INVARIANCE OF GAUSSIAN-VECTOR MAPPING
USING A SELF-ORGANIZING MAP
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Abstract: We study the task of ordered mapping of Gaussian-vector pat-
terns with dot-product version of SOM. Specifically, we investigate the
invariance property of such a mapping, in one- and two-dimensional cases,
with respect to the standard deviation ¢ of Gaussians, as well as the vari-
ability of o. For the purpose of evaluation of the mapping performance,
the peak position misplacement (PPM) coefficient is introduced. We pro-
vide quantitative results, based on simulations, of the lower limit of ¢ for
both cases, below which ordered mapping is not guaranteed. Further, the
mapping is shown to be invariant to variability of ¢ to a certain degree.
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1 Introduction

With regard to representation of input patterns, we may distinguish two ba-
sic feature mapping models using a self-organizing map (SOM, see e.g. [1]).
The first one, originally proposed by Willshaw and von der Malsburg [2], is
biologically motivated. It employs two separate two-dimensional lattices of
neurons connected together, with one projecting onto the other. The sec-
ond model [3] is an artificial one, but computationally more effective due to
much lower dimensionality of input representation. Both approaches have
been used e.g. in modelling the somatotopic map, i.e. projecting the local
touch stimuli from the body surface onto the cortex. In the latter approach
[4], each touch stimulus was represented by a couple of coordinates of its
“center of gravity”, so the dimension of input space in this case is actually
only two. In the former approach [5], a stimulus pattern was modelled by
a Gaussian activity profile, centered at some location in input sheet. From
the geometrical viewpoint, the one-to-one mapping is feasible also when
we use these high-dimensional inputs because their inherent dimensionality
remains unchanged. This must be equal to one, e.g. for the tonotopic map
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(mapping the frequency of acoustic stimuli) [3], or two, for the somatotopic
map [5].

In this paper, we focus on the task of mapping these Gaussian patterns
with SOM. By a “Gaussian pattern” we shall thus mean a vector with a
single maximum component (peak center) and with the other (N-1) com-
ponents decreasing in magnitude in such a way that the overall activity
shape resembles the sampled Gaussian function. The ordered mapping is
empirically known to occur for a relatively free shape of Gaussians. On the
other hand, for simple reason we may expect that the ordering effect will
fail, if the Gaussians are too sharp (i.e. with a very small overlap): whereas
in “ordinary” case the inherent dimensionality of input set may be one, in
the latter case, the Gaussians will approximate the set of basis vectors of
N-dimensional space, which results in their dimensionality equal to N.!

To get some insight into the ordering performance, we investigate by
simulation the invariance property of the mapping Gaussian patterns with
SOM. First, we study the influence of Gaussian variance 2, which paramet-
rizes the Gaussian sharpness (for convenience, we use standard deviation o
as a parameter). Second, we empirically test the mapping invariance with
respect to the variability of Gaussian shape. In both subtasks, 1D and 2D
cases of the mapping are considered. The topology preservation between
input and output spaces is quantified by peak position misplacement (PPM)
coeflicient which is introduced.

2 Influence of the Gaussian variance

In the simplest, 1D case the Gaussian-vector input stimuli are modelled by
sampling the Gaussian function of the form

gPl(r) = A exp{—(r — p)?/20%} for r=1,2,...,N (1)

[

where p € {1,2,..., N} is the position of the centre of the stimulus along
the chain of N receptors (neurons), gc(,p)(r) represents the magnitude of
excitation at position r, A is the peak magnitude. Thus for a fixed pa-
rameter, standard deviation o, we have a set of N-dimensional vectors
gc(,p) = [¢\0)(1), g (2),...,¢)(N)]T, which differ in the position of their
peak (centre of the stimulus). ? Several half-profiles of such Gaussians with
100 components are plotted in Fig.1 for various values of o.

'Tt should be mentioned that the observed ordering effect does not relate only to
Gaussian patterns. Qualitatively the same situation would occur with other overlapping
patterns such as triangular- or box-shaped ones.

2For simplicity, we consider the position of an excitation peak to have only discrete
values, i.e. every stimulus finds itself in the center of the receptive field of one of the N
receptors.
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Figure 1: Several shapes of the Gaussian half-profile plotted for various
values of o.

For the mapping to succeed, it is necessary that the set of Gaussians
(points in N-space) possesses the property of the internal order, with re-
spect to peak positions. Similarity between two vector patterns is com-
monly measured by their dot product (DP) or the inverse of Euclidean
distance (ED) between them. With regard to the either similarity mea-
sure it is thus required, that the more similar the two Gaussian patterns
are (their peaks are closer to each other), the higher value of the similarity
measure should they yield. Analytical calculation of the above dependence
would be rather difficult, therefore we evaluated it using simulations for a
set of Gaussians with N = 100 components. The dependences for both DP
and ED are shown in Fig.2.

In both cases, the x-axis denotes the (discrete) distance between the
peaks of the two Gaussians. The y-axis means the DP (Fig.2a) and ED
(Fig.2b) of the two Gaussians in N-space. As seen in Fig.2a, for most
values of parameter o, the function of dependence monotonously decreases
with increasing |p — ¢|. Consistent, “reverse” behaviour can be observed
in Fig.2b. This dependence supports the hypothesis about the existence
of an underlying (nonlinear) 1D manifold that could be “passing” through
the Gaussians — points in N-space. In addition, these points appear to be
ordered along the manifold with respect to the peak position.

This hypothesis has been tested by training a 1D SOM on these Gaus-
sians. As known, dimensionality match between input and output spaces
is a necessary condition for SOM to be able to topologically map the input
space. In this case, the mapped feature of input patterns was expected to
correspond to the peak position.

Rather than Euclidean distance we applied the dot-product version of
the Kohonen algorithm (DP-SOM) which employs a common input-output
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Figure 2: Average (a) Dot Product of and (b) FEuclidean Distance between
two Gaussian patterns g\?) and g9 of dimension N = 100 (with random
amplitudes A € (0.9,1.0)) as a function of distance of their peaks, for var-
ious values of o. For each o, 500 vectors were generated in total (i.e. 5
for each peak position), from which the averages (DP and ED) were com-
puted. Standard deviation of averages is not plotted, as it appeared to be
insignificant.

function of a linear neuron, i.e. the output of the i-th neuron with associ-
ated weight vector w; is taken as y; = WZT.X7 where x is a Gaussian pattern
gc(rp). 3 The weight adaptation rule has the form

wi(t) + a(t).h(*,i).x

wi(t+1) = ||wi(t) + a(t).h(*, 1) x|

(2)

with «(f) denoting the common learning rate and h(:*, ¢) being the (rectan-
gular) neighbourhood function. At first, the performance of the mapping
is studied for various, but constant values of ¢. In order to quantitatively
evaluate the mapping order obtained after training, we define a coefficient
— peak position misplacement (PPM). It is updated after presentation of
each test pattern and eventually, its mean si taken. The evaluation of the
coefficient is based on comparing the position p € {1,2,..N} of maximum
excitation in an input Gaussian pattern gc(rp) and the corresponding position
i* (index of the winner) of the maximum output response for that pattern
in SOM (in the range 1 to n, where n is the number of neurons). Namely,
the final value is taken as

PPM = \/El(¢.i* - p)’] (3)

1t is well known that from the point of view of topological mapping both ED and DP
versions are equivalent as long as in the latter case the weight vectors are kept normalized.



with F[.] denoting the mean value. The ratio coefficient ¢ = N/n is included
in order to match the lengths of output and input arrays. (Without loss
of generality, in all our simulations we considered N = n). It may be
obvious that PPM quantifies the average misplacement of the position of
the maximum output response from the optimal one. As a consequence,
the closer PPM is to zero, the better mapping has resulted.
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Figure 3: Average values of PPM in the peak-position-mapping task with
DP-SOM. (a) 1D case: Ny = 100, ny = 100 neurons in 1D DP-SOM.
SOM is seen to yield the lowest PPM (approz. 3.5% of ny) for o = 10% of
Ny. (b) 2D case: N} = 400, n3 = 400 neurons in 2D DP-SOM. Minimum
PPM (approx. 3.7% of nz, for both sheet coordinates) in this case occurs
for o = 20% of Ny, for both coordinates.

Fig.3a shows the results of 1D simulations. These were run 20 times
for each of 8 different values of o (5, 10,...). Each of the 8 training sets
consisted of 500 Gaussian vectors (of dimension N = N; = 100), whose
components were generated according to Iq.1. Parameters of DP-SOM
containing n = n; = 100 neurons were common: t,,,, = 10000 iterations,
@init = 0.8, initial neighborhood radius = ny/3.

A simulation yielding a low value of PPM (empirically chosen PPM <
10) was considered as an ordered state. In addition, ordering was sys-
tematically checked by visual inspection of SOM responses. Ordering was
obtained in almost all cases of o, with the exception of ¢ =5 (SOM failed
7 times of 20). For this reason, standard deviation of PPM obtained for
o = 5 is very large (see Fig.2a). As seen, there exists some limit oy,
(according to simulations, somewhere in the interval (5,10)), below which
the ordering can, but may not succeed. This must be due to the fact, that
with decreasing ¢ below o,,;, the hypothetical 1D manifold transforms to
a set of mutually distant clusters positioned close to coordinate axes, re-
sulting in inherent dimension of the set equal to N. Towards the opposite



end, increasing o only slightly deteriorates the ordering property of SOM.
It does even occur, if the activity of an individual input pattern spreads all
over the input array (cf. Fig.1, the Gaussian half-profile for o > 20).

Analogical simulations were performed for the 2D case. Gaussians were
generated using the 2D modification of Eq.1, with N = N2 = 400 compo-
nents each. DP-SOM was set to have n = n = 400 neurons arranged in a
2D sheet. PPM was evaluated as in 1D case, now separately for both sheet
coordinates (therefore, in Fig.3b there are two connected lines). All SOM
parameters were the same as in 1D case, the initial neighborhood radius
was set to ny/3. In order to make both 1D and 2D cases comparable, o’s
were made relative (i.e. expressed in % of) to input dimension(s): i.e. rel-
ative to Ny in 1D case, to Ny in 2D case, and PPMs were expressed in %
of output dimension(s) (SOM size): n; in 1D case, ng in 2D case. In this
way, for 1D the obtained values remain the same, for 2D they become the
5-multiple of the computed ones. The dependences are qualitatively the
same as 1D case, for both coordinates.

3 Influence of variability of the Gaussian variance

In order to see how the variability of Gaussian variance affects topological
mapping property of DP-SOM, we generated 5 training sets, differing in
variability range (¢ — Ao, 0+ Ao), each containing 500 patterns. For both
cases (1D and 2D), o was chosen to correspond to the “best” Gaussian case,
i.e. the one with ,,;,. Results are shown in Fig.4a and 4b. In both cases,
the mapping performance deteriorates roughly linearly, but still, correct
ordering was observed for all considered Ao’s up to 10% of Ny and No,
respectively.

4 Conclusion

The performed simulations confirmed the claim that mapping Gaussian
patterns with a DP-SOM is invariant to the width of Gaussians (quantified
by o), provided that their overlap is sufficient (¢ > 6,:,). The differ-
ent values of empirically obtained o,,;, for 1D (roughly 10% of N;) and
2D (roughly 20% of N3) cases may be the consequence of the geometry
of corresponding manifolds embedded in N;- and NZ-dimensional spaces.
Mapping error for o,,;,, quantified by PPM coefficient, was approximately
the same in both cases: 3.5% and 3.7% of SOM size, respectively.

In addition, PPM was illustrated to grow roughly linearly with vari-
ability of o (quantified by Ac), with relatively small slope. As mapping
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Figure 4: Average values of PPM (obtained from 20 simulations) for various
levels of Gaussian variability. (a) 1D case: 0 = 10% of Ni. (b) 2D case:
g = 20% Of NQ.

was observed to converge to an ordered state, though with increasing error
PPM, it can be said to preserve its invariance to Ao to a certain degree.

In [6] we suggested that the invariance property of the studied mapping
can be exploited in designing a hierarchical feature mapping system con-
sisting of DP-SOM modules. These would generate Gaussian-like patterns
as their output representation, optionally tuned by incorporated lateral
feedback in order to make the Gaussians fall in invariance range.
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