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ABSTRACT

In this paper we present the DevLex model of language ac-
quisition. DevLex consists of two self-organizing maps (a
growing semantic map and a phonological map) that are
connected via associative links. It simulates the early stages
of lexical development in children, in particular, word con-
fusion as evidenced in naming errors. The simulation results
indicate that the rate of word confusion is modulated by de-
velopmental profile of vocabulary increase, word density of
competing neighbors, and rate of lexical growth. These re-
sults match up with hypotheses from empirical research on
lexical development.

1. INTRODUCTION

Connectionist modeling of language learning has made sig-
nificant progresses since Rumelhart and McClelland’s pi-
oneering model [1] of the acquisition of the English past
tense. However, two major limitations need to be consid-
ered for the further development of neural network models
of language acquisition. First, most current models have
used artificially generated input representations that are in
many cases isolated from realistic language uses. In addi-
tion, these input representations are often "handcrafted” by
the modeler and limited to small sets of vocabulary. Second,
most previous models have used supervised learning, in par-
ticular, the back-propagation learning algorithm as their ba-
sis of network training. Although these types of networks
have demonstrated success, there are serious problems con-
cerning their biological and psychological plausibility, es-
pecially in the language learning context (see [2, 3] for ar-
guments).

In this study, we present DevLex, a self-organizing neu-
ral network of the development of lexicon, in an attempt
to overcome the limitations associated with current models.
DevLex relies on corpus-based speech data to establish the
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sequence as well as the structure of input, using phonolog-
ical and semantic representations that more closely approx-
imate the reality of language use. Components of DevLex
have been applied successfully to model the acquisition of
semantics and morphology by children and bilingual learn-
ers[4, 5, 2, 6].

In the empirical literature, it has been observed that chil-
dren experience a "vocabulary spurt”, a sudden and rapid in-
crease in the rate at which new words are learned (typically
when the child’s vocabulary reaches 150 words; [7]). As-
sociated with this vocabulary spurt is a brief period of con-
fusion on the use of some words, often a “naming deficit”,
whereby the child calls an object by the wrong name [8].
There are various explanations of children’s lexical confu-
sions (see Discussion); a prominent argument is that word
confusion may be due to semantic reorganization, a process
in which the child starts to recognize the shared meanings
of words but not their subtle differences [9].

In this paper, we simulate early stages of lexical devel-
opment with an incremental vocabulary growth profile, in
order to provide insights into the mechanisms that lead to
children’s word confusions at various developmental stages.

2. THE MODEL

DevLex consists of two main parts: the growing seman-
tic map (GSM) and the phonological map (PMAP) that are
connected with associative pathways (Figure 1).

In our previous work [5], we have described GSM in
more detail as a semantic memory of the growing vocabu-
lary. GSM self-organizes on word vectors, generated off-
line by word co-occurrence detector (WCD). Being a spe-
cial recurrent network, WCD parses the raw input text on a
word-by-word basis and transformes the local word repre-
sentations to distributed representations. It does so by learn-
ing the transition probabilities (for left and right contexts)
for all words ¢ = 1,...,n in the considered vocabulary (of
size n). Word representations, acquired by WCD weights,
are transferred to output unit activations by a control mecha-
nism described in [5]. Transitions to and from all unknown



PMAP

phonological map

word form —_—
self-organization

Hebbian learning

self-organization

semantic map

Figure 1: A sketch of the DevLex model of lexical acquisi-
tion.

words (i.e., those not from the lexicon) are ignored. With
maximal vocabulary size denoted by NN, the resulting word
representations consist of vectors q; € R*N (whose last
2(N — m)) components are zero).

Although n increases, we keep the word dimension con-
stant by projecting word vectors with fixed randommapping
matrix Z (of type D x 2N) down to D dimensions (we used
D = 100) while aproximately preserving the data structure
(for an underlying mathematical rationale of the method
see [10]). Matrix Z has normalized Euclidean length of
columns and is not subject to adaptation. Resulting word
representations can thus directly be obtained as q; = Zq; €
RP.

PMAP is a memory of the associated phonological word
symbols that were created with the PatPho generator [11].
PatPho fits every word (max. 3-syllables) onto a template
according to its vowel-consonant structure. We used the
left-justified template with binary encoding, reduced to 54
dimensions by PCA.

2.1. Learning

Learning in DevLex is split into two major phases: (1) ini-
tialization, and (2) learning of the growing lexicon. During
initialization, several steps are performed. PMAP is pre-
trained on the whole lexicon (550 words; see Section 3) and
then kept constant. The working hypothesis behind this sim-
plification is that children learn phonological forms much
faster than semantic representations of words. In other words,
given the limited repertoire of phonemes in a language, ac-
quisition of phonological structure is considerably easier
than acquisition of other linguistic components.

In contrast, GSM is pretrained on a subset of the lexi-
con (100 most frequent words), and the links between the
two maps are learned, too. GSM is initialized with a sub-
set of recruited units scattered randomly across the underly-
ing rectangular grid, and connected to form a 2D structure.
New units are then recruited (get connected) in the areas
with the highest lexical density. The initialization of GSM
serves to capture the regularities of the semantic space (ini-

tial neighborhood is large), to which new words are added
during lexical growth. In order to preserve the existing map
structure, the weight update during growth is local (smaller
neighborhood radius at all times).

In both phases, the single iteration follows the same
steps (though some learning parameters are different). For
each semantic-phonological representation pair selected from
the current pool, three calculations are performed: (1) map
responses are computed and the winner in each map is iden-
tified; (2) weight vectors of GSM units in the winner’s neigh-
borhood are updated, and (3) the associative links connect-
ing the winner neighborhoods are updated.

The localized output response of a unit & is computed as

_ lxemill—dmin
ap =4 7 G itk e ch
0, otherwise,

where x is a semantic or phonological word representation
vector, my, the weight vector of the unit k, AV, the neighbor-
hood around the winner ¢, dmin and dmax the smallest and
largest distance of x to a unit’s weight vector in the con-
sidered neighborhood. Weights of GSM units around the
winner are updated as
Amy(t) = asem(t) [@i — mg(t)], ik €N,

The associative weights between active units in both maps
are then increased proportional to their activity, using Heb-
bian learning

Awg = Qagsoc (t)afalD
where wy; is the unidirectional weight leading from unit & in
the source map to unit 7 in the destination map, and a3 and
ap are the associated unit activations in the source map and
destination maps, respectively. As is common with Hebbian
learning, the associative weight vectors are then normalized:

_ w1 (t) + Awgy
wr(t+1) = 5 fwa®) + Aw P72

At every iteration, Hebbian learning is applied to units situ-
ated around the winners in both maps. As the unit neighbor-
hood radius shrinks, it decreases the number of units whose
associative links are updated. The smaller the neighborhood
taken, the more focused the update is.

Due to associative links, the activity in the source map
is propagated (translated) to the destination map:

af = g(y) = Q(Z wiiay)
k

where the activation function g(y) = y/yma= Scales down
the activations in the destination map linearly within 0 and
1.



In terms of activity propagation and learning, DevLex is
similar to the DISLEX model [12]. However, it differs from
DISLEX in the word representations used, as well as the
flexible architecture of GSM that allows to learn a growing
lexicon.

2.2. Learning of the growing lexicon

During growth, words are extracted from the pool, accord-
ing to their frequency in the parental CHILDES corpus [13,
14]. More precisely, since the word frequency distribution
follows the Zipf’s law even with as few as 550 words, we
take the logarithm of these frequencies in order to force a
more even distribution of words and thus a more balanced
distribution of units in the map. Learning is cumulative,
i.e., new words are added to the existing pool, rather than
replacing old words. This scenario of learning avoids catas-
trophic interference and matches more closely with vocab-
ulary growth in children.

The above learning scheme is enhanced by what we call
focused learning, during which only the confused words in
GSM (i.e., those mapped to the same unit) can be selected
from the pool for further learning. Whenever turned on, this
mechanism always helps to decrease word confusion rate.

3. EXPERIMENTS

We tested DevLex on the CHILDES parental corpus [14].
We focused on a set of 550 words that are reported to be
among the first ones acquired by children, according to the
MacArthur Communicative Development Inventory (CDI)
[15]. (CDI contains 680 words for toddlers: we excluded
the homographs, word phrases and onomatopoeias.) The se-
mantic representations for words in the lexicon were created
separately for different vocabulary sizes (from 100 through
550 words), yielding 10 sets of input data (in increments of
50 words).

The CDI words fall into 22 categories, which we merged
into 4 major categories: (1) verbs, (2) closed-class words
(including auxiliary verbs, connecting words, prepositions,
pronouns, quantifiers, and question words) (3) adjectives,
and (4) nouns(including animals, body parts, clothing, food,
games and routines, household items, outside things, peo-
ple, places to go, rooms, toys, and vehicles). The lexi-
cal composition in our simulations changed as a function
of vocabulary growth. Figure 2 shows the lexical compo-
sition for each of the 10 data sets and Figure 3 the rela-
tive proportions of lexical composition. Comparison of the
two figures shows that nouns increase in number both ab-
solutely and relatively, especially towards the later stages.
The closed-class words have the opposite pattern: most of
them come at the very early stages. Verbs and adjectives
both grow steadily and their proportions remain roughly the
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Figure 2: Absolute number of words falling into four word
categories as a function of vocabulary size.
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Figure 3: Lexical composition as a function of vocabulary
size.

same across words.

After intialization with 100 most frequent words in GSM,
new words were added to the lexicon until all 550 words
are seen. The whole simulation thus consists of 9 growth
stages associated with corresponding data sets. Each stage
included 50 substages of one-word growth, thus ensuring
incremental growth. In all simulations, the rate of vocabu-
lary growth was kept constant (i.e., each stage had the same
amount of training). Initially, each GSM contained 1500 re-
cruited units scaterred randomly over the 50 x 60 grid and
as a result of growth, it typically ended up having around
2000 units.

3.1. Word confusion during vocabulary growth

The first set of simulations focused on modeling how vocab-
ulary growth affects word confusion in GSM and in word
production (via activity propagation from GSM to PMAP).
Figures 4 and 5 display the confusion rates, averaged over



©
=]

— Verbs

-0 - ClosedClass
—» Adjectives
—+- Nouns

®
=]
T

~
o
T

N o @
o o =]
T T T

N

w
=]
T

# confused words in GSM

200 &
,

e it e
;

150 200 250 300 350 400 450 500 550
Vocabulary size

_o——mO-

Figure 4: Number of words confused in GSM as a function
of vocabulary size.
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Figure 5: Number of words confused in production as a
function of vocabulary size.

5 simulations (all having 50000 iterations per stage), with
varying proportions of focused learning (20-80%). Word
confusion in GSM was evaluated as the number of words
that are represented by the same unit in GSM. Confusion in
production was calculated as the number of words for which
there was a mismatch between the eliciting semantic repre-
sentation of the word and the evoked phonological form. It
can be seen that the confusion rates in production are con-
siderably higher (twice as high for nouns) than those within
GSM. This may be due to confusion within GSM itself (that
typically evokes at least two active units in PMAP) and to
inaccurate associative links.

We have two interesting observations to make on these
results. First, the number and the profile of the confused
words are closely related to growth profile of the four cat-
egories (cf. Figure 2). The majority of the confused words
are nouns because they undergo the most significant growth
toward the end, and words at later stages have low token
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Figure 6: Average density of confused words compared to
that of unconfused words. No confusion occurred before
250 words.

frequency. With more words in the pool, GSM is becom-
ing more dense in the “noun” area which leads to higher
probability of confusion. In contrast, closed-class words are
less confused in GSM, because most of them appear in the
initial data set (cf. Figure 2) and they tend to have high fre-
quency of use. Therefore, they become robustly represented
in GSM without being disrupted by later words.

Second, confused words mostly come from map areas
with higher density, as shown in Figure 6. The density for
every word was computed as the total number of words (in-
cluding the target word) that were represented by the win-
ning unit and all its nearest neigbors. This observation is
quite consistent with previous predictions [8] that higher
rate of naming errors is associated with high lexical den-
sity areas than with sparsely populated areas. Figure 6 also
shows that the confusion rates grow with a rapidly expand-
ing lexicon which is observed in children at an early stage
of their lexical development [8], or the "vocabulary spurt”
stage.

We also observed that most of the confused words were
related to each other. When relatedness was considered
with respect to the 4 major categories, the number of re-
lated confused words at the end of growth was in the range
of 92-100%. When relatedness was considering with re-
spect to the original 21 CDI categories, the related confused
words accounted for 53-62% of the whole vocabulary. This
confirms the emergence of (though not perfectly) structured
word representations in GSM and agrees with our above
analysis that densely populated areas are most error-prone.

3.2. Effect of rate of vocabulary growth on word confu-
sion

During growth, the GSM has to react to the dynamics of
the changing environment. Here we modeled the rate of
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Figure 7: Number of words confused in GSM for various
rates of vocabulary growth.
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Figure 8: Number of words confused in production for var-
ious rates of vocabulary growth.

vocabulary growth by manipulating the number of iterations
available per growth stage. Each of the 3 simulations was
then followed by one stage aimed at the fine-tuning of GSM
weights and the associative links. During fine tuning, no
new words were added, and focused learning was turned on
50% of the time. Results for confusion rates in GSM and
production are shown in Figures 7 and 8, respectively.

It is evident that the higher the growth rate (i.e., fewer
iterations per stage, or more words added per given itera-
tions), the earlier and the higher the confusion rates in GSM.
For example, in Figure 7, after 90000 iterations the network
in simulation 1 (10000 iter./stage) has been exposed to all
550 words, 170 of which are still confused. Up to that point,
the network in simulation 2 (30000 iter./stage) has only seen
250 words, with some 20 words being confused. Finally,
the network in simulation 3 (10000 iter./stage) is still in its
second stage (190 words seen), with no confused words oc-
curring yet.

Consistent pattern can be observed in Figure 8 for pro-
duction, where the confusion rates are roughly twice as high
(as in Figures 4 and 5). Again, the production accuracy
depends on accuracy within GSM but also on accuracy of
GSM-to-PMAP links. As the rate of vocabulary growth also
affects associative links (given no extra traning), production
tends to deteriorate at a higher speed than that within GSM.

In all cases, however, fine tuning for one stage only can
decrease the number of confused words considerably: in the
GSM by roughly 50%, and in the production less effectively
(by 30%).

4. DISCUSSION

Our simulations with DevLex in this study provide impor-
tant insights into mechanisms of lexical development in chil-
dren. By modeling the early stages of vocabulary growth ac-
cording to the CDI vocabulary, we are able to identify sev-
eral factors that lead to observed lexical confusions in early
child language. First, the CDI 550 words include the earliest
words that children produce or comprehend, and the com-
position of this vocabulary is clearly biased toward nouns (a
total of 51% of the vocabulary). In our simulation sched-
ule based on frequency of use, the number of nouns grad-
ually increases, indicating that although nouns have a high
type frequency (as compared with other word categories),
they are not necessarily high in token frequency right from
the beginning. In contrast to nouns, the type frequency of
closed-class words is low (only a total of 18% of them),
but they are very high in token frequency and they enter
the vocabulary from very early on. Verbs and adjectives
stand somewhere in between. These kinds of word com-
position dynamics clearly influence the development of the
lexicon, as evidenced in our simulations by the number of
words confused over stages of vocabulary increase (see also
[16] regarding the role of composition of word categories
on lexical development).

Another important finding from our simulations is that
the number of words confused in the GSM and in produc-
tion is directly related to word density, measured as the
amount of words mapped onto the nearest neighborhood
of the target word. Interestingly, word confusion occurs
more often for nouns than for other word categories, be-
cause nouns are more densely populated in the GSM map
of our model (partly due to the nouns-bias discussed above).
This pattern matches up with the hypothesis that nouns are
more densely interrelated than verbs or closed-class words
[8]. According to the "retrieval failure” hypothesis, children
may actually have the appropriate representations in lexi-
cal memory, but they fail to retrieve the appropriate words
in production, perhaps due to competition among similar
neighbors in densely populated regions of the lexicon [18,
8]. Our production results indicate that word retrieval in



production does cause more word confusions, but the errors
patterns are similar as those in the GSM map.

Finally, our results also underscore the importance of
rate of vocabulary increase as a variable in modulating lex-
ical confusion. It was suggested that naming errors in chil-
dren could be a result of the sudden increase in the number
and density of words in lexical memory [8]. Our simulations
allow the network to ”see” more or fewer words per training
period, thus modeling the rate of vocabulary increase across
developmental stages. At any given point in training time,
the network receives different amount of words, and the rate
of lexical confusion differs (cf. Figures 7 and 8). This pat-
tern also agrees with our analysis that naming errors are due
to the increase of density of the target words. The more
related words children have to learn within a given period,
the more likely they will experience representational confu-
sion in an overloaded lexical memory. Our model captures
both the rate and the density of lexical growth. To conclude,
DevLex provides a new connectionist model that can simu-
late a developmental lexicon and relate to realistic language
learning with self-organizing principles.
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