Safe Reinforcement Learning in a Simulated
Robotic Arm

Luka Kova¢! and Igor Farkas®

! Faculty of Computer and Information Science, University of Ljubljana, Slovenia
2 Department of Applied Informatics, Comenius University Bratislava, Slovakia
lk1114@student.uni-1j.si, igor.farkas@fmph.uniba.sk

Abstract. Reinforcement learning (RL) agents need to explore their
environments in order to learn optimal policies. In many environments
and tasks, safety is of critical importance. The widespread use of sim-
ulators offers a number of advantages, including safe exploration which
will be inevitable in cases when RL systems need to be trained directly
in the physical environment (e.g. in human-robot interaction). The pop-
ular Safety Gym library offers three mobile agent types that can learn
goal-directed tasks while considering various safety constraints. In this
paper, we extend the applicability of safe RL algorithms by creating
a customized environment with Panda robotic arm where Safety Gym
algorithms can be tested. We performed pilot experiments with the pop-
ular PPO algorithm comparing the baseline with the constrained version
and show that the constrained version is able to learn the equally good
policy while better complying with safety constraints and taking longer
training time as expected.

Keywords: safe exploration - reinforcement learning - robotic arm

1 Introduction

Reinforcement learning (RL) L agents need to explore their environments to
learn optimal behaviours. Sometimes an agent might perform a dangerous ac-
tion, therefore exploration is risky. Safe RL can be defined as the process of
learning to maximize the reward and at the same time to ensure respecting
safety constraints during learning [2]. It is usually possible to train the agent in
a simulated environment, and then after learning to transfer the learned policy
to a physical agent in the real world. However, because of difficulties in simu-
lating certain behaviours (e.g. human interaction, real-world scenarios in traffic,
etc.) agent’s learning is transferred to the real world, where safety concerns are
of great importance.

To address these problems, OpenAl created Safety Gym, a suite of environ-
ments and tools for measuring progress toward RL agents that respect safety
constraints while learning [3], not only in testing. Safety Gym offers three dif-
ferent agent types (point, car, quadruped), different tasks (goal, button, push)
and different safety constraints (hazards, vases, etc.). With those tools, one can

2 L. Kova¢ and I. Farkas

create different layouts for trying out novel RL algorithms and having a common
ground for benchmarking and evaluating them.

Our work integrates a new model of an agent (a robotic arm) into the Safety
Gym environment. In a simulated environment, we are able to evaluate the
agent’s behaviour regarding the safety concerns. Research in this direction can
produce significant contributions into human-robot interaction in the future.

An optimal policy in constrained RL is given by:

" = arg max () Mo ={nr:J.(r) < d;, i=1,....,k} (1)
melle

where J,.(7) is a reward-based objective function and each J., is a cost-based
constraint function, involving thresholds d; (a human-selected hyperparameters).
These constraint functions form a feasible set (of allowable policies) I that has
been defined in the framework of constrained Markov Decision Processes [1].
In our case, d; = 1, if the arm collides with the obstacle, otherwise it is O.
Hence, Lagrangian method uses a two-component loss function (reward-based
and cost-based). In eq. 1, the cost-based component is included within the space
of acceptable policies II. The optimization problem can also be expressed as

maxmin L(¢,0) = f(6) — Ag(6)

where the two terms of the loss function correspond to the reward and the cost,
involving policy network parameters 6 and Lagrangian hyperparameter A [3].

2 Finding a technical solution

On one hand, it is positive that there exist various Python libraries and robotic
simulators built on a variety of physics simulation engines. On the other hand,
combining them or making extensions may often not be easy. Our primary mo-
tivation was to integrate safe RL algorithms with a robotic arm (not included in
the Safety Gym library) that can be used in human-robot interaction. Finding
a solution was not straightforward, though. The integration could be achieved
in two ways: (1) Bringing a robotic arm model into Safety Gym framework, or
(2) using a different or a customized environment with a robotic arm and inte-
grate just the safety algorithms into it. This led us to the exploration of feasible
options.

Safety Gym is built on the MuJoCo physics engine [5], so we first tried to
import a Reacher model (a simplified robotic arm) from OpenAl Gym to Safety
Gym. This should be compatible, since both are based on MuJoCo. But various
technical problems (a lot of dependencies, the need to use older versions of
Python and Tensorflow) discouraged us from pursuing this line of investigation.

Within the second option, we tried to connect Safety Gym with commonly
used robotic simulator CoppeliaSim using PyRep library built on top of it — but
this did not work due to incompatibility issues.

Finally, we used a PyBullet physics simulation engine that is built with
python and is an open source project, so it is well documented and with a

Safe Reinforcement Learning in a Simulated Robotic Arm 3

lot of examples already on the web. That helped a lot to set up the environment
in the desirable way. Because there are already a lot of examples, we found the
environment with a robotic arm that is implemented with PyBullet and is com-
patible with OpenAI Gym - panda-gym. Our source code with the installation
guide and instructions of how to run the environment can be found here.®> We
also implemented two aditional arms to the environment — xarm and kuka — that
can be used for training with safety algorithms.

3 Experiments

We used the Proximal Policy Optimization (PPO), a well-known efficient policy
gradient method for RL [4] in our pilot experiments. We compared the basic
PPO with its constrained version (cPPO) using the panda-gym robotics arm
(with 7 DoF).

Regarding the action representation, we con-
sidered two options: (a) in PyBullet, the action
representation is given by a vector [dz,dy,dz]
which means changes of the tip of the arm in 3D
Cartesian space (we label it AR1). Those values
are used to calculate the new position of the tip
and via inverse kinematics to calculate how much
the joints should change. (b) We also tested a

“classical” actor output representation computed
directly in the joint space as a 7-dim. vector of
DoF angle changes in each step (AR2). These val-
ues are then directly added to move the arm (for-
ward kinematics). We used dense reward hence

Fig. 1. Panda arm learned to
reach the target (yellow cube)
without colliding with an ob-
stacle (red) in front of it.

simulating robotic vision enabling the robor to estimate the distance between
the tip and the target, which served as information for calculating the (inversely
proportional) reward. Last but not least, we added an obstacle on the table in

front of the target object (see Fig.1).

In our four experiments (AR1/2, ¢/PPO) we
used separate feedforward MLP policy networks
with two hidden layers, each with 64 neurons, 1000
steps per epoch, maximum 200 epochs of training,
and maximum number of steps per episode = 500.
The experiments lead to two observations (see Ta~
ble 1): (a) Regarding AR type, the agent learns
faster (roughly with speedup factor of 2) and eas-
ier when using AR1 than AR2 (this is probably
due to higher dimensionality of the state vector in

Table 1. Average cost (with
std) per one run of the clas-
sical PPO algorithm and its
constrained version in case of
Panda arm reaching for a tar-
get, using two action represen-
tation formats.

PPO cPPO
3D 17.6£1.3 11.9+3.6
7DoF 23.8£5.0 17.0£1.9

the latter case). (b) Regarding the algorithm, cPPO yield lower average costs for
both AR types. This makes Lagrangian PPO safer, with a tradeoff for length of
training. Performance of both algorithms in case of AR1 is illustrated in Fig. 2.

3 https://github.com/lukakovac99/robotic-arm-safeRL

4 L. Kova¢ and I. Farkas

— PPO — PPO
PPO Lagrangian 201 PPO Lagrangian

-100 Average Cost PPO; 17.59
Average Cost PPO-Lagr: 11.9

i
~400 /‘ o | \

d

/\/

Average Episode Reward
&
5]
H
Average Episode Cost

N
3

o

—

—
=
e

-500

o4 LA

0 20000 40000 60000 80000 100000 120000 140000 0 20000 40000 60000 80000 100000 120000 140000
Steps Steps

Fig. 2. Comparison of PPO and cPPO using panda arm in terms of reward (left) and
cost (right). Constrained PPO is slower in learning and reaching the reward. On the
other hand, it is keeping the cost at lower values hence making the arm behavior safer.

4 Conclusion

We presented pilot results with a robotic arm (panda gym) environment that
is compatible with OpenAl Safety Gym, and verified the correct functionality
on a selected algorithm (PPO). Constrained (Lagrangian) PPO algorithm was
observed to have a longer learning time, but eventually learned the policies at
the same level of efficiency while being all the way safer.

The available code provides opportunities for experimenting with the robotic
arm in various setups, trying also other algorithms available in Safety Gym
(TRPO, ¢cTRPO and CPO), adding a proper obstacle representation, obstacle
generation methods, or developing different safe tasks for the agent to perform.

Acknowledgement: L.K. was supported by Erasmus mobility stipend, and
L.F. by the Horizon Europe project TERAIS, no. 101079338 and by the national
project APVV-21-0105.

References

1. Altman, E.: Constrained Markov Decision Processes. Routledge, New York (1999)

2. Garaa, J., Ferndndez, F.: A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research 16(1), 1437-1480 (2015)

3. Ray, A., Achiam, J., Amodei, D.: Benchmarking safe exploration in deep reinforce-
ment learning. arXiv preprint arXiv:1910. 01708 7(1.), 01708 (2019)

4. Schulman, J., Wolski, F., Dhariwal, P.: Proximal policy optimization algorithms.
arXiv preprintv arXiv (2017)

5. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: A physics engine for model-based control.
In: IEEE International Conference on Intelligent Robots and Systems (2012)

