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Lexical acquisition and developing semantic map
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Abstract

In this paper, we describe a self-organizing neural network model that ad-
dresses the process of early lexical acquisition in young children. The growing
lexicon is modeled by combined semantic word representations based on dis-
tributional statistics of words and on grounded semantic features of words.
Changing semantic word representations are assumed to model the matu-
ration of word meaning and serve as inputs to the growing semantic map.
The model has been tested on a real child-directed parental language corpus
and as a result, the map demonstrates the emergence and reorganization of
various word categories, as quantified by two measures.

1 Introduction

Language acquisition as a cognitive process is driven by various maturational fac-
tors and starts with acquisition of individual words [1]. The child’s vocabulary
gradually grows as the child learns and later “fine-tunes” the meaning of various
words, and then starts to actively use them. Computationally, the incremental
lexical acquisition can be viewed as a dynamic process incorporating changing
patterns — semantic word representations, that can be thought of as an analogue
to child’s mental word representations. To account for the process of conceptual
maturation and reorganization taking place in the child’s mind/brain, the model
must also show some structure early on and undergo various stages of development.

In our model, semantic word representations are computed as vectors of word
co-occurrences within the current lexicon, combined with semantic features based
on WordNet lexical database [2]. Several authors have already shown that distri-
butional statistics of words provide a considerable amount of information about
word meaning, as could be seen in connectionist learning models [3] and statistical
models [4, 5, 6]. As a matter of fact, the distributional approach did not emerge
only recently: structural linguists had already applied this approach almost a cen-
tury ago (e.g., [7]) but were later suppressed by the generative linguistics paradigm
[8]. However, probabilistic approach to language learning has been revived recently
[9], since it was shown to account for various psycholinguistic phenomena observed
in human learners.

On the other hand, these probabilistic or word cooccurrence models remain
the subject to criticism as being cognitively implausible, because the generated
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word representations lack grounding in the real world. Therefore, we combined
the (changing) word distributional information with (unchanging) WordNet-based
semantic features of words [10]. In addition, this combination enhanced clustering
properties of word categories.

Semantic word representations described above serve as an input to the growing
semantic map (GSM) in our model. The motivation for mapping word categories
comes from its neurobiological plausibility: Cognitive neuroscientists have discov-
ered that various areas of the brain respond differentially to different categories.
These “brain centers” are found to be highly specific linguistically. For example,
nouns and verbs elicit responses in different areas of the brain, as do concrete
words versus abstract words, content words versus function words, and words for
animals, persons, and tools (see, e.g., [11] and references therein).

In case of a growing lexicon we are facing a problem of dynamic input data.
A number of growing self-organizing neural network models have been previously
proposed to cope with this task. However, most of these models have arbitrary
dimensionality and connectivity (see, e.g., [12] and references therein) which makes
them difficult to visualize data in two dimensions. The IGG model [13] overcomes
this difficulty in that it preserves a strictly 2D topology. Similarly to IGG, the
recruitment of new nodes in GSM is restricted to the grid positions. Unlike IGG,
however, new nodes in GSM are recruited around the existing nodes instead of the
perimeter of the grid.

Using flexible rather than fixed architecture was also motivated by the fact
that young mammalian brains undergo the process of synaptogenesis (sprouting
connections between neurons), which in language-related areas may also be as-
sociated with early vocabulary growth (see [14] and references therein). Hence,
by recruiting we mean that new nodes may not be physically added, but they
become actively incorporated by sprouting their connections to neighboring nodes
and allowing all inputs to connect to them.

2 The model

Our GSM model is a part of DevLex model [15] of lexical acquisition and is very
similar to DISLEX model [16] that was recently used to model the disordered
lexicon in patients. DevLex is also based on two self-organizing maps (SOM,
[17]) — a semantic map and a phonological map — linked together with associative
links, in order to allow for modeling word comprehension and word production.
However, DevLex differs from DISLEX in that GSM part of DevLex has a dynamic
architecture. In this paper, we focus on GSM and the process of emergence of
semantic word categories. GSM is based on a SOM that has several appealing
properties making it suitable as a model of the human lexical system [18, 16].
GSM uses SOM learning algorithm, which allows the formation of a topological
map as a consequence of decreasing values of model parameters (learning rate and
radius of winner neighborhood). As a specific feature of GSM, neighborhood is
adjusted non-monotonically, to allow for reorganization of the growing lexicon (see
below).

Input data. In our previous work [19], we have described GSM as a semantic
memory of the growing vocabulary (see Figure 1). GSM self-organizes on word
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Figure 1: A diagrammatic sketch of the GSM model. The bottom half represents
WCD, and the upper part represents the random mapping stage followed by GSM’s self-
organization. The solid links between layers of units represent activity propagation (via
full connectivity weights), and dotted lines represent pattern transport (via one-to-one
links).

vectors, generated off-line by word co-occurrence detector (WCD). Being a spe-
cial recurrent network, WCD parses the raw input text on a word-by-word basis
and transformes the local word representations (on layers A and B) to distributed
representations (on layers A’ and B’). It does so by learning the transition proba-
bilities, stored in weight matrices L and R for left and right contexts respectively,
for all words ¢ = 1,...,n in the considered vocabulary (of size n). Word representa-
tions, represented by weights, are transferred to output unit activations (in layers
A’ and B’) by a control mechanism described in [19]. Transitions to and from
all unknown words (i.e., those not from the current lexicon) are ignored. With
maximal vocabulary size denoted by N, the resulting word representations consist
of vectors q; € R?Y (whose last 2(N — n) components are zero).

Although n increases (and with it, the number of potentially nonzero com-
ponents), we keep the dimension of word representations constant by projecting
word vectors with fixed random mapping matrix Z (of type D x 2N) down to D
dimensions [18]). Matrix Z has normalized Euclidean length of columns and is
not subject to adaptation. Random mapping method has a nice feature that it
preserves data structure quite accurately as long as the output dimension is not
too low. Dyq = 100 we used is practically high enough. Resulting WCD word
representations were then obtained as q; = Zq;.

WordNet-based features were obtained using a feature generation software [10]
that can produce a set of binary features for words. The software incorporates
semantic features mainly from WordNet, a computational thesaurus that provides
semantic classification of the English lexicon in terms of hyponyms, synonyms,



and antonyms, as well as searchable word entries with semantic definitions [20, 2].
Harm extracted from WordNet relevant semantic features for nouns and verbs,
but for adjectives he hand-coded the semantic features according to a taxonomy
of features given in [21]. For our lexicon, the above method yielded in total a list
of 459 binary features, with the number of features for any given word ranging
from 1 to 12. Unlike WCD-based features, WordNet-based features are static,
but for computational uniformity they were also submitted to dimension-reducing
random mapping (D, = 100). For each word, both vectors were concatenated
and formed inputs to GSM (D = Dyeq + Dyn)-

Before the actual simulation, we needed to create the training data. In our
approach, incremental learning of lexicon can be viewed as learning the data set
whose patterns gradually change (due to expanding context) and whose number of
patterns changes as well (due to expanding lexicon). Therefore, we first chunked
the the total lexicon of N words into m stages with increasing increasing vocab-
ulary size (ny = N/m,n2 = 2N/m,...,n, = N). For each stage, we ran WCD
for the current lexicon. That is, all other words (with indices n; + 1,..., N) were
treated as noise and their presence in the data stream was not reflected in the
co-occurrence matrix.

Growing semantic map. GSM was trained using the above data sets, one
at a time. In each stage, input words were selected according the actual word
token frequency, as found in the corpus. More precisely, since the word frequency
distribution follows the Zipf’s law even with relatively small lexicons (i.e., a few
hundred words), we took the logarithm of these frequencies in order to force a
more even probability of word distribution.

In each simulation, GSM was initialized with a subset of recruited nodes ran-
domly scattered on a rectangular grid. Each node was connected with its nearest
neigbors (in the map) to form a 2D structure. New nodes could be recruited in
yet unoccupied grid positions. During simulation, best-matching nodes (winners)
were repeatedly found for all words from the current vocabulary. The information
about the number of word labels was utilized in identifying nodes with many labels
(ambiguous nodes). Next to the most ambiguous node, a randomly selected neigh-
bor became recruited (by becoming connected with its nearest existing neighbors
in the map) in order to allow for a more even distribution of words onto these
nodes.

We tried to use as few model parameters as possible, yet allowing the network
to copy with stability-plasticity trade-off. The learning rate was kept constant
throughout the simulation. The neighborhood radius was modulated in a “see-
saw” fashion but its profile within each growth stage was identical: radius was
always enlarged at the beginning of a growth stage and linearly decreased toward
the end of it. This profile was designed to allow for greater plasticity of the map
(ability to reorganize) upon seeing new words, followed by the gradual settling of
a reorganized structure.

Quantifying GSM’s organization. To monitor the development of cate-
gories in the map, we used two quantitative measures: one aimed at quantifying
the map order with respect to category clusters, and the other aimed at quantify-
ing the dynamics of change in GSM with respect to word categories. For the first
measure, we used a simple, k-nearest neighbor (k-NN) classifier [22] to monitor
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Figure 2: Vocabulary growth according to CDI order of acquisition for the four major
categories.

the existence of compact category clusters in GSM. For classification of each word,
the k-NN classifier was built based on all the remaining words in the considered
lexicon. The label of the tested word was predicted according to the most frequent
label among the k£ nearest neighbors in the map. Ties in prediction were broken
randomly. The classification rate for each word category was evaluated at the end
of each growth stage.

For the second measure, we computed the amount of the map’s reorganization
at the end of each stage relative to the previous stage. To do this, we compared
the word coordinates in the two maps at two successive stages within the same
simulation. The shift of each word (as determined by its winner) was taken as
the Euclidean distance of its coordinates in the two maps. Since any two maps at
successive stages differ in the number of words they represent (each previous map
has fewer words than the subsequent map), our comparison could only be made
for words that are common in the two maps. As a reorganization measure for each
category, the average word shifts were taken.

3 Experiment

We tested GSM on the CHILDES parental child-directed corpus [23]. We focused
on a set of N = 500 words that are reported to be among the first ones acquired
by children, according to the MacArthur Communicative Development Inventory
(CDI) [24]. (CDI contains 680 words for toddlers: we excluded the homographs,
word phrases and onomatopoeias.) The semantic representations for words in the
lexicon were created separately for different vocabulary sizes using WCD (from 50
through 500 words, in increments of 50) yielding 10 input data sets.



From original 22 categories in CDI, we extracted 18 word categories (see [25] for
rationale) that were merged into 4 major categories: (1) nouns (including animals,
body parts, clothing, food, household items, outside things, people, rooms, toys,
and vehicles), (2) verbs, (3) adjectives, and (4) closed-class words (including aux-
iliary verbs, connecting words, prepositions, pronouns, quantifiers, and question
words).

The lexical composition in our simulations changed as a function of vocabulary
growth (Figure 2). Nouns begin to be acquired very early, whereas closed-class
words much later. Verbs and adjectives both grow steadily and their proportions
remain roughly the same across words.

We ran 6 simulations with the same network and parameters. The GSM was
initialized with 1,200 recruited nodes that were randomly selected over the 40 x
50 rectangular grid, and had randomized weight vectors. New nodes could be
recruited around the “busiest” nodes every 500 iterations; hence, GSM typically
ended up having around 1,500 nodes. Each stage lasted 50,000 iterations, thus
amounting to 500,000 iterations per simulation. Learning rate was set to 0.02,
neighborhood radius decreased from 12 to 3 within each of the 10 stages.

Figure 3 shows the classification rates of a 5-NN classifier, averaged over 6
different simulation runs, for each of the four grammatical categories.! In all
cases except nouns, the average classification rate grows steadily toward the end.
The verbs and adjectives display similar profile: both categories developed quite
early during the acquisition process and formed a steady compact cluster (final
classification rate 85 and 82%, respectively).? Closed-class words as a cluster
emerged later, with similar classification rate at the end (82%). Figure 3 also
suggests that nouns had formed a cluster early on and maintained their cluster-
like structure throughout development (constantly above 90%). This overall high
performance for nouns results from the vocabulary composition that has a strong
noun bias early on — there are more nouns than all other words at any given stage.
Therefore, we broke down the two major categories (into 10 noun categories and
6 closed-class categories) to see the original categories as well. As can be seen
in Figure 4, even at this more detailed level at least some of the noun categories
(animals, body, clothing, food, people and rooms) formed the clusters gradually,
as reflected in the gradual increase of their classification rates. Within closed-class
words, only prepositions and pronouns formed some cluster-like structures, albeit
the former with a high degree of variability across simulations.

As a next step, we computed the amount of reorganization in the map during
development. Figure 5 shows that the amount of reorganization in each category
gradually decreases with the growing lexicon. Note that for the adjectives and
closed-class words there were few items as input at the beginning stages (see Fig-

1We were aware of a potential flaw using a k-NN classifier: if a particular category consisted
of separate compact clusters scattered all over the map, each of size k + 1, the k-NN classifier
would still yield a very high accuracy for that category. However, based on visual inspection of
the maps, this did not happen in most cases. We also tried higher values of k, but the results
did not change drammatically.

?Earlier comparisons showed, that mainly adjectives and nouns benefited from incorpora-
tion of WordNet-based features. With only WCD-based representations used, the accuracy of
adjectives would not exceed 50%, in case of nouns 70%.
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Figure 3: Classification rate with a 5-nearest-neighbor classifier as a function of vo-
cabulary growth in GSM. The graphs present the means and standard errors from six
simulations (the abscissa represents the 10 stages of growth, from 50 to 500 words).

ure 1), so reorganization does not show up initially or has a very high variance.? In
general, these graphs indicate that, despite constant profiles of learning parame-
ters, there is a tendency for the map to reduce the overall amount of reorganization
as learning progresses. As the accuracy of the WCD-based input representation
increases over time, the output space self-organizes to form an increasingly clear
map of the input data structure.

Visual inspection of the map at various stages revealed that the typical devel-
opment looks as follows. Nouns tend to occupy the whole map early on, because
they come first and the map offers them almost all its resources. Later on, the
nouns will give way to words in other categories, as they start to grow as well.
Around mid-course of development, the basic organization for the major categories
is already established, so that at later stages of growth there would be no radi-

3The noticable bump in case of nouns between stages 7 and 8 is a consequence of the WCD
method and resulted from entry of the determiner “the” in the lexicon. Since this word has a
very high frequency in the corpus and precedes a lof of nouns, representations of many nouns
that take this determiner noticably changed.
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Figure 4: Classification rate with a 5-nearest-neighbor classifier as a function of vocabu-
lary growth in GSM for 10 noun categories and 6 closed class word categories. The graphs
present the means and standard errors from six simulations (the abscissa represents the
10 stages of growth, from 50 to 500 words).

cal reorganization of the major categories. The later stages mainly involve the
addition of new words to established existing categories, with gradual shifting of
boundaries between them, which is consistent with Figure 5. This developmen-
tal profile is consistent with recent findings [26] showing that children and adults
have different patterns of neural activities in language processing. For children,
the activation pattern is diffuse and unfocused, whereas for adults, the activation
pattern is focused and dedicated to specific frontal regions. Our model shows that
early category structures (especially nouns) are diffuse and distributed, whereas
later on they become focused and localized.

4 Conclusion

Our attempt to provide computational account for the lexical acquisition incor-
porates two processes: (1) maturation of semantic representations of words, and
(2) emergence and reorganization of word categories in the map. Regarding the
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Figure 5: Map reorganization as a function of growth, computed as the amount of
word shifts in the maps. Two maps are compared at a time for all words common to two
successive stages. The graphs present the means and standard errors from six simulations
for each pair of comparison stages.

first process, we emphasize the word distributional approach in acquisition (but
we also incorporated grounded semantic features) and here, the enriching word
context serves as the only maturational factor (because WordNet features are con-
stant). As for the second process, the GSM’s learning characteristics are constant
with respect to each growth stage (learning rate is held constant as well as the
neighborhood profile at each stage). Hence, the developmental profile observed in
the map is purely input-driven. It is possible that other factors, operating either
at the input level (e.g., “maturation” of grounded semantic features) or in the map
(such as variations in learning rates or active neighborhoods) play a role in lexical
acquisition in human, but these factors have not been examined yet.

Despite its simplified design, the GSM model can tackle the stability-plasticity
trade-off: to preserve the existing structure upon seeing new words, but still being
able to learn. Catastrophic interference as a common problem in neural network
models trained on changing data [27] is avoided, because lexical acquisition as-
sumes an incremental training set: new words add on rather than replace old
words in the input data set.



We believe that the GSM model could be viewed as an approach attempting to
provide computational account for emergence and reorganization of semantic cat-
egories in the brain “from the scratch”, i.e., without having to rely on any innate
predispositions on representational level [28]. Word categories are sufficiently dif-
ferent in the input space to allow our model to capture these differences effectively
in acquiring a dynamic representation of the lexicon in the form of semantic map.
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