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Processing structured data is a continuing challenge for connectionist mod-
els that aim at becoming a plausible explanation of human cognition. The
recently proposed linear Recursive Auto-Associative Memory (RAAM) model
was shown to have a much higher encoding capacity and not to be subject
to over-training compared to classical RAAM. We assess the effect of termi-
nal encoding on the performance of linear RAAM in case of encoding trees
of ternary semantic propositions and we show that the highest representation
capacity is achieved with (sparse) binary WordNet-based codes, compared to
(symbolic) neutral and to (distributed) word co-occurrence based codes. Only
with WordNet codes the model could generalize to processing structures that
contain known words at new syntactic positions or contain novel words, as long
as these shared semantic features with the words from the training set.
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1. Introduction

In their fundamental criticism in 1988, Fodor and Pylyshyn1 expressed

their serious doubts regarding connectionist models of that time; namely,

whether they could account for generativity and systematicity observed

in mental representations without merely implementing symbolic systems.

Generativity expresses the idea that mental representations can be gener-

ated in an unlimited way, by combinatorial manipulations of atoms. Sys-

tematicity refers to the mental property that understanding certain sen-

tences (e.g. John loves Mary) inherently implies understanding of related

sentences (such as Mary loves John). This concept was more clearly de-

fined by Hadley2 who proposed that systematic behaviour in connectionist

network was a matter of learning and generalization. Hadley distinguished

three levels of systematicity: weak, quasi-, and strong. Niklasson & van
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Gelder3 subsequently proposed a more comprehensive and more detailed

taxonomy (levels 0 through 5, with increasing “degree” of novelty in test-

ing sentences), having loose correspondence to Hadley’s three levels. Con-

nectionist models, as a qualitatively different cognitive architecture, were

challenged in showing they could represent structured data without point-

ers or logical addresses (natural part of symbolic systems), using vectors of

fixed dimension. Since 1990 we have witnessed a number of connectionist at-

tempts to handle systematicity,22 out of which Recursive Auto-Associative

Memory5 appearantly attracted most attention, reflected in a variety of ap-

plications and modifications of the original RAAM.3,6–8,10,11,13 The RAAM,

as a recursive auto-encoder trained by error backprogation, learns the com-

pressed (reduced) representations at its hidden layer. Despite its widespread

use among connectionists, RAAM is known to have a number of drawbacks:

the difficulty to train, sensitivity to noise and a rather poor generalization,

to name a few.9 The most recent alternative to the original model – lin-

ear RAAM by Voegtlin and Dominey (henceforth, V&D),14 was reported to

achieve a much better generalization performance and to avoid the problem

of overtraining. In this paper, we examine the linear RAAM and illustrate

its properties in the context of testing its systematicity in processing lin-

guistic data using various encoding schemes of terminals (words).

2. Linear RAAM

The recently proposed linear RAAM14 differs from original RAAM5 in three

points: (1) it uses neurons with linear activation function (identity map-

ping), as opposed to sigmoidal neurons, (2) it uses unsupervised Oja’s rule

for updating weights, unlike supervised error backpropagation, and (3) it

uses the same weight matrix for both encoding and decoding structures

(due to linearity).

Like RAAM, linear RAAM is a three-layer neural network that learns

to encode n-ary trees (using nk-k-nk units). The tree encoding proceeds

recursively bottom-up and left-right which is illustrated foor a binary tree

in Figure 1a. First, we obtain reduced representations of subtrees (A B)

and (C D) by presenting these pairs as inputs one at a time. The obtained

representation of (C D) is then copied via recurrent links from the middle

layer (MID) to the left group of inputs (LI). The right group of inputs

(RI) reads the symbol E, and the mapping yields the representation of the

subtree ((C D) E). The last step consists in copying this representation to

RI and reading the previously obtained subtree representation of (A B) to

LI. The activity of MID will then correspond to the reduced representation
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see boys

is John

loves John Mary

A EB

C D

b)a)

Fig. 1. Example of (a) binary and (b) ternary tree structure. The binary tree has leaves
without any meaning. Terminals on the right are words that bear linguistic meaning,
which can encoded in the terminal representations.

of the whole tree.

If we denote z
(a)
j the activity of neuron j from the group a (out of n) in

the input layer, ci the activity of the neuron i of the compressing layer, and

w
(a)
ij the synaptic weight between these two neurons, then we can express

encoded activations as

ci =

n
∑

a=1

k
∑

j=1

w
(a)
ij z

(a)
j (1)

or, in the vector form as c = W(1)z(1) + W(2)z(2) + . . . + W(n)z(n) = Wz,

where z(a) is a k-dimensional column vector representing neuron activa-

tions in input group a, c is the activation vector of MID and W(a) =

‖w(a)
ij ‖k×k is the weight matrix between a-th group of inputs and MID.

Then, the whole weight matrix W = [W(1);W(2); . . .W(n)] ∈ R
k×nk, and

z = [z(1)T

; z(2)T

; . . . ; z(n)T

]T ∈ R
nk×1 is the vector of input activations.

2.1. Decoding process

Reconstruction of the original tree also proceeds recursively, but in top-

down fashion which is illustrated using the ternary structure in Figure 1b.

First, we copy the representation of the whole tree (corresponding to the

sentence boys see John who loves Mary) to MID. As a result of its de-

composition we obtain the representation of the terminal see in LI and the

representation of the terminal boys in the middle group of inputs (MI).

The activation pattern in RI does not correspond to any of the terminals,

so its contents is copied to MID and decoded. As a result, now we get in

LI and MI the representations of terminals is and John, respectively. Since

the contents of RI does not correspond to any of the terminals, it is copied

to MID and decoded, which results in decoded representations of all three

terminals at the correponding groups of inputs, namely, loves, John and
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Mary. In general, trees can have at certain depth more vertices that are not

leaves. For example, both children of the root in Figure 1a are not leaves.

In this case, during encoding we must store the obtained representation of

a subtree in a stack, and later retrieve it and use it as input, after we have

obtained the representations of the remaining subtrees. Analogical use of

the stack is available during decoding the structure. For decoding of the

group activity we use the same weight matrix, i.e. z̄(a) = W(a)T

c and the

overall mapping from MID to the output layer is z̄ = WT c. However, the

decoding process is rarely ideal in a sense that the reconstructed images z̄

would exactly match the originals. a Therefore, we need a terminal test that

could help us decide whether the obtained representation is to be considered

a terminal or it should be further decoded.

2.2. Terminal test

In terminal test used by Pollack5 the reconstructed vector was considered

a terminal, if all its elements differed by less than τ from the required

values, where he used τ = 0.2. V&D14 used the Euclidean distance instead,

and a decoded vector was considered to encode a terminal if and only if

the Euclidean distance to the vector encoding this terminal was below a

reconstruction threshold θ. We need to specify what we mean by successful

decoding. Even though we can allow certain inaccuracies during decoding

while applying the terminal test, we may not succeed in reconstructing the

original structure. The following cases can result: (i) ambiguous case — if for

chosen θ, the reconstructed vector could represent more than one terminal;

(ii) unrecognized terminal — if the reconstructed structure should yield a

terminal but it does not (which could lead to infinite loops in the decoding

process); (iii) terminating non-terminal — if at certain position we decode a

terminal but the original structure contains a subtree at that position; (iv)

wrong terminal decoded — if that differs from the required terminal. We

will consider decoding the structure successful, if none of the above cases

occurs. Such a structure will be considered encodable (representable) by

the network.

a Formation of reduced representations involves dimensionality reduction. The rank of
the matrix P = W

T
W is rank(P) ≤ k, whereas the dimension of input vectors is

nk. Therefore, if the input contains more than k linearly independent vectors, their
reconstructions (using mapping defined by P) will be linearly dependent vectors and
will hence differ from the originals.
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2.3. Training the network

The network si trained as an autoassociator. Minimization of the quadratic

error between input (target) z and its reconstruction z̄ yields the stochastic

rule for weight modification

∀1 ≤ i, j ≤ k

∀1 ≤ a ≤ n
∆w

(a)
ij = η ci

(

z
(a)
j −

k
∑

r=1

w
(a)
rj cr

)

(2)

where η is the learning rate. This corresponds to Oja’s constrained Hebbian

learning rule,15 which is known to find the linear subspace spanned by k

principal components of the distribution of an input vector. Principal Com-

ponents Analysis allows to linearly transform data from high-dimensional

input space to the feature space of lower dimension. It consists in finding or-

thogonal vectors corresponding to the directions with the highest variance.

The linear RAAM performs a more complex operation than does PCA,

because the input vector z(t) depends on reduced representation c(t − 1),

which in turn depends on previous input z(t − 1). Hence, the distribu-

tion of a vector z is not defined a priori, but it results from the internal

representation devised by the network. This type of learning is called a

moving target problem.

The adaptation runs recursively bottom up. First, the network is pre-

sented only parts of the structure that contain leaves. We always remember

the representation of the presented subtree and modify weights according

to Eq. 2. In the next steps, we process those parts of the structure that

contain a subtree as well. This process is illustrated in Table 1 referring to

the tree in Figure 1a.

Table 1. The order of training inputs for the structure in Figure 1a.

Input z Reduced repr. Output z̄

(A B) −→ RAB(t1) −→ (Ā B̄)

(C D) −→ RCD(t2) −→ (C̄ D̄)

(RCD(t2) E) −→ RCDE(t3) −→ (R̄CD(t2) Ē)

(RAB(t1) RCDE(t3)) −→ RABCDE(t4) −→ (R̄AB(t1) R̄CDE(t3))

3. Simulation experiment

3.1. Encoding schemes for terminals

To assess the effect of terminal encoding on network performance, we com-

pared three types of features for the terminals – words in our linguistic
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task: (a) the (symbolic) neutral code, (b) word encoding derived from word

co-occurrences, and (c) word encoding containing WordNet-based features.

For input data we generated English sentences based on specified proba-

bilistic context-free grammar, using semantic constraints.17 300 sentences,

based on the lexicon of 50 words, were transformed into ternary trees of

propositions. Table 2 shows a few examples of simpler generated sentences

and their translations. b In sentence translation, we tried to preserve, fol-

lowing Pollack, the recursive order (ACTION AGENT OBJECT), where

these categories correspond to verb, subject, and object, respectively. In

sentences with the missing object, we used a new terminal NULL. Note that

ternary structures do not include words who and who_pl.

Table 2. Examples of simpler generated sentences and their translations.

Steve walks (walks Steve NULL)
women see boys (see women boys)
dogs who pl see girl bark (bark (are dogs (see dogs girl)) NULL)
boy feeds cat who John sees (feeds boy (is cat (sees John cat)))

Note: For a sentence with embedding of depth n, the tree depth is 2n + 1.

3.2. Generation of word features

The neutral codes implied 50-dimensional localist (one-hot) word represen-

tations, and the special symbol NULL was representated by the zero vector.

Hence, the distance between any two meaningful terminals was
√

2, but the

distance between NULL and any of these terminals was 1. Therefore, the

optimal θopt > 0.5. Word co-occurrence-based word encoding were created

using the a special recurrent neural network – word co-occurrence detec-

tor (WCD) that learns the lexical co-occurrence constraints of words.18,19

WCD reads through a stream of input sentences (one word at a time) and

learns the transitional probabilities between words (the window size can

be modulated, in this work we considered two nearest neighbors on either

side) which it represents as a matrix of weights. Given a total lexicon of

size N , all word co-occurrences can be represented by an N×N contingency

table, where the representation for the ith word is formed by concatena-

tion of ith column and ith row vectors from the table. For symbols is and

bSymbol who pl was introduced for translation purposes, to differentiate between the
singular and the plural.
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are we used WCD codes of who and who_pl, respectively. Investigation

of the WCD data revealed, that the minimal distance betwen two words

was dmin < 0.05, so to enhance word discrimination, we rescaled the vectors

such that its maximum component reached activation one. Since the largest

vector component for some words was almost 0.5, the rescaling of the vec-

tor components was done using factor of two. In this case we estimated the

optimal θopt ∈ (0.05, 0.1).

WordNet-based word features were derived by a feature generation sys-

tem20 that can produce a (smaller) set of binary features for each word.

Harm’s software incorporates semantic features mainly from WordNet,21

but it did not provide features for all words so we generated those manu-

ally. Altogether, we had 41 features for all 50 words, so the word represen-

tations could be were 41-dimensional. Each word (except NULL) had 1 to 6

features. For this encoding, the minimum Euclidean distance of two words

was dmin = 1, so the optimal threshold θopt > 0.5.

The minimum network size that would accommodate all three types of

word representation would be k = 100 (for neutral and WordNet codes

the remaining bits would be padded with zeros). Preliminary simulations

showed, however, that the network capacity could be increased if we pro-

vided extra room for encoding structures, so we used k = 150. For training,

we generated 100 sentences, resulting in the overall amount of 325 ternary

structures. In order to achieve successful training, we had to use a rather

small learning η between 10−6 and 10−7 (for larger η, the weights diverged).

As an undesirable consequence, the training time became rather extensive,

especially for WCD codes, because even after 200000 iterations, the weights

were still not converged.

3.3. Levels of systematicity

In the original paper of Fodor and Pylyshyn, the use of concept of sys-

tematicity was rather vague, so it was difficult to test it in connectionist

models. In our experiments, we followed the taxonomy proposed by Niklas-

son & van Gelder,3 shown in Table 3. For training we used in all experiments

150 structures from the base, but the actual selection of training sentences

depended on the level of systematicity being tested. In the subsequent plot,

we show results averaged over 7 runs. For each run, the weights were initial-

ized to small values randomly chosen [−0.1; 0.1]. For neutral and WordNet

codes we set η = 0.001 and for WCD codes η = 005. In search for optimal

reconstruction, we set θneutral = 0.55, θWCD = 0.1, and θWordNet = 0.7. In

all cases, the training was stopped after 5000 epochs.
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Table 3. Levels of systematicity tested with linear RAAM.

Level Description of the test set

0 No novelty (training data used)
1 Novel sentences (novel word combinations)
2 Novel positions (of at least one atom)
3 Novel atoms (at least one atom never appeared in training)
4 Novel complexity (of test sentences compared to training)
5 Novel atoms and novel complexity (combination of 3 and 4)
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Fig. 2. Systematicity performance for (a) the training set (b) the testing set (level 1).

Figure 2a shows the results regarding systematicity level 0, i.e. using

training data. In case of WordNet code, the network could represent almost

all 150 structures from the training set, in case of neutral code it was

approximately 80% and in case of WCD code somewhat below 40%.

As a next step, the networks were presented novel structures from the

test set (level 1). Results are in Figure 2b. In case of neutral code, the

performance of the network dropped to roughly 40% of novel structures in

the test set (from 80% in the training set). If we assume that the network

capacity is sufficient for representing 120 structures (which is 80% out of

150), then the network learnt only a half of novel structures. Analogical ar-

gument in case of WCD and WordNet codes leads to the conclusion that the

network only learnt to exploit roughly 75% of its representational capacity.

For testing level 2 we correspondingly selected propositions for the test

set: Since only nouns can occur at more than one syntactic position in our

propositions, we excluded a few of these from the object position: John

and Steve, singular girl, and plural dogs. The results are shown in Fig-

ure 3a. With the neutral code (not shown), the network failed to repre-

sent a single novel structure. For WCD and WordNet codes, the network

achieved a certain degree of systematicity, albeit not impressive and highly
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Level 3: novel symbols in known structures

John
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Fig. 3. Test results for higher levels of systematicity.

atom-dependent. The best result was observed for structures containing

the atom dogs in the object position. In case of John and Steve we had

to use a different thresholds (θWCD = 0.07, θWordNet = 0.9) to achieve the

accuracy shown in Figure 3a. Finally, in case of girl the network failed

to represent a single novel structure, irrespective of the word codes. The

reasons for differences in behavior can be found in the test set itself. The

test set for case girl only contained this atom at the lowest levels (at least

3) of the trees, so one could expect that the error during reconstructing the

novel word will be higher compared to other words that appeared at the

same positions in both training and test sets. If the word appeared at larger

depth, the error is accumulated in reduced representations of corresponding

superstructures. At the same time, each additional level probably increases

the inaccuracy in decoding a superstructure. Therefore, we got zero per-

formance in case of girl. This hypothesis is supported by the existence

of represented structures in case of John and Steve: these atoms always

occurred at depth 1.

For testing level 3, we prepared four data sets for training (and testing),

each having one word (noun or verb) excluded from all training structures,

but contained in all test structures. These words were: John, cat, boys

and see. The average results are displayed in Figure 3b. For John we used

θWCD = 0.07 and θWordNet = 0.9. To make the network able to represent

structures containing a novel word there must exist a “very similar” word

to it (in terms of Euclidean distance) in the training set. Hence, in case

of neutral code we got zero performance for this level, whereas in case of

WordNet code there exist pairs of words differing only in one feature, such

as cat and cats. Note that in case of WordNet code, the performance for

John is much worse compared to other words. The reason is that its closest

neighbor, Steve (distance
√

2), only occurred in 10 out of 150 structures
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from the training set, so John, unlike other three cases (cat, boys and see)

did not have “sufficient training” to become represented during testing.

Finally, regarding the level 4 we found that the network was unable to

represent deeper structures, irrespective of the three word encodings used.

We assumed that level 5 would also be beyond the representatinal capacity

of the linear RAAM.

To summarize, the linear RAAM using neutral code can only satisfy

level 1 systematicity, which is similar to what was concluded by V&D [14,

sec. 6.5]. In case of WCD and WordNet codes we could observe a certain

degree (higher for WordNet) of systematic behavior at levels 2 and 3, which

depends on two factors: First, due to expected inaccuracy in reconstructing

the word, i.e. during testing novel word c, the reconstruction error is more

problematic if the word lies at larger depth within a structure. Second, if

the training set contains a word with a code similar (in terms of Euclidean

distance) to the novel word, then the trained network is capable of rep-

resenting also structures containing that novel word, thank to exploiting

shared word features.

4. Conclusion

Our experiments with the recently proposed linear RAAM14 shed some

light on the network learning and representation properties. We investi-

gated the effect of terminal encoding by comparing neutral code with two

types of semantic features expecting that these would boost the represen-

tation capacity of the network. One type of features involved word encod-

ing extracted from word co-occurrences within the English-like text corpus

(context-free grammar with superimposed semantic constraints), the other

was based on WordNet database. In the task of encoding trees of ternary

semantic propositions, we observed that clearly the highest representation

capacity was achieved with (sparse) binary WordNet codes. On the other

hand, despite the appeal of word co-occurence models in linguistic model-

ing,23 the word co-occurrence features did not work well in our task, because

although this approach displayed the lowest reconstruction error, the real-

valued features led to a high number of confusions in decoding, given the

considered Euclidean metrics. In the context of testing levels of systematic-

ity in the linear RAAM, according to taxonomy proposed by Niklasson &

van Gelder,3 we showed that the network with WordNet-based terminal en-

csuch as being a known atom at novel position (level 2), or as a completely novel atom
(level 3)
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coding accomplished to the certain degree the third level of systematicity,

i.e. it could generalize to processing structures that contain known words

at new syntactic positions or novel words, as long as these shared semantic

features with the words from the training set. In summary, these results

suggest that the linear RAAM has remarkable generalization properties,

and that connectionist representing symbolic structures (i.e. using neutral

code) has its soft limits. In language domain, the linear RAAM was shown

to benefit from using appropriate binary semantic features of terminals in

the process of generalization.
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