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Abstract

Abstraction is a core concept in cognitive science, rep-
resenting a challenge for all theories of cognition. Con-
ceptualization of abstraction is also complicated by the
fact that it is an entity with several potential meanings
and involved mechanisms. Abstraction occupies the
agenda of many disciplines, including psychology, lin-
guistics, artificial intelligence, and more recently, neu-
roscience. In this paper, we attempt to shed light on this
topic, by summarizing evidence accumulated in these
disciplines.

1 Introduction

Abstraction is one of the core concepts in cognitive sci-
ence. It is an important building mechanism in the cog-
nition of intelligent beings, especially humans, helping
them to efficiently cope with the complex and dynamic
world. However, abstraction is not only interesting from
the perspective of cognition; it appears in the agenda of
many disciplines: psychology, computer science, arti-
ficial intelligence, mathematics, linguistics, music, phi-
losophy, art, and more recently, also neuroscience. De-
spite evident progress in research, the concept of ab-
straction is not still completely understood in empirical
sciences, nor sufficiently well grasped in computational
models. One reason for this is that abstraction is not a
single homogeneous entity, but rather offers several in-
terpretations and underlying mechanisms.

Abstraction can be primarily seen as a conceptual
process by which general rules and concepts are derived
from the usage and classification of specific examples.
Conceptual abstractions may be formed by filtering the
information content of a concept or an observable phe-
nomenon, selecting only those aspects which are rel-
evant for a particular purpose. In this paper, we do
not attempt to provide a complete survey of this com-
plex topic. Instead, we try to summarize evidence (not
exhaustively) coming from the disciplines crucial for
cognitive science (psychology, linguistics, neuroscience
and computer science).

Abstraction typically refers to representing ab-
stract concepts that can be mostly expressed by words
in natural language(s). It can also refer to symbols (in

Peirce’s semiotic view) that have meanings in certain
worlds (e.g. mathematics) or cultures. Linguistic sym-
bols (words) can refer not only to objects (expressed by
nouns), but also actions (verbs), or properties (adjec-
tives). Within cognitive science, abstraction is differ-
ently viewed in classical theories and in embodied the-
ories of cognition.

1.1 Theories of cognition

According to the classical view of cognition, the mind
is considered a symbol system and cognition relates to
processes of symbol manipulation (Fodor, 1998). Cog-
nition and action/perception are separate and indepen-
dent systems that work according to different principles
(Barsalou, 1999). Hence, conceptual representations
are non perceptual and unrelated to the body. In this
framework, concepts are generated by combining and
manipulating abstract, arbitrary and amodal symbols for
which their internal structures are unrelated to the per-
ceptual states and actions that produced them (Fodor,
1998).

The problem of classical approach to assign mean-
ings to symbols, articulated by the Chinese room ar-
gument (Searle, 1980), and subsequently by the sym-
bol grounding problem (Harnad, 1990), triggered the
development of alternative theories of grounded cog-
nition (see the overview, e.g. in Barsalou 1999). In
these views, conceptual knowledge is represented with
(multi)modal symbols related to the perceptual states
that produce them. The concept of grounding embraces
the other two crucial concepts – embodiment and situ-
atedness. Embodiment provides the pathways towards
learning concepts via sensorimotor interaction with the
environment, enabled by sensory-motor features (per-
ceptual and proprioceptive) originating in agent’s sen-
sors and actuators. Situatedness provides rich repertoire
of features from the environment about which particular
knowledge is being acquired (situated learning).

Within the grounded cognition paradigm, cogni-
tive linguistic theories deny the presence of a separate
and autonomous language module in the brain respon-
sible for language acquisition and refuse the separa-
tion of semantic representations from the rest of cogni-
tion (Lakoff and Johnson, 1980). They claim that even



Fig. 1: General scheme of the relationship between the
(multimodal) network of concepts and (symbolic) word
networks, consistent with grounded cognition paradigm
(from Roy 2008).

abstract concepts are grounded metaphorically in em-
bodied and situated knowledge (for instance, love can
be understood as eating, consuming the beloved per-
son). Cognitive simulation theories focus on the role
of modal simulation, situated action and bodily states in
the grounding of cognitive processes (Barsalou, 1999).
Social simulation theories propose that the understand-
ing of mental states in other people requires simulations
of our own mind (Goldman, 2006) and typically it re-
quires the activation of the mirror neuron system (Riz-
zolatti and Craighero, 2004).

2 Psychology and linguistics

Within the relevant disciplines, perhaps most informa-
tion and knowledge related to abstraction has been ac-
cumulated in cognitive psychology and psycholinguis-
tics. The focus has been put on abstract words and con-
ceptual knowledge regarding abstract concepts as cat-
egories. The relationship between concepts and words
is sketched in Fig. 1, consistently with grounded cogni-
tion paradigm. Concepts are mental constructs created
through sensory-motor interaction. On the other hand,
words are surface forms (phonological or orthographic)
embedded in a concrete langage, arbitrarily linked to
their meanings.

Three major classical theories of categorization
have been proposed: In rule-based theory, members of
a category share common (perceptual) properties (e.g.
colour, shape, etc.) and the membership for a category
is based on satisfying established rules that permit to
verify the common properties of the category. Hence,
categories have strict boundaries which only works well
for some categories, e.g. mathematical objects, not so
much for natural categories (Bruner and Austin, 1986).

In prototype-based theory, categories are repre-
sented by “prototype” stimuli, which are used for judg-
ing the membership of other items. This approach as-

sumes a more continuous way of categorization with
less strict boundaries between categories which works
well for natural categories (Rosch, 1973).

In exemplar-based theory, concepts are repre-
sented by the exemplars of the categories stored in the
memory. A new item is classified as a member of the
category if it is similar to one of the stored exemplars in
that category (Nosofsky et al., 1992).

2.1 Meanings of abstraction in psychology

In cognitive psychology, Barsalou (2003) suggested that
abstraction is not a unitary concept but has several
meanings:

1. Categorical knowledge, which has been abstracted
from experience (e.g. ‘chairs’). Various accounts
of knowledge are comfortable with this sense, in-
cluding rule-based, prototype, exemplar, and con-
nectionist theories.

2. Behavioural ability to generalize (without excep-
tions) across category members (e.g. using generic
claims “cats have fur”, or quantifications, such as
“some mammals swim”.

3. Summary representations of category members in
long-term memory (in some theories). In this
sense, it is not necessary to produce the be-
havioural abstractions. For example, exemplar
models do not store summary representations and
produce behavioural abstractions by scanning and
summarizing exemplars online (Hintzman, 1986).

4. Schematic representations of categories in mem-
ory, where “schematic” refers to summary repre-
sentations being sparser than exemplars (due to ex-
tracting the critical properties of a category’s ex-
emplars and discarding irrelevant properties).

5. Flexible representations as a result of flexible ap-
plication of summary representations to many dif-
ferent tasks (e.g. categorization, inference, lan-
guage comprehension, reasoning). From this per-
spective, increasing abstractness allows a represen-
tation to become increasingly flexible.

6. Abstract concepts that are typically detached from
physical entities and more associated with men-
tal events (Paivio, 1986; Barsalou, 1999; Wiemer-
Hastings et al., 2001).

Barsalou (2003) claims that meanings 3, 4 and 5
are controversial, and focuses on one of them, summary
representations, within his theory of perceptual symbol
systems (Barsalou, 1999). In this paper, we focus on
senses 1 and 6 that, despite not being controversial, still
pose a challenge for (computational) cognitive science.

Categorical knowledge refers to concepts that can
be organized hierarchically. This applies to concepts
expressed by nouns but also by action words.



2.2 Abstraction in object words

Regarding nouns, three levels of categorization have
been proposed: subordinate, basic and superordinate
levels (e.g. ‘a rocking chair’/‘chair’/‘furniture’). Subor-
dinate level categories are characterized by a low degree
of generality and by clearly identifiable, detailed and
specific features. Basic level provides (ecologically)
the most relevant conceptual information. Superordi-
nate level typically implies a high degree of generality
and allows to store general information. As a result,
subordinate categories are more concrete than basic cat-
egories, which in turn are more concrete than superor-
dinate categories. Interestingly, despite the order of in-
creasing abstractness, the acquisition of knowledge in
children, does not proceed bottom up. Instead, it starts
from the basic level, moving to subordinate and superor-
dinate levels of categorization in parallel Bloom (2000).

2.3 Abstraction in action words

The organization of action words is also hierarchical.
The most concrete action words may correspond to
motor primitives, such as ‘push’, ‘pull’, ‘grasp’, ‘re-
lease’, etc. More abstract action words, related to phys-
ical actions, require the concatenation of motor prim-
itives; e.g. we could consider ‘keep’=‘grasp’+‘stop’,
or ‘give’=‘carry’+‘release’ (Stramandinoli et al., 2011).
Action verbs can also be differentiated in their level
of concreteness and motor modality; e.g. ‘push’ is
uniquely linked with the action of pushing by using the
hand, while ‘give’ implies multiple motor instances of
the process of passing an object by using one hand, two
hands, mouth, etc. (Cangelosi and Schlesinger, 2014).

The above examples also apply to abstract actions.
For example, we can grasp or keep an idea, wrap up
a meeing, etc. (as explained by cognitive lingustics).
Many action verbs are inherently abstract and refer to
mental operations. For instance, in the educational set-
ting, the well-known revised Bloom’s taxonomy catego-
rizes action verbs in cognitive, affective and psychomo-
tor domains (Anderson and Krathwohl, 2001). For in-
stance, in the cognitive domain, the verbs are catego-
rized hierarchically (in ascending order) according to
the abilities they involve: remembering, understanding,
applying, analyzing, evaluating and creating. In gen-
eral, verbs are clearly the most complex word category
with verb semantics posing a challenge for cognitive
science(Levin, 1993).

2.4 Differences between concrete and abstract
words

Concrete and abstract words can be differentiated ac-
cording to the following factors (Kousta et al., 2011):1

1Altarriba et al. (1999) proposed that words refering to emotions
should be categorized as distinct from concrete and abstract words,

• Perceivability As opposed to concrete, abstract
words do not have a physical referent and hence re-
fer to entities that are distant from immediate per-
ception, and typically represent entities that are not
spatially constrained (e.g. ‘truth’, ‘happiness’).

• Imageability and context availability According
to the dual-coding theory (Paivio, 1986), concrete
concepts, activating both verbal and non-verbal
systems, require a major involvement of mem-
ory. On the contrary, abstract concepts are rep-
resented in the verbal system only, with inferior
involvement of memory (Barsalou, 2008). In ad-
dition, they evoke less imagery (Wiemer-Hastings
and Xu, 2005), and activate a narrower contex-
tual verbal support than concrete concepts, as sug-
gested in the context-availability theory (Schwa-
nenflugel, 1991). These can be reasons why acqui-
sition of abstract concepts is more complex than
that of concrete concepts.

• Hierarchical categorization Conceptual knowl-
edge can be organized in categories hierarchically,
as already mentioned in Section 2.2. This works
well for concrete objects, but even there the con-
cepts at the superordinate level can become very
abstract, unifying subcategories that may not share
any perceptual features (e.g. ‘game’).

• Mode of Acquisition In has been shown in exper-
iments with elementary school children that MOA
ratings change with the school age, shifting grad-
ually from mainly perceptual to mainly linguistic
MOA (Wauters et al., 2003).

Abstract concepts pose a bigger challenge for em-
bodied (grounded) theories of cognition, because the
grounding of abstract concepts, deprived of their phys-
ical referents, seems less straightforward than that of
concrete concepts. Symbolic cognition treats all con-
cepts as symbols, so the burden is shifted to account-
ing how all concepts acquire their meanings (Harnad,
1990).

Abstract concepts are also hiearchically organized
(e.g. ‘love’ is less abstract than ‘democracy’), depend-
ing on how well they can be grounded. Even abstract
concepts appear to depend heavily on situations and sit-
uated action (Schwanenflugel, 1991). The processing of
abstract concepts is facilitated when a background situ-
ation contextualizes it (Barsalou and Wiemer-Hastings,
2005). We can also add that for concrete objects, one
usually abstracts over individuals, whereas for abstract
objects one abstracts over situations or events.

Categorizing entities is a useful approach in sci-
ence, but consistently with cognitive theories, it is more
accurate to think of the distinction between concrete and
abstract words as that of a concreteness–abstractness
continuum, along which all entities can be varied. It

because these three categories received different ratings in term of
concreteness, imageability and context availability.



also applies to cognitive theories that range from purely
symbolic (disembodied) accounts to purely embodied
ones (Wilson, 2002). In addition, some have argued that
both disemboded and embodied approaches are needed
for complete account how humans acquire knowledge
(Louwerse, 2010; Dove, 2011).

On the sentence level, comprehension and pro-
duction processes focus, within the grounded cogni-
tion paradigm, mainly on the roles of mental simulation
(e.g. Barsalou 1999; Decety and Grèzes 2006; Goldman
2006). Simulation is the reenactment of perceptual, mo-
tor, and introspective states acquired during experience
with the world, body, and mind. The question is how
even very abstract sentences can be simulated. Zwaan
(2015) argues that sensorimotor and symbolic represen-
tations mutually constrain each other in discourse com-
prehension, and proposes that abstract concepts serve
two roles in this process. They serve as pointers in
memory, used (1) cataphorically to integrate upcom-
ing information into a sensorimotor simulation, or (2)
anaphorically to integrate previously presented infor-
mation into a sensorimotor simulation. In either case,
he concludes, the sensorimotor representation is a spe-
cific instantiation of the abstract concept.

3 Neural perspective

Neurophysiological and neuropsychological evidence
suggests hierarchical organization of knowledge (long-
term memory) in the brain that can be observed mainly
over the cortex (Fuster, 2009). Fuster’s theory of mem-
ory organization is based on the existence of bidirec-
tionally connected executive and perceptual memories,
interacting at multiple levels, both forming the so-called
cognits, formed by distributed neural networks. Cog-
nits are items of knowledge, hierarchically organized
in terms of semantic abstraction and complexity. As
shown in Figure 2, frontal and posterior cortices provide
different spatial layout of organization. Whereas in the
frontal lobe, the apex of the hiearchy rests at the very
anterior part of dorsolateral prefrontal cortex, the top of
hierarchy in the posterior cortex rests “inside” the lobes.
Fuster’s theory departs from the idea of a memory as a
passive storage, and instead sees the memory as operat-
ing in perception–action cycles (Fuster, 2004), which is
a core concept in biology (Uexküll, 1926).2

3.1 Posterior cortex

In the temporal cortex, the increasing abstraction can be
related to the growing invariance of the neurons in re-
sponse to various perceptual stimuli. The visual system
of mammals is organized hierarchically in terms of fea-
ture extraction (from the simplest to the more complex

2This is consistent with a psychological model of memory which
is postulated to subserve intelligent action Glenberg (1997).

Fig. 2: General scheme of the hierarchical organiza-
tion of memory in the lateral cerebral cortex of the left
hemisphere (Fuster, 2009). Lighter shade of colors in-
dicates the direction in the hierarchy towards more ab-
stract memory and knowledge.

features), which is associated with increased radius of
the receptive field of neurons (via afferent connections)
towards the higher (more abstract) layers. On top of
the pyramid stands the area IT (inferior temporal), re-
sponsible for invariant object recognition with respect
to position, rotation, and scale, and in the case of bi-
ological objects also deformation (Jellema and Perrett,
2006). Likewise, area STS (Superior Temporal Sulcus)
has its division in the context of the recognition of bi-
ological motion. An interesting property of STS is that
it contains many neurons that are sensitive to viewpoint
from which the object is observed (e.g. front view, side
view, etc.) in its posterior part (STSp), but also neurons
that are invariant to it, in anterior part (STSa).

Parietal cortex also demonstrates abstraction prop-
erties. For instance, intraperietal sulcus has been ar-
gued to be the seat of (abstract) numerical cognition
(Dehaene et al., 1998) (but see the challenging view in
Kadosh and Walsh 2009). Among other things, pos-
terior parietal cortex is known to be involved in spa-
tial cognition (the superior parietal lobule) and in non-
spatial cognition (the inferior parietal lobule). The latter
is typically related to abstract information processing.
For instance, Yamazaki et al. (2009) proposed several
mechanisms on non-spatial representations processed
by the posterior parietal cortex, ranging from percpetial
space (low abstraction), via temporal and social spaces
to conceptual space (high abstraction), with correspond-
ing brain areas involved (collected from previous pa-
pers).



3.2 Frontal cortex

Parietal cortex has bidirectional connections to the
frontal cortex, which is crucial for sensory-motor in-
tegration. Various levels of abstraction are subserved
by corresponding mirror neurons opeating simulta-
neously at various levels of a perceptual hierarchy
(e.g. perspective-dependent neurons as opposed to goal-
coding mirror neurons, that are insensitive to motor tra-
jectories). Mirror neuron system has been labeled as
the action-observation–action-execution matching cir-
cuit, supporting the direct matching hypothesis (Rizzo-
latti and Craighero, 2004). This circuit is erriched by
its connections (from the parietal cortex) to the tempo-
ral cortex. Namely, a part of the focus area F5 (F5c)
is connected with STSp through PFG (parietal frontal
gyrus) forming a perspective variant path. Another part
of F5 (F5a) is also connected with STSa through AIP,
forming an invariant path emphasizing the actor and the
object acted upon, rather than the viewpoint from which
it is observed (Nelissen et al., 2011).

The frontal lobes are most expanded in humans,
being hierarchically organized, all the way from the pri-
mary motor cortex towards the prefrontal cortex (PFC).
Highest in the pyramid stands the apex of the dorso-
lateral PFC. It is noteworthy that different parts of the
frontal cortex have a corresponding structure (with con-
nections to the thalamus and some of the nuclei in the
basal ganglia, which are involved in action selection
(O’Reilly et al., 2012). It thus appears that similar (or
identical) neural mechanisms operate at different levels
of the hierarchy (abstraction).

Abstraction in PFC seems to comply with several
different types:

• Temporal abstraction implies integration of behav-
ior (Koechlin and Hyafil, 2007; O’Reilly, 2010),
maintaining the organization of (sub)actions with
increasing temporal spans. For example, the (more
abstract) goal to make coffee can be sequentially
decomposed to several subgoals (get a cup, pour
water in a machine, etc.), which in turn can even-
tually be decomposed to a set of primitive actions.

• Policy abstraction (Badre and D’Esposito, 2007)
implies the representation of a task, at any given
moment of performance, as a set of choices over
lower-level tasks. For instance, a certain action can
be executed in various (motor) ways, achieving the
same goal.

• State abstraction Christoff and Keramatian (2007)
occurs when the subject treats non-identical stimuli
or situations as equivalent. For instance, we ignore
the font type during reading.

In sum, the brain seems to have two major ab-
stracting pathways with revealed neural organization:
one located posterior for (physical) object recognition,

and the other one in frontal lobes, corresponding to as-
tracting in execution and planning of actions. Probably
the third pathway, corresponding to hierarchical organi-
zation of abstract objects (words) could also be searched
for in the brain. The review and meta analysis of the
fMRI literature provides a frame for this search (Binder
et al., 2009). It was concluded that the semantic mem-
ory (covering the processing of both concrete and ab-
stract words) is distributed in a left-lateralized network
consisting of 7 distinct regions.3

Similar meta analysis of fMRI and PET studies
(Wang et al., 2010) indicated consistent and meaningful
differences in neural representations. Roughly speak-
ing, abstract concepts elicit greater activity in the frontal
areas, while concrete concepts elicit greater activity in
the posterior brain areas. These results suggest greater
engagement of the verbal system for processing of ab-
stract concepts and greater engagement of the percep-
tual system for processing of concrete concepts.

4 Computational aspects

The role of computational modeling is increasingly
growing4, promising a huge potential for advancing
knowledge in the interdisciplinary cognitive science
(McClelland, 2009). In addition, the importance of
computational modeling can be considered an indis-
pensable ingredient allowing the mechanistic, neurally
constrained understanding of the mind, extending the
horizons of cognitive science (Farkaš, 2012).

4.1 Towards deciphering the brain code

The brain representations in IT area (mentioned in Sec-
tion 3.1) seem quite reliable despite ever-present noise
because the technology already allows their reading
from the brain (Hung et al., 2005), using single-cell
recordings in monkeys. However, even the non-invasive
imaging methods (e.g. fMRI) provide means for deci-
phering the brain.

Mitchell et al. (2008) reported about a computa-
tional model that could not only be used for interpret-
ing various spatial patterns of neural activation corre-
sponding to different semantic categories (expressed by
concrete nouns), but also for predicting (previously un-
recorded) fMRI patterns for novel concrete nouns (via
generalization). This was possible due to linking the
neural data to the statistics of very large text corpora.

A nice global picture of the growing abstraction
in the brain has been recently proposed as a result of a
large-scale analysis of fMRI data (∼17,000 experiments
and ∼1/4 of fMRI literature), i.e. the technology, that

3These are posterior inferior parietal lobe, middle temporal gyrus,
fusiform and parahippocampal gyri, dorsomedial PFC, inferior frontal
gyrus, ventromedial PFC, and posterior cingulate gyrus.

4despite the dominant role of psychology (Gentner, 2010)



has increasingly become an important source of infor-
mation over the last decades (Taylor et al., 2015). In the
paper, the hypothesis was tested, using formal methods
based on a new cortical graph metrics (network depth),
that regions deeper in the brain (i.e. more remote from
the sensory inputs) represent more abstract functions.
Data-driven analyses defined a hierarchically ordered
connectome, revealing a related continuum of cognitive
function. The authors concluded that progressive func-
tional abstraction over network depth may be a funda-
mental feature of brains.

It can be expected that the number of papers of this
sort will grow, revealing the patterns represented by the
brain. Most probably, desciphering abstract concepts
from the brain will remain a challenge.

4.2 Neural network models

So far, four major frameworks have been proposed for
representing conceptual knowledge (symbolic, connec-
tionist, dynamic and probabilistic) (McClelland, 2009).
Each of the frameworks has to be able to incorporate ab-
straction, in order to be able to account for the spectrum
of cognitive processes, ranging from sensory-motor be-
haviors to abstract thoughts. Believing that connection-
ism has the best potential in this regard (Farkaš, 2011,
2013), we will henceforth focus on computational as-
pects of abstraction from the connectionist perspective.

Neural networks perspective involves the idea of
brain operation as performing a cascade of nonlinear
transformations of patterns across layers. These trans-
formations go in both directions (i.e. also backwards),
reflecting the fact that most of the connections between
brain areas are bidirectional. Since their breakthrough
a decade ago (Hinton et al., 2006), deep neural net-
works (DNNs) have become the influential approach
in connectionist modeling, fueled by very successful
applications in various tasks, such as object recogni-
tion/classification, speech recognition and natural lan-
guage processing (Schmidhuber, 2015). DNNs lend
themselves nicely to hierarchical modeling (see Fig. 3),
since at each layer the features with increasing abstrac-
tion are formed during training.5 Visual system of mam-
mals is also known to have deep hierarchical struc-
ture (Felleman and Essen, 1991), starting at the retina,
through the cascade of feature detecting layers with an
increasing complexity, all the way up to IT cortex where
(physical) object recognition takes place.

It is important to realize that this pathway only ap-
plies to concrete (imageable) objects which can be still
be considered a rather low level of abstraction, com-
pared to abstract objects (entities). In case of abstract
objects, probably a different neural pathway has to be
sought, because these do not have direct reference in

5Typically in classification tasks, most layers are trained in unsu-
pervised way, and are combined with supervised training at the top
layer (Hinton et al., 2006).

Fig. 3: Picture illustrating the “distance” between the
raw data and high-level description of the image (Ben-
gio, 2009). The established mapping will involve a
number of intermediate levels of representation with an
increasing abstraction.

the environment. Even though abstract concept repre-
sentations can be triggered by visual inputs (visual con-
text), they will be more linked to language. Linguistic
context can hence as well serve as the cue. Representa-
tions of abstract objects are usually modeled not as deep
networks but as widely distributed associative networks
spread over distant cortical (and subcortical areas) (Pul-
vermüller, 1999). Shallice and Cooper (2013) suggest
that networks for abstract words differ from those for
concrete words, and depend more on frontal regions
(left PFC or left inferior frontal gyrus) that are known
to be involved in syntactic processing (and hypothesized
as crucial for understanding abstract words).

5 Conclusion

Our understanding of abstraction is far from complete,
regardless of the perspective taken. In cognitive psy-
chology and linguistics, good evidence has been accu-
mulated about how concrete and abstracts objects de-
pend on the environment and how they differ regarding
their properties and the role of language in their acqui-
sition and use (more important for abstract concepts).
Better understanding of semantic organization of con-
tent words (referring to concepts) in the brain could
provide important material to be integrated in cogni-
tively and biologically inspired modeling of this phe-
nomenon. Organization of semantic knowledge on the
sentence level and in discourse is yet more elusive.



Acknowledgment

This work was supported by VEGA project 1/0898/14
and KEGA project 017UK-4/2016.

References

Altarriba, J., Bauer, L. a Benvenuto, C. (1999). Con-
creteness, context availability, and imageability rat-
ings and word associations for abstract, concrete,
and emotion words. Behavior Research Methods,
31(4):578–602.

Anderson, L.W., a Krathwohl (Eds.). (2001). A Taxon-
omy for Learning, Teaching, and Assessing: A Revi-
sion of Bloom’s Taxonomy of Educational Objectives.
New York: Longman.

Badre, D. a D’Esposito, M. (2007). Functional mag-
netic resonance imaging evidence for a hierarchical
organization of the prefrontal cortex. Journal of Cog-
nitive Neuroscience, 19:2082–2099.

Barsalou, L. (1999). Perceptual symbol systems. Be-
havioral and Brain Sciences, 22(04):577–660.

Barsalou, L. (2003). Abstraction in perceptual symbol
systems. Philosophical Transactions of the Royal So-
ciety B: Biological Sciences, 358(1435):1177–87.

Barsalou, L. (2008). Grounded cognition. Annual Re-
views of Psychology, 59:617–645.

Barsalou, L. a Wiemer-Hastings, K. (2005). Situating
abstract concepts, pp. 129–163. Cambridge Univer-
sity Press.

Bengio, Y. (2009). Learning deep architectures for
ai. Foundations and Trends in Machine Learning,
2(1):1–127.

Binder, J., Desai, R., Graves, W. a Conant, L. (2009).
Where is the semantic system? a critical review and
meta-analysis of 120 functional neuroimaging stud-
ies. Cerebral Cortex, 19:2767–2796.

Bloom, P. (2000). How Children Learn the Meanings of
Words. MIT Press, Cambridge, MA.

Borghi, A., Flumini, A., Cimatti, F., Marocco, D. a
Scorolli, C. (2011). Manipulating objects and telling
words: a study on concrete and abstract words acqui-
sition. Frontiers in Psychology.

Bruner, J. a Austin, G. (1986). A Study of Thinking.
Transaction Books.

Cangelosi, A. a Schlesinger, M. (2014). Developmental
Robotics: From Babies to Robots. MIT Press, Cam-
bridge MA.

Christoff, K. a Keramatian, K. (2007). Abstraction
of mental representations: theoretical considerations
and neuroscientific evidence. In The Neuroscience of
Rule-Guided Behavior, pp. 107–127. Oxford Univer-
sity Press.
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