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Abstract. Human learners are known to exploit statistical dependen-
cies of language elements such as syllables or words during acquisition
and processing. Recent research suggests that underlying computations
relate not only to adjacent but also to nonadjacent elements such as
subject/verb agreement or tense marking in English. The latter type of
computations is more difficult and appears to work under certain condi-
tions, as formulated by the variability hypothesis. We model this finding
using a simple recurrent network and show that higher variability of
the intervening syllables facilitates the generalization in the continuous
stream of 3-syllable words. We also test the network performance in case
of more realistic, two intervening syllables and show that only a more
complex training algorithm can lead to satisfactory learning of nonadja-
cent dependencies.

1 Introduction

Statistical learning appears to be an important mechanism in language develop-
ment and processing. Humans exploit distributional cues at various levels that
help them discover structural dependencies in the language [TJ2I3]. These pro-
cesses are likely to occur unconsiously in the form of implicit learning [4]. In
addition to adjacent dependencies, languages tend to comprise relationships be-
tween constituents that are conveyed in nonadjacent structure. For example in
English, these nonadjacent dependencies exist between subject nouns and verbs
in number agreement (e.g. the boys living next door are naughty), or between
auxiliaries and inflectional morphemes (e.g. is sleep-ing). Any mechanism used
broadly in language acquisition must therefore, in some way, be capable of learn-
ing nonadjacent regularities.

This problem was previously tackled using artificial languages (ALs) and
the evidence for tracking nonadjacent probabilities, at least in the continu-
ous streams of syllables, appears contrasting [Bl6lJ7]. Earlier experiments with
learning ALs failed to show generalization from statistical information unless
additional perceptual cues (i.e. pauses between words or phonological features
of phonemes) were available, suggesting that distributional information alone is
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not sufficient to support the discovery of the underlying grammatical-like reg-
ularity embedded in a continuous speech stream. With this evidence in mind,
Pena et al. [6] argued that generalization and speech segmentation are differ-
ent processes maintained by separate mechanisms: statistical computations are
used in segmentation, but these are distinct from algebraic rule-like computa-
tions that would account for generalizations of the distant structure. Pena et
al. experimented with learning the continuous stream of 3-syllable words of the
form A; X B; with ¢ = 1,2,3 (and three Xs), where A; exactly predicts B;. The
participants preferred words A; X B;, over “part words” (PWs), such as B;A; X
or XA;Bj (i.e. the triples crossing word boundaries), which was taken as an
evidence of successful word segmentation (because the subjects probably took
advantage of nonadjacent dependencies between syllables that helped them au-
tomatically segment the continuous stream). Next, they were tested whether
in addition to segmentation, they could also detect structural regularity in the
stream. For that purpose, Pena et al. introduced “rule words” (RWs), such as
A; X B;, where the intervening (embedded) X appeared in the stream but never
in mid-position (i.e. X € {A;, B;j|j # i}). This makes RWs congruent with gen-
eralization: Unlike PWs, they have a novel surface form (but a familiar deep
form). When the subjects’ task was to decide between PWs and RWs, no pref-
erence for RWs was found, which was interpreted as no generalization (failure
to discover the underlying regularity).

However, as promptly suggested by Gémez [8], this could have been due to
low variability of X (henceforth, nx), because she had found that sufficiently
large variability (nx = 24) resulted in successful generalization to novel surface
structures (RWs). Onnis et al. [9[7] replicated this finding and the results of their
experiments led them to fine-tune the variability hypothesis by postulating that
generalization occurs at both extremes of variability — zero or large variability.
The hypothesis states that when large variability disrupts adjacent dependen-
cies, learners will seek alternative sources of predictability, such as nonadjacent
dependencies. In the zero variability case, the reversal effect is observed: the com-
mon elements X share the same contextual frames (e.g. don’t-eat-it, he’s-eat-ing).
Onnis et al. [7] showed that with sufficiently large nx, tracking nonadjacent de-
pendencies can result in simultaneous word segmentation and generalization of
the embeddings (at the absence of any additional cues). The segmentation of the
continuous stream is itself difficult because decreased transitional probabilities
(due to high nx) are known to lead to segmentation within word boundaries [I].

Here we model the effect of variability with a simple recurrent network (SRN;
[10] using Petia et al.’s data. SRNs have been successfully applied for various
sequential learning tasks, but, to our knowledge, not yet to this type of data
with nonadjacent dependencies. In an earlier paper, Garzén [I1] used an SRN
in this specific task but he did not focus on the variability hypothesis. In experi-
ment 1, we show that generalization accuracy improves with larger variability of
embedding. In experiment 2, we simulate the same task in case of more realistic
dependencies — embeddings consisting of two syllables rather than one.
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2 Simulations

2.1 Experiment 1

Input data. We used streams composed of three different words generated by
ALs of the form A;X B;, where P(B;|A;) = 1. In each AL, the three frames
A; B; were combined with embedding X (hence forming various words) whose
variability nx was systematically manipulated. To avoid any biases caused by
specific frames, we ran multiple simulations for the same n x using different frame
triples. All three frames had the same probability of occurrence, and so had each
X, ie. P(X|A;) =1/nx and P(B;|X) = 0.33. Hence, all variability conditions
had the same transitional probabilities, except P(X|A;) which depends on nx.
Each syllable was represented as a consonant-vowel pair, taken from the pool
of 8 consonants (b,d,g,p,t,k,r,l) and 5 vowels (a,e,i,0,u), respectively, amounting
to 40 possible syllables in total (e.g. ba, gi, ke). The 3 frames were randomly
chosen with the constraint that no consonant or vowel (except one vowel) was
repeated within the same AL (e.g. da te, pi gu, ro ka). Words had the embed-
ding formed by syllables that did not occur in the frames (set of size 34). Follow-
ing Pefia et al., PWs had the form B;A; X or X B;A;. RWs contained embeddings
X in A; X B; taken from the remaining two frames, i.e. X € {A;, B;|j # ¢}. This
setup allows the following prediction: If a learner computes adjacent statistical
probabilities, he should prefer PWs over RWs, at least in the large variabil-
ity condition (because PWs imply higher transitional probabilities than RWs).
Conversely, if the learner computes nonadjacent dependencies he would rely on
the most statistically reliable ones, namely P(B;|A;), i.e., he would segment
correctly at word boundaries, and hence prefer RWs.

Method. We trained an SRN within the next-syllable-prediction paradigm in
the stream, given the current syllable at the input. In each simulation, the
weights were randomly initialized within [-.1,.1]. Learning rate was set to 0.1
and momentum to 0.8. Each syllable was represented as the concatenation of
two localist codes (a consonant and a vowel), to avoid any similarities within
consonants or within vowels that might introduce bias into computations. Hence,
the network had 13 input and 13 output units. We chose 20 hidden units and
20 context units. In each variability condition (given by nx), we ran 10 simu-
lations, each using different frames, implying different training and testing sets.
For training we used 100 concatenated words (the same words were necessar-
ily repeated within the given set, due to combinatorial limitations), randomly
ordered and without pauses. Each simulation lasted 600 epochs. Each testing
set contained 12 words. The next syllable (target) was considered to be pre-
dicted correctly if the location of both maxima on two output units (one for
the consonant and one for the vowel) matched those of the target. To assess the
performance of our SRNs, we had to come up with an appropriate procedure
that would correspond to the experimental design in Pena et al. In their exper-
iment 2, the subjects were asked to compare RWs and PWs, hearing one after
the other, and decide which of the two stimuli sounded more like a word. To
match this binary decision task, we compared the prediction errors for both RW
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Fig.1. (a) Average generalization rate in unsegmented artificial languages of type
A; X B;. (b) Average errors for RWs and PWs, for predicting the X (index 2) and B;
(index 3) syllables. Standard deviations (not shown) were below 20%.

and PW test sets in each simulation as follows: For both test sets we recorded
network prediction errors (squared Euclidean distance between the target and
the output vectors) in each prediction step. The word prediction error was taken
as the sum of prediction errors for the second (X) and the third syllables (B;).
These summed errors for 12 RWs and 12 PWs were then sorted ascendingly. The
proportion of RW errors found in the first half of the sorted list was interpreted
as the generalization accuracy.

Results. As shown in Figure 1a, the generalization accuracy grows with increas-
ing variability of embedding. When nx > 12, the network prefers RWs signifi-
cantly more often than PWs. Qualitatively, this result is in agreement with ex-
periment 2 in Onnis et al. (2004) although they reported a lower average rate for
nx = 24 (64% vs. 80% predicted by our networks). For nx = 3 they reported
42% average generalization rate, which is a very good match with the networks
(when considering the average for nx = 2 and 4). We can gain more insight into
the model behavior by looking at separate predictions of X and B; (predictions
of the first syllables A; are not informative and were observed to remain at ex-
pected rate 0.33). These SRN predictions for RWs (we will refer to them as RWs
of typel) and PWs (syllables X and B) are shown in Figure 1b. It can be seen
that whereas predictions within PWs do not improve with higher nx, predictions
of B; in RWs (denoted as rules) do significantly. This accounts for preference of
RWs over PWs for higher nx, expressed by lower summed errors in most cases.
Similar ascending curve was observed also in case of predicting B; in RWs which
were constructed in a different way (as in Newport & Aslin, 2004) — using novel
X syllables that did not appear during training at all (henceforth, RWs of type2).
Whichever X is used in RWs, SRN is observed to predict the third RW syllable.
Gradual increase of accuracy in predicting B; in RWs, combined with the previous
“input-buffering” step (remembering the first syllable) could be interpreted as the
computational implementation of the gradual switching from tracking adjacent to
remote dependencies, once the former become less reliable.
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Fig. 2. (a) Layout of hidden unit activations of a trained SRN projected by the principal
component analysis method. SRN was trained on language ko du, gi ba, te ro with
nx = 18. Z; denotes the input syllable Z presented at the j-th position within a word.
(b) Average prediction accuracy for B; syllables in rule-words, in unsegmented artificial
languages of type A; XY B;.

This invariant behavior with respect to RWs of both types can be seen if we
look at hidden unit activations of the SRN during testing. Figure 2a shows the
two-dimensional (linear) projections of these activation vectors, in case of large
variability of embedding (nx = 18). Activations corresponding to A; syllables
are clearly separated, and so are the activations corresponding to B; syllables.
The largest cluster (X) comprises hidden unit activations for intervening inputs,
covering syllables used during training (e.g. ta,de,ki,re), and also those used in
RWs of both typel (e.g. ba,ro,gi,te) and type2 (ri,to,bu,ge). Clearly, hidden unit
activations document that the first and the last word syllables are distinctly
represented in SRN.

However, in case of nx < 12, such a distinction was observed to deteriorate.
Although cluster B remained fairly separated, clusters A and X tended to merge,
whereas the mutual distance between cluster A and X-B merged cluster became
tended to be smaller, too. This may be the reason for lower prediction rates.

Our results do not match the zero part of the variability hypothesis, because
preferences for RWs for nx = 1 are very low in Figure 1a. However, according to
Onnis et al. [97], high RW preference (and hence, generalization) in experiment
1 was only demonstrated in case of segmented artificial speech. If the zero-
variability hypothesis turned out to also apply to a continuous stream, it would
be a challenge to find a model that could account for that.

2.2 Experiment 2

Input data. To investigate whether an SRN can handle longer dependencies, we
created ALs of the type A; XY B;, with three different frames per language, and
varying embeddings XY within the frames. We considered a simplified design
in that for given nx both X and Y syllables were taken from the same set and
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varied randomly (i.e. yielding n% combinations). In this experiment we focused
on predictions of RWs which were constructed using existing 3 frames combined
with 4 novel embeddings (i.e. 16 possible XY pairs). Out of all possible RWs, we
randomly chose 12 of them for testing in each simulation.

Method. Data representation was the same as in experiment 1, as well as the
network architecture. However, SRN trained for this task using standard er-
ror back-propagation algorithm failed to learn these more distant dependencies.
Hence, we used an online version of the real-time recurrent learning (RTRL; [12]
which is known to be a more powerful training algorithm for recurrent networks
[13]. In this case, SRN was set to have 18 hidden units, was trained for 500
epochs and the learning rate was decreased to 0.05. Other network parameters
were the same as in experiment 1.

Results. Figure 2b shows the prediction accuracy for B; syllables within RWs
averaged over 10 simulations. This ability is interpreted as generalization ability
for novel words, although predictions of X and Y were very low, inversely related
to nx. Lower prediction accuracy and higher standard deviations compared to
previous case (see the rules curve in Figure 1b) suggest that this learning task
faces greater difficulty.

Pena et al. [6] and Onnis et al. [7] also used two-syllable embeddings in their
experiments, but they considered segmented rather than continuous speech. It
may be that due to segmentation cue, tested subjects do not find the two-
syllable embeddings more difficult in terms of learning generalization. However,
our simulations suggest that using two-syllable variable embeddings in case of
unsegmented stream does complicate learning. This network prediction could be
tested in an experiment with human subjects using unsegmented speech.

3 General Discussion

Statistical learning of dependencies between elements in a sequence is an auto-
matic process widely expoited by humans during processing of temporal struc-
tures. Earlier work showed that underlying computations are related to adjacent
elements, but more recent work suggests that they also pertain to nonadjacent
elements. The latter task appears to be more difficult, perhaps due to learner’s
bias towards adjacent transitional probabilities that could be perceptually easier
to track. In addition, with nonadjacent elements the learner faces a combinato-
rial problem, since the number of possible nonadjacent probabilities that can be
tracked grows exponentially with the length of the embedding. Therefore, it might
be that remote computations can only be carried out under certain conditions.
In search for these conditions, earlier research claimed that learning nonadja-
cent dependencies is only possible given the availability of additional cues. Pena
et al.’s conclusion was that pauses between words are necessary, Newport & Aslin
[5] stated that phonological cues are required, which explained their finding why
only nonadjacent segments could be learnt but not syllables. However, learning
nonadjacent dependencies can occur even in a continuous stream of data with-
out any additional cues, provided that the variability of embedding is sufficiently
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large [7]. Our experiment confirms this computational capability using a sequen-
tial learning device, Elman’s SRN, that only relies on the order of elements in a
sequence. This also implies that the system is capable of focusing on nonadjacent
regularities within the frames without having to apply higher algebraic rule-like
computations as hypothesized by Pena et al. Actually, the support for ubigitous
associative learning mechanisms was also expressed in the follow-up work that
convincingly questioned the line od reasoning used in Pefia et al. [14].

In experiment 2 we observed qualitatively the same behavior of SRN in case
of longer, two-syllable embeddings, but only if a more powerful RTRL train-
ing algorithm was substituted for standard error back-propagation. This more
realistic case is very relevant, since natural languages contain remote dependen-
cies, even with typically longer and varying span of embedding (such as A; XY B;
and A; XY ZB;). Therefore, suitable experiments and computational simulations
should be the focus of subsequent research. In sequence learning literature, ear-
lier work had shown that nonadjacent dependencies spanning identical embedded
sequences (of 3 elements and more) are not learnt by human learners and provide
an especially difficult learning problem even for large SRNs [15].

On the other hand, tracking remote dependencies requires features reminis-
cent of learning context-free languages (CFLs). Recurrent neural nets have been
shown to have a potential to learn CFLs [I6I17]. However, learning processes
in these cases are studied on a higher, more abstract level, typically employing
only a few symbols (such as the a™b™ language). This shifts the processing up
away from the syllable-based level that involves a considerably higher number
of elements.

In summary, tracking remote dependencies is a crucial linguistic ability, whose
underpinnings we are just starting to uncover. There are various questions that
remain unanswered, one of them being whether adjacent and nonadjacent de-
pendencies require separate learning processes, or the same general process can
be employed under a wide range of conditions. Previous results [8/7] and our sim-
ulations suggest that the learning system may be capable of various statistical
computations seeking the most reliable sources of information. This is consis-
tent with hypotheses of the “reduction of uncertainty” [I§] and the simplicity
principle [19], stating that the learning system tends to choose the simplest hy-
pothesis about the available data by seeking its invariant patterns. When transi-
tional probabilities are high, adjacent elements are perceived as invariant. When
large variability disrupts adjacent probabilities, learners will tune to alternative
sources of invariance, potentially between remote elements.
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