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Abstract. For the last few decades, the neuroscientific research has
highlighted the importance of astrocytes, a type of glial cells, in the
information processing capabilities. By dynamic bidirectional commu-
nication with neurons, astrocytes regulate their excitability through a
variety of mechanisms. Traditional artificial neural networks (ANNs) are
connectionist models that describe how information passes throughout
layer of neurons abstracting from low-level mechanisms. However, very
little research has addressed artificial astrocytes and their incorpora-
tion into ANNs. In this paper, we present an echo state network (ESN)
extended with astrocytes which influence the neurons by fixed or Hebbian
connections. By systematic analysis we investigate their role on five clas-
sification tasks and show that they can outperform the standard ESN
without astrocytes. Although the model with fixed astrocytic weights
yields from none to little improvement, the model with Hebbian weights
from astrocytes to neurons is significantly superior.

Keywords: Glial cells · Astrocytes · ESN · Classification ·
Computational model

1 Introduction

Firstly identified in the 19th century, glial cells (often called glia) significantly
contribute to the total brain mass with around 50% and their glia:neuron ratio in
mammalian brains about 1:1 [3]. Although considered as non-functional and sup-
portive units for over more than a decade, recently they gained lots of attention,
as the emerging evidence indicates their role as active and equally important
components compared to neurons. By interacting and cooperating with each
other in nervous systems, they both take a significant part in various neurophys-
iological processes. Several functions of the glia are well characterized, including
maintenance of homeostasis, being inevitable in the development of the central
and peripheral nervous system, forming structural foundations that hold neu-
rons, providing metabolic support and so on. However, the full characterization
of their active roles and exact mechanisms still remain unresolved.
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The population of glia is commonly subdivided into four major groups: (1)
astrocytes, (2) oligodendrocytes, (3) microglia and (4) their progenitors NG2-
glia. According to recent evidence, astrocytes, the most abundant and probably
the most complex group, play significant role in cognitive functions, traditionally
attributed solely to neurons, such as learning and memory, information transfer
and processing [2,8]. Although not being able to be excited electrically and
generating action potentials as neurons do, they are incorporated in network glial
syncytium where upon being excited they propagate Ca2+ signals throughout
gap junctions. They are characterized by having the resting membrane potential
of ∼ −80 mV close to Nernst equilibrium for potassium ions (K+) [5] and express
both ionotropic and metabotropic glutamate receptors [19] allowing them to be
highly sensitive to neuronal activity.

In order to better understand these low-level mechanisms, computational
modelling is often employed which recently has become an essential part of neu-
roscience. Such models may provide testable predictions for processes that are
built upon these mechanisms such as neuronal regulation, or synaptic plastic-
ity. A better knowledge about astrocyte–neuron cooperation may also provide
building blocks for studying the regulatory capability of glial syncytium on a
larger scale. Computational models of ANNs extended with astrocytes may not
only be used as an interesting novel concept, but mainly can provide space for
hypotheses to explain the potential roles of glia in biological neuronal circuits
and networks.

In the previous study, we investigated the role of astrocytes as neuronal reg-
ulators in a feedforward ANN [7]. The proposed models were superior to the
traditional multi-layer perceptron on the same datasets, however, this was not
the case for all of them. In addition, we detected unique astrocytic regimes in
terms of output distributions that were different for each problem. In this paper,
we transfer the same model of astrocytes to ESNs and systematically investi-
gate their role using five classification tasks from UCR time series classification
archive [4]. In addition, we incorporate and analyze Hebbian learning as a form
of plasticity for astrocytic weights. The paper is organized as follows. Section 2
includes the related background and work. In Sect. 3, we describe proposed model
in depth. In Sect. 4, we provide the experimental results. Section 5 concludes the
paper.

2 Related Background

Computational neuroscience distinguishes two modeling paradigms: biophysical
and connectionist. While the former focuses on physical and chemical properties
of a biological system using various mathematical methods, the latter makes a
significant reduction in the complexity of low-level mechanisms which in turn
may lead to better comprehension of the system from a higher level. Despite
the plethora of biophysical models of astrocytes per se and neuron-astrocyte
coupling, connectionist modeling has so far been out of scientific interest. For an
overview of biophysical models, we recommend reviews in [18,21,22].
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As far as the connectionist models are concerned, we highlight the work by
Ikuta et al. who initially introduced astrocytes1 into ANN [10]. Their model of an
astrocyte served as a chaotic noise generator which was being propagated to the
neighboring units and impacted standard neuronal signalling. On the two-spirals
classification problem, the performance in terms of mean absolute error and the
rate of convergence was superior to the multilayer perceptron (MLP) without
astrocytes. The architecture of the model can be described as an extension of
MLP with astrocytes regulating neurons on the hidden layer. The authors in their
later work investigated various activation functions for astrocytes and various
architectures [11–13].

Instead of the neuronal regulation, Porto-Pazos et al. [20] and González
et al. [1] focused on synaptic plasticity modulation. They presented an MLP
with astrocytes regulating neural transmission on a larger temporal scale (hun-
dreds of milliseconds and seconds) as opposed to fast neuronal and synaptic
signaling (milliseconds). Astrocytes were activated by intense neural transmis-
sion and consequently regulated synaptic weights with a slow temporal time
course. Each neuron was paired with a single astrocyte and each astrocyte only
responded to the activity of the associated neuron by modulating its output
synaptic weights. Since the model was dependent on various hyperparameters
that needed to be fine-tuned, in their following work they presented a method
for automatic search of these parameters based on cooperative coevolution [16].

3 Proposed Model and Training Methods

Here we present a novel neural network architecture based on an ESN with the
reservoir extended with astrocytes. We first provide a brief overview of ESNs,
the training procedure including weights initialization, and then describe the
architecture of our model, parameter selection and incorporation of Hebbian
learning.

3.1 Echo State Networks

Training traditional recurrent neural networks is considered to be difficult because
of limitations of gradient descent methods which tends to be computationally
expensive, to have slow convergence and to generally lead to poor local minima.
Hence, the full adaption of all network weights is often omitted, yet still yielding
excellent performance. This approach serves as a foundation for ESNs which were
introduced by Jaeger for nonlinear system identification and time series model-
ing [14]. They are characterized by having randomly generated input weights and
reservoirs with the training only on readout weights. However, in order to work

1 Originally, authors use term artificial glia but we consider artificial astrocytes
instead, since glia represent the vast majority of non-neuronal cells in the nervous
system with multiple functions, whereas only astrocytes are currently considered to
play a vital role in information processing tasks.
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well, ESNs require delicate tuning of several hyperparameters including the size of
the reservoir N , the spectral radius ρ, and input weight scaling τ .

Reservoir activation vectors xxx(t) = [x1(t), ..., xN (t)] and output activations
yyy = [y1, ..., yC ] for given input pattern uuu = [u(1), ..., u(T )] are updated according
to ESN dynamics given by the formulas

xxx(t) = f(wwwinu(t) + WWW resxxx(t − 1)) (1)

yyy(t) = WWW outxxx(T ) (2)

with the logistic sigmoid activation function f(net) = 1/(1 + exp(−net)).
For dealing with classification problems, we consider the following training

procedure:

1. Generate random input weights wwwin and reservoir weights WWW res scaled by
ρ/|λmax|, where λmax denotes the largest absolute eigenvalue of WWW res and ρ
is manually selected.

2. Run ESN using the training inputs and for each uuutrain collect the last reservoir
activation state xxx(T ).

3. Compute the linear readout weights using formula

WWW out = YYY tgtXXX+ (3)

where YYY tgt is a matrix of concatenated target vectors (in columns) with one-
hot encoding and XXX+ is the pseudoinverse matrix of concatenated reservoir
activation states from step 2.

4. Use the trained network on new input data uuutest and decide the class by
selecting output neuron with maximum activation

class(uuutest) = arg max
k

yk (4)

3.2 Neuron–Astrocyte Coupling – A-ESN Model

Although astrocytes are interconnected within glial syncytium using gap junc-
tions and communicate sharing slow Ca2+ signals (as opposed to neuronal firing),
we omit this concept for the sake of complexity and start exploring the simplest
model of astrocytes. Upon investigating whether they work relatively well and
produce favorable results, in the future research we plan to explore more complex
and biologically plausible mechanisms. For now, we focus on this simple model.

In our model we consider an astrocyte to play a single role in neuronal reg-
ulation. Since it was discovered that mammalian cortices have glia:neuron ratio
of about 1:1, as stated in the introduction, in the context of ESN we equip
each reservoir neuron with one astrocyte as shown in Fig. 1. We call this model
A-ESN.

Reservoir activation x′
i(t) takes into account input pattern u(t), previous

time step activation vector xxx′(t − 1) and astrocyte activation ψi(t) weighted by
a single shared weight wα, which is expressed in the vector form as

xxx′(t) = f(wwwinu(t) + WWW resxxx′(t − 1) + wαψψψ(t)) (5)
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Fig. 1. The architecture of the proposed model, A-ESN, with a reservoir of neurons
and astrocytes. Each neuron is paired with an astrocyte that listens to it and regulates
its behaviour based on activity. Since we consider the single time series classification
problems, we use a single input neuron, N neurons and astrocytes within the reservoir,
and C output neurons representing the classes.

Astrocytes ψi(t) listen to their associated neurons and when some of the
neurons exceed the threshold θ, astrocytes produce the activation value of 1.
The rest of them decays by factor γ, as shown in Eq. 6.

ψi(t) =

{
1, if θ < x′

i(t − 1)
γψi(t − 1), otherwise

(6)

This ESN dynamics is graphically depicted in Fig. 2.

Fig. 2. Neuron–astrocyte coupling. The astrocyte, weighted by wα, regulates the asso-
ciated neuron by contributing to its input. When the neuron surpasses the threshold
θ, the astrocyte outputs 1 and slowly decays by γ in the next time steps. Blue arrows
depict reservoir weights, the green arrow an input weight and orange arrows the astro-
cyte parameters. (Color figure online)
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3.3 Hebbian Learning in A-HL-ESN Model

Since using a single shared weight wα for all astrocytes may be too constraining,
we consider an individual weight for each astrocyte. Although astrocytes are not
considered to be able to trigger neuronal action potential, they still modulate
their membrane potential by the release of gliotransmitters including glutamate
(exciting the neuron) or ATP (inhibiting the neuron) [6]. For that reason we
consider randomly generated weights from a uniform distribution Uni(−1, 1).

The exact relationship of neuronal regulation by astrocytes is still not well
understood and we can only guess to which extent is this process plastic and
what are the specific mechanisms of plasticity. For that matter we speculate using
Hebbian learning which is in great detail described in [9]. The basic principle is
that the change of a synaptic weight wji between neurons xi and yj , with the
learning rate η, is expressed as

Δwji(t) = ηxi(t)yj(t) (7)

In our case we apply this rule for the change of the weight wα between a
neuron x′

i and an astrocyte ψi. Repeated application, however, may lead to an
exponential change of the weight which is not biologically plausible, so this is
solved by incorporating some form of stabilization. This is in many cases the
normalization of the final weights. We consider Oja’s rule [17] which introduces
a nonlinear, forgetting factor for the weight change

Δwα
i (t + 1) = ηx′

i(t)[ψi(t) − x′
i(t)w

α
i (t)] (8)

To take into account this new dynamics, we split our training algorithm into
two phases: (1) once the unsupervised learning of the weights wwwα (Eq. 8) in
the reservoir is complete, (2) a supervised learning algorithm (from Sect. 3.1) is
applied to the readout weights. Instead of using Eq. 5 for the reservoir update,
we consider

xxx′(t) = f(wwwinu(t) + WWW resxxx′(t − 1) + wwwα ∗ ψψψ(t)) (9)

with operator ‘∗’ denoting the element-wise product of vectors. We call the model
with Hebbian learning described here as A-HL-ESN.

4 Experiments

For evaluating the performance of our new approach, we consider five classifica-
tion problems from UCR time series classification archive [4]. We use a standard
ESN (without astrocytes) as a baseline and compare it with proposed methods
described in the previous section. Using grid search we systematically investi-
gated each hyperparameter (averaged over several instances) and selected the
values with the lowest error rate on the testing dataset. Regarding the ranges
for each hyperparameter we chose the values presented in Table 1.



Echo State Networks with Artificial Astrocytes and Hebbian Connections 463

Table 1. Hyperparameter value ranges used in the grid search for each dataset.

Parameter Tested values

N 20 to 500 with step = 20

τ 10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001

ρ 0.8 to 1.4 with step = 0.05

wα –1.0 to 1.0 with step = 0.1

γ 0.0 to 1.0 with step = 0.1

θ 0.0 to 1.0 with step = 0.1

The UCR archive already provides train/test split of the datasets, but we
found this rather problematic because of the high risk of overfitting the hyper-
parameters to a particular test dataset. In order to avoid this, we merged both
train and test datasets into a single set and used 5-fold cross-validation instead.
To eliminate the random fluctuation in performance, we executed training pro-
cedures with random weights, random permutations of datasets and averaged
error rates over 100 instances.

Allowing for possibility of imbalanced datasets in which one class is over-
represented with the respect to the others, we use Matthews correlation coeffi-
cient (MCC) as a metrics for performance evaluation score [15] rather than the
mean-squared error, accuracy or F1-score which does not work relatively well
on imbalanced datasets. The value MCC = 1 corresponds to a perfect match
between model predictions and observations, whereas −1 indicates total dis-
agreement between the two.

In all experiments, we used hyperparameters summarized in Table 2 resulting
in the largest MCC on testing datasets.

Table 2. Optimal hyperparameters selected using the grid search for each dataset.
Non-astrocytic hyperparameters (N , ρ, τ) were shared in all models on a given dataset.

Dataset ESN A-ESN A-HL-ESN

N ρ τ wα γ θ γ θ

FaceFour 20 0.95 0.05 −0.4 0.1 0.2 0.2 0.2

MoteStrain 120 1.3 0.001 −0.3 0.9 0.5 0.3 0.3

OSULeaf 60 0.95 0.01 0.6 0.6 0.8 0.2 0.1

SwedishLeaf 160 1.4 0.001 −0.4 0.2 0.9 0.2 0.2

ToeSegmentation1 60 1.3 1.0 −0.5 1.0 0.9 0.3 0.1

Results in terms of MCC averaged over 100 simulations are presented in
Table 3. It is clear that model with Hebbian connections, A-HL-ESN, signif-
icantly outperforms models ESN and A-ESN. Despite having more complex
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training procedure and thus higher time complexity, gain in terms of perfor-
mance is clearly notable. Model with fixed connections, A-ESN, have yielded
results equivalent to standard ESN (assuming correct settings of hyperparam-
eters), although it is speculative why on the last dataset (ToeSegmentation1),
the error rate is significantly better (MCC of 0.5 ± 0.1 vs 0.32 ± 0.11).

Table 3. MCC (mean + standard deviation) averaged over 100 simulations on each
dataset. In each case, the model A-HL-ESN is superior regarding the performance.

Dataset ESN A-ESN A-HL-ESN

FaceFour 0.44 ± 0.12 0.43 ± 0.13 0.56 ± 0.14

MoteStrain 0.65 ± 0.04 0.67 ± 0.06 0.85 ± 0.03

OSULeaf 0.41 ± 0.06 0.42 ± 0.06 0.57 ± 0.06

SwedishLeaf 0.64 ± 0.03 0.63 ± 0.03 0.84 ± 0.03

ToeSegmentation1 0.32 ± 0.11 0.50 ± 0.10 0.59 ± 0.11

In order to better understand the role of astrocytes with Hebbian connections,
we were interested to know how the astrocyte weights develop during learning.
For the fully trained models (all 100 instances), we plotted final distributions of
the weights wα

i as depicted in Fig. 3. We can observe that the weight distributions
are skewed in the interval (1,2), roughly independent of the dataset, with an
exception being MoteStrain, where some of the weights are also between 0 and
1. We may conclude this implies excitatory nature of the astrocytes in terms of
neuronal regulation.

Fig. 3. Distribution of the weights wα
i in the trained models A-HL-ESN reveals exci-

tatory role of the astrocytes.

5 Conclusion

To advance the modeling of biological neuronal networks, which are inherently
recurrent, it is inevitable to focus on models from the same domain. Since
training recurrent neural networks is difficult for various problems, we consid-
ered ESNs instead. Moroever, the neuroscientific research for the last decades
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has highlighted the importance of glial cells in information processing context.
Astrocytes regulate neuronal functionality in a variety of ways, particularly by
maintaining the concentration of ions and neurotransmitters and by releasing
gliotransmitters, and modulating both neuronal excitability and synaptic plas-
ticity. However, limited amount of research has been done in the field of ANNs
equipped with artificial astrocytes and basically none on the recurrent models,
so the exact role of astrocytes remains speculative.

In our previous work [7], we investigated the role of astrocytes in feedfor-
ward models and inspired by positive results, we transferred the same model of
astrocytes to ESNs and explored their influence. In addition, we incorporated
Hebbian learning for weights between astrocytes and their associated neurons.
By systematic analysis of this new dynamics on five classification tasks we found
very little contribution of astrocytes with fixed weights, but in case of Hebbian
learning the performance yielded significantly positive outcome. By analyzing
the final distributions of astrocyte weights, we discovered that astrocytes oper-
ate as neuronal excitors by lowering the threshold required for firing. Out of
curiosity we also examined various modifications including bipolar activation
functions for neurons and astrocytes (with their output activation within the
interval (–1, 1)) and swapping astrocytes with neurons in Eq. 8. However, these
modifications did not perform that well.

Future research in this area may follow several directions. The activation
function for the astrocyte, as formulated in Eq. 6, is definitely not the only one
and there are several varieties to be considered. Since Ca2+ signalling within
glial syncytium operates on a much slower pace as opposed to neuronal firing, it
may be beneficiary to incorporate this slow, temporal dynamics into astrocytic
behaviour. Although our model of an artificial astrocyte includes slow decay,
“firing”, however, remained still instant. Despite focusing on the astrocytes as
single separate units, it is possible to model glial syncytium and design an astro-
cytic network of astrocytes connected together, hence fulfilling the biologically
plausible spatiotemporal dynamics. Last, but not least, instead of focusing on
regulation of neuronal excitability, it is possible to design models that also incor-
porate rules for synaptic plasticity.
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