: Mean cosines between actual and optimal pre-
diction distribution vectors for various prediction mod-
els. The SRN was actually trained for 30 epochs, but is
aligned with other curves to facilitate comparison. Error
bars around means (not shown) were below 0.06.

ter than RecSOM-W (p < 10−8). This suggests that,
for the purpose of prediction, the spatially distributed
representation of the context in SardNet may be more
important than localized temporal representations in
RecSOM-W. However, respective comparison of Sardnet
and RecSOMsard (linked with either prediction mod-
ule) suggests that also temporal information encoded lo-
cally in RecSOM units is exploited in the complete com-
bined model, hence leading to its best performance (both
p<10−9).

Table 2: Mean NNLs and cosines (in parentheses) on
testing data for models with self-organization.

RecSOM SardNet RecSOMsard
W 0.544 (0.821) 0.560 (0.783) 0.543 (0.820)
P 0.568 (0.797) 0.552 (0.845) 0.510 (0.880)

The second observation resulting from cosines is that
the SRN makes the least accurate prediction vectors (cos
= 0.785) which makes it worse than most models using
self-organization (cf. Table 2). We acknowledge that in
principle, the SRN may be able to achieve better perfor-
mance by varying different parameters: e.g. using fewer
hidden nodes in combination with BPTT learning algo-
rithm (Werbos, 1990), or using more hidden layers of
units could be beneficial (as e.g. in Elman, 1993; Rohde
and Plaut, 1997).

It is also interesting to compare a self-organizing mod-
ule with the SRN in terms of the structure of internal
(state-space) representations. The hidden-layer of the
SRN has been shown to form distributed representations
with nice structural properties (as shown originally by
Elman) that mostly lead to Markovian behaviour: in-

put sequences sharing common suffixes are mapped to-
gether in the hidden-layer and hence are likely to lead to
similar predictions. The state-space vizualization of the
SRN is typically achieved either by clustering techniques
(showing a dendrogram), or by examining a few dimen-
sions via PCA. In contrast, the state-space representa-
tion in SardNet and RecSOMsard is very transparent
and hence directly comprehensible in high-dimensional
map space (see Figure 2). Markovian behavior applies
here as well, because sequences sharing common suffixes
have a high overlap, and are hence spatially close (mod-
ulated by proper setting of σy in RecSOMsard).

Table 3: Mean correlation coefficients between predic-
tions of three selected models and optimal predictions
given by the grammar. Error bars around means were
below 0.014.

RecSOMsard-P SRN 3-gram
0.881 0.822 0.785

In terms of the NNLs, the bigram and trigram mod-
els performed surprisingly very well (0.561 and 0.519,
respectively). However, the accuracy of n-grams drops
when we look at the similarity between the predictions
and the optimal predictions, 3 computed as correlation
coefficients, see Table 3. Trigram has significantly the
lowest accuracy among the three models (all p′s<10−6).

While we leave a systematic analysis of errors types
for the different models for future research, we did ob-
serve difficulty for all models with the prediction of long-
distance dependencies. This is not suprising, given that
all models were observed to be driven by Markovian dy-
namics.

Lesioning test To test the robustness of the models,
we randomly lesioned (deactivated) a subset of the mid-
dle layer units (i.e. map units, or hidden-layer units in
the SRN). In each run, we randomly lesioned the net-
work only once. Figure 5 suggests, showing the mean
NNLs for the selected models, that sparse representa-
tion in the maps lends itself to higher robustness than
fully distributed representation in the hidden layer of
the SRN. Among the self-organizing models, prediction
models with P-modules always yield higher robustness
compared to their counterpart with W-modules (To pre-
serve clarity, the other models with W-modules are not
included, but their NNL increase was quite similar to
that of RecSOM-W.) Consistently with previous figures,
RecSOMsard-P model is the best which is due to the
sparseness of representation over a number of participat-
ing units (and their nearest neighbors) within a sentence.

Discussion

In this paper we illustrated the benefits of a combined
architecture in terms of better prediction accuracy, faster
training, greater robustness and better transparency of

3We did not compute cosines for n-grams, because SRILM
package does not have that feature.

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Percentage node lesioning

M
ea

n
N

N
L

RecSOM−W
RecSOM−P
SardNet−P
RecSOMsard−P
Srn

Figure 5: Mean NNLs of various models after lesioning.
Error bars around means (not shown) were below 0.05
for maps, below 0.25 for the SRN.

internal representations. The benefits of combined ar-
chitectures is not new in neural network research. Ear-
lier experiments with feedforward architectures showed,
that, for example, radial-basis-function networks whose
first layer is unsupervised, typically need shorter train-
ing, albeit they may require more hidden units for the
same accuracy, compared to fully supervised two-layer
perceptron (Tarassenko and Roberts, 1994).

We can distinguish three approaches in total, regard-
ing the optimization of context representations. The first
is the above mentioned supervised approach (as in the
SRN), where the adaptation of the recurrent weights is
driven by output targets. The unsupervised approach,
explored in this paper, optimizes the recurrent weights
independently from the predictions. As a third option,
there exist recent models with no temporal context learn-
ing, such as the so called ‘liquid state’ machines (Maass
et al., 2002), ‘echo state’ networks (Jaeger, 2001), or pre-
diction fractal machines (Parfitt et al., 2000). In these
models, the recurrent part is not trained, but with suit-
ably preset parameters (weights) and due to the so called
architectural bias (Tiňo et al., 2004) it is able to gener-
ate contextual representations with nice structural prop-
erties. However, the exploration of these models is at
an early stage, and in addition, we have shown (Tiňo
et al., 2006) that learning the recurrent weights in Rec-
SOM leads to temporal representations with significantly
deeper contexts, when compared to an untrained recur-
rent model based on affine contractions (as used in PFM;
Parfitt et al., 2000).

Our preliminary results in this paper shed light on the
benefits of self-organization in learning data with tempo-
ral structure, as exemplified on a word-prediction task.
Nevertheless, exploiting self-organization is not limited
to with word prediction; in principle it is also applicable
to other language tasks, such as the case-role assignment.
As a matter of fact, even more complicated architec-

tures than ours have recently been shown to profit from
self-organization in incremental nonmonotonic parsing
task (Mayberry and Miikkulainen, 2003; Mayberry and
Crocker, 2004).

Acknowledgments

Igor Farkaš was supported by the Alexander von Hum-
boldt Foundation and by Slovak Grant Agency for Sci-
ence. He was on leave from the Department of Applied
Informatics, Comenius University in Bratislava, and In-
stitute of Measurement Science, Slovak Academy of Sci-
ences. Matthew Crocker gratefully acknowledges the
financial support of the German Research Foundation
(SFB-378, project “Alpha”). Both authors are thank-
ful to Marty Mayberry for fruitful discussions, and three
anonymous reviewers for constructive comments.

References

Barreto, G., Araújo, A., & Kremer, S. (2003). A tax-
anomy of spatiotemporal connectionist networks re-
visited: The unsupervised case. Neural Computation,
15, 1255-1320.

Christiansen, M. & Chater, N. (1999). Toward a connec-
tionist model of recursion in human linguistic perfor-
mance. Cognitive Science, 23(2), 157-205.

Christiansen, M. & Dale, R. (2001). Integrating distribu-
tional, prosodic and phonological information in a con-
nectionist model of language acquisition. In Proc. of
the 23rd Annual Conf. of the Cognitive Science Society
(pp. 220-225). Mahwah, NJ: Lawrence Erlbaum.

Elman, J. (1990). Finding structure in time. Cognitive
Science, 14,179-211.

Elman, J. (1991). Distributed representations, simple
recurrent networks, and grammatical structure. Ma-
chine Learning, 7, 195-225.

Elman, J. (1993). Learning and development in neural
networks: The importance of starting small. Cogni-
tion, 48(1), 71-99.

Hammer, B., Micheli, A., Sperduti, A., & Strickert, M.
(2004a). Recursive self-organizing network models.
Neural Networks, 17(8-9), 1061-1085.

Hammer, B., Micheli, A., Strickert, M., & Sperduti, A.
(2004b). A general framework for unsupervised pro-
cessing of structured data. Neurocomputing, 57, 3-35.

Jaeger, H. (2001). Short term memory in echo state
networks. (Tech. Rep. GMD Report 152). German
National Research Center for Information Technology.

James, D. & Miikkulainen, R. (1995). SardNet: a self-
organizing feature map for sequences. In Advances in
NIPS, 7 (pp. 577-584). MIT Press.

Kohonen, T. (1990). The self-organizing map. Proceed-
ings of the IEEE, 78(9), 1464-1480.

Maass, W., Natschläger, T., & Markram, H. (2002).
Real-time computing without stable states: A new
framework for neural computation based on pertur-
bations. Neural Computation, 14(11), 2531-2560.

Mayberry, M. & Crocker, M. (2004). Generating seman-
tic graphs through self-organization. In Proceedings of

the AAAI Symposium on Compositional Connection-
ism in Cognitive Science, Washington, DC: Erlbaum.

Mayberry, M. & Miikkulainen, R. (1999). Using a se-
quential SOM to parse long-term dependencies. In
Proc. of the 21st Annual Conf. of the Cognitive Sci-
ence Society, Hillsdale, NJ. Erlbaum.

Mayberry, M. & Miikkulainen, R. (2003). Incre-
mental nonmonotonic parsing through semantic self-
organization. In Proc. of the 25th Annual Conf. of the
Cognitive Science Society, Mahwah, NJ. Erlbaum.

Parfitt, S., Tiňo, P., & Dorffner, G. (2000). Graded
grammaticality in prediction fractal machines. In Ad-
vances of NIPS, 12. MIT Press.

Pearlmutter, B. (1995). Gradient calculations for dy-
namic recurrent neural networks: A survey. IEEE
Trans. on Neural Networks, 6(5), 1212-1228.

Rohde, D. (2002). The simple language generator:
Encoding complex languages with simple grammars.
http://tedlab.mit.edu/˜dr/SLG.

Rohde, D. & Plaut, D. (1997). Simple recurrent net-
works and natural language: How important is start-
ing small? In Proc. of the 19th Annual Conf. of the
Cognitive Science Society (pp. 656-661). Hillsdale, NJ:
Erlbaum.

Servan-Schreiber, D., Cleeremans, A., & McClelland, J.
(1991). Graded state machines: The representation of
temporal contingencies in simple recurrent networks.
Machine Learning, 7(2-3), 161-193.

Stolcke, A. (2002). SRILM – an extensible language
modeling toolkit. In Proc. International Conf. on Spo-
ken Language Processing (pp. 901-904). Denver, CO.

Tarassenko, L. & Roberts, S. (1994). Supervised and
unsupervised learning in radial basis function classi-
fiers. IEE Proceedings – Visual Image Signal Process-
ing, 141(4), 210-216.

Tiňo, P. & Farkaš, I. (2005). On non-markovian topo-
graphic organization of receptive fields in Recursive
Self-Organizing Map. In Advances in Natural Compu-
tation (pp. 676-685). Lecture Notes in Computer Sci-
ence, Springer.

Tiňo, P., Farkaš, I., & van Mourik, J. (2005). Recursive
Self-Organizing Map as a contractive iterative func-
tion system. In Intelligent Data Engineering and Auto-
mated Learning (pp. 327-334). Lecture Notes in Com-
puter Science, Springer.

Tiňo, P., Farkaš, I., & van Mourik, J. (2006). Dy-
namics and topographic organization in recursive self-
organizing map. Accepted to Neural Computation.

Tiňo, P., Čerňanský, M., & Beňušková, Ľ. (2004).
Markovian architectural bias of recurrent neural net-
works. IEEE Transactions on Neural Networks, 15,
6-15.

Voegtlin, T. (2002). Recursive self-organizing maps.
Neural Networks, 15(8-9), 979-992.

Werbos, P. (1990). Backpropagation through time: what
it does and how to do it. Proceedings of the IEEE, 78,
1550-1560.

