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Abstract—Recently, we systematically investigated short-term
memory of an echo state network fed with a scalar random input,
using computational simulations. We studied the effect of proper
reservoir initialization and its subsequent orthogonalization, using
two similar gradient descent iterative procedures. It was shown
that the measure defined by Jaeger as memory capacity (MC)
approached its theoretical limit for orthogonalized reservoirs in
most cases up to size 100 units, and at the same time, it drove
the reservoir dynamics toward the critical regime. In this paper,
we investigate the effect of both orthogonalization procedures for
larger reservoirs, up to 1000 units. We observe almost perfect
maximization of MC in both procedures for roughly up to 500
units, beyond which the MC gradually becomes suboptimal,
despite our effort to find optimal parameters. We also looked
at the input weights scaling that also effects the MC and we
confirmed the previously encountered finding that smaller input
weights allow higher maxima for MC to be reached, with the
reservoir neurons operating in the linear regime. Last but not
least, we show that both procedures work well, one better than
the other, even in the case of very sparse reservoirs.

I. Introduction

In basic research related to properties of echo state net-
works (ESNs), considerable attention has been devoted to
studying the reservoirs and their effect of information pro-
cessing in the ESN, such as time series prediction or input
reconstruction (reflecting the memory properties of the ESN).
Typical focus has been put on proper initialization of the reser-
voir matrix (see overview in [1]), including the orthogonalized
reservoirs. Regarding the memory properties of ESNs, Jaeger
[2] defined and quantified the short-term memory capacity
(MC) that measures the network ability to reconstruct the
past information from the reservoir on the network output by
computing correlations.

Orthogonal networks, as a special class of initialized ESNs
with linear activation functions, have been shown to lead to a
topology that robustly preserves information. This idea was al-
ready reported in [2] who proved conditions in which the ESN
reaches the highest MC. Since then, several works investigated
orthogonal reservoirs, mostly with engineering motivation to
provide the least complex, non-random, yet efficient designs
[3], [4], [5], [6], [7], [8], [9]. For instance, linearized reservoirs
(with minimal complexity and randomness) were analyzed in
[6] and [7] (in the form of chain-of-neurons and ring-of-
neurons reservoirs). The authors concluded that for some tasks
the above reservoirs worked as well as random reservoirs. In
[7] it was proved that, under certain conditions, the ring-of-
neurons ESN can achieve a memory capacity arbitrarily close
toN . Strauss et al. [8] recently proposed a construction method

which iteratively applies Givens rotations to permutation ma-
trices to obtain orthogonal matrices with an increasing density.

In our previous work [10] we investigated MC in the
context of criticality (i.e. the transition zone between the
stable regime and an unstable, chaotic regime), we assessed
it for various input data sets, both random and structured,
and showed how the statistical properties of data and various
network parameters affect ESN performance. In our recent
paper [11], we performed a systematic computational analysis
of ESN properties and took a different approach to reservoir
orthogonalization, with a goal to maximize MC. Rather than
trying to set the optimal reservoir weights directly, we looked
at the task as an optimization process that could be approached
by gradient descent methods. We derived, tested and compared
two procedures: orthogonalization (OG) method that uses ex-
plicit normalization of weight vectors and orthonormalization
(ON) method that does it implicitly. We showed that both
methods, after appropriate initialization, behaved very nicely
for reservoirs up to 100 neurons, and lead to almost maximum
MC (more precisely, only ON method; we address this point in
section III-B), making them superior to the orthogonalization
procedure reported in [8] or the standard method based on
Gram-Schmidt orthogonalization. However, we did not explore
larger reservoirs to see how well the orthogonalization methods
scale up.

The paper is organized as follows. In Section II we provide
background information about the theory useful for better
understanding of the topic. Section III presents results of five
experiments. Section IV presents discussion and Section V
concludes the paper.

II. Related background

Here we provide relevant information related to ESNs,
evaluation of the memory capacity, reservoir initialization and
orthogonalization using two methods that we developed, and
the estimation of the reservoir criticality (dynamical stability).

A. Echo state network model
For the purpose of testing the memory capacity, we assume

an ESN model with a single input u(t), N reservoir neurons
and L output neurons, as shown in Figure 1. Reservoir ac-
tivations x(t) = (x1(t), . . . , xN (t))> and output activations
y(t) = (y1(t), . . . , yL(t))> are updated according to ESN
dynamics given by the formulas

x(t) = f(winu(t) + Wx(t− 1)) (1)
y(t) = fout(Woutx(t)) (2)
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Fig. 1. Illustration of an ESN architecture with a single input used in our
experiments.

where f : RN → RN and fout : RN → RL are suitable
activation functions. We use nonlinear f = tanh and the linear
readout fout = id (both applied element-wise). The weight
vector win refers to input weights, W and Wout are recurrent
and output weight matrices, respectively. Readout weights are
computed as Wout = UX+, where the matrix U is created
by concatenation of the target vectors (corresponding to past
inputs with different delays), and X+ = X>(XX>)−1 is
the Moore-Penrose pseudoinverse matrix of concatenated state
vectors.

B. Memory capacity

Jaeger [2] introduced (short term) memory capacity (MC),
as a measure for the ability of the reservoir to store and recall
previous inputs fed into the network. Jaeger defined it as

MC =

kmax∑
k=1

MCk =

kmax∑
k=1

cov2(u(t− k), yk(t))

var(u(t)) · var(yk(t))
(3)

where cov denotes covariance (of the two time series), var
means variance, kmax = ∞, u(t − k) is the input presented
k-steps before the current input, and yk(t) = wout

k x(t) =
ũ(t−k) is its reconstruction at the network output (using linear
readout), where wout

k is the weight vector of kth output unit.
The computation of MC is approximated using kmax = L
(i.e. given by the number of output neurons). The concept
of MC is based on the network ability to retrieve the past
information (for various delays k) from the reservoir using the
linear combinations of reservoir unit activations observed at the
output (quantified by MCk). Jaeger [2] proved that the mem-
ory capacity for recalling an i.i.d. (independent, identically
distributed) input by an N -unit ESN with identity activation
function is bounded by N .

C. Reservoir initialization

Memory capacity obviously depends on the reservoir prop-
erties. Papers [12] and [1] provide a concise overview of practi-
cal tips on reservoir initialization in ESNs. The crucial property
of ESN for successful training is that it has echo states,
meaning that the current state of the reservoir is uniquely
determined by left-infinite input history. In the literature, the
echo state property (ESP) has been linked to the spectral
properties of W, namely the spectral radius ρ(W) = |λmax|
(the largest absolute eigenvalue) and the spectral norm (the
largest singular value) smax(W), where 0 ≤ ρ(W) ≤ smax(W)
holds. The sufficient condition for the ESP, smax(W) < 1,
originally proposed in [2], is rather restrictive, since it washes
out the input very fast. A less restrictive condition ρ(W) < 1,

often used in the literature, does not hold in general either,
since ESP depends not only on algebraic properties of the
reservoir but also on properties of the driving input [13].
Recently, a new sufficient, softer condition for the ESP, in
terms of diagonal Schur stability, based on a positive definite
matrix, has been proposed [13]. It was also proven that ESP
can be lost even for ρ(W) < 1 (e.g. in zero-input case), and
vice-versa, that the ESP can be preserved for ρ(W) > 1 [14].
Therefore, ρ(W) is not a universally acceptable indicator of
(non)existence of echo states. Nevertheless, ρ(W) ≈ 1 tends
to lead to higher MC, as investigated also in [11].

D. Reservoir orthogonalization

In our recent paper [11], we introduced two iterative
procedures for orthogonalization of reservoir weights. The OG
adaptation procedure is based on the cost function (to be
minimized)

E(W) = ‖W̃>W̃‖2F

where W̃ denotes the matrix W whose columns have been
normed, and the squared Frobenius norm is defined as

‖W‖2F =

N∑
i=1

N∑
j=1

|wij |2.

Differentiating E with respect to the recurrent weights leads
to the update formula for the i-th weight vector (i-th column
of W)

∆wi = −η 4

‖wi‖
(I− w̃iw̃

>
i )(W̃W̃>) w̃i (4)

where η is the learning rate and I is the identity matrix. Before
the updates, all weight vectors wi are normalized to w̃i and
are also stored in memory to be used in Eq. 4.

The ON adaptation procedure is based on the cost function

E(W) = ‖W>W − I‖2

that we want to minimize. The derived update rule for reservoir
weights can be conveniently expressed in the matrix form

∆W = −η · 4(WW>W −W) (5)

making it a more efficient method from the implementational
point of view (due to advantage of fast matrix operations).

E. Estimating the criticality

In order to monitor the orthogonalization process, one can
look at the stability properties of the reservoir. The well-known
approach from the literature is the (characteristic) Lyapunov
exponent (LE), based on evaluating the average sensitivity to
perturbations of the initial conditions [15], [16]. LE is com-
puted for trained ESNs, considering all reservoir neurons, one
at a time, and averaging over their sensitivity to perturbations
over the large enough temporal interval. Ordered state in ESN
occurs for LE < 0, whereas LE > 0 implies unstable state.
Hence, a bifurcation occurs at LE ≈ 0 (the critical point, or
the edge of stability). Since LE is by definition an asymptotic
quantity, it has to be estimated for most dynamical systems.
We used the method described in [17] and replicated in [11].
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III. Experiments

A. Experimental setup

We used the same setup as in [11], except the differences
that will be mentioned explicitly. We consider an unstructured
one-dimensional input that is free of any correlations: a se-
quence of independent and identically distributed (i.i.d.) real
numbers from the interval [−1, 1]. After setting the reservoir
size, two options for weight initialization are typically used:
uniform and Gaussian distributions. We choose elements of
the input weight vectorwin randomly from uniform distribution
U(−τ, τ) and elements of the recurrent weight matrix W from
normal distribution N (0, σ2). For reservoir initialization (i.e.,
matrix W), the other two options are to scale the weights
to certain spectral radius ρ(W), given by the largest absolute
eigenvalue, or to the spectral norm smax(W), given by the
largest singular value of W. Additional details are mentioned
in further sections.

Fig. 2. Effect of OG method on MC and LE (η = 0.03). MC almost reaches
the limit for all reservoirs. Surprisingly, LE does not move closer to zero.

Fig. 3. Effect of ON method on MC and LE (η = 0.07× 0.9t). MC almost
reaches the limit for all reservoirs. LE moves closer to zero, for all reservoirs.

B. Orthogonalization of smaller dense reservoirs

To preserve continuity, we include here the results of
simulations with smaller reservoirs (up to N = 100) that we
dealt with in [11]. There we used τ = 0.01 and σ = 0.092,
which resulted in close-to-perfect performance for ON, but
worse performance for OG method (manifested by MC decay
in middle range of N ). Here we repeated the simulations,
using instead ρ = 0.95 as initialization, and τ = 10−10,
which helped to improve the performance of OG method.
Results (averaged over 10 runs) in Figure 2 and 3 demonstrate
that both methods with initialization based on the spectral
radius increase MC almost perfectly for all N , but with
different variance of results (smaller for ON). Regarding the
differences, current observations confirm previous ones in that
OG method converges more slowly and works well using
a constant learning rate, whereas ON method is faster and
requires a decreasing learning rate for best performance. In
both methods, the reservoirs remain stable, but LE change is
different.

C. Sparsity in smaller reservoirs revisited

In [11] we concluded that the OG/ON orthogonalization
methods only work for dense reservoirs. This was based on
simulations, in which we eliminated negligible weights (below
a small, empirically chosen threshold) after each orthogonal-
ization step. Since this led to MC decrease, we (mistakenly)
concluded that dense reservoirs are necessary. Here we revisit
the aspect of sparsity using a different approach to generation
of sparse reservoirs.1 We generated a reservoir matrix with a
required sparsity. Zero elements remain unaffected by orthog-
onalizations, as can be deduced from Eq. 4 and 5, respectively
(only off-diagonal elements could be set to zero to allow the
computation of eigenvalues needed for ρ). Positively, this led
to a different behavior of both methods as shown in Figures 4
and 5. It is clear that ON method is more robust, preserving
high MC even for very sparse reservoirs (the number in the
legend denotes the proportion of zero weights).

Fig. 4. Effect of reservoir sparsity on MC in OG method. MC remains
roughly unchanged up to sparsity 0.5 above which it leads to a gradual decay.

1We thank an anonymous reviewer for posing this question.
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Fig. 5. Effect of reservoir sparsity on MC in ON method. MC remains almost
unchanged up to a large sparsity (above 0.9).

D. Orthogonalization of larger dense reservoirs
Next, we investigate the question whether the orthogonal-

ization methods can scale up to larger reservoirs. For reservoir
initialization we used the spectral radius ρ = 0.95 which turned
out to be more reliable (unlike σ that we used previously
for reservoirs up to N = 100). For building and testing the
ESN models, we generated a sufficiently long sequence of data
points of a random (i.i.d.) time series, discarded the first N
points to get rid of transients, and then used a set of 10×N
points2 for calculating Wout. Finally, the ESN was fed with a
set of N inputs and the next subset of 1000 inputs was used for
calculating MC. Regarding the learning rates, in all simulations
we used the same values found in the previous work, namely
η = 0.03 for OG, and η(t) = 0.07× 0.9t for ON method.

We investigated the effectiveness of OG and ON methods
for reservoirs up to N = 1000 units, using τ = 10−9, without
estimating LE (which is computationally very demanding).
Results in Figures 6 and 7 reveal that both methods work very
well up a certain reservoir beyond which (roughly N = 500)
they start to gradually depart from close-to-perfect perfor-
mance. As a difference, only OG method seems to lead to
a performance plateau (the mean MC levels off). The number
of iterations needed for convergence was similar to the case
with smaller reservoirs: roughly 50 for OG and 50 for ON
method.

E. Sparsity in larger reservoirs
To complete the sparsity picture, we ran simulations using

τ = 10−10 for larger reservoirs up to N = 700 (for even
larger N the results were expected to be suboptimal, based
on results from the previous section). Figures 8 and 9 reveal
the multiple differences between the two methods. OG method
is less robust, more variable and more affected by sparsity in
larger reservoirs. On the contrary, ON method yields close-to-
perfect performance for up to sparsity 0.96 for larger reservoirs
(up to N = 500).

2We figured out that more data were needed for accurate calculation of
readout weights for larger N .

Fig. 6. Memory capacity due to (dense) reservoir orthogonalization using
OG method. MC approaches the theoretical limit up to a certain reservoir size
beyond which it starts to deteriorate, with a large variance.

Fig. 7. Memory capacity due to (dense) reservoir orthogonalization using
ON method. MC approaches the theoretical limit up to a certain reservoir size
beyond which it starts to gradually deteriorate, with a very small variance.

F. Effect of input weights scaling

The last thing we look at are the input weights. As
mentioned above, in [11] we found a surprising phenomenon
(for us) that the smaller τ , the larger values of MC could
be reached near the bifurcation (critical regime). Hence, we
investigated this for larger N , as shown in Figures 10 and 11.
Each model (with a given N and τ ) was run 10 times. It
can be seen in case of both methods that each τ imposes a
constraint on maximal MC that can be reached. As a difference,
the constraint is more strict in OG method and larger N (the
mean of maximum values of MC reaches a plateau, in case of
very small τ ). As a common feature, in both methods only the
smallest values of τ allow the ESN to approach the theoretical
limit for N ≤ 400.
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Fig. 8. Effect of reservoir sparsity on MC in OG method. The perfomance
gradually deteriorates for larger N and sparsity, with high variance of results.

Fig. 9. Effect of reservoir sparsity on MC in ON method. Performance is
remarkably robust even for larger N and very high sparsity.

IV. Discussion

The dependance of MC on τ mentioned in Section III-F is
interesting because due to a very small τ , tiny magnitudes of
the (stochastic) input signal enter the reservoir and get mixed
with reservoir activations from the previous state. Off-line
analysis of these activations showed that not only the neurons
operate in the linear regime (as observed earlier) near the
zero-crossing point but their outputs are smaller in magnitude.
Actually, the dependence of the mean absolute values of
reservoir activations as a function of τ is linear in the log-log
plot, and shows that the absolute values of reservoir activations
are on average three orders of magnitude smaller than τ in
the case of both orthogonalization methods. Nevertheless, the
input signal can almost perfectly be reconstructed at the output,
having traversed through the reservoir in a distributed form
up to N times. This is achieved by extremely large readout
weights which depend on τ . We evaluated them as the mean

Fig. 10. Orthogonalization of larger reservoirs with OG method, for various
scalings of input weights.

Fig. 11. Orthogonalization of larger reservoirs with ON method, for various
scalings of input weights.

Euclidean norms of the rows ofWout (i.e. the weight vectors of
dimension N , corresponding to individual output units). The
growth leading to extremely high weight values was evident in
both methods, reaching the order ∼1023 for larger reservoirs
and τ = 10−9. This implies that that smaller the input signal,
the larger the readout weight needed for its reconstruction, as
shown by the linear dependance in the log-log plot.

We also checked that the reconstructed signal has the same
mean and variance as the original input, regardless of τ . The
motivation for this checking stems from the definition of MC,
which is based on correlations, rather than distances between
the target and its reconstruction. Hence, even reconstructions
with a much smaller variance, perfectly correlated with targets,
would also yield a very high MC. But this was not the case
here. Currently we investigate, whether some modifications
of Wout computation (such as regularization) could lead to
smaller weights without decreasing the memory capacity.
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The ESN model used in our simulations is essentially
a linear model, despite using the hyperbolic tangent as the
reservoir activation function. Out of curiosity, we also tested
the ESN performance for τ > 1 that could enforce the use of
nonlinearity, but in these cases MC remained very low. This
demonstrates the usefulness of a linear ESN model for a certain
task such as the maximization of the memory capacity.

On the other hand, our model works well for larger reser-
voirs but for N > 500 both methods start to behave subopti-
mally because the performance starts to gradually depart from
the theoretical limit (N ), despite successful orthogonalizations.
There may be two explanations that require further research:
we did not manage to find optimal ESN parameters or, there
is an inherent limit in the ESN to reconstruct earlier samples
from the reservoir.

Another interesting discovery that we made in this pa-
per is the behavior of both methods in the case of sparse
reservoirs. Our earlier negative conclusion in [11] turned out
to be premature, based on a wrong approach to reservoir
sparsification which we overcame here and showed that both
orthogonalization methods behave nicely even for very sparse
reservoir (with ON method being superior). The sparsification,
however, does not overcome the problem of the MC decrease
for larger reservoirs, compared to dense reservoirs.

V. Conclusion

In this work, we extended our earlier results, trying to
shed light on the memory capacity of ESN with larger or-
thogonalized reservoirs. We observed that both OG and ON
gradient descent methods, developed earlier, lead to close-to-
maximal values of MC even for very sparse reservoirs, but
not in the entire range of reservoirs sizes that we investigated
(from 100 to 1000 units). It is possible that there exists
a soft upper limit for the memory capacity that cannot be
overcome regardless of the reservoir size. This may be due
to the limited numerical precision of the reservoir activations
(containing the input signal to be reconstructed), combined
with the scaling effect of input weights (such that only very
small values of τ allow maximal MC to be reached). We think
that there is still room for a more thorough investigation of
model parameters. Nevertheless, given the presented results
we observe a remarkable property of the ESN being able to
reconstruct the input signal from its “tiny patches” scattered
in the reservoir, after hundreds of iterations, albeit using
extremely large readout weights. Maybe more insight can be
brought by the mathematical that can be applied due to the
linearity of the model. Regarding the comparison of both
methods, we conclude that ON method is more suitable, since
it is faster (not in terms of number of iterations for convergence
but in terms of their computational complexity), more stable
and yields better results in general.
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