
Embedding Complexity of Learned
Representations in Neural Networks?

Tomáš Kuzma and Igor Farkaš

Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava
{kuzma,farkas}@fmph.uniba.sk

Abstract

In classification tasks, the set of training examples for each class can be viewed
as a limited sampling from an ideal infinite manifold of all sensible representants
of this class. A layered artificial neural network model trained for such a task
can then be interpreted as a stack of continuous transformations which gradually
mold these complex manifolds from the original input space to simpler dissimilar
internal representations on successive hidden layers – the so-called manifold
disentaglement hypothesis This, in turn, enables the final classification to be made
in a linear fashion. We propose to assess the extent of this separation effect by
introducing a class of measures based on the embedding complexity of the internal
representations, with evaluation of the KL-divergence of t-distributed stochastic
neighbour embedding (t-SNE) appearing as the most suitable method. Finally,
we demonstrate the validity of the disentanglement hypothesis by measuring
embedding complexity, classification accuracy and their relation on a sample of
image classification datasets.

Keywords: neural networks, manifold disentanglement, embedding complexity

Introduction

As an analogue to biological neural networks found in nature, artificial neural
networks are constructed as graphical models of directionally connected units
– neurons. While biological neurons can have complex and time dependent be-
haviours, artificial neurons are usually (but not always, for example spiking neural
networks) modelled in an extremely simplified fashion:

– the output of an artificial neuron is represented by a single scalar real value
(basically a frequency, or more precisely a time-average of virtual spike trains)

– each input synapse is given a single real-valued coefficient, weight

– output of a neuron is determined by an activation function on the weighted-
sum of the inputs

? This work was supported by grants VEGA 1/0796/18 and KEGA 042UK-4/2019.

This simplified model is then trained by a variety of mostly similarly simple, often
biologically-implausible methods (usually variants of error back-propagation).

Parts of biological neural networks, for example in the mammalian visual cortex
[3, 4], are structured in a simple layered fashion – each layer of neurons takes
its inputs directly from the previous layer. This leads to a simple formulation
of a neural network, called the feedforward neural network, which is easy to
conceptualize and implement and also leads to increased computational efficiency
due to the apparent potential for parallelization. Overwhelming proportion of
neural models used in practice are either directly of this type, contain only small
modifications (e.g. in residual networks each layer also connects to some of the
indirectly preceding layers), or are constructed of blocks of this type (e.g. RNNs).

This simple layered construction also lends itself to a reinterpretation of the
mechanics of a neural network – instead of viewing individual connected units,
we can view the activations of entire layers of neurons at once as vectors in a
n-dimensional space, where n is the number of units of a particular layer. The
transition between each pair of successive layers then consists of two portions:
a simple linear transformation (by the complete matrix of individual neuron
weights) and an activation function (assuming that it’s shared across the layer),
which is almost always monotonous and continuous. The transition between two
layers can then be viewed as a smooth non-linear transformation.

This interpretation allows us to examine the process of classifying an input from
a manifold perspective. Each sample from the dataset represents a point in a
high-dimensional space, belonging to a certain class. While the number of samples
of a class in a practical dataset is usually limited, we may consider any such set
a sampling from an infinite set of potential inputs (e.g. all images of dogs). This
ideal infinite set S is then assumed to be continuous (a smoothness prior), i.e. for
any input x and real positive ε there is an x′ also in the set S, which is close to
x (i.e. ‖x − x′‖ ≤ ε). This ideal set then forms a low-dimensional manifold in
the input space and the classification problem can be viewed as partitioning the
input space such that no partition contains parts of more than one manifold.

Complex classifiers usually construct this partition in multiple stages, with
the interim stages transforming and simplifying the input and the final stage
performing the partition in a less complex way. In the case of conventional
artificial neural network classifiers, the final layer has one output neuron for
each of the classes, and the classification is determined by which neuron has the
largest activation.1 This in turn produces a Voronoi-esque partition of the output
space, whereas the preceding layers disentangle [1] the class manifolds from their
complex structure in the input space into separable regions in the output space.

1 Output neurons usually have softmax activation, but this is immaterial for the
argmax selection, wherein any strictly-increasing function produces the same results.

Datasets

To study the process of untangling class manifolds, datasets of medium complexity
are required. The complexity should be high enough so that the problem cannot
be solved in the input space by a simple classifier, but a complex transformation,
such as by an artificial neural network, is necessary. However, at the same time,
the untransformed or partially transformed inputs cannot be inscrutable to
available embedding methods as to remain interpretable. These restrictions led
us to select two suitable datasets, both inadvertently being visual tasks.

MNIST

MNIST [6] is the quintessential basic dataset for optical character recognition,
consisting of 50 000 training and 10 000 testing images in ten classes (digits). Each
input is a grayscale 28× 28 pixel bitmap of a hand-written digit, pre-processed
to be centered and upright. Few examples:

SVHN

The StreetView House Numbers dataset [8] (further referred to only as SVHN)
is a more challenging task for digit recognition, which adds color, distracting
surroundings, blurring and oblique perspectives. Each input image is a full-color
32× 32 cutout from a StreetView photo, including the following random samples:

Models

To evaluate the manifold disentanglement process, we will employ simple (deep)
feed-forward networks that are minimally powerful enough to satisfactorily classify

the selected datasets. For simplicity, we will only use fully-connected layers of
100 neurons and use the same activation function at each hidden layer, one of:

– logistic sigmoid:
logsig(x) := 1

1 + exp(−x)

– hyperbolic tangent:

tanh(x) := exp(x)− exp(−x)
exp(x) + exp(−x)

– softsign function (introduced in [2]):

softsign(x) := x

1 + |x|

– rectified linear units (ReLU):

relu(x) :=
{
x, if x ≥ 0
0, otherwise

With final classification layer having a neuron for each class with a softmax
activation. All of these networks can be satisfactorily trained within a 100 epochs
using simple stochastic gradient descent with momentum.

Methods

To assess the progress of the manifold disentanglement process we propose to
measure the embedding complexity, i.e. how difficult is to embed the activa-
tion vectors for a balanced sample of training inputs to a lower dimensional
space. To utilize both numeric and visual examination of the resulting qual-
ity of embeddings, we chose to realize the embedding into an output space of
two dimensions. We examined several popular embedding methods (in order of
increasing sophistication):

– PCA – Principal Component Analysis
– LLE – Locally-Linear Embedding [9] (not pictured)
– MDS – Multi-Dimensional Scaling [5]
– Isomap [10]
– t-SNE – t-distributed Stochastic Neighbour Embedding [7]

Figure 1 shows the differences in the resulting embedding. As the t-SNE embed-
ding proves to be qualitatively superior, we will resort to only using this method.
The method is also powerful enough that in the case of the MNIST dataset it
manages to mostly separate the clusters even directly on the input data, therefore
further qualitative comparisons will be restricted to the SVHN dataset.

0
1
2
3
4
5
6
7
8
9

(a) PCA (b) MDS

(c) Isomap (d) t-SNE

Fig. 1: A comparison of embedding methods applied to the final 7th hidden
layer with a softsign activation, in a network classifying images of the StreetView
House Numbers dataset. A thousand input images, one hundred from each of the
classes, were provided as inputs for this network. Each of the inputs gradually
transforms to an activation vector of one hundred real numbers, represented in
this plot by a single point of the final embedding. The t-SNE method showcases
its clearly superior clustering ability.

t-SNE

The t-distributed Stochastic Neighbour Embedding by [7], or t-SNE, is a popu-
lar non-linear embedding method, which is based on preserving the stochastic
neighbourhood of elements, i.e. for every (oriented) pair of datapoints, we assign
a probability (hence stochastic) that the two datapoints are close. This is in
contrast to more conventional methods which usually use a fixed neighbourhood,
either an adjustable parameter of the algorithm (e.g. k nearest neighbours in

Locally-Linear Embedding or Isomap), or optimized to satisfy an internal condi-
tion, or factor all data points into consideration (e.g. Multi-dimensional Scaling
or Principal Component Analysis). This probability is modelled using Gaussian
distributions in the input space (with xi being the i-th input point):

pj|i := 1√
2πσ2

i

· exp
(
−
∥∥xi − xj

∥∥2

2σ2
i

)

p̂j|i :=
pj|i∑

k 6=m pk|m

p̂i,j :=
p̂i|j + p̂j|i

2

where the pj|i represents the (directed) probability that j is a neighbour i, the p̂j,i

is the normalized neighbourhood score and the p̂i,j is its symmetric (undirected)
version. (The σi parameter is programmatically tuned for a desired perplexity.)

The original, less successful SNE variant also uses Gaussian distribution in the
output space yi, which doesn’t take into account the difference in the number of
dimensions between the spaces (i.e. embedding). The improved t-SNE method uses
a t-Student distribution with a single degree of freedom (also called the Cauchy
distribution), with a heavy-tail which alleviates this quantitative difference:

qi,j = qj|i = qi|j := 1
1 + ‖yi − yj‖2

q̂i,j := qi,j∑
k 6=m qk,m

The disparity between the distributions of probabilities in the input and output
spaces is quantified by the Kullback-Leibner or KL-divergence:

KL := −
∑
i 6=j

pi,j log qi,j

pi,j

The desired embedding is then produced by minimizing this divergence with
respect to the placement of points in the output space. This turns out to be a
convex optimization problem well-suited for a range of gradient-based methods.

Results

For each combination of dataset (MNIST or SVHN) and model (one to seven
layers, one of the four activation functions), we train five independent networks
(or runs). We then sample activations of each hidden neuron for 100 randomly
selected input samples for each of the 10 input classes (MNIST and SVHN both),
totalling 1000 activation vectors for each layer. In each independent run, we

then embed those activation into two dimensions using t-SNE and measure the
resulting KL-divergence as the hardness score. For a quantitative overview, we
plot the result of all runs into a single bar chart, with the averaged value shown
as the bold line and individual runs as translucent overlapping rectangles (this is
an alternate version of a boxplot, which puts the greatest emphasis on the mean
value). To better visualize the qualitative differences between the embeddings,
we also plot the actual embeddings (for a single run; see figures 5, 7 and 8).

(a) rectified linear

Input 1. 2. 3. 4. 5.
0.0

0.5

1.0

1.5

(b) logistic sigmoid

Input 1. 2. 3. 4. 5.
0.0

0.5

1.0

1.5

(c) hyperbolic tangent

Input 1. 2. 3. 4. 5.
0.0

0.5

1.0

1.5

(d) softsign

Input 1. 2. 3. 4. 5.
0.0

0.5

1.0

1.5

Fig. 2: The hardness score (KL-divergence) of the embedding of the activations
of successive layers of a five-layer network classifying MNIST digits with four
choices of the activation function. Transforming the inputs through the layers of
the network makes subsequent embedding much easier.

(a) three layers

Input 1. 2. 3.
0.0

0.5

1.0

1.5

(b) four layers

Input 1. 2. 3. 4.
0.0

0.5

1.0

1.5

(c) five layers

Input 1. 2. 3. 4. 5.
0.0

0.5

1.0

1.5

Fig. 3: The same dataset, MNIST, transformed by networks having three to five
hidden layers of rectified linear units (ReLU) in total. Fewer layers lead to a
quick decrease in hardness, but the final embedding is easier in larger networks.

(a) rectified linear

Input 1. 2. 3. 4. 5. 6. 7.
0.0

0.5

1.0

1.5

(b) logistic sigmoid

Input 1. 2. 3. 4. 5. 6. 7.
0.0

0.5

1.0

1.5

(c) hyperbolic tangent

Input 1. 2. 3. 4. 5. 6. 7.
0.0

0.5

1.0

1.5

(d) softsign

Input 1. 2. 3. 4. 5. 6. 7.
0.0

0.5

1.0

1.5

Fig. 4: Hardness scores for seven layer networks with inputs from the SVHN
dataset. While the embedding is much harder, the decreasing trend still persists.

0
1
2
3
4
5
6
7
8
9

(a) rectified linear (b) logistic sigmoid

(c) hyperbolic tangent (d) softsign

Fig. 5: Embeddings of a single run of SVHN in seven layer networks.

(a) four layers

Input 1. 2. 3. 4.
0.0

0.5

1.0

1.5

(b) five layers

Input 1. 2. 3. 4. 5.
0.0

0.5

1.0

1.5

(c) six layers

Input 1. 2. 3. 4. 5. 6.
0.0

0.5

1.0

1.5

(d) seven layers

Input 1. 2. 3. 4. 5. 6. 7.
0.0

0.5

1.0

1.5

Fig. 6: Four to seven layers of rectified linear units on the SVHN dataset.
Smaller networks on this complex task lead to embeddings that are much worse.

0
1
2
3
4
5
6
7
8
9

(a) 4th of 4 layers (b) 5th of 5 layers

(c) 6th of 6 layers (d) 7th of 7 layers

Fig. 7: Actual embeddings of the final layers of networks evaluated above.

0
1
2
3
4
5
6
7
8
9

(a) 4th of 7 layers (b) 5th of 7 layers

(c) 6th of 7 layers (d) 7th of 7 layers

Fig. 8: Embeddings of the activations of the last four layers of a seven layer
network, with inputs from the SVHN dataset. Clusterings computed on the higher
layers are not only better scoring, but also visually more focused.

The embedding complexity scores, measured by the KL-divergence of the t-SNE
embeddings, are plotted in figures 2 and 3 for the MNIST dataset (all runs). For
the more challenging SVHN dataset, the selected scores for multiple runs and
selected resulting embeddings for a single run are depicted in figures 4, 5, 6, 7, 8.

Conclusion

In this paper, we propose a novel method for gaining both quantitative and
qualitative insight into the inner workings of deep neural networks, by examining
the complexity of embedding their learned representations – the activations of
their hidden layers. The inputs of modern machine learning tasks, especially
of the visual variety, are highly complex and cannot be easily embedded to a
low-dimensional space. In classification tasks, however, the activations of the final
hidden layer are classified in a linear fashion (linear weighting usually followed
by softmax and winner-takes-all classification), and therefore must be easily

embeddable. We proceed to quantify this process in which intermediate layers of
the network gradually transform the activation manifolds from complex to simple
ones. This was previously postulated as the manifold disentanglement hypothesis.

Examining several popular methods of embedding, we find that only t-distributed
stochastic neighbour embedding (t-SNE) is sufficiently capable of dealing with the
complex activations encountered. We measure the criterion explicitly optimized
in t-SNE, the KL-divergence between the pairwise “closeness” distributions of
the input and output datapoints, as our embedding hardness score across two
datasets, MNIST and StreetView House numbers (SVHN). For every dataset, we
perform measurements across several different network architectures (defined by
the number of hidden layers and the choice of the activation function) and with
multiple independently initialized and trained instances. Our experimental results
robustly show that the complexity of internal representations in the network
decreases towards the output layer.

Bibliography
[1] Brahma, P.P., Wu, D., She, Y.: Why deep learning works: A manifold

disentanglement perspective. IEEE Transactions on Neural Networks and
Learning Systems 10(27), 1997–2008 (October 2016)

[2] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedfor-
ward neural networks. In: Proceedings of the International conference on
artificial intelligence and statistics. pp. 249–256 (2010)

[3] Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurons in the cat’s
striate cortex. The Journal of Physiology 148, 574–591 (1959)

[4] Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex. The Journal of Physiology 60,
106–154 (1962)

[5] Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika 29(1), 1–27 (Mar 1964)

[6] LeCun, Y., Cortes, C.: MNIST handwritten digit database. http://yann.lec
un.com/exdb/mnist/ (2010)

[7] van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of
Machine Learning Research 9, 2579–2605 (2008)

[8] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Read-
ing digits in natural images with unsupervised feature learning. In: NIPS
Workshop on Deep Learning and Unsupervised Feature Learning 2011 (2011)

[9] Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear
embedding. Science 290(5500), 2323–2326 (December 2000)

[10] Tenenbaum, J.B., Silva, V.d., Langford, J.C.: A global geometric frame-
work for nonlinear dimensionality reduction. Science 290(5500), 2319–2323
(December 2000)

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

	Embedding Complexity of Learned Representations in Neural Networks

