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Abstract—When a neural network is trained for a specific task,
activations of the hidden units encode internal representations
of the inputs. Models formulated in a layer-wise fashion are
believed to structure such representations in a hierarchical
fashion, increasing in complexity and abstractness towards the
output layer, in an analogy to both biological neural networks
and artificially constructed computational models. This paper
examines how the structure of classification tasks manifests itself
in these internal representations, using a variety of ad hoc metrics.
The results, based on feedforward neural networks trained on
moderately complex datasets MNIST and SVHN, confirm our
hypothesis that the hidden neurons become more correlated
with class information towards the output layer, providing some
evidence for an increasing bottom-up organization in represen-
tations. While various activation functions lead to noticeably
different internal representations as measured by each of the
methods, the differences in overall classification accuracy remain
minute. This confirms the intuition that there exist qualitatively
different solutions to the complex classification problem imposed
by nonlinearities in the hidden layers.

I. INTRODUCTION

Deep neural networks (DNNs) [1] have demonstrated ex-
cellent performance in complex machine learning tasks such
as image classification, natural language processing, or speech
recognition [2]. However, due to their multilayer nonlinear
structure, they are not transparent and so it is hard to un-
derstand their behavior. Various types of investigations have
been performed focusing on different aspects of DNNs. Several
methods have been introduced to provide understanding of
what a DNN has learned from the perspective of hidden-layer
representations. For instance, in [3] the tools were developed
that make it possible to analyze DNNs in more depth and to
accomplish the tracing of the so-called invariance manifolds
learned by the network, for each of the hidden units.

Alternatively, kernel methods have been used, decoupling
learning algorithms from the datasets used. In [4] the evolution
of hidden-layer representations in a DNN is analyzed by
building a sequence of deeper and deeper kernels that subsume
the mapping performed by more and more layers of the DNN,
and measure how the increasingly complex kernels fit the
learning problem. It is observed that DNNs create increasingly
better representations of the learning problem and that the
network structure controls how fast the representation of the
task is formed layer after layer.

In image classification tasks, a large body of work was
dedicated to the visualization of particular neurons or neuron
layers; see, e.g. [5] and references therein. They introduce two
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useful tools, the first visualizing internal activations during
input processing (image or video) by a trained convolution
net, providing intuitive insights into the model functioning. The
second tool enables to visualize features at each layer of a DNN
via regularized optimization methods that provide qualitatively
clearer, more interpretable visualizations, compared to earlier
attempts. In [6] the focus is on methods that visualize the
impact of particular regions of a given and fixed single image
for a prediction of this image. The authors show that the
recently proposed layer-wise relevance propagation algorithm
qualitatively and quantitatively provides a better explanation of
DNN classification decisions, compared to other methods (the
sensitivity-based approach or the deconvolution method).

A deal of work has been dedicated to understanding how
DNNs learn, by providing several intuitive arguments that
could help trying to identify the contributing factors [7, 8].
One of the ideas, the manifold hypothesis, views the learning
process as an unfolding of the manifold-shaped data towards
higher layers, hence simplifying the mapping towards the
targets. In [9], it is shown how to quantitatively validate the
unfolding (flattening) hypothesis, by proposing new quantities
for measuring this process, and demonstrating their usefulness
on several experiments (with both synthetic and real-world
datasets).

In a recent paper [10], a powerful tool (SVCCA), combin-
ing Singular Value Decomposition and Canonical Correlation
Analysis, was proposed for an analysis and comparison of
learned deep representations, revealing answers to various
questions, related to convergence of hidden-layer represen-
tations, intrinsic dimensionality of representations, or unit
sensitivity to different classes. In addition, it has been shown
useful for suggesting new training regimes that simultaneously
save computation and are less prone to overfitting.

In this paper, we aim to enrich this portfolio of investigative
methods by focusing our analysis on classification tasks. We
propose three conceptually and computationally simple meth-
ods of examining the class structure of internal representations:
correct-output correlation, per-class statistics and sparsity of
class selectivity, and base our pilot analysis on two well-known
image classification tasks of medium complexity.

The remainder of the paper is organized as follows: Sec-
tion II presents different models and the dataset used for
the analysis of the trained DNNs on the classification task.
Section III introduces three new approaches to studying the
internal representations. Section IV presents results of the
experiments. Section V summarizes the paper contributions.
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II. MobELS

For assessing the suitability of our devised methods of
analysing the internal representations, we need to concern
ourselves with both problems and models of intermediate
difficulty. While the state-of-the-art neural networks employing
convolutions, dropout, regularizations, renormalizations etc.
are too complex to analyse with simple methods, models
very limited in complexity construct no meaningful internal
representations. Conversely, the complexity of the model must
also match the difficulty of the task. An easy task would
underutilise the model, resulting in inelaborate representations,
while an intermediately complex network would fail to learn
a very challenging task, leaving no room for analysis.

A. Activation functions

In this paper, we will omit recurrent and convolutional
neural networks and will only consider simple feedforward
neural networks. While being elementary models, they still
incorporate most of the relevant principles of the more intricate
variants. We will further restrict the networks to a simple
architecture of several fully-connected layers of 100 neurons
with various activation functions:

e logistic sigmoid:
logsig(v) = 1
ogsig(z) := 7 T+ exp(—2)
e  hyperbolic tangent:

exp(x) — exp(—)

tanh(z) := oxp(z) + exp(—2)

e  softsign function (introduced in [11]):

T
softsign(x) := ———
@) = 1
e rectified linear units (ReLU):
relu(x) := z, w20
" 10, otherwise

Each network has the softmax output layer representing
the classification in a conventional one-hot encoding. We will
train the networks using a simple first-order gradient descent,
augmented using the momentum method, using constant rates
and no regularization or input preprocessing.

B. Datasets

While there is a wealth of challenging tasks, largely fo-
cusing on image recognition, the same cannot be said about
tasks of suitable moderate difficulty. We will perform out
experiments on two image classification datasets. The primary
one, the MNIST database [12] of hand-written digits, is a
common benchmark for machine learning algorithms, consist-
ing of a training set of 60000 and a testing set of 10000
grey-scale 28x28 pixel large images, produced from larger
originals by weighted centering and cropping. We will further
split the training set into an estimation set of 50000 and a
validation set of 10 000 samples, with each training run having
an independent partitioning of the training set.

For verification purposes, we will employ a secondary task,
the StreetView House Numbers (SVHN) dataset [13]. The pre-
processed variant of this dataset contains full-color 32x32
pixel large segments of photographs taken in uncontrolled
conditions from moving vehicles, each centered on a single
digit to classify. This represents an increase in both task and
data complexity over the MNIST dataset.

Unless otherwise noted, the network is first trained on
the estimation set for 100 epochs, then a retrospective early-
stopping selects the epoch with the lowest error on the
validation set. Final testing and analysis is performed using
this selected model on the provided testing set. For each
combination of the network depth and the activation function
used, the testing classification error is in the range of 1-2% for
the MNIST task, yielding well-trained models for subsequent
analysis.

III. METHODS

To gain insight into the inner working of neural networks
used for classification, we will devise several methods of
extracting macro-information from the breadth of underlying
neuronal activations.

A. Correlation

The first metric we will introduce is class-correlation
which assigns a number from the interval (0; 1) to each hidden
neuron in the network — how much useful information for
the correct classification can be linearly extracted from that
neuron. A unit whose activations bear no linear relation to
a membership of the input in any class will receive a zero
score, while a unit that has a direct relationship with such a
membership — such as an output neuron in a one-hot trained
network — will achieve a value close to one.

The class-correlation metric is based on the Pearson cor-
relation coefficient which describes linear relations between
random variables. One variable of this relation is the activation
a; of a particular ¢-th hidden unit (as a response to input p),
the other is the class-k membership indicator variable k),
computed with respect to correct classification of the input p:

k) 1, if class(p) =k
0, otherwise

Both the activation a; and the indicator variables ) are
understood as random variables, with each of their realizations
corresponding to a particular testing sample of the studied task.

To quantify the useful information content of a single i-th
hidden neuron, we will compute the final correlation metric as

pi = max corr({a;}, {c™} (€))

A unit that correlates positively with a membership in a
particular class is equally useful' to a neuron that has the same
but negative relationship; therefore we only take absolute value
of the correlation into account. Finally, to obtain a single metric
for each unit, we take the maximum of the correlation values
for all of the classes.

'Network weights are not constrained in any fashion and can be positive or
negative with no inherent asymmetry in the computation.
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B. Selectivity

While the simple correlation-based metric reveals some
level of hierarchic organization, this method is limited by its
linearity and by the single scalar value assigned to each neuron.
To get a more detailed insight, we need to use methods that are
either greater in scope or more sophisticated. Our next method
looks at individual sensitivity of neurons to inputs of different
classes.

For each hidden unit and for each input class, we will col-
lect statistical information of the representations — the average,
standard deviation and the extrema of the activations. This
offers a more detailed view of the individual neurons and their
selectivity, which facilitates some interesting observations.

C. Sparsity

Our final method to quantify the usefulness of individual
neurons is based on the concept of sparsity of the preceding
selectivities. Intuitively, a neuron that reacts with the same
(expected) strength to inputs of any class will tend to provide
no useful information. As with the correlational approach,
each neuron will be assigned a single number with a similar
interpretation. An equi-responsive neuron, which has the same
expected activation for any input class, will be assigned a
zero value, while a neuron that strongly (either positively or
negatively) responds to members of one particular class, such
as a one-hot output neuron, will acquire a high score.

1) General sparsity measures: In other words, we want to
grade class-imbalance of units’ responses. One such conven-
tional measure is the entropy, or Kullback—Leibler divergence,
applicable on probability distribution (which unit activations
are not, without further transformation). The merits of various
sparsity measures are discussed in depth in [14], with the most
suitable being (for a vector of non-negative numbers, z; € R{):

e [;-normalized negative entropy:

1 ZT;
14 E log
logn <= |[x[[s ~ [Ixllx

e  [y-normalized negative entropy:

2

1t 3 g
og
logn? < [|Ix[|3 " [Ix[I3

e  Hoyer metric:

(B

e  Gini index (applicable to ascendingly sorted z;):

23 (i)

i=1

Among other favorable properties, these measures? fit into
the convention for the information value — zero represents no
useful information, while a single-class membership detector
would be quantified by one.

Entropy measures were rescaled to gain this property.
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2) Sparsity in classification: To visualize the structure of
the class selectivities of hidden neurons, we will plot a sparsity
profile for all the layers. In the testing phase, a sparsity for the
vector of class-averaged activations is computed for each hid-
den unit. As the sparsity metrics are only defined for vectors of
positive values, we will suitably? shift the values for activations
that can yield negative numbers. The resulting values are sorted
in non-increasing order, representing the ordered distribution
of information density in internal representations.

IV. EXPERIMENTS

Analyzing every trained network variant with each of the
introduced methods yields an impractical number of results,
therefore we will single out the clearest examples of the
observable trends.

A. Correlation

The simplest metric — class-correlation — assigns an infor-
mation content value (real value from O to 1) to each hidden
neuron (Eq. 1). As the network learns to perform the task,
the information content of at least some of the neurons should
increase, more so towards the output layer. To showcase this
effect, we will plot the change of these values in time, across
epochs, i.e. number of presentations of the complete training
dataset. For each layer of units we construct a guantile plot,
which depicts the distribution of the correlation values for each
training epoch. The average value is charted by the thick black
line, while the shading represents the density of the values’
distribution. This is equivalent to a series of superimposed
box plots of narrowing quantiles and can be understood as a
color-encoded histogram with an additional time axis. We can
see such a visualization on the top of Fig. 1 in the case of
ReLU units.
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Fig. 1: Progression of the correlation values during the training
of networks on the MNIST dataset, comprising four layers of
ReLU hidden neurons. The first row represents a single training
session while the second aggregates multiple runs. Red vertical
lines represent the cutoff epoch, when the model performed
best on the validation set. For interpretation, see the text.

As we can see, higher layers generally exhibit a greater
amount of linearly-available useful information. While this ef-
fect is not clear-cut, it is stable in terms of multiple independent
runs (as seen on the bottom half of Fig. 1).

3ie. +1 for tanh(zx) or softsign(z), resulting in the range of (0;+2).
Note that all four used sparsity measures are scale-invariant.
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The second important observation is that as the network
learns to perform the classification task better, the correlation
values increase. This effect is more pronounced closer to the
output layer, as the reduced number of intervening layers forces
the partial output mapping to be less non-linear (the class-
correlation coeflicients are essentially a linear measure).
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Fig. 2: Correlation during training in networks with five hidden
layers using different activations — from top to bottom: logistic
sigmoid, rectified linear units, hyperbolic tangent or softsign.

activation 1-vs-2  2-vs-3  3-vs-4  4-vs-5
logistic sigmoid 0.0001 0.0013 0.0322 0.0003
rectified linear unit 0.0008 0.0000 0.0120 0.0208
hyperbolic tangent  0.0010 0.1885 0.0030 0.2442
softsign 0.0000 0.0105 0.2457 0.3402

TABLE I: Significance of the differences between consecu-
tive hidden layers as p-values of a Mann—Whitney—Wilcoxon
test for independent samples, computed for a single training
session. (Compare the results to the matching Fig. 2.)

As a next step, we look at how the choice of activation
function influences both the scale of the values of the cor-
relation and the scale of the aforementioned observed effects
— Fig. 2 presents the results for various activation functions.
Table I illustrates that the increases in useful information, as
measured by the correlation values, are statistically significant
for most layer-to-layer transitions, with lower layers and unipo-
lar activation functions resulting in a more clear-cut effect. We
compare the distributions of the correlation values for each
pair of consecutive hidden layers using the Mann—Whitney—
Wilcoxon rank-sum test (for independent samples), with the
p-values indicating the significance level at which we reject
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Fig. 3: Correlations during training in networks with logistic
sigmoid neurons in three, four or five hidden layers.

the null hypothesis that the two distributions are equal.

Rectified linear units lead to the most apparent growth
of correlations towards higher layers (supported by the lowest
p-values), whereas for other functions this growth is less
visible, albeit sometimes still significant or completely in-
significant. We performed several trials with each model,
observing small changes in significance, but the overall pattern
remained the same — rectifier units reveal the strongest and
most dynamically evolving correlations on all layers.

Last but not least in this section, we wanted to see
how correlations change if the number of hidden layers is
manipulated. As more layers are added to a network, both
the prediction accuracy and the correlation values increase,
as shown in Fig. 3. This hints at hierarchical organization of
the internal representations and the advantages of a deeper
networks, that can accommodate a complex hierarchy and
express more intricate mappings.

B. Selectivity

A more detailed view (see Fig. 4) using the class se-
lectivities of the hidden neurons yields several interesting
observations. We portray the activation statistics for a few
randomly selected individual neurons from each hidden layer
(in rows) by composite bar plots. For each of the ten output
classes, activation statistics are displayed separately: the most
conspicuous blue bar represents the average (from a zero
baseline), the larger gray bar in the background depicts the
absolute range of activation values and, finally, the per-class
variance of activations is expressed as a thin black error bar.

In a network using logistic sigmoid units (see Fig. 4a),
the neuronal activations become more focused on the higher
layers, as evidenced by the shrinking per-class variance of the
activations. No units are strongly sensitive to any particular
class — logistic sigmoid units lead to distributed internal
representations. Worth noting is also the presence of several
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(a) logistic sigmoid

(b) hyperbolic tangent
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Fig. 4: Class selectivity diagrams for trained five-layer networks with different activation functions, using the MNIST dataset.
In each diagram, the k-th row visualizes eight randomly selected neurons from the k-th hidden layer. The figure reveals evident
differences among hidden-layer representations, regarding their sparsity and unit class-correlations, for various activation functions.

More detailed description is provided in the text.

“stuck” units that react either strongly or weakly to each class,
therefore not providing much useful information. This hints at
certain redundancy on the higher levels of the network, which
may be exploited for efficiency by selecting a tapering model
architecture.

Replacing the unipolar logistic sigmoid activation function
by a bipolar but otherwise similar hyperbolic tangent yields
similar results (see Fig. 4b) — the internal representation also
tends to be distributed and the uncertainty of the network
diminishes towards the output (see the per-class variance bars).
The neuron responses are strongly divided into positive and
negative per-class (more so than the low/high values in the
logistic sigmoid case) — the hidden neurons serve to partition
the input space into two mostly balanced groups of classes.
Using the more smoothly non-linear softsign activation func-
tion (which was devised by [11] as a softer, less saturating
alternative to the hyperbolic tangent function) produces very
similar properties, but with less extreme values (see Fig. 4c).

Models with rectified linear units structure their internal
representations in a completely different way (see Fig. 4d).
While the previous three activation functions are continuous,
changing post-synaptic activations smoothly in response to
pre-synaptic net input, the rectifier is discontinuous at zero,
with any negative net input resulting in a zero output, and
positive net input having strictly linear response. In a trivial
analysis with random normally distributed inputs and weights,
this would lead to output being zero with a 50% probability.
The actual measurements point towards the output being even
more sparse, and the sparsity increased towards the output.
Neurons mostly act as very selective feature detectors, only
responding to inputs from a limited number of classes. In
contrast to the distributed representations found when employ-
ing continuous activations, the discontinuous rectifiers lead to
localistic encoding in their sparse internal representations.
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Fig. 5: Comparison of the four different sparsity metrics on
trained networks with five layers of rectified linear units. The
x-axis represents the 100 hidden units in each layer, sorted in
non-increasing order.

C. Sparsity

While the previous approach provides us with a wealth of
pictorial evidence to form insights and intuitions, it does not
lend itself easily to rigorous testing of the formed hypotheses.
Computing the sparsity of the average per-class activations is
one of the possible methods for summarizing this information
in a useful way. Figure 5 portrays the per-layer sparsity profiles
computed using four different sparsity measures on multiple
runs of the same task. As the calculated profiles are essentially
in agreement on the magnitudes, trends and mutual ordering
of the layers, we will restrict ourself therafter to visualizing
the Hoyer metric of sparsity.

Figure 6 visualizes the sparsity profiles for various depths
of a network employing rectified linear neurons. The diagram
displays the results of five independent simulations: the indi-
vidual runs are portrayed by thin lines and their average is
plotted with a thick line. The characteristics of the sparsity
profiles are robust across separate trials. For three hidden
layers, there is a clear ordering of the sparsity profiles —
neurons on a higher layer are more specialized than neurons on
a lower layer (average-wise and quantile-wise, but not for any
pair of neurons). Adding further layers to the model, however,
results in almost no such separation for the added layers.

It is important to notice that the per-class activations of
the trained rectified units are very sparse, in agreement with
Fig. 4d. In fact, for every layer, there is a neuron that is at or
near 100% sparsity — such a neuron only responds to inputs
from a single class. The sparsity profile then declines quickly
for lower layers, indicating that higher layers contain more
strongly selective units.

For continuous activation functions (see Fig. 7), the cal-
culated values are considerably lower — representations for
networks with continuous activations are less sparse. This
parallels the findings in subsection IV-B concerning localis-
tic versus distributed representations. While there still is an
apparent ordering among the sparsity profiles for the hidden
layers, the differences are lower than in the case of the rectified
units.
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Fig. 6: Hoyer sparsity profiles of trained networks with three,
four and five layers of rectified linear units, using the MNIST
dataset.

D. SVHN

To validate our previous results, the same experiments were
also performed on the StreetView House Numbers (SVHN)
dataset. This more complex task can also benefit from more
hidden layers, but the classification accuracy, given our focus
on simple multi-layer feedforward networks, is still far from
the current state of the art.

We observed the same general trend of increasing cor-
relation values during training as well as on a layer-wise
basis, as visualized in Fig. 8. Of note could be the fact that
the correlation values start at (or near) zero, as the more
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Fig. 7: Hoyer sparsity profiles of networks with five hidden
layers of either logistic sigmoid (top), hyperbolic tangent
(middle) or softsign units (bottom), using the MNIST dataset.

challenging task has no trivial input-to-class correlations.

The specificity and sparsity profiles also subtly, but not
fundamentally differ from the results for the MNIST dataset.
As seen in Fig. 9, while the actual sparsity values differ, the
profiles still have the same ordering and general characteristics
as before. The only exception is the first hidden layer for two of
the activation functions. This may be connected to the fact that
the inputs in SVHN frequently include distractors, off-centre
digits which are not related to the desired classification, while
the MNIST dataset includes no such irrelevant inputs.
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Fig. 8: Correlations during training on the SVHN task in
networks with seven hidden layers using different activations
— from top to bottom: logistic sigmoid, rectified linear units,
hyperbolic tangent or softsign.

V. CONCLUSION

Our goal in this paper was to shed light on knowledge
representation principles on the hidden layers of feedforward
network classifiers trained on a chosen dataset of medium
complexity, with a sufficient number of classes. Regarding the
hidden unit correlations with the output classes, the simulation
experiments confirmed our hypothesis of an increasing order
towards the output, which could be revealed even with linear
measures such as correlation. This increase was shown to
depend on the activation function, resulting in qualitatively
different solutions to the same classification problem when
looking at distributions and sparsity of the internal represen-
tations. The results of this pilot study were based on just two
datasets and could be extended to other datasets. In addition, it
would be worth exploring how the ad hoc measures introduced
here are related to other quantitative measures proposed and
tested in related papers. In any case, there is still a long way
to go towards fully uncovering the complexity of deep neural
network models.

ACKNOWLEDGMENT

This work was supported by the Slovak Grant Agency for
Science (VEGA), project 1/0796/18 and the KEGA project
017UK-4/2016. The authors thank the anonymous reviewers
for the comments.

4426



4427

Hoyer

HL
HL
HL
HL
HL
HL
HL

0.7

0.6

0.5

NouhwN -

0.3

0.2

0.1

0.0

Hoyer

1.0 1. HL
2. HL

3. HL
4. HL

5. HL 7. HL
6. HL

0.8

0.6

0.2

0.0

Hoyer

HL
HL
HL
HL
HL
HL
HL

0.8

0.6

NouhkwnNpe

0.4

0.2

0.0

Hoyer

HL
HL
HL
HL
HL
HL
HL

0.20

0.15

NouswNe

0.10

0.05

0.00

Fig. 9: Hoyer sparsity profiles of networks with seven hidden
layers trained on the SVHN task using different activations
— from top to bottom: logistic sigmoid, rectified linear units,
hyperbolic tangent or softsign.

REFERENCES

[1] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural Networks, vol. 61, no. 11, pp. 85-117,
2015.

[2] L. Deng and D. Yu, “Deep learning: Methods and appli-
cations,” Foundations and Trends in Signal Processing,
vol. 7, no. 3-4, pp. 197-387, 2013.

[3] D. Erhan, A. Courville, and Y. Bengio, “Understanding
representations learned in deep architectures,” Tech. Rep.
1355, 2010.

[4] G. Montavon, M. L. Braun, and K.-R. Méller, “Kernel
analysis of deep networks,” Journal of Machine Learning
Research, vol. 12, pp. 2563-2581, 2011.

[5] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson,
“Understanding neural networks through deep visual-
ization,” in 3Ist International Conference on Machine
Learning, 2015.

[6] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and
K.-R. Miiller, “Evaluating the visualization of what a
deep neural network has learned,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 28, no. 11,
pp. 2660-2673, 2017.

[7] Y. Bengio, A. Courville, and P. Vincent, “Representation
learning: A review and new perspectives,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 8, pp. 1798-1828, 2013.

[8] Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai, “Better
mixing via deep representations,” in Proceedings of 30th
Int. Conf. Machine Learning, 2013, pp. 552-560.

[9] P. P. Brahma, D. Wu, and Y. She, “Why deep learning
works: A manifold disentanglement perspective,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 27, no. 10, pp. 1997-2008, 2016.

[10] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein,
“SVCCA: Singular vector canonical correlation analysis
for deep learning dynamics and interpretability,” in 31st
Conference on Neural Information Processing Systems
(NIPS), 2017.

[11] X. Glorot and Y. Bengio, “Understanding the difficulty
of training deep feedforward neural networks,” in Pro-
ceedings of the International conference on artificial
intelligence and statistics, 2010, pp. 249-256.

[12] Y. LeCun and C. Cortes. (2010) MNIST handwritten digit
database. http://yann.lecun.com/exdb/mnist/.

[13] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and
A. Y. Ng, “Reading digits in natural images with unsu-
pervised feature learning,” in NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

[14] N. Hurley and S. Rickard, “Comparing measures of spar-
sity,” IEEE Transactions on Information Theory, vol. 55,
no. 10, pp. 4723-4741, October 2009.

2018 International Joint Conference on Neural Networks (IJCNN)



