
INVARIANCE OF GAUSSIAN-VECTOR MAPPINGUSING A SELF-ORGANIZING MAPIgor Farka�s �Abstract: We study the task of ordered mapping of Gaussian-vector pat-terns with dot-product version of SOM. Speci�cally, we investigate theinvariance property of such a mapping, in one- and two-dimensional cases,with respect to the standard deviation � of Gaussians, as well as the vari-ability of �. For the purpose of evaluation of the mapping performance,the peak position misplacement (PPM) coe�cient is introduced. We pro-vide quantitative results, based on simulations, of the lower limit of � forboth cases, below which ordered mapping is not guaranteed. Further, themapping is shown to be invariant to variability of � to a certain degree.Key words: self-organizing map, Gaussian patterns, peak position mapping,invariance1 IntroductionWith regard to representation of input patterns, we may distinguish two ba-sic feature mapping models using a self-organizing map (SOM, see e.g. [1]).The �rst one, originally proposed by Willshaw and von der Malsburg [2], isbiologically motivated. It employs two separate two-dimensional lattices ofneurons connected together, with one projecting onto the other. The sec-ond model [3] is an arti�cial one, but computationally more e�ective due tomuch lower dimensionality of input representation. Both approaches havebeen used e.g. in modelling the somatotopic map, i.e. projecting the localtouch stimuli from the body surface onto the cortex. In the latter approach[4], each touch stimulus was represented by a couple of coordinates of its\center of gravity", so the dimension of input space in this case is actuallyonly two. In the former approach [5], a stimulus pattern was modelled bya Gaussian activity pro�le, centered at some location in input sheet. Fromthe geometrical viewpoint, the one-to-one mapping is feasible also whenwe use these high-dimensional inputs because their inherent dimensionalityremains unchanged. This must be equal to one, e.g. for the tonotopic map�Institute of Measurement Science, Slovak Academy of Sciences, D�ubravsk�a cesta 9,842 19 Bratislava, Slovakia



(mapping the frequency of acoustic stimuli) [3], or two, for the somatotopicmap [5].In this paper, we focus on the task of mapping these Gaussian patternswith SOM. By a \Gaussian pattern" we shall thus mean a vector with asingle maximum component (peak center) and with the other (N -1) com-ponents decreasing in magnitude in such a way that the overall activityshape resembles the sampled Gaussian function. The ordered mapping isempirically known to occur for a relatively free shape of Gaussians. On theother hand, for simple reason we may expect that the ordering e�ect willfail, if the Gaussians are too sharp (i.e. with a very small overlap): whereasin \ordinary" case the inherent dimensionality of input set may be one, inthe latter case, the Gaussians will approximate the set of basis vectors ofN -dimensional space, which results in their dimensionality equal to N . 1To get some insight into the ordering performance, we investigate bysimulation the invariance property of the mapping Gaussian patterns withSOM. First, we study the in
uence of Gaussian variance �2, which paramet-rizes the Gaussian sharpness (for convenience, we use standard deviation �as a parameter). Second, we empirically test the mapping invariance withrespect to the variability of Gaussian shape. In both subtasks, 1D and 2Dcases of the mapping are considered. The topology preservation betweeninput and output spaces is quanti�ed by peak position misplacement (PPM)coe�cient which is introduced.2 In
uence of the Gaussian varianceIn the simplest, 1D case the Gaussian-vector input stimuli are modelled bysampling the Gaussian function of the formg(p)� (r) = A: expf�(r� p)2=2�2g for r = 1; 2; :::;N (1)where p 2 f1; 2; :::;Ng is the position of the centre of the stimulus alongthe chain of N receptors (neurons), g(p)� (r) represents the magnitude ofexcitation at position r, A is the peak magnitude. Thus for a �xed pa-rameter, standard deviation �, we have a set of N -dimensional vectorsg(p)� = [g(p)(1); g(p)(2); :::; g(p)(N)]T , which di�er in the position of theirpeak (centre of the stimulus). 2 Several half-pro�les of such Gaussians with100 components are plotted in Fig.1 for various values of �.1It should be mentioned that the observed ordering e�ect does not relate only toGaussian patterns. Qualitatively the same situation would occur with other overlappingpatterns such as triangular- or box-shaped ones.2For simplicity, we consider the position of an excitation peak to have only discretevalues, i.e. every stimulus �nds itself in the center of the receptive �eld of one of the Nreceptors.



Figure 1: Several shapes of the Gaussian half-pro�le plotted for variousvalues of �.For the mapping to succeed, it is necessary that the set of Gaussians(points in N -space) possesses the property of the internal order, with re-spect to peak positions. Similarity between two vector patterns is com-monly measured by their dot product (DP) or the inverse of Euclideandistance (ED) between them. With regard to the either similarity mea-sure it is thus required, that the more similar the two Gaussian patternsare (their peaks are closer to each other), the higher value of the similaritymeasure should they yield. Analytical calculation of the above dependencewould be rather di�cult, therefore we evaluated it using simulations for aset of Gaussians with N = 100 components. The dependences for both DPand ED are shown in Fig.2.In both cases, the x-axis denotes the (discrete) distance between thepeaks of the two Gaussians. The y-axis means the DP (Fig.2a) and ED(Fig.2b) of the two Gaussians in N -space. As seen in Fig.2a, for mostvalues of parameter �, the function of dependence monotonously decreaseswith increasing jp � qj. Consistent, \reverse" behaviour can be observedin Fig.2b. This dependence supports the hypothesis about the existenceof an underlying (nonlinear) 1D manifold that could be \passing" throughthe Gaussians | points in N -space. In addition, these points appear to beordered along the manifold with respect to the peak position.This hypothesis has been tested by training a 1D SOM on these Gaus-sians. As known, dimensionality match between input and output spacesis a necessary condition for SOM to be able to topologically map the inputspace. In this case, the mapped feature of input patterns was expected tocorrespond to the peak position.Rather than Euclidean distance we applied the dot-product version ofthe Kohonen algorithm (DP-SOM) which employs a common input-output



Figure 2: Average (a) Dot Product of and (b) Euclidean Distance betweentwo Gaussian patterns g(p) and g(q) of dimension N = 100 (with randomamplitudes A 2 h0:9; 1:0i) as a function of distance of their peaks, for var-ious values of �. For each �, 500 vectors were generated in total (i.e. 5for each peak position), from which the averages (DP and ED) were com-puted. Standard deviation of averages is not plotted, as it appeared to beinsigni�cant.function of a linear neuron, i.e. the output of the i-th neuron with associ-ated weight vector wi is taken as yi = wTi :x, where x is a Gaussian patterng(p)� . 3 The weight adaptation rule has the formwi(t+ 1) = wi(t) + �(t):h(i�; i):xkwi(t) + �(t):h(i�; i):xk (2)with �(t) denoting the common learning rate and h(i�; i) being the (rectan-gular) neighbourhood function. At �rst, the performance of the mappingis studied for various, but constant values of �. In order to quantitativelyevaluate the mapping order obtained after training, we de�ne a coe�cient| peak position misplacement (PPM). It is updated after presentation ofeach test pattern and eventually, its mean si taken. The evaluation of thecoe�cient is based on comparing the position p 2 f1; 2; ::Ng of maximumexcitation in an input Gaussian pattern g(p)� and the corresponding positioni� (index of the winner) of the maximum output response for that patternin SOM (in the range 1 to n, where n is the number of neurons). Namely,the �nal value is taken asPPM = qE[(q:i�� p)2] (3)3It is well known that from the point of view of topological mapping both ED and DPversions are equivalent as long as in the latter case the weight vectors are kept normalized.



with E[:] denoting the mean value. The ratio coe�cient q = N=n is includedin order to match the lengths of output and input arrays. (Without lossof generality, in all our simulations we considered N = n). It may beobvious that PPM quanti�es the average misplacement of the position ofthe maximum output response from the optimal one. As a consequence,the closer PPM is to zero, the better mapping has resulted.
Figure 3: Average values of PPM in the peak-position-mapping task withDP-SOM. (a) 1D case: N1 = 100, n1 = 100 neurons in 1D DP-SOM.SOM is seen to yield the lowest PPM (approx. 3.5% of n1) for � = 10% ofN1. (b) 2D case: N22 = 400, n22 = 400 neurons in 2D DP-SOM. MinimumPPM (approx. 3.7% of n2, for both sheet coordinates) in this case occursfor � = 20% of N2, for both coordinates.Fig.3a shows the results of 1D simulations. These were run 20 timesfor each of 8 di�erent values of � (5, 10,...). Each of the 8 training setsconsisted of 500 Gaussian vectors (of dimension N = N1 = 100), whosecomponents were generated according to Eq.1. Parameters of DP-SOMcontaining n = n1 = 100 neurons were common: tmax = 10000 iterations,�init = 0:8, initial neighborhood radius = n1=3.A simulation yielding a low value of PPM (empirically chosen PPM <10) was considered as an ordered state. In addition, ordering was sys-tematically checked by visual inspection of SOM responses. Ordering wasobtained in almost all cases of �, with the exception of � = 5 (SOM failed7 times of 20). For this reason, standard deviation of PPM obtained for� = 5 is very large (see Fig.2a). As seen, there exists some limit �min(according to simulations, somewhere in the interval h5; 10i), below whichthe ordering can, but may not succeed. This must be due to the fact, thatwith decreasing � below �min the hypothetical 1D manifold transforms toa set of mutually distant clusters positioned close to coordinate axes, re-sulting in inherent dimension of the set equal to N . Towards the opposite



end, increasing � only slightly deteriorates the ordering property of SOM.It does even occur, if the activity of an individual input pattern spreads allover the input array (cf. Fig.1, the Gaussian half-pro�le for � > 20).Analogical simulations were performed for the 2D case. Gaussians weregenerated using the 2D modi�cation of Eq.1, with N = N22 = 400 compo-nents each. DP-SOM was set to have n = n22 = 400 neurons arranged in a2D sheet. PPM was evaluated as in 1D case, now separately for both sheetcoordinates (therefore, in Fig.3b there are two connected lines). All SOMparameters were the same as in 1D case, the initial neighborhood radiuswas set to n2=3. In order to make both 1D and 2D cases comparable, �'swere made relative (i.e. expressed in % of) to input dimension(s): i.e. rel-ative to N1 in 1D case, to N2 in 2D case, and PPMs were expressed in %of output dimension(s) (SOM size): n1 in 1D case, n2 in 2D case. In thisway, for 1D the obtained values remain the same, for 2D they become the5-multiple of the computed ones. The dependences are qualitatively thesame as 1D case, for both coordinates.3 In
uence of variability of the Gaussian varianceIn order to see how the variability of Gaussian variance a�ects topologicalmapping property of DP-SOM, we generated 5 training sets, di�ering invariability range h����; �+��i, each containing 500 patterns. For bothcases (1D and 2D), � was chosen to correspond to the \best" Gaussian case,i.e. the one with �min. Results are shown in Fig.4a and 4b. In both cases,the mapping performance deteriorates roughly linearly, but still, correctordering was observed for all considered ��'s up to 10% of N1 and N2,respectively.4 ConclusionThe performed simulations con�rmed the claim that mapping Gaussianpatterns with a DP-SOM is invariant to the width of Gaussians (quanti�edby �), provided that their overlap is su�cient (� � �min). The di�er-ent values of empirically obtained �min for 1D (roughly 10% of N1) and2D (roughly 20% of N2) cases may be the consequence of the geometryof corresponding manifolds embedded in N1- and N22 -dimensional spaces.Mapping error for �min, quanti�ed by PPM coe�cient, was approximatelythe same in both cases: 3.5% and 3.7% of SOM size, respectively.In addition, PPM was illustrated to grow roughly linearly with vari-ability of � (quanti�ed by ��), with relatively small slope. As mapping



Figure 4: Average values of PPM (obtained from 20 simulations) for variouslevels of Gaussian variability. (a) 1D case: � = 10% of N1. (b) 2D case:� = 20% of N2.was observed to converge to an ordered state, though with increasing errorPPM, it can be said to preserve its invariance to �� to a certain degree.In [6] we suggested that the invariance property of the studied mappingcan be exploited in designing a hierarchical feature mapping system con-sisting of DP-SOM modules. These would generate Gaussian-like patternsas their output representation, optionally tuned by incorporated lateralfeedback in order to make the Gaussians fall in invariance range.Acknowledgement: This work was partially supported by Slovak GrantAgency for Science (grants No. 2/2040/95 and No. 95/5305/468).References[1] S. Haykin. Neural Networks: A Comprehensive Foundation. MacmillanCollegePublishing Company, 1994.[2] D. J. Willshaw and C. von der Malsburg. How patterned neural connectionscan be set up by self-organization. Proceedings of the Royal Society of London,Series B, 194:431{445, 1976.[3] T. Kohonen. Self-Organizing Maps. Springer-Verlag, 1995.[4] H. Ritter and K. Schulten. On the stationary state of kohonen's self-organizingsensory mapping. Biological Cybernetics, 54:99{106, 1986.[5] K. Obermayer, H. Ritter, and K. Schulten. Large-scale simulations of self-organizing neural networks on parallel computers: Application to biologicalmodelling. Parallel Computing, 14:381{404, 1990.[6] I. Farka�s. On Vector-Coded Feature Mapping Using Self-Organizing NeuralMaps. PhD thesis, Slovak Technical University in Bratislava, 1995.


