
Advances in Adaptive Skill Acquisition

Juraj Holas and Igor Farkaš

Faculty of Mathematics, Physics and Informatics?

Comenius University in Bratislava, Slovakia
{juraj.holas,igor.farkas}@fmph.uniba.sk

Abstract. Hierarchical Reinforcement Learning (HRL) represents a vi-
able approach to learning complex tasks, especially those with an inner
hierarchical structure. The HRL methods decompose the problem into
a typically two-layered hierarchy. At the lower level, individual skills are
created to solve specific non-trivial subtasks, such as locomotion prim-
itives. The high-level agent can then use these skills as its actions, en-
abling it to tackle the overall task. The identification of an appropriate
skill set, however, is a difficult problem by itself. Most current approaches
solve it using a pre-training phase, in which skills are trained and fixed,
before launching the training of the high-level agent. Having the skill set
fixed prior to main training session can however impose flaws on the HRL
system – especially if a useful skill was not successfully identified, and
hence is missing from the skill set. Our Adaptive Skill Acquisition frame-
work (ASA) aims specifically for these situations. It can be plugged onto
existing HRL architectures and fix the defects within the pre-trained skill
set. During the training of the high-level agent, ASA detects a missing
skill, trains it, and integrates it into the existing system. In this paper,
we present new improvements to the ASA framework, especially a new
skill-training reward function, and support for skill-stopping functions
enabling better integration. Furthermore, we extend our prior pilot tests
into extensive experiments evaluating the functionality of ASA, in com-
parison to its theoretical boundaries. The source code of ASA is also
available online1.

Keywords: Hierarchical reinforcement learning · skill acquisition · adap-
tive model

1 Introduction

The field of Reinforcement Learning has been gaining significant attention within
the past years, as being a viable pool of Machine Learning methods based on
biologically motivated concepts. Thanks to its advancements, RL methods can
easily surpass human-level performance in certain tasks. However, traditional
(‘flat’) RL can still fall short if the problem at hand features several layers of
abstraction.

? This research was supported by KEGA grant no. 042UK-4/2019
1 https://github.com/holasjuraj/asa

https://github.com/holasjuraj/asa

2 J. Holas, I. Farkaš

To remedy these problems, the Hierarchical Reinforcement Learning (HRL)
was introduced [24]. HRL approaches are designed to be able to abstract a hier-
archical structure of the task, and reflect it within the architecture of the model.
The HRL models hence contain skills – actions that are temporally extended in
time, which are usually specialised to perform a specific subtask. A high-level
agent operates on top of them to solve the main task, using the low-level skills to
abstract the peculiarities of individual subtasks. This architecture hence creates
an implicit or explicit leveled hierarchy within the model.

The process of acquiring skills is typically crucial to the model, and makes
a core of individual HRL algorithms. Older methods like [20,24] specify and
train the skill behaviors manually, which, however, comes with high risk of en-
gineered bias. On the other hand, all modern approaches construct the skill set
in automated or semi-automated way. The most used approach is to use a pre-
training phase, during which the skills are trained using a surrogate reward
[6,7,10,14,15,16]. After the pre-training phase has finished, the skills are fixed
and training of the high-level agent starts.

However, this two-phased training of a HRL architecture comes with a prob-
lems stemming from the principle of optimality under given hierarchy [24]. If
the pre-training phase fails to produce the perfect set of skills, the high-level
agent will likely fail to find an optimal overall solution, as it is bounded by
the suboptimal skill set. As an example, we can imagine a locomotion robot with
a task to solve a maze, which is only given skills to move forward/backward and
turn left, but no skill to turn right. The high-level agent, choosing from this
limited skill set, may still find a solution how to navigate through the maze, but
it will clearly be suboptimal for cases it should have turned right. This principle
was also experimentally proven [12].

There has been a limited amount of research focused on training the whole
hierarchy jointly, with the option to adapt all skills even during the high-level
training [12,13,19]. However, most of them rely on using Universal-MDP which,
despite its name, is a subset of MDP class suitable mostly for spatial ‘reaching’
tasks.

Addressing the problem of a missing skill, we introduced our framework of
Adaptive Skill Acquisition (ASA) [8]. Its main purpose is to identify that a skill is
missing during the training of the high-level agent, formulate and train the miss-
ing skill, and integrate it to the faulty skill set. ASA is designed as a pluggable
component, which can be deployed onto almost any existing HRL architecture
or those yet to come. In this paper we present the improvements that have been
made to the model to make it even more robust, efficient, and reusable.

Additionally, all skills generated by previous approaches can be categorized
into two disjoint types. The subgoal-based skill identification works by selecting
a state with greater importance (subgoal), and then training a skill to reach
this state from its proximity [2,10,12,14,17,19]. A typical subgoal example is
a doorway in a grid-world environment. On the other hand, the behavioral skills
are crafted to execute a specific behavior which is useful in any part of state-
space, not only near a subgoal – such as walking for a legged robot [6,13,15]. To

Advances in Adaptive Skill Acquisition 3

the best of our knowledge, there has not been an approach which could train
both subgoal-based and behavioral skills. In this work we experimentally confirm
that ASA is able to train both types of skills, and it does so without the need
of parameter change, or specifying which skill type it should create.

As a key contribution of this paper, we also present extended results of
our method, compared to the previous pilot tests. We empirically demonstrate
the successful performance of ASA on two distinctive environments, analyze
the quality of the new skill, and compare our work to the HiPPO algorithm
[13].

2 Preliminaries

We define a Markov Decision Process (MDP) as a tuple 〈S,A, P, p0, R, γ〉, where
S ⊆ Rdim(S) is a set of states, A is a set of actions, P : S × A × S → [0, 1]
is a probability distribution describing the state transitions, p0 : S → [0, 1]
is a probability distribution of the initial state, R : S×A→ R is a (possibly non-
deterministic) reward function, γ ∈ (0, 1] is a reward discount factor. Traditional
(‘flat’) RL aims to find an optimal policy π : S × A → [0, 1] that optimizes

the expected overall discounted return G(π) = Eπ[
∑T
t=0 γ

tR(st, at)], where Eπ
denotes the expected value if an agent follows a policy π.

In Hierarchical RL, we do not optimize a single policy π, but rather a set
of policies on two (or more) levels. We have a set of skills – low-level policies
πL1 , . . . , π

L
n that act using the original actions: πLi (st) = at. On top of them we

have a manager – driven by a high-level policy πH . Its purpose is to decide which
skill will be used in a given situation, and thus its high-level actions aHt are in
fact invocations of skill policies: πH(st) = aHt ∈ {πL1 , . . . , πLn}. The chosen skill
then selects actions until the termination criterion is met, e.g. its time limit is
reached. In our paper we study variable-length sequences of skill invocations,
which we denote by δ = [aHt , . . . , a

H
t+m].

3 Related work

The problem of automated skill discovery is the most commonly addressed is-
sue within the field of HRL. As the cornerstone, the Options framework [24]
laid a base for many subsequent approaches to build on. The research was
originally focused mostly on approaches for discrete state-space environments
[2,4,7,14,16,20,24], as being significantly easier to tackle. Only the recent ap-
proaches, supported by the improvements in deep neural networks, were able to
solve continuous domains [6,10,12,13,17,19], as we also do in our work.

The process of acquiring skills differs widely among individual works, and
is often supported by a surrogate reward signal. In the simplest case, older
methods [20,24] specify and train the skill behaviors manually as a series of RL
agents. The frequency-based [7,14] and graph-based [16,17] approaches try to
identify subgoals, and then use a simple state-based reward to train a skill for

4 J. Holas, I. Farkaš

reaching them. Others employ more sophisticated rewards in order to train better
specialised skills [6,13]. Analogously, we also construct a specialised reward signal
for each missing skill, so that each new skill fills in the specific gap in the skill set.

The vast majority of research operates strictly on two leveled hierarchies
[1,2,6,10,11,13,14,15,16,17,18,24], although there have been successful demon-
strations of learning a multi-leveled hierarchy [4,12]. Our ASA framework was
also designed for two levels. However, contrarily to [2,6,18], there is no funda-
mental constraint preventing it from being deployed on multi-level hierarchies.

In terms of a new skill-training method, our approach is similar to the Skill-
chaining algorithm [10]. Both approaches train a skill to reach from given start-
ing states to end states. However, their skill training is processed strictly in
the pre-training phase, and produces only a linearly aligned stream of skills.
Should their algorithm be deployed on a highly non-linear environment, it would
most probably fail to find the suitable ‘skill-chain’. On the other hand, ASA can
produce versatile skills, and furthermore it can do so even after the pre-training
phase is finished.

A parallel to our work can be seen in the algorithm [23], which also enables
to enrich the hierarchy by new skills. However, their approach is strictly depen-
dant on the hand-crafted curriculum of tasks supported by pre-defined stochastic
grammar from which the new skills are generated, which effectively limits the ca-
pabilities of new tasks. The key advantage of ASA compared to this approach is
the ability to train even behaviors that have not been considered in advance, as
it is not bounded by the curriculum.

One of the latest contributions, which we consider to be the state-of-the-art
for the task we are solving, is the HiPPO algorithm [13]. It also trains skills
during the high-level training, as we do. It uses an approximate hierarchical pol-
icy gradient to directly train both skills and a high-level agent from the scratch
at the same time. The only engineering choice is the latent dimension, which
effectively regulates the number of skills to be trained. In their work the authors
show that HiPPO consistently surpasses other similarly focused algorithms.

4 Our approach

In this paper we present the improvements of our method Adaptive Skill Acqui-
sition (ASA) [8]. The key function of ASA is to detect the inefficiencies within
a current skill set, and address them by adding a new skill in the midst of
training of the high-level agent. ASA is designed not as a closed, self-contained
architecture, but rather as a component that can be plugged into almost any
existing HRL architecture, or those yet to come.

As discussed in the previous section, the majority of current HRL architec-
tures employ a pre-training phase, after which the skills are fixed – which can
hurt the system if the skill set is not optimal. Some useful skills, especially in
spatial tasks, can be identified only after the high-level agent explores a sufficient
part of the state space, e.g. discovering a new section of a map which the original
skills did not reflect upon. By generating the skills with ASA even after the pre-

Advances in Adaptive Skill Acquisition 5

training phase, the system can acquire new skills according to the real current
needs of the high-level agent.

The process of ASA is composed of three key conceptual steps:
1) Identification of a missing skill is performed by self-observation of the
high-level agent. During the training we try to detect sequences of high-level
actions which occur significantly more often than expected. Such behavior of
the agent hints at a regularity in the MDP, for which no skill was trained. Hence
the regularity is only modelled by reoccurring sequence of high-level actions,
which can result in a highly suboptimal solution. A frequently executed sequence
of skills hence serves as a candidate for a new skill.
2) Training of the new skill consists of standard RL training to solve an MDP
that represents the new skill. However, this MDP has to be constructed dynam-
ically and automatically, so that ASA can operate autonomously. The most
important aspect of this step is constructing a robust reward function that will
lead the new skill-agent towards the desired behavior.
3) Integration of the new skill into the overall HRL architecture will finally
allow the high-level agent to use the new skill. If the agent is modelled using
a neural network, this essentially means adding a new output unit to the partially
trained network. Further specification of a termination criterion for the new skill
will then allow it to be used more efficiently.

The described processes represent the core of Adaptive Skill Acquisition –
please refer to our previous paper [8] for comprehensive description of these
components. In the following sections we cover the improvements that were im-
plemented in order to make ASA more robust, efficient, and reusable.

4.1 Normalization of sequence frequency

In the skill-identification phase we track the sequences of high-level actions. For
each such sequence δ = [aHt , . . . , a

H
t+m−1], which is of an arbitrary length m, we

gather the number of times it occurred C(δ). The most frequently used sequence,
which would serve as a candidate for new skill, could be naively picked as the one
with the highest C(δ).

However, the shorter sequences tend to naturally occur more often. The
counts thus need to be normalized in order to account for this disproportion. We
improve on our previous work by introducing a new null-count CH(δ), which can
now account for batch-training methods. We denote a batch by T = {τ1, τ2, . . . },
being a set of agent’s trajectories τj . The improved null-count for a sequence δ
of length m gathered during batch T is computed as:

CH(δ) =

(∑
τ∈T
|τ | − (m− 1)|T |

)
m∏
i=1

p(δi)

where δi denotes ith step of δ, and p(δi) is empirical probability of invoked skills.
The quantity CH(δ) describes how many times δ is expected to occur if a ran-

dom ‘null’ policy was used instead of real πH . We can thus use it to normalize
the count of the sequence by computing f(δ) = C(δ)/CH(δ). This f -score quan-
tity no longer favors shorter sequences, and can be used to determine the best
candidate for a new skill.

6 J. Holas, I. Farkaš

4.2 Skill-training reward definition

Moving on to the training of the new skill based on the selected sequence δ,
we aim it to perform the same state transition as δ did, but to perform it
more optimally. During the skill-identification step, we collect the start-states

Sstart(δ) = {s(1)s , . . . , s
(C(δ))
s } in which each occurrence of δ started, as well as

end-states Send(δ) = {s(1)e , . . . , s
(C(δ))
e } in which each occurrence of δ ended up.

These two sets help us to specify the MDP for the new skill.
The training of the new agent is realised by spawning the agent in a randomly

picked s
(i)
s ∈ Sstart(δ), and only rewarding it upon reaching the corresponding

s
(i)
e . Of course, reaching of a specific state is not achievable in continuous state-

spaces, and a generalization into an end-region is needed. This was originally
accomplished by setting a simple distance threshold, and rewarding the agent

if ‖st − s(i)e ‖2 < ε. However, a careful tuning of ε had to be done for each new
environment, since the relative distances of states can widely differ.

We improve on this approach by constructing a new reward function, which
is agnostic to the choice of environment. First, we employ a technique of batch
normalization φ(s) [9] on the state space S, typically used in deep learning. It
is used to normalize each dimension of the input (i.e. state) to have zero mean
and unit variance. We use it to flatten the difference between relative distances
within each dimension of the state space. After the normalization, we know that
the distance between any two normalized states φ(sx) and φ(sy) averages to ≈ 1
in each dimension.

Secondly, we define the end-region, which the agent aims to reach, as a hyper-

cube centered in a normalized version of the desired end-state φ(s
(i)
e), with a side

of 2ε. This yields a formal definition of the reward function:

R(st, at) =

[
max

d=1..dim(S)

∣∣∣φ(st)d − φ(s(i)e)d

∣∣∣ < ε

]
1

where dim(S) is the dimensionality of state space, subscript d represents the d-th
dimension of the given vector, and [·]1 is the indicator function. This formulation
in practice means that the agent is rewarded if each dimension of the current
state (after normalization) is not more than ε away from the desired value.

The usage of batch normalization ensures that we can set ε to a reasonable
value, while being agnostic to the choice of the environment. E.g. setting ε = 0.1
means that roughly 90% match between the current and the desired state in
each dimension is needed for agent’s success. Moreover, using this hyper-cube
based reward ensures that a partial match is required in each dimension. This is
essential if some component of a state has a greater importance, since its error
cannot be ignored even if other components have a prefect match.

4.3 Skill-stopping criteria

Current HRL architectures usually choose to execute the skills for a fixed amount
of steps [5,6,12,18,19]. Some, however, use a state-based function for skill termi-
nation [4,10,24], randomized length [13], or other criteria. In order to increase

Advances in Adaptive Skill Acquisition 7

the compatibility of ASA even further and accommodate for all aforementioned
methods, we introduce the concept of skill-stopping functions to the framework:

f stopi (st−c, at−c, . . . , st, at) ∈ {true, false}

The skill-stopping function accepts the whole trajectory of skill since time
t−c, at which it started, until the current time t, which can be used to implement
any stopping criterion from the relevant research. Furthermore, if needed, each
skill πLi can have separate stopping function f stopi .

The stopping-function of the new skill will directly follow what the skill was
trained for – reaching the end-regions Send(δ). This behavior is hence identical to
terminating the episodes during the new skill’s training phase, when the end of
an episode was determined by the surrogate reward function R(st, at). We thus
alternate on R’s equation to create a stopping function for the new (n + 1)-th
skill:

f stopn+1 (..., st)=

(
∃s(i)e ∈ Send(δ) : max

d=1..dim(S)

∣∣∣φ(st)d − φ(s(i)e)d

∣∣∣ < ε

)
∨
(
c > tmax

)
We still included the condition c > tmax to limit the maximal execution time of
the skill, in case it fails to reach the desired end-region.

5 Results

We now present new experiments and results, which significantly extended our
previous pilot tests. We tested our method on two distinctive environments, and
added a comparison to one of the latest HRL architectures – HiPPO [13]. Our
experiments were mainly focused on two aspects:

– What is the overall ASA performance and how does it compare to HiPPO?
– What is the quality of a newly trained skill?

5.1 Environments and training setup

For our experiments we chose two environments which on purpose differ in nu-
merous aspects, such as continuity, observability, skill types, etc. Our goal was
to demonstrate that ASA can be used universally, not only in a single type of
tasks. We thoroughly focused on sparse-reward environments.

Coin-gatherer: The agent in Coin-gatherer environment operates in a grid-
world of size 68×46 tiles depicted in Fig. 1a. There are four possible actions
(N,S,W,E). Some rooms in the map contain coins which have to be delivered to
the drop-off area. The agent can only carry one coin at a time, and is rewarded
only upon delivering the coin. The agent knows its position and the position of
all remaining coins. The HRL architecture is realised by skills trained to reach

8 J. Holas, I. Farkaš

(a) (b)

Fig. 1: Environments: (a) Coin-gatherer map – yellow dots are coins, numbers
represent 15 ideal skill regions; (b) Maze-bot – one of six possible mazes, the green
sphere represents the goal position.

individual regions of the map, marked #1–#15 in Fig. 1a, plus four skills iden-
tical to the atomic actions. This resembles the earlier approaches [2,7,14,16,18].
Skills #14 and #15 are deliberately left out from the skill set, making a defect
in the pre-trained hierarchy. Coin-gatherer environment is hence discrete, fully
observable, using goal-based skills, and features a high number of 17 skills.

Maze-bot: The agent represents a vacuum-cleaner-like robot in a continuous
environment. Its goal is to solve a given maze, using wheel torques as atomic
actions. There is a total of six different mazes (one of them shown in Fig. 1b),
and a maze is chosen randomly at beginning of each episode. The agent uses only
a LIDAR-like sensor to detect its surroundings, with a range roughly 6 times
the robot’s size. However, it does not have an orientation sensor (compass),
or the knowledge which maze it has been placed in. A reward of 1 is given if
the agent reaches the maze’s goal point, and −0.05 penalty per step otherwise.
The HRL architecture is realised by locomotion skills to efficiently move a larger
distance forward/backward, or turn left, but not a skill to turn right. Maze-bot
environment, in contrast to Coin-gatherer, is continuous, partially observable,
randomized, and uses a small number of skills which are behavioral.

In both environments, all agents are trained using TRPO algorithm [22].
The policies, as well as the policy-baseline function, are modelled using neural
networks with two hidden layers. They are optimised after each training iter-
ation – batch of 5000 high-level steps (≈ 50 episodes for Coin-gatherer, ≈ 70
episodes for Maze-bot). The metric for the evaluation of all models was the av-

erage discounted reward, i.e. G(π) = Eπ[
∑T
t=0 γ

tR(st, at)], and the results were
averaged over 8 trials with different random seeds. The implementation of ASA
was made possible by the Garage framework [3].

Advances in Adaptive Skill Acquisition 9

5.2 Overall performance

Since the primary goal of ASA is to improve an existing architecture, in Exper-
iment 1 we focused on the overall gain of ASA to the pre-trained HRL agent
(‘Base run’ without ASA). As seen in Fig. 2a and 3a, adding a new skill identified
by ASA consistently and significantly increases the performance of the agent. In
case of Coin-gatherer, this means an increase from 4.4 to 5.6 delivered coins, out
of 6 possible. The Maze-bot ’s increase by 0.81 translates to paths shorter by 16.2
high-level steps, on average. The shaded areas in these plots represent the 25–75
percentile for Coin-gatherer, and 5–95 percentile for Maze-bot (since its training
was more stable).

Fig. 2: Coin-gatherer environment – results after using ASA to add new skill.
New skill was added (a) according to ASA computation, or (b) at other times
overriding ASA’s decision. Comparison with HiPPO for reference.

Fig. 3: Maze-bot environment – results after using ASA to add new skill. New
skill was added (a) according to ASA computation, or (b) at other times over-
riding ASA’s decision. Comparison with HiPPO for reference.

10 J. Holas, I. Farkaš

As mentioned before, the two environments use fundamentally different types
of skills. Since ASA was successful in both cases, it suggests that it is able to
train both goal-based and behavioral types of skills. To the best of our knowledge,
there has not yet been a published model that would be shown to demonstrate
such behavior.

To the best of our knowledge, there is no algorithm other than ASA that
would autonomously add new skills to existing architecture, which we could
use for direct comparison. Hence, we compare it with its ideologically closest
relative – HiPPO [13], which autonomously creates whole architecture, and is
one of few models capable of skill training even during high-level training, as
we do in our approach. Its slower start can be explained by initially untrained
skills, compared to pre-trained (imperfect) skill set in the Base run. However, it
clearly did not manage to identify all useful skills, and hence scores significantly
worse compared to the ASA-powered model. We also tried to increase the latent
dimension of HiPPO, which effectively controls how many skills are trained, but
no further improvement was observed.

The plots in Fig. 2a and 3a show the results of a full-stack approach, i.e. all
key steps (decision, training, integration) were performed by ASA. On the other
hand, in Fig. 2b and 3b we depict the usage of ASA, but with deactivated
component that decides when to add the new skill. We can see that even though
ASA was triggered manually, it was still able to identify and train a reasonably
useful skill.

5.3 Quality of the new skill

Since the new skill is the key component of ASA method, in Experiment 2 we
aimed to evaluate its quality. To do so, we compared it with ideal and bad
skills, which serve as the upper and lower bounds for estimating the usefulness
of the new skill. The ideal skills were manually constructed to optimally enrich
the skill set: a policy for reaching regions #14 and #15 in Coin-gatherer envi-
ronment, and a skill for turning right in Maze-bot environment. The bad skills
were uniform random policies for both environments.

Fig. 4: Integration of ASA-trained skill, an ideal skill that optimally enriches
the skill set, and an intentionally useless bad skill.

Advances in Adaptive Skill Acquisition 11

Fig. 4 shows the comparison between the ideal, bad, and ASA-trained skills,
from which we can draw several conclusions. First and foremost, the ASA skill
identification performs very well, falling short only slightly behind the ideal
skills. If we consider the ideal and bad skills as a range bounding the fitness of
the skill, we can express that ASA-trained skill scored solid 73.2% of the pos-
sible performance in Coin-gatherer, and excellent 88.7% in Maze-bot. Second,
the unimproved performance of a bad skill proves that adding any skill is not
sufficient for an increased success rate, and hence the success of ASA is not
only coincidental. Finally, we can see that adding a useless skill does not hurt
the model performance in the long-term view. Hence, even if ASA was used on
top of an optimal skill set, and would add a falsely identified missing skill, it
would not decrease the overall performance.

6 Conclusion and future work

In this paper we presented our Adaptive Skill Acquisition model for adding new
skills to (possibly suboptimal) HRL hierarchies, and the improvements that make
it more robust, efficient, and reusable. Using two distinctive environments, both
discrete and continuous, we demonstrated that the new skill trained by ASA
can significantly improve the performance of a HRL agent, if it started with
a suboptimal skill set. The new skills identified by ASA are only slightly inferior
to the optimal ones, proving high quality of the skill-identification component.
We compared our method with the state-of-the-art HiPPO algorithm [13] which
trains the whole skill set, and showed that ASA skill identification outperforms
the older approach by a significant margin.

As a continuation of our work, we would like to adapt the ASA frame-
work even for UMDP-based architectures, such as [12,19]. We will also consider
a pseudo-rehearsal technique [21] for the skill integration, which could help speed
up the adaptation of the new skill by the high-level agent.

References

1. Bacon, P.L., Harb, J., Precup, D.: The option-critic architecture. In: AAAI Con-
ference on Artificial Intelligence (2017)

2. Bakker, B., Schmidhuber, J.: Hierarchical reinforcement learning with subpolicies
specializing for learned subgoals. In: International Conference on Neural Networks
and Computational Intelligence. pp. 125–130 (2004)

3. Garage contributors: Garage: A toolkit for reproducible reinforcement learning
research. https://github.com/rlworkgroup/garage (2019)

4. Dietterich, T.G.: Hierarchical reinforcement learning with the maxq value function
decomposition. Journal of Artificial Intelligence Research 13(1), 227–303 (2000)

5. Dillinger, V.: Abstract state space construction in hierarchical reinforcement learn-
ing. Ph.D. thesis, Comenius University in Bratislava (2019)

6. Florensa, C., Duan, Y., Abbeel, P.: Stochastic neural networks for hierarchical
reinforcement learning. In: International Conference on Learning Representations
(2017)

https://github.com/rlworkgroup/garage

12 J. Holas, I. Farkaš

7. Goel, S., Huber, M.: Subgoal discovery for hierarchical reinforcement learning using
learned policies. In: Florida AI Research Society Conference. pp. 346–350 (2003)

8. Holas, J., Farkaš, I.: Adaptive skill acquisition in hierarchical reinforcement learn-
ing. In: International Conference on Artificial Neural Networks. pp. 383–394.
Springer (2020)

9. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International conference on machine learning.
pp. 448–456. PMLR (2015)

10. Konidaris, G., Barto, A.G.: Skill discovery in continuous reinforcement learning do-
mains using skill chaining. In: Advances in Neural Information Processing Systems.
pp. 1015–1023 (2009)

11. Kulkarni, T.D., Narasimhan, K., Saeedi, A., Tenenbaum, J.: Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation.
In: Advances in Neural Information Processing Systems. pp. 3675–3683 (2016)

12. Levy, A., Konidaris, G., Platt, R., Saenko, K.: Learning multi-level hierarchies with
hindsight. In: International Conference on Learning Representations (2018)

13. Li, A.C., Florensa, C., Clavera, I., Abbeel, P.: Sub-policy adaptation for hierarchi-
cal reinforcement learning. In: International Conference on Learning Representa-
tions (2020)

14. McGovern, A., Barto, A.G.: Automatic discovery of subgoals in reinforcement
learning using diverse density. In: International Conference on Machine Learning.
vol. 1, pp. 361–368 (2001)

15. McGovern, E.A., Barto, A.G.: Autonomous discovery of temporal abstractions
from interaction with an environment. Ph.D. thesis, University of Massachusetts
at Amherst (2002)

16. Menache, I., Mannor, S., Shimkin, N.: Q-cut—dynamic discovery of sub-goals in
reinforcement learning. In: European Conference on Machine Learning. pp. 295–
306 (2002)

17. Metzen, J.H., Kirchner, F.: Incremental learning of skill collections based on in-
trinsic motivation. Frontiers in neurorobotics 7, 11 (2013)

18. Moerman, W.: Hierarchical reinforcement learning: Assignment of behaviours to
subpolicies by self-organization. Ph.D. thesis, Cognitive Artificial Intelligence,
Utrecht University (2009)

19. Nachum, O., Gu, S.S., Lee, H., Levine, S.: Data-efficient hierarchical reinforcement
learning. In: Advances in Neural Information Processing Systems. pp. 3303–3313
(2018)

20. Parr, R., Russell, S.J.: Reinforcement learning with hierarchies of machines. In:
Advances in Neural Information Processing Systems. pp. 1043–1049 (1998)

21. Robins, A.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connection
Science 7(2), 123–146 (1995)

22. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy
optimization. In: International Conference on Machine Learning. pp. 1889–1897
(2015)

23. Shu, T., Xiong, C., Socher, R.: Hierarchical and interpretable skill acquisition in
multi-task reinforcement learning. In: International Conference on Learning Rep-
resentations (2018)

24. Sutton, R.S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence 112, 181–
211 (1999)

	 Advances in Adaptive Skill Acquisition

