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What is the structure of human lexical system?
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Abstract: This paper pinpoints some current issues related to computational approaches to
semantic lexical representations and language structure. First, we discuss context-based methods
that allow to generate word meanings based on a window sliding through big text corpora. Word
associations as predicted by these vector-space models are then assessed with regard to results
from psychological priming experiments that provide solid evidence on how humans associate
words with one another. This comparison is then extended to the lexical system projected to-
pographically into lexical maps. Finally, we provide evidence for the possible lexical structure
as suggested by studies of language networks that possess small world and scale-free properties.
Since these language network models suggest a much richer word connectivity structure than
that of resulting from vector-space models, potentially including spurious ssociations, we suggest
that the connectivity pattern of the human lexical semantic system might lie in between the two
bounds.

Representing lexical semantics

On the formal level of description, the human lexical system may be thought of as
a graph whose nodes stand for words and whose links represent associations between
words. Within this framework, two main issues emerged as foci of the research: (1) how
to represent the lexical (word) semantics, and (2) how the words (concepts) are associated
with one another. Both issues can be tackled with computational models, but in both
cases, the model predictions should be confronted with empirical evidence about human
linguistic behavior to assess psychological and cognitive plausibility of these models.

How to represent semantics computationally has been a difficult problem for many
years, and as yet, there is no consensus as to exactly what is stored and how. With
the rise of cognitive modeling, several approaches to representing lexical semantics have
been recently introduced. In their nature, they all essentially are vector space models,
but they differ in how the word vectors are created and what their components reflect
[1]. For instance, one can take advantage of explicit human judgements and use word
features consistently generated by most subjects. Alternatively, researchers themselves
can generate these semantic vectors using their intuition. As a third method, random
vectors are used, with an argument that for modeling some processes (e.g., arbitrary
mapping betweeen semantics and phonology), the actual components of the semantic
vectors do not matter. Last, an automatic method usable in large scale tasks was in-
troduced that uses WordNet [2], a lexigraphic database, for creating semantic vectors of
words in question [3].

All the above mentioned methods (except random vectors) generate features that
point to characteristics of the corresponding word. Hence, the representations are grounded
in the real world. However, recent work in computational linguistics and cognitive psy-
chology (see e.g., [4] and [5], respectively, and references therein) has shown that in-
teresting features of words (including semantic) can also be captured merely from word
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co-occurrence statistics. Various modifications of this approach have been proposed, as
for what is considered a word context. For instance, in Latent Semantic Analysis (LSA,
[5]), word occurrence across various documents (contexts) is counted, whereas in Hyper-
space Analogue to Language (HAL, [6]), the context is represented by a fixed window
sliding through the corpus. Manipulating window parameters (such as size, shape) and
distance metrics affects the representations. For example, it has been observed [1] that
syntactic information is better captured with a very short window, whereas semantic
features may require larger windows. It has also been observed that left word context
tends to provide more information then the right context.

In my recent work on modeling early lexical aquisition [7], I also derived context-
based word representations from the parental CHILDES corpus [8]. The simulations
supported the latter of the above two claims (left context is better than the right),
but not the former: increasing the window radius did not improve the compactness of
all grammatical/semantic categories. In addition, I combined word context information
with Wordnet-based semantic features of words [3] by concatenating both vectors for
each word. This led to two improvements: (1) overall accuracy of word representations
(as measured by clustering properties of word categories) was increased and (2) semantic
representions became grounded in real world (thus circumventing a common objective
against using purely word co-occurrence methods as being cognitively implausible).

To make word context methods computationally effective, various methods were advo-
cated to reduce the number of dimensions of co-occurrence vectors, while approximately
preserving the data structure. For instance, in LSA [5] 300 dimensions are extracted
using singular-value decomposition of the word-document cooccurrence matrix. In HAL
[6], 200 vector components with highest variability are selected. In our model of growing
semantic map for lexical acquisition [9] we linearly project the high-dimensional word
vectors (whose dimensionality grows linearly with lexicon size) down to 100-dimensions
using random mapping procedure [10].

Account for semantic priming

Whatever the dimensionality of word representations, semantically similar words are
expected to be represented by two points being close in vector space. Vector space models
have proved very successful models of semantic memory. The primary test of these models
is their accountibility for priming effects. Semantic priming paradigm [11], as one of the
most widely used in psychological studies of memory and language, demonstrates how the
recognition of the target word (measured by the reaction time) can be facilitated when
preceded by a related (priming) word. In other words, the reaction time taken to recognize
the target word is shorter when the target is preceded by related than when preceded by
unrelated word. Priming has been observed between word pairs that are from the same
semantic category (e.g., run-jump) or are functionally related (e.g., hammer-nail) [12].
In testing whether vector space models can account for priming effects, spatial proximity
(cosine of two vectors) of related prime word and target is compared to that of unrelated
prime words. If the related prime word is closer to the target than unrelated prime word,
this is taken as account for priming effect. Vector space models demonstrated the priming
effect account for various types of semantic relatedness between words [5, 13, 14].



Semantic memory maps

When one focuses on how such a semantic vector space model could be mapped onto a
human cortex, the question arises as for how well the structure can be preserved when
compressed in two dimensions. There exists experimental evidence for topographic orga-
nization of information in the brain as a potentially universal representation mechanism
used in various sensory modalities [15]. It has also been suggested [10] that there may ex-
ist semantic topographic maps in the brain in which words would be ordered according to
their semantic relationships. This hypothesis is also supported by a numerous neuropsy-
chological evidence on category-specific naming deficits observed in patients who cannot
name objects belonging to a certain semantic category (but can for other categories) as
a consequence of a stroke or other brain disorder (e.g., [16]).

In trying to validate such semantic maps with respect to psychological perspective,
Lowe [17] has shown that priming effects both between nouns from the same semantic
category and for funcionally related nouns can be replicated when looking at word dis-
tances in the 2D map (extracted by Generative Topographic Mapping [18]), rather than in
original high-dimensional space. In our experience with CHILDES data using 500 words,
most of the semantic categories also remained mostly preserved in the self-organizing
map [7]. However, what remains roughly preserved are mostly semantic associations be-
ween words belonging to the same category, whereas other (e.g., functional) associations
may be lost. Most probably, more links need to be added to the structure in the form
of lateral, long-range connections. Also, the literature on priming effects focuses on rela-
tions between nouns (paradigmatic associations), but the syntagmatic relations between
words can also lead to priming effects (e.g., dog-bark) and such effects could hardly be
accounted for in the semantic map without lateral connections. In addition, it is more
likely that the lexicon could be organized as a set of interconnected and hierachical maps
rather than one huge map. Neuropsychological evidence suggests that e.g., grammatical
categories such as nouns and verbs are processed by separate brain regions [19] and so
may be the superordinate and subordinate categories of nouns [20].

Word form and word meaning

There exists solid psychological and neurobiological support for the theory that word
forms (ortographic and phonological) and word meanings could be subserved by separate
neural systems [21]. To account for existence of homographs (ortographically ambiguous
words) and synonyms, there has to exist a many-to-many mapping between ortographic
word form and meaning. As a consequence, a complication arises for context space
models because what they actually derive for ambiguous words is a blended meaning
averaged over different contexts in which the word is found in the corpus (the method
cannot differentiate between unrelated contexts and collect separate statistics for various
meanings of polysemous words). For some word forms, the blended meaning could be
referred to as a root meaning, (e.g., 42 meanings of the verb run according to WordNet),
but in case of other word forms the blended meaning has no interpretation (e.g., bank as
a financial institution, or a river bank).

Small world of human language

Unlike vector space methods in which geometrical structure (Euclidean distance or cosine
between two vectors) determines the similarities between words considered as concepts,



a different connectivity pattern emerges when one treats the lexicon as a graph whose
connectivity results from coocurrences of word forms. Specifically, networks of human
language became recently studied from the perspective of complex systems, in which the
focus is on the graph structure. Hence, the actual coordinates of nodes (word meanings)
are irelevant. There have been a few models proposed. One method connects words based
on their cooccurrence across sentences within a window of radius two [22]. In another
approach [23], using Thesaurus electronic dictionary, two nodes are connected if one of
the corresponding words is the listed in the entry of the other one. Despite differences in
resulting connectivities, both studies lead to the same conclusions. A language network,
like many other complex systems (e.g., world-wide web, telecommunication network or
citation networks of scientists), display two important characteristics: the so called small-
world property and scale-free structure.

Small-world property [24] is characterized by the combination of highly clustered
neighborhoods and a short average path-length between two nodes. This means that
any two words can be connected via only a few intermediate words and this is possible
thank to a small subset of polysemous words that have many neighbors and serve as
hubs within the network. Scale-free structure [25], on the other hand, is defined by an
algebraic behavior in the probability distribution P (k) of k, the number of links at a node
in the network. In a scale-free network, the distribution of node connectivities follows a
power function, rather than an exponential function.

Both properties shed light on appealing attributes of language. Specifically, small-
world phenomenon allows to appreciate the efficient retrieval within an associative net-
work: on the one hand, similar words are clustered together, but even very different words
are never separated by more than a few links, which guarantess fast search [23]. The
scale-free property suggests interesting mechanisms that may have shaped the evolution
of the word network [26].

As the other side of the coin, it can be seen that connectivity pattern resulting from
these language network results in much richer network of association than is possible
with vector-space model in which connections are based on Euclidean distances (points
whose distances is below predefined threshold become connected to yield a graph). As a
matter of fact, some researchers [27] questioned the appropriateness of vector (Euclidean)
spaces for conceptual networks because they impose un upper bound on the number of
points that can share the same nearest neighbor (which applies to map representations,
t00). On the other hand, language networks with small-world property may assume word
connections that are truly spurious, and most probably, would not show priming effect.
For instance, in case of Cancho and Solé’s model [22], it is unlikely that all neighboring
word pairs in the text would be neighbors in the mental lexicon as well. Similar doubts
could be raised when considering Motter et al’s model [23].

Word’s neighbors

To computationally assess the above considerations, we calculated the average number of
word neighbors (k) for our vector-space model [9] and for a small-world language network
of Cancho and Solé [22], both of which are based on a sliding window that determines
the network structure (we considered window radius 1 and 2). We took 2473 most
frequent words (corresponding to token frequency of 16 and higher per million words)
from parental CHILDES database containing approximately 3.1 million words. Whereas
the connectivity in Cancho and Solé’s model directly results from the graph, in vector-
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Figure 1: Average number of word neighbors as a function of neighborhood radius (relative to
Euclidean distance between two most distant words) evaluated for our vector-space model on
CHILDES corpus (2473 most frequent words). As a reference, the average number of nearest
neighbors (degree) obtained for the same corpus based on the language network model of Cancho
and Solé is shown.

space model k£ depends on the considered radius n, of the hypersphere surrounding the
target word. This radius was evaluated as a fraction of maximum Euclidean distance
between two words in the lexicon (hence, n, = 0.5 covers the whole space if the word is
in the center of word space). As shown in Figure 1, this function is nonlinear, and as
could be expected, k grows faster in mid-range for rad = 2. Corresponding small-world
networks respectively yield k1 = 129.6 and ke = 248.9. To match these averages, the
diameter of the neighborhood hypersphere would have to be one third of that of the
word space (for n, = 0.17; denoted by a short dotted line), to allow for the same k
as the small-world model. Since vector-space models connect word meanings whereas
small-world models connect word forms, it is difficult for the former to account for higher
number of nearest neighbors in case of polysemous words without allowing larger n,.
Since considered n, has to be the same for all words, as a trade-off, larger n, increases
the likelihood of including spurious neighbors.

Therefore, we conclude by suggesting that vectors-space models may underestimate
the actual neighborhood structure, whereas small-world models appear to overestimate
it. Therefore, it is possible that the connectivity pattern of the human lexical system
will lie somewhere between the two bounds.
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