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Abstract

A model is proposed to demonstrate how neu-
rons in the primary visual cortex could self-
organize to represent the direction of motion.
The model is based on a temporal extension
of the Self-Organizing Map where neurons
act as leaky integrators. The map is trained
with moving Gaussian inputs, and it develops
a retinotopic map with orientation columns
that divide into areas of opposite direction se-
lectivity, as found in the visual cortex.

1 Introduction

Since the pioneering research of Hubel and
Wiesel [1], neurons in several areas of the pri-
mary visual cortex have been known to be
selective to both orientation and direction of
movement of the input. Although evidence for
columnar organization was originally found
only for orientation selectivity, later micro-
electrode studies suggested that direction se-
lectivity is also arranged in a systematic fash-
ion. The details of this organization were
only recently mapped out. Optical imaging
methods [2, 3] revealed that there is a mosaic-
like map of direction preference, which varies
smoothly across the map. Between smooth
areas there are line-like areas of discontinuity
where the direction abruptly changes. The
functional maps for orientation and direction
preference are closely related: typically, an
iso-orientation patch can be divided into re-
gions that exhibit preference to opposite di-
rections, orthogonal to the orientation.

A number of hand-coded models of direc-
tional selectivity have been built (such as [4],
or see numerous references in [5]), but we
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are aware of no work that would demonstrate
how such selectivity could arise through self-
organization like the other response proper-
ties of the neurons. In this paper, we present
such a model based on an extension of the
self-organizing neural network [6] to input se-
quences.

2 The model

The standard Self-Organizing Map (SOM) [6,
7] forms a mapping from a high-dimensional
input space to a discrete grid of units. If suc-
cessful, the mapping preserves the local sim-
ilarities in the data. This model can be used
to demonstrate how self-organization of the
visual cortex could take place [8].

In our adaptation of SOM to visual cortex
modeling, a square retina of R X R receptors
projects onto the cortex modeled by SOM,
containing NV x N neurons. Every cortex neu-
ron has a receptive field (RF), which is the set
of receptors in the retina from which the neu-
ron receives input. Each neuron is assigned a
circular region of receptors of diameter s cen-
tered on its projection as its RF. Typically,
s &~ 1R, and the RFs of neighboring neurons
overlap significantly. The RFs of neurons near
the boundary are not fully circular but cut
from one side (Fig. 1).

The model preserves the main features of
the original SOM, that is, the processes of de-
termining the winner, shrinking the neighbor-
hood, and decreasing the learning rate, but
uses a different, temporally enhanced model
of the neuron. It is very similar to the RSOM
model [9], which has been used for time series
prediction.

In the model, every neuron (i,j) has a set
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Figure 1: The architecture of the visual cortex
model. Every cortex neuron receives inputs from
its receptive field in the retina and acts as a leaky
integrator.

of parameters, afferent weights p;j,,,,, cor-
responding to retinal receptors (ry,rs) within
its RF. It performs leaky integration of input
signals &, r,. The state s;; of neuron (i,7) at
discrete time t is computed as

$ii(t) =7 Y Erirablijonrs + (1= Y)si(t—1)

1,72
(1)
where v € (0,1) is the memory parameter
whose value defines the trade-off between the
depth and resolution. (For v = 1 the state
equation reduces to the static, memoryless
case.) In view of filtering theory, eq. 1 de-
scribes an exponentially weighted IIR filter
with the impulse response h(t) = (1 — v)¢
(see, e.g. [10]).

The output n;; of neuron (i, j) is defined by
standard sigmoid function o whose nonlinear
effect is important for enhancing neuron’s the
selectivity:

1
1+ exp(—k(si;(t) — 0:5(t)))

The k and 6;; are parameters that must be
set experimentally. Specifically, if k£ is high
enough, the neuron has the ability to amplify
its response to strong stimuli and attenuate it
for weaker ones. This effect can be seen as an
approximation of lateral connections between
units in the map, which in other models serve
to sharpen the output responses. The thresh-
olds #;; must also be properly set to achieve
the right amount of activation in the map.
The 6;; is updated during training: every
neuron remembers its maximum state level
8714 (t) = max;<¢{si;(7)}, and 0;; is updated

at every time step with 6;;(t) = $s719%(t).

nij(t) = o(.)

Figure 2: Input activity corresponding to a di-
agonal direction of motion to the left (w = 7/4).
Top: Initial pattern on the retina (24 X 24 re-
ceptors) at the beginning of the sequence. Bot-
tom: Accumulated (leaky-integrated) input that
the cortical neurons receive at the end of the se-
quence (eq. 2).

The input to the map consists of sequences
of moving normalized Gaussian bars whose di-
rection of motion is always perpendicular to
their orientation (Fig. 2). The activity & r,
of receptor (r1,72) is given by

(P1z; COSW — 1oy, sinw)?
2

61‘1 ro — exp(_ a

(P1z; siw + 1oy, cosw)?

- b2 )7

where r1,, = r1 —;, T2y, = r2 —y; are shifted
point coordinates, a? and b* specify the major
and minor variances of the Gaussian, w : 0 <
w < 7 specifies its orientation, and (z;,y;) :
0 < (x;,y;) < R specifies its center.

Sequences have a fixed length that covers
a part of the retina. They start at randomly
chosen positions (z;,y;) in the retina and their
directions are also randomly chosen. Alto-
gether, 16 possible directions are included cor-
responding to 8 orientations. The bars move
in a constant speed equal to one receptor per
time step.

In temporal models of self-organization, the
goal is to make neurons sensitive to particu-
lar set of sequences, hence sequences running
across certain part in the retina and with cer-
tain direction of motion. To achieve direc-
tion selectivity, it is necessary to look for a
representative winner [7], which is the neu-



ron (c¢1,c2) whose accumulated response be-
comes the strongest after the presentation of
the complete sequence. Hence,

Neyco (T) = H%gfx{mj (T)} )

where T is the sequence length. Once the win-
ner is found, the neurons in its neighborhood
should have their weights rotated towards all
the inputs in the sequence. However, this
is not possible because these inputs are no
longer available. One way to solve this prob-
lem is to set up a short-term memory for the
buffering of training samples [7]. It is unclear
how such a buffer could be implemented in a
biological model. However, a more plausible
solution is to integrate the incoming samples
and produce accumulated input

T

=y) (=-m&Hm . (2

t=1

ac (T)

rl,ra

The accumulated input (Fig. 2b) is then used
for weight update. We use the standard
Hebbian-type Oja’s rule [11]

Ap’ijﬂ‘ﬂé (t) = a(t) Nij (fglcrz — Hij,rire (t) 7713) ’

which implicitly normalizes the weight vec-
tors. This rule is applied to all neurons
within the representative winner’s neighbor-
hood. (Of course, standard SOM rule would
also work.) As usual, both the learning rate
a(t) and the neighborhood radius decrease
over time.

Even though learning is based on accu-
mulated inputs (eq. 2), neurons generate re-
sponses throughout the sequences, not just at
the end. This way the model exhibits true
temporal recognition behavior, instead of just
mapping the input sequence into a spatial rep-
resentation, as previously reported in litera-
ture [12].

3 Experiments

We simulated the temporal SOM model with
the following parameters: R = 24, s =
0.6R, N = 72, a®> = 1.5, b2 = 160, T =
7, v = 0.2, kK = 15. Learning rate « linearly
decreased from 5 to 1 during the first half of
self-organization, when also neighborhood ra-
dius shrinked linearly from 24 to 1. During
the second half, the learning rate decreased to

0, and the neighborhood radius remained un-
changed, i.e. equal to 1. Presentation of 6000
sequences was sufficient for self-organization:
prolonging the training time did not improve
the quality of the final map.

The most important of the parameter set-
tings was that of the memory parameter .
Range [0.15,0.25] turned out to be suitable,
allowing a unit to integrate input samples
within its RF without losing direction infor-
mation. Too high a value of v would reduce
the map to represent purely orientation, be-
cause the “tail” in the weight profiles would be
lost. On the other hand, too small a v would
make the final weight profiles more radially
symmetric, which would reduce the mapping
to retinotopy only.

In demonstration of the final map, meth-
ods similar to the evaluation of cortical maps
were used [3]. Altogether, there were only
16 sequences (one for each direction), each
consisting of a Gaussian that extended across
the whole retina, and moved across the whole
retina.

During a presentation of a sequence,
the maximum output of every neuron was
recorded. After presenting all 16 sequences,
a directional response profile for every neuron
(16-dimensional vector) was obtained. Neu-
ron’s direction preference was then found as
the direction for which neuron’s response was
the highest. Neuron’s direction selectivity was
calculated as the ratio of neuron’s response to
its preferred direction and the sum of all its re-
sponses. Neuron’s orientation preference was
calculated by first summing the neuron’s re-
sponses for the opposite directions, and find-
ing the largest of these 8 sums. Orientation
selectivity was evaluated analogically, as the
ratio of the neuron’s response to preferred ori-
entation and the sum of all its orientation re-
sponses.

4 Results

The final direction and orientation map is
shown in Fig. 3. Almost all units are orienta-
tion selective, and most of these are also di-
rection selective (with varying degree of selec-
tivity). Typically, a unit that is direction sen-
sitive also has an orientation preference per-
pendicular to its preferred direction of motion.
Orientations vary smoothly across the map,
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the cortex (out of total 72 x 72) is marked with a line that identifies the neuron’s orientation preference.

In a similar fashion, (usually) perpendicular to it and touching its center is the shorter line that identifies

neuron’s directional preference. The length of a line (either orientational or directional) is proportional
to neuron’s selectivity. Most of the neurons are orientation selective except a few at pinwheel centers.

Most of the orientation-selective neurons are also direction selective with varying degree of selectivity.
In addition, at most parts of the map, an iso-orientation patch contains subregions that correspond to

neurons most responsive to opposite directions, perpendicular to that orientation. All these features have

Figure 3: The self-organized direction and orientation map. Each neuron in the inner 64 x 64 region of
been observed in biological direction maps.
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Figure 4: The larger-scale features of the orien-
tation and direction map. The orientation pref-
erence is shown in gray scale. The map contains
typical features of visuo-cortical maps such as sin-
gularities (pinwheel centers), fractures and linear
zones. Almost every iso-orientation patch consists
of subpatches corresponding to neurons selective
to opposite directions. Major direction disconti-
nuities are marked by black dotted lines. They
often originate from pinwheels, as is found to be
the case in the direction maps in the visual cortex.

and most iso-orientation patches can be sub-
divided into subpatches with opposite direc-
tion preferences. The orientation map has the
usual structure found in the visual cortex, in-
cluding pinwheel centers, fractures and linear
zones (Fig. 4).

Neurons in the model can be roughly cat-
egorized into three groups, whose represen-
tative weight profiles are shown in Fig. 5.
Most of the units become both orientation and
direction selective, as shown by their asym-
metric weight profiles (left). Some neurons
are only orientation selective, with symmetric
profiles (center). There are also a few non-
selective neurons (right) near singularities, as
observed also in biological orientation maps.

In terms of neuron’s response profiles, the
difference between direction selective and non-
elective neurons is not that big (Fig. 6).
An only-orientation-selective neuron has two
peak responses of roughly equal strength; for
an orientation and direction-selective neuron,
one of the peaks is slightly higher. Such pro-
files are not surprising. The responses are de-

j =%

Figure 5: Typical final weight profiles of the
neurons. From left to right: both direction and
orientation-selective neuron (23 rows from the top
and 8 columns from the left), an orientation-
selective neuron (12,10), and a non-selective neu-
ron (20,10). A direction-selective neuron typically
has a longer tail from the direction to which it
is most responsive, whereas a neuron selective to
only orientation has a symmetric weight profile.

termined by the weight profile, which matches
both directions to some degree. The difference
can be made adjusted by tuning the nonlin-
earity parameter 6 of the neuron.

Similarly to biological maps, the neurons in
the model also respond to non-oriented mov-
ing stimuli, such as Gaussian spots, provided
that they move in the preferred direction. The
model also makes the prediction that the neu-
ron should respond to a sequence of spots
moving in a direction perpendicular to its pre-
ferred one, provided that the sequence over-
laps considerably with the unit’s weight pro-
file. However, there are more such sequences
moving in its preferred direction that match
the neuron’s weight profile well. This sug-
gests that finding this phenomenon experi-
mentally requires a careful study of individual
responses, instead of averaging.

5 Conclusion

The model in its current form demonstrates
several major characteristics observed in bi-
ological direction maps. First, most of the
orientation-selective neurons are also direc-
tion selective. Second, a neuron’s preference
to a direction of motion is perpendicular to
its preferred orientation. Third, most of the
iso-orientation patches contain discontinuities
that subdivide them into subpatches with op-
posite direction selectivity. Forth, these dis-
continuities have the shape of curved lines
within an iso-orientation patch. The model
also makes the prediction that the neuron
would have a high response to a dot moving
perpendicularly to its preferred direction if it
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Figure 6: Response profiles of the neurons in
Fig. 5. Direction “1” is “up”, and index grows
counterclockwise. The direction-selective neuron
(top) has a clear preference, although it also re-
sponds considerably to the opposite direction.
The orientation-selective one (middle) responds
equally strongly to both, and the non-selective
(bottom) has no preference at all.

happens to hit the peak of the weight profile
accurately.

On the other hand, there are features ob-
served in biological direction maps that are
difficult to reproduce in the model. First,
direction discontinuity lines do not run the
whole length between pinwheel centers, nor
do they tend to run across the center of iso-
orientation domains. Second, the neuron’s re-
sponse to a direction of motion opposite to
its preferred one is rather high compared to
the response measured in biological direction
maps. To solve these problems, it may be nec-
essary to increase the resolution by enlarging
the retina and the cortex or change the model
of the neuron.
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