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Abstract

A model is proposed to demonstrate how neu-

rons in the primary visual cortex could self-

organize to represent the direction of motion.

The model is based on a temporal extension

of the Self-Organizing Map where neurons

act as leaky integrators. The map is trained

with moving Gaussian inputs, and it develops

a retinotopic map with orientation columns

that divide into areas of opposite direction se-

lectivity, as found in the visual cortex.

1 Introduction

Since the pioneering research of Hubel and

Wiesel [1], neurons in several areas of the pri-

mary visual cortex have been known to be

selective to both orientation and direction of

movement of the input. Although evidence for

columnar organization was originally found

only for orientation selectivity, later micro-

electrode studies suggested that direction se-

lectivity is also arranged in a systematic fash-

ion. The details of this organization were

only recently mapped out. Optical imaging

methods [2, 3] revealed that there is a mosaic-

like map of direction preference, which varies

smoothly across the map. Between smooth

areas there are line-like areas of discontinuity

where the direction abruptly changes. The

functional maps for orientation and direction

preference are closely related: typically, an

iso-orientation patch can be divided into re-

gions that exhibit preference to opposite di-

rections, orthogonal to the orientation.

A number of hand-coded models of direc-

tional selectivity have been built (such as [4],

or see numerous references in [5]), but we

are aware of no work that would demonstrate

how such selectivity could arise through self-

organization like the other response proper-

ties of the neurons. In this paper, we present

such a model based on an extension of the

self-organizing neural network [6] to input se-

quences.

2 The model

The standard Self-Organizing Map (SOM) [6,

7] forms a mapping from a high-dimensional

input space to a discrete grid of units. If suc-

cessful, the mapping preserves the local sim-

ilarities in the data. This model can be used

to demonstrate how self-organization of the

visual cortex could take place [8].

In our adaptation of SOM to visual cortex

modeling, a square retina of R � R receptors

projects onto the cortex modeled by SOM,

containing N �N neurons. Every cortex neu-

ron has a receptive �eld (RF), which is the set

of receptors in the retina from which the neu-

ron receives input. Each neuron is assigned a

circular region of receptors of diameter s cen-

tered on its projection as its RF. Typically,

s �

1

2

R, and the RFs of neighboring neurons

overlap signi�cantly. The RFs of neurons near

the boundary are not fully circular but cut

from one side (Fig. 1).

The model preserves the main features of

the original SOM, that is, the processes of de-

termining the winner, shrinking the neighbor-

hood, and decreasing the learning rate, but

uses a di�erent, temporally enhanced model

of the neuron. It is very similar to the RSOM

model [9], which has been used for time series

prediction.

In the model, every neuron (i; j) has a set



Figure 1: The architecture of the visual cortex

model. Every cortex neuron receives inputs from

its receptive �eld in the retina and acts as a leaky

integrator.
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of neuron (i; j) at

discrete time t is computed as
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where 
 2 (0; 1) is the memory parameter

whose value de�nes the trade-o� between the

depth and resolution. (For 
 = 1 the state

equation reduces to the static, memoryless

case.) In view of �ltering theory, eq. 1 de-

scribes an exponentially weighted IIR �lter

with the impulse response h(t) = 
(1 � 
)

t

(see, e.g. [10]).

The output �

ij

of neuron (i; j) is de�ned by

standard sigmoid function � whose nonlinear

e�ect is important for enhancing neuron's the

selectivity:
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:

The k and �

ij

are parameters that must be

set experimentally. Speci�cally, if k is high

enough, the neuron has the ability to amplify

its response to strong stimuli and attenuate it

for weaker ones. This e�ect can be seen as an

approximation of lateral connections between

units in the map, which in other models serve

to sharpen the output responses. The thresh-

olds �

ij

must also be properly set to achieve

the right amount of activation in the map.

The �

ij

is updated during training: every

neuron remembers its maximum state level

s

max

ij

(t) = max

��t

fs

ij

(�)g, and �

ij

is updated

at every time step with �

ij

(t) =

1

2

s

max

ij

(t).
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Figure 2: Input activity corresponding to a di-

agonal direction of motion to the left (! = �=4).

Top: Initial pattern on the retina (24 � 24 re-

ceptors) at the beginning of the sequence. Bot-

tom: Accumulated (leaky-integrated) input that

the cortical neurons receive at the end of the se-

quence (eq. 2).

The input to the map consists of sequences

of moving normalized Gaussian bars whose di-

rection of motion is always perpendicular to

their orientation (Fig. 2). The activity �
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of receptor (r
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) is given by
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1

�x

i

; r

2y

i

= r

2

�y

i

are shifted

point coordinates, a

2

and b

2

specify the major

and minor variances of the Gaussian, ! : 0 �

! � � speci�es its orientation, and (x

i

; y

i

) :

0 < (x

i

; y

i

) < R speci�es its center.

Sequences have a �xed length that covers

a part of the retina. They start at randomly

chosen positions (x

i

; y

i

) in the retina and their

directions are also randomly chosen. Alto-

gether, 16 possible directions are included cor-

responding to 8 orientations. The bars move

in a constant speed equal to one receptor per

time step.

In temporal models of self-organization, the

goal is to make neurons sensitive to particu-

lar set of sequences, hence sequences running

across certain part in the retina and with cer-

tain direction of motion. To achieve direc-

tion selectivity, it is necessary to look for a

representative winner [7], which is the neu-



ron (c

1

; c

2

) whose accumulated response be-

comes the strongest after the presentation of

the complete sequence. Hence,
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where T is the sequence length. Once the win-

ner is found, the neurons in its neighborhood

should have their weights rotated towards all

the inputs in the sequence. However, this

is not possible because these inputs are no

longer available. One way to solve this prob-

lem is to set up a short-term memory for the

bu�ering of training samples [7]. It is unclear

how such a bu�er could be implemented in a

biological model. However, a more plausible

solution is to integrate the incoming samples

and produce accumulated input
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The accumulated input (Fig. 2b) is then used

for weight update. We use the standard

Hebbian-type Oja's rule [11]
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which implicitly normalizes the weight vec-

tors. This rule is applied to all neurons

within the representative winner's neighbor-

hood. (Of course, standard SOM rule would

also work.) As usual, both the learning rate

�(t) and the neighborhood radius decrease

over time.

Even though learning is based on accu-

mulated inputs (eq. 2), neurons generate re-

sponses throughout the sequences, not just at

the end. This way the model exhibits true

temporal recognition behavior, instead of just

mapping the input sequence into a spatial rep-

resentation, as previously reported in litera-

ture [12].

3 Experiments

We simulated the temporal SOM model with

the following parameters: R = 24; s =

0:6R; N = 72; a

2

= 1:5; b

2

= 160; T =

7; 
 = 0:2; k = 15. Learning rate � linearly

decreased from 5 to 1 during the �rst half of

self-organization, when also neighborhood ra-

dius shrinked linearly from 24 to 1. During

the second half, the learning rate decreased to

0, and the neighborhood radius remained un-

changed, i.e. equal to 1. Presentation of 6000

sequences was su�cient for self-organization:

prolonging the training time did not improve

the quality of the �nal map.

The most important of the parameter set-

tings was that of the memory parameter 
.

Range [0:15; 0:25] turned out to be suitable,

allowing a unit to integrate input samples

within its RF without losing direction infor-

mation. Too high a value of 
 would reduce

the map to represent purely orientation, be-

cause the \tail" in the weight pro�les would be

lost. On the other hand, too small a 
 would

make the �nal weight pro�les more radially

symmetric, which would reduce the mapping

to retinotopy only.

In demonstration of the �nal map, meth-

ods similar to the evaluation of cortical maps

were used [3]. Altogether, there were only

16 sequences (one for each direction), each

consisting of a Gaussian that extended across

the whole retina, and moved across the whole

retina.

During a presentation of a sequence,

the maximum output of every neuron was

recorded. After presenting all 16 sequences,

a directional response pro�le for every neuron

(16-dimensional vector) was obtained. Neu-

ron's direction preference was then found as

the direction for which neuron's response was

the highest. Neuron's direction selectivity was

calculated as the ratio of neuron's response to

its preferred direction and the sum of all its re-

sponses. Neuron's orientation preference was

calculated by �rst summing the neuron's re-

sponses for the opposite directions, and �nd-

ing the largest of these 8 sums. Orientation

selectivity was evaluated analogically, as the

ratio of the neuron's response to preferred ori-

entation and the sum of all its orientation re-

sponses.

4 Results

The �nal direction and orientation map is

shown in Fig. 3. Almost all units are orienta-

tion selective, and most of these are also di-

rection selective (with varying degree of selec-

tivity). Typically, a unit that is direction sen-

sitive also has an orientation preference per-

pendicular to its preferred direction of motion.

Orientations vary smoothly across the map,



Figure 3: The self-organized direction and orientation map. Each neuron in the inner 64 � 64 region of

the cortex (out of total 72 � 72) is marked with a line that identi�es the neuron's orientation preference.

In a similar fashion, (usually) perpendicular to it and touching its center is the shorter line that identi�es

neuron's directional preference. The length of a line (either orientational or directional) is proportional

to neuron's selectivity. Most of the neurons are orientation selective except a few at pinwheel centers.

Most of the orientation-selective neurons are also direction selective with varying degree of selectivity.

In addition, at most parts of the map, an iso-orientation patch contains subregions that correspond to

neurons most responsive to opposite directions, perpendicular to that orientation. All these features have

been observed in biological direction maps.



Figure 4: The larger-scale features of the orien-

tation and direction map. The orientation pref-

erence is shown in gray scale. The map contains

typical features of visuo-cortical maps such as sin-

gularities (pinwheel centers), fractures and linear

zones. Almost every iso-orientation patch consists

of subpatches corresponding to neurons selective

to opposite directions. Major direction disconti-

nuities are marked by black dotted lines. They

often originate from pinwheels, as is found to be

the case in the direction maps in the visual cortex.

and most iso-orientation patches can be sub-

divided into subpatches with opposite direc-

tion preferences. The orientation map has the

usual structure found in the visual cortex, in-

cluding pinwheel centers, fractures and linear

zones (Fig. 4).

Neurons in the model can be roughly cat-

egorized into three groups, whose represen-

tative weight pro�les are shown in Fig. 5.

Most of the units become both orientation and

direction selective, as shown by their asym-

metric weight pro�les (left). Some neurons

are only orientation selective, with symmetric

pro�les (center). There are also a few non-

selective neurons (right) near singularities, as

observed also in biological orientation maps.

In terms of neuron's response pro�les, the

di�erence between direction selective and non-

elective neurons is not that big (Fig. 6).

An only-orientation-selective neuron has two

peak responses of roughly equal strength; for

an orientation and direction-selective neuron,

one of the peaks is slightly higher. Such pro-

�les are not surprising. The responses are de-

Figure 5: Typical �nal weight pro�les of the

neurons. From left to right: both direction and

orientation-selective neuron (23 rows from the top

and 8 columns from the left), an orientation-

selective neuron (12,10), and a non-selective neu-

ron (20,10). A direction-selective neuron typically

has a longer tail from the direction to which it

is most responsive, whereas a neuron selective to

only orientation has a symmetric weight pro�le.

termined by the weight pro�le, which matches

both directions to some degree. The di�erence

can be made adjusted by tuning the nonlin-

earity parameter � of the neuron.

Similarly to biological maps, the neurons in

the model also respond to non-oriented mov-

ing stimuli, such as Gaussian spots, provided

that they move in the preferred direction. The

model also makes the prediction that the neu-

ron should respond to a sequence of spots

moving in a direction perpendicular to its pre-

ferred one, provided that the sequence over-

laps considerably with the unit's weight pro-

�le. However, there are more such sequences

moving in its preferred direction that match

the neuron's weight pro�le well. This sug-

gests that �nding this phenomenon experi-

mentally requires a careful study of individual

responses, instead of averaging.

5 Conclusion

The model in its current form demonstrates

several major characteristics observed in bi-

ological direction maps. First, most of the

orientation-selective neurons are also direc-

tion selective. Second, a neuron's preference

to a direction of motion is perpendicular to

its preferred orientation. Third, most of the

iso-orientation patches contain discontinuities

that subdivide them into subpatches with op-

posite direction selectivity. Forth, these dis-

continuities have the shape of curved lines

within an iso-orientation patch. The model

also makes the prediction that the neuron

would have a high response to a dot moving

perpendicularly to its preferred direction if it
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Figure 6: Response pro�les of the neurons in

Fig. 5. Direction \1" is \up", and index grows

counterclockwise. The direction-selective neuron

(top) has a clear preference, although it also re-

sponds considerably to the opposite direction.

The orientation-selective one (middle) responds

equally strongly to both, and the non-selective

(bottom) has no preference at all.

happens to hit the peak of the weight pro�le

accurately.

On the other hand, there are features ob-

served in biological direction maps that are

di�cult to reproduce in the model. First,

direction discontinuity lines do not run the

whole length between pinwheel centers, nor

do they tend to run across the center of iso-

orientation domains. Second, the neuron's re-

sponse to a direction of motion opposite to

its preferred one is rather high compared to

the response measured in biological direction

maps. To solve these problems, it may be nec-

essary to increase the resolution by enlarging

the retina and the cortex or change the model

of the neuron.
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