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Abstract 
 
Current connectionist models of bili ngual language processing have been largely 
restricted to localist stationary models. To fully capture the dynamics of bili ngual 
processing, we present SOMBIP, a self-organizing model of bili ngual processing 
that has learning characteristics. SOMBIP consists of two interconnected self-
organizing neural networks, coupled with a recurrent neural network that computes 
lexical co-occurrence constraints. Simulations with our model indicate that (1) the 
model can account for distinct patterns of the bili ngual lexicon without the use of 
language nodes or language tags, (2) it can develop meaningful lexical-semantic 
categories through self-organizing processes, and (3) it can account for a variety of 
priming and interference effects based on associative pathways between phonology 
and semantics in the lexicon, and (4) it can explain lexical representation in 
bili nguals with different levels of proficiency and working memory capacity. These 
capabiliti es of our model are due to its design characteristics in that (a) it combines 
localist and distributed properties of processing, (b) it combines representation and 
learning, and (c) it combines lexicon and sentences in bili ngual processing. Thus, 
SOMBIP serves as a new model of bili ngual processing and provides a new 
perspective on connectionist bili ngualism. It has the potential of explaining a wide 
variety of empirical and theoretical issues in bili ngual research. 
 

Introduction 
 
Connectionism, parallel distributed processing (PDP) models, or neural networks 
have significantly influenced research in the cognitive sciences in the last fifteen 
years. Language, as one of the most important human cognitive components, has 
received in-depth treatments since the beginning of connectionist research. The 
acquisition of the English past tense (Rumelhart & McClleland, 1986), the 
recognition of speech (McClleland & Elman, 1986), and the processing of sentences 
(McClleland & Kawamoto, 1986) are among the earliest domains of connectionist 
research in the original PDP models. Unfortunately, connectionist models or 
modeling have had very limited impact on the field of bili ngualism as a whole. To 
this date, there are only a handful of connectionist models that are implemented to 



 

account for the processing or representation of the bili ngual mental lexicon (see our 
review below). This lack of interaction between connectionism and bili ngualism is 
lamentable, and it gives us a good reason to pursue research that would fill t his gap. 
In this chapter, we present a connectionist model, more specifically, a self-
organizing neural network model of bili ngual processing and representation.  
 Let us begin by reviewing a few important lines of research in connectionist 
bili ngualism. In particular, we will  examine the Bili ngual Interactive Activation 
(BIA) model (Grainger, 1993; Dijkstra & van Heuven, 1998; van Heuven, 2000), 
the Bili ngual Model of Lexical Access (BIMOLA; Grosjean, 1988, 1997; Léwy & 
Grosjean, in progress), and the simple recurrent network (SRN) model of bili ngual 
memory (French, 1998). The first two belong to the so-called “ localist” models, 
while the last one belongs to “distributed” models. In localist models, a word or a 
concept is represented by a single, unitary processing node in the network, whereas 
in distributed models, information about a word or a concept is distributed across 
several or many different units of processing.  
 The localist models, that is, BIA and BIMOLA, are based on earlier interactive 
models of word recognition, that is, the interactive activation model (IA) of 
McClelland and Rumelhart (1981) and the TRACE model of McClelland and Elman 
(1986), respectively. In the IA model, there are three levels of nodes, with ascending 
complexity: (1) features of a letter such as curves, straight lines, or crossbars, (2) 
individual letters, and (3) words. Information at all three levels can interact with 
each other during the word recognition process, which may flow both “bottom-up” 
(features to letters to words) and “ top-down” (words to letters to features).  Within 
levels, nodes compete for activation (thus inhibiting each other); across levels, 
nodes either inhibit or excite each other. According to IA, it is these inhibitory and 
excitatory connections that give rise to the appropriate activation of patterns that 
correspond to the perception of words.  

The BIA model is a straightforward extension of the IA model. It consists of 
four levels of nodes: features, letters, words, and languages. As in IA, there are 
connections between nodes at each level and between nodes across levels. All nodes 
at the word level are interconnected with mutual inhibition.  Feature units activate 
appropriate letters, and letter units activate appropriate words in the appropriate 
language. BIA uses the same parameters to regulate interactions within and across 
levels as in the original IA model. What is special to the BIA model (apart from the 
incorporation of two lexicons) are the language nodes (one for English and one for 
Dutch). Language nodes in BIA function as an important mechanism for the 
selection or inhibition of words in one or the other language, given that the model 
argues for and implements the language-independent access hypothesis, according 
to which words from different languages are represented in an integrated lexicon 
and are simultaneously contacted during word recognition. Results from BIA 
simulations suggest that the model is able to account for empirical results that 
directly support the language-independent access hypothesis, while at the same time 
is compatible with data previously thought to support the language-selective access 
hypothesis (Dijkstra & van Heuven, 1998; van Heuven, 2000).  



 

While the BIA model focuses on visual word recognition, the BIMOLA model 
(Grosjean, 1988, 1997; Léwy & Grosjean, in progress) aims at handling the 
recognition of spoken words. It was partly inspired by the TRACE model 
(McClelland & Elman, 1986), an IA-based model for acoustic input. Like TRACE, 
it consists of three levels of nodes, corresponding to features, phonemes, and words. 
There is no separate level of language nodes in BIMOLA, unlike in BIA. The 
feature level is common to both languages, but the phoneme and word levels are 
organized in subsets according to languages (still i n the same extended system). 
Features activate phonemes that, in turn, activate words. Connections (both 
excitatory and inhibitory) are unidirectional (ascending) between features and 
phonemes, but bidirectional between phonemes and words. Descending connections 
from top down (global language activation and higher linguistic information, 
especially the “bili ngual speech mode”; Grosjean, 1997) serve to activate words 
that, in turn, can activate phonemes. Language activation (or selection) takes place 
through these descending connections but also through within-language connections 
at the phoneme and word levels. Compared to the BIA model, BIMOLA can 
account for language-specific activation without the use of language nodes – it is yet 
unclear whether language nodes or language tags are necessary components of 
bili ngual processing (Li, 1998a; see also General Discussion).  The BIMOLA model 
is currently being implemented and evaluated against empirical data (Léwy, in 
progress; Léwy & Grosjean, in progress).  

Both BIA and BIMOLA can be said to be permanent (or stationary) models, 
despite their differences in input (visual vs. acoustic) and architecture (with or 
without language nodes). They differ from some connectionist models with a 
learning mechanism. In BIA and BIMOLA, the representations are fixed and 
manually coded, and are designed to capture proficient adult bili ngual speakers’ 
mental lexicon (but are not designed to evolve).  In contrast, connectionist learning 
models dynamically develop representations from computing statistical character-
istics of the input data (sentences). Along this direction, French (1998) presented a 
distributed model of bili ngual memory based on SRN, a simple recurrent network 
(Elman, 1990) that learns representations online through sentence processing. As in 
the original SRN, the model takes in one input word at a time from a continuous 
stream of sentences and its task is to predict the next word of the current input in the 
sentence. The input stream is a series of artificially generated sentences of the N-V-
N structure, with English and French sentences intermixed at the sentence level.  
Elman (1990) showed that distinct grammatical and semantic categories (e.g., nouns 
and verbs, animate and inanimate) can emerge in the SRN’s hidden-unit 
representations once the network has learned the next-word prediction task with a 
reasonable size of sentences. This is because the prediction task involves detecting 
the context in which the current input occurs. With the SRN’s exposure to mixed 
bili ngual input, French showed that not only distinct categories emerge within each 
language in the hidden-unit representations (as in Elman 1990), but also there are 
distinct patterns of the two languages: words from the two languages are separated 
in space on a hierarchical cluster tree of the hidden-unit activations. Note that the 



 

network incorporates no mechanism (nodes or tags) to explicitly label words in the 
two languages. This model provides support to the hypothesis that bili ngual memory 
is organized as a single distributed lexicon rather than two separately stored lexicons 
according to language. Thus, the model can display distinct behaviors of the two 
lexicons without invoking separate mechanisms for each language, unlike the BIA 
model that uses language nodes to separate the bili ngual lexicon. 
 The connectionist model of bili ngual processing that we present in this paper 
has the same spirit of the SRN model, but it differs from the above models in three 
important respects. First, our model combines both learning and representational 
properties. It is a learning model in the sense that lexical representations of both 
languages can emerge from the statistical learning of the input speech. This property 
is similar to that of the SRN, but is based on our network in explicitly modeling 
lexical co-occurrences in the acquisition of word meanings (Li, 1999, 2000, in 
press; Farkaš & Li, 2001, in press). On the other hand, our model also has some of 
the representational features of BIMOLA: lexical forms are encoded by articulatory 
features of the phonemes of words (see also Li & MacWhinney, 2001). The 
representational characteristics of the lexical forms and meanings can also become 
clearly discernible on a 2-dimensional topological space, given the self-organizing 
maps used in our model. In addition, given both word meanings and word forms in 
the model, learning can occur in the associative links between meanings and forms 
via Hebbian learning, a biologically plausible mechanism of co-occurrence learning 
(see later discussion).   

Second, our model displays both distributed and localist properties. Unlike 
SRN or other connectionist models that use back-propagation as the learning 
algorithm, our model employs principles of self-organization, a type of 
unsupervised learning (Kohonen, 1995). Although the inputs in our self-organizing 
network are in the form of distributed representations, the 2-D topological map of 
the network (the output) bears significant similarity to localist representations in that 
each unit on the map tends to represent one lexical item. The localized patterns on 
the map allow an “explicit” representation of the lexicon, instead of “ implicit” 
representations as in the hidden-unit activations of an SRN (MacWhinney, 2000a). 
At the same time, each unit is surrounded by neighboring units on the map that can 
become co-activated, simulating a distributed lexicon in which similar words or 
word properties are grouped together (see details below). 

Third, our model relies on the use of realistic linguistic data as input to the 
network, in particular, child-directed parental speech. In the SRN model of bili ngual 
memory (French, 1998) as well as many current connectionist models, researchers 
have relied on the use of highly simpli fied, artificially generated input. Although 
such inputs are easy to construct and to control for, they are often isolated from 
realistic language uses, and run the risk of being successful just because of the use 
of certain properties in the input (see Lachter & Bever, 1988 for an earlier criticism 
of connectionist representations). For example, French (1998) structured the input 
data in such a way that the input has a fixed probabilit y of 0.001 of switching from 
one language to another. In other words, on average, the network will first have 



 

learned 1000 sentences in one language before learning any sentences in the other 
language. We suspect that this artificially determined probabilit y is what causes the 
network to display disparate behaviors for the two languages. To overcome potential 
problems associated with this approach to network modeling, we thus rely on 
corpus-based linguistic data that closely approximate the reality of language use (see 
also Li, in press, for discussion). 

In what follows, we first present an overview of our model, SOMBIP, a 
connectionist self-organizing model of bili ngual processing. We then discuss some 
preliminary simulation results from the model. We conclude by showing how our 
model can shed light on important issues in bili ngual lexical and sentence 
processing.  
 

The SOMBIP Model 
 

Background 
 
The design characteristics of the SOMBIP model are based on our self-organizing 
neural network model of language acquisition by young children (Li, 1999, 2000, in 
press; Farkaš & Li, 2001, in press).  In recent years, self-organizing neural networks 
have become increasingly important for cognitive and perceptual studies (Hinton & 
Senjowski, 1999). Although significant progress has been made with models based 
on back-propagation, there are known limitations associated with these models, 
including catastrophic forgetting (inabilit y to remember old information with new 
learning), scalabilit y (inabilit y to handle realistic, large-scale problems), and above 
all , its error-driven learning process, a procedure which propagates error signals 
from the discrepancy between desired and actual outputs to adjust weights. Some of 
these problems become most transparent when considered in the context of language 
acquisition (see Li, in press). Consideration of these problems lead us to look for 
models that bear more biological and psychological plausibilit y in the context of 
language learning, and we turn to the self-organizing models. 

One of the most widely used self-organizing models is Kohonen’s (1982, 1989, 
1995) self-organizing map (SOM). SOM belongs to the class of “unsupervised” 
neural networks, because learning in these networks does not require the presence of 
a supervisor or an explicit teacher; learning is achieved by the system’s self-
organization in response to the input. During learning, the self-organizing process 
extracts an eff icient and compressed internal representation from a high-dimensional 
input space and projects this new representation onto a 2-D topological structure 
(Kohonen, 1982, 1989, 1995). Several important properties of SOM and related 
features make it particularly well suited to the study of language.  

(1) Self-organization.  Self-organization in these networks typically occurs in a 
two-dimensional topological map, where each unit (or node, or neuron) is a location 
on the map that can uniquely represent one or several input patterns. At the 
beginning of learning, an input pattern randomly activates a group of the many units 



 

on the map, according to how similar by chance the input pattern is to the weight 
vectors (codevectors) of the units. Once a unit becomes active in response to a given 
input, the weight vectors of the unit and its neighboring units are adjusted so that 
they become more similar to the input and will t herefore respond to the same or 
similar inputs more strongly the next time. In this way, every time an input is 
presented, an area of units will become activated on the map (the so-called activity 
“bubbles” ), and the maximally active units are taken to represent the input. Initially, 
activation occurs in large areas of the map, but gradually learning becomes more 
focused so that only the maximally responding unit or units are active. This process 
continues until all the inputs have found some maximally responding units.  

(2) Representation. As a result of this self-organizing process, the statistical 
structures implicit in the high-dimensional input space are represented as 
topological structures on the 2-D space. In this new representation, similar inputs 
will end up activating the same units in nearby regions, yielding activity bubbles 
that become clearly visible on the map. Such a self-organizing process and its 
representation have clear implications for language acquisition: the formation of 
activity bubbles may capture critical processes for the emergence of semantic 
categories in the acquisition of the lexicon. In particular, the network organizes 
information first in large areas of the map and gradually zeros in onto smaller areas; 
this zeroing-in is a process from diffuse to focused patterns, as a function of the 
network’s continuous adaptation to the input structure. This process allows us to 
model the emergence of semantic categories as a gradual process of lexical 
development. It naturally explains many generalization errors reported in the 
acquisition literature (e.g., substitutions of put for give or fall  for drop as reported 
by Bowerman, 1978, 1982). It also explains language disorders that result from the 
breakdown of focused activation or the inabilit y to form focused representations 
(Miikkulainen, 1997; Spitzer, 1999).   

(3) Hebbian learning. Hebbian learning is not an intrinsic property of SOM, 
but several SOMs can be connected via Hebbian learning, such as in the multiple 
feature-map model of Miikkulainen (1993, 1997). Hebbian learning is a well -
established biologically plausible learning principle, according to which the 
associative strength between two neurons is increased if the neurons are both active 
at the same time (Hebb, 1949). The amount of increase may be proportional to the 
level of activation of the two neurons. In the multiple SOM model developed by 
Miikkulainen, all units on one map are initially connected to all units on the other 
map. As self-organization takes place, the associations become more focused, such 
that in the end only the maximally active units on the corresponding maps are 
associated. Hebbian learning combined with SOM has strong implications for 
language learning: it can account for the process of how the learner abstracts 
relationships between word forms, meanings, and grammatical morphology, on the 
basis of how often they co-occur and how strongly they are co-activated in the 
representation. 

Because of these properties, SOM (a) allows us to track the development of the 
lexicon clearly as an emergent property in the network’s self-organization (from 



 

diffuse to focused patterns or from incomplete to complete associative links); (b) 
allows us to model one-to-many or many-to-many associations between forms and 
meanings in the development of the lexicon, and (c) provides us with a set of 
biologically plausible and computationally relevant principles to study bili ngualism 
without relying on corrective feedback. It is ideally suited for our task also because 
the bili ngual mental lexicon is constructed for the most part without supervision and 
undergoes continuous self-organization over time. 

 

Architecture 
 
Our SOMBIP model has been inspired by the multiple self-organizing feature-map 
model of Miikkulainen (1993, 1997). Miikkulainen proposed an integrated model of 
memory and natural language processing, in which multiple SOMs dedicated to 
different levels of information are connected.  A sub-component of this model is 
DISLEX, a SOM model of the lexicon, in which different maps correspond to 
different linguistic information (orthography, phonology, or semantics) and are 
connected through associative links via Hebbian learning. Our model has also been 
inspired by the Hyperspace Analogue to Language (HAL) model (Burgess & Lund, 
1997, 1999). In particular, we derive our meaning representations of the lexicon 
through a word co-occurrence detector (WCD), a mechanism similar to the principle 
of HAL computation. HAL attempts to capture meaning by reference to global 
lexical co-occurrences – how many words co-occur with the target word, and how 
often, in a moving window that runs through a large-scale language corpus (Usenet 
texts of 300 milli on words). A co-occurrence matrix for any number of words in a 
given window is derived, and weighted by the frequency of co-occurrences among 
words. Thus, a word is represented in HAL as a vector of the column and the row in 
the matrix that encodes the co-occurrence constraints in a high-dimensional space of 
language use.   

Figure 1 presents a diagrammatic sketch of the different components of 
SOMBIP. Figure 1a depicts the two SOMs used in our model and their 
interconnections. During learning, a lexical form (phonological input) activates a 
unit or a group of units on SOM1, and simultaneously, its word meaning (semantic 
input) activates a unit or a group of units on SOM2. Note that in our current 
simulations we have used only phonological input in SOM1 to simulate the bili ngual 
spoken lexicon; one can easily use orthographic input in SOM1 to simulate the 
bili ngual visual lexicon. SOM1 and SOM2 are connected via associative links, such 
that the activation on one map can cause an activity to form in the other map. If the 
direction of the associative activity is from phonology to semantics, comprehension 
is modeled; if it goes from semantics to phonology, production is modeled. The 
associative links are trained by Hebbian learning, and the strengths of the 
connections are adjusted according to the form-meaning pairings in the input, which 
leads to adaptive associations between the two SOMs.  



 

 
 

Figure 1a. SOM1 and SOM2 that self-organize on word forms and word meanings, 
respectively. They are interconnected via associative pathways, trained by Hebbian 
learning. 
 

 
 
Figure 1b. WCD (lower panel) that computes lexical co-occurrence statistics. 
Layers A and B have full connectivity via modifiable l and r links. Other, one-to-
one links serve to feed the unit activity from A to B with discrete single time-step 
delay. SOM2 receives distributed word representations extracted from the 
modifiable links. The representations are reduced to vectors of uniform length (100 
dimensions) as inputs to SOM2 (see Farkaš & Li, in press, 2001, for details). 

 
Figure 1b depicts WCD (lower panel), a special recurrent neural network that 

learns the lexical co-occurrence constraints of words. The WCD reads through a 
stream of input sentences (one word at a time), and given a lexicon sized N, it 
computes the transitional probabiliti es of words in the lexicon (see Farkaš & Li, in 
press, for details). Assume that at time t the current word is i, and is represented by a 
localist vector o = [o1, …, oN] in layer A. Previous word j is represented by the 

vector c = [c1, …, cN] in layer B. The adaptable connections (l and r links) between 



 

layers A and B serve to approximate the transitional probabiliti es between 
successive words, and as such, they are trained by Hebbian learning with weight 
decay so that they become normalized. Specifically, the link l ij  is updated to 

approximate P(jt-1|it), i.e., the probabilit y that the word j precedes the word i. At the 
same time, the link rji  is updated to approximate P(it|jt-1), that is, the probabilit y that 

i follows j. Word i is characterized by a concatenation of vectors li = [l i1, …, l iN], 

and ri = [r1i, …, rNi], where li approximates the probabilit y distribution of words 

preceding i (left context), and ri the probabilit y distribution of words following i 

(right context). The concatenated vectors, qi = [li,ri], then serve as distributed word 

representations to SOM2 (upper panel in Figure 1b). Because the dimensions of the 
vectors are determined by the size of the lexicon (2N for any given vector), the 
vectors, before they are read by SOM2, are also submitted to a dimension-reduction 
mapping mechanism, which reduces the vectors to lower, fixed dimensions (e.g., 
100 units, see Farkaš & Li, 2001). 

As SOM2 takes representations from the WCD vectors qi, SOM1 also takes as 
its input the phonological representations of words. To represent the phonology of 
the bili ngual lexicon, we have followed a syllable-based template coding originally 
developed by MacWhinney and Leinbach (1991) and recently by Li and 
MacWhinney (2001). This coding scheme has the advantage over traditional 
phonemic representations in that it can accurately capture the phonological 
similarities of multisyllabic words (most previous connectionist models have used 
only monosyllabic words as input). In this scheme, the phonology of a word is made 
up by combinations of syllables in a metrical grid, and the slots in each grid are 
made up by bundles of features that correspond to phonemes, C’s (consonants) and 
V’s (vowel).  

To code our Chinese-English bili ngual lexicon, we used 4 C-slots and 4 V-slots 
that allowed for the representation of words of one and two syllables, in the 
template of CVVCCVVC (each CVVC is a syllable; the first C represents the initial 
consonant, and the last C the final consonant). Thus, the Chinese (Cantonese) word 
jat (one) is represented in the slots as jaVtCVVC and the English word about is 
represented as C@VCbaUt. Each C or V is represented by a set of 5 feature units, 
and the feature values (scaled between 0 and 1) are determined according to the 
articulatory features outlined by Ladefoged (1982) for English and by the Hong 
Kong Linguistic Society (1997) for Chinese (the 5 articulatory features are: Sound, 
Place, Manner, Chromacity, Sonority). For example, the phoneme /i/ is represented 
in both languages as  [.1 .0 .0 .2 .3], indicating [vowel none none high front] for the 
5 features. A separate set of 12 units are used to represent lexical tones in Cantonese 
(6 tones for each syllable), whereas these units are left empty for English. Thus, 
each word in the bili ngual lexicon is represented by a vector of 52 units in the 
phonological representation (5 feature units for 8 phoneme-slots plus 12 tonal 
units).1 Note that in neither the phonological nor the semantic representations 
described above is there a label or tag that tells which lexicon (English or Chinese) a 
given word should belong to. 



 

Learning in the two SOMs is standard (Kohonen, 1989). Every SOM unit k has 
an array of connections in the form of a codevector mk = [mk1, …, mk,2N], which 

learns to approximate the inputs (semantic or phonological vectors) in such a way 
that every SOM unit becomes “specialized” for a given word, and that the 
neighboring units will become specialists (“winners” ) to similar words. During 
learning, both neighborhood radius and learning rate decrease over time.  

 

Task and Procedure 
 
Upon training of the network, a phonological input representation of a word is 
presented to SOM1, and simultaneously, the semantic representation of the same 
word is also presented to SOM2. By way of self-organization, SOM1 forms an 
activity in response to the phonological input, and SOM2 an activity in response to 
the semantic input. As the two SOMs receive input and continue to self-organize, 
they also simultaneously form associations through Hebbian learning for all the 
active units in the two maps that respond to the inputs. The network’s task is to 
create an ordered layout for all the input words in the bili ngual lexicon and be able 
to make the appropriate form-meaning associations. 

Because our SOMBIP handles a bili ngual lexicon, translation equivalents in the 
two languages are associated with each other in the following way: if the phonology 
of an English word is presented to SOM1, the semantics of the English word and 
that of its cross-language translation equivalent in Chinese are also presented to 
SOM2. Similarly, if the semantics of an English word is presented to SOM2, the 
phonology of the English word and that of its translation equivalent in Chinese are 
also presented to SOM1. For example, the word boat and syun are associated by the 
phonology of boat or syun co-occurring with the semantics of boat and syun, and 
vice versa. This procedure works in the same way for words in both languages, 
ensuring that translation equivalents have a chance to be associated. Because of the 
diff iculty in determining what words should be counted as translation equivalents 
(especially with regard to English and Chinese), this procedure applied only to the 
nouns and verbs in our simulations (i.e., disregarding adjectives, adverbs, pronouns, 
prepositions, etc.). Multiple translation equivalents (e.g., English tell  and Chinese 
gong and waa) were also associated through co-occurrences in the network, 
although such cases were rare in our data. 

As discussed earlier, artificially generated input data are often problematic in 
matching up with realistic language use. In this study, we used a realistic bili ngual 
data set, the Hong Kong Bili ngual Corpus from the CHILDES database (Yip & 
Matthews, 2000; MacWhinney, 2000b). This corpus contains transcripts of 
conversations between a child and his native English-speaking father and native 
Cantonese-speaking mother. The recordings were made when the child was between 
ages 1 and 3. The parents followed the one parent-one language principle when 
addressing the child. The language between the parents was mainly Cantonese with 
a great deal of English mixed in, as is characteristic of the speech of Hong Kong 
middle class famili es. Despite the “one parent-one language”  principle, the quantity 



 

of input from the two languages was not all balanced. On the whole, the child 
received more Cantonese than English input in his first three years. Because of the 
relatively young age at which the recordings were made, there was not enough 
productive speech from the child. However, there was plenty of parental speech as 
input. We therefore extracted all of the parental speech plus the speech of the 
student assistants who made the recordings during the home visits, forming the 
bili ngual input speech corpus that we used for our simulations. These speech data 
also effectively allow us to simulate what the learning system (human or network) 
receives in a concurrent bili ngual environment and how the system can, on the basis 
of the input, develop lexical representations from sentence processing (we used a 
similar procedure in modeling first language acquisition; see Li, in press; Farkaš & 
Li, 2001, in press). 

A total of 5,154 word types and 185,279 word tokens are found in our bili ngual 
parental corpus, according to the freq (frequency count) output of the CLAN (Child 
Language Analysis) program (MacWhinney, 2000b). For our purposes we trained 
our model on the 400 most frequent word types in this corpus, which effectively 
covers 56% of the entire data. These 400 most frequent words happened to contain 
184 Chinese words, and 216 English words. During training, SOM1 received the 
phonological representations of the 400 words and self-organized on them. The 
WCD network of our model received the words in the input sentences one at a time, 
and built semantic representations from the lexical co-occurrence statistics. These 
representations were submitted to our dimension-reduction mapping so that all 
vectors had a uniform length of 100 units, and subsequently sent to SOM2 for self-
organizing learning. SOM1 and SOM2 were accordingly linked by associative links. 
Note that training in SOM1 and SOM2 was simultaneous, and therefore learning in 
SOM1 and SOM2 did not begin until the WCD network and the dimension 
reduction had completed their job. In principle, however, SOM2 need not wait until 
WCD is done, given that it can self-organize on early stages of semantic 
representations as WCD learns online. This method has also been implemented in 
our model as an incremental learning process (see Farkaš & Li, 2001).  

 

Results and Discussion 
 

In this section, we report results from several simulations with SOMBIP, and our 
analyses will focus on the network’s performance with respect to distinct behaviors 
in the two languages, the formation of lexical categories, the interlingual priming 
and interference effects, and effects of proficiency and resource limitation. 
 

Language Separation without Language Nodes 
 
As discussed earlier, an important difference between different connectionist models 
of bili ngualism is whether the model explicitly includes a separate level of language 
nodes. The BIA model does, whereas the BIMOLA and the bili ngual SRN models 



 

do not. In BIMOLA, the feature level is common to both languages, and the 
phoneme and word levels contain subsets of units for each language. The 
differences between these subsets, coupled with global language activation and 
higher linguistic information from top down, allow the system to separate the two 
languages. The SRN approach of French (1998) is more radical, in that it makes no 
a priori assumptions about the differences between the two languages in the 
bili ngual lexicon, but simply lets the system learn the bili ngual (artificial) sentence 
data. However, the way input was structured in the SRN was problematic, as we 
discussed earlier. In our model, there is no place for explicit marking of languages, 
as in the SRN model. We trained our model on a realistic parental input corpus with 
bili ngual speech intermixed between Chinese and English.  Figure 2 presents a 
sketch of the phonological and semantic organizations of the bili ngual lexicon in the 
two SOMs, after the network has been trained on the 400 target words for 500 
epochs (the WCD network was trained on the input sentences for 3 epochs, i.e., 
555,837 word tokens).2 

 

 
Figure 2. A sketch of the phonological and semantic organizations of the bili ngual 
lexicon in SOM1 and SOM2 after the network has been trained on the 
representations for 500 epochs. The upper panel represents the lexical form map 
(SOM1), and the lower panel the semantic map (SOM2).  Shaded areas indicate the 
English phonological and semantic representations, in contrast to the Chinese 
representations. 



 

As can be seen, our network clearly displays distinct clusters of lexical 
representations of Chinese from those of English, on both the form (SOM1) and the 
meaning level (SOM2). Note that because of the topological nature of the maps and 
the “bubble-filli ng” nature of SOM learning (Kohonen, 1995), the border between 
the two languages is not a straight line in either case. Because the sketch leaves out 
the details, cases where the English and Chinese representations are intermingled are 
not shown here (but see our discussion in interlingual interference). In general, the 
intermingled cases are uncommon, and the overall separation of the two lexicons is 
clear on the 2-D maps.  

Our network received no labels or tags for which language a given word should 
belong to, yet the self-organizing process was able to separate the two lexicons. On 
the phonological level (SOM1), it is clear that English and Cantonese differ greatly, 
even though some vowels may share the same quality. In our phonological 
representation scheme, we have tried to adapt the template in such a way that it 
could fit both languages (CVVCCVVC), cutting some corners in English (e.g., 
eliminating the representation of initial consonant clusters). This adaptation does not 
seem to have much effect on the cross-language distinction. Overall , the syllabic 
templates, the phonemic inventory, and the lexical tones have given the learning 
system a great deal of differences to explore for the identification of the two 
lexicons.  

With respect to semantics, SOM2 shows an even clearer separation between the 
two languages. Note that our network performed essentially a sentence processing 
task on the speech corpus, in which the WCD reads through the streams of 
sentences, computes the co-occurrence statistics for each of the 400 words, 
disregarding words not in the target lexicon (treating them as one unknown type). 
The words that precede and follow each of the 400 words in the lexicon form the 
contextual history for that given word, and it is this contextual history that captures 
the use and meaning of the word. Thus, the words in the two lexicons will have very 
different contextual histories, because words in English are typically associated with 
English words, and words in Chinese are typically associated with Chinese words. 
This is true even with a mixed bili ngual corpus like ours, in which English and 
Chinese sentences are intermixed. From the learner’s perspective, the input contains 
both English and Chinese sentences, but it i s relatively consistent whether a given 
sentence is English or Chinese, because the intermixing occurs at the sentence level, 
but rarely within the sentence level. Although it is common for Hong Kong 
Cantonese speakers to code switch, the most common code-switching situation is 
one in which the speaker uses an English guest word in a Chinese sentence (Li, 
1996a). Given that the coded-switched guest words are often isolated instances and 
their associations with the lexicon of the borrowing language are relatively weak, 
our network did not get confused about the identity of the two lexicons.  

Overall , our simulation results match well with empirical studies of the 
bili ngual lexicon that argue for the representation of language-specific (or distinct) 
lexicons, but in an integrated network  (e.g., Kirsner et al., 1984). 

 



 

 
Figure 3. Emergence of lexical categories (e.g., nouns, verbs, and subcategories in 
Chinese and English) in SOM2. 
 

Lexical Categories in the Bili ngual Lexicon 
 
Given that our model was able to clearly differentiate the two lexicons, does it show 
any abilit y in developing categories within each language? In other words, is our 
network able to organize the phonological and semantic features into structurally 
meaningful clusters? Our previous research shows that SOMs are good at deriving 
semantic categories of the lexicon, even in cases where linguists fail to identify the 
categories with clear labels (e.g., Whorf’ s cryptotypes; Li, 1999, in press). A further 
examination of Figure 2 reveals that the network developed a considerable amount 
of structure on its semantic organization.3  Figure 3 presents the same results as in 
Figure 2, with ill ustrative labels on the lexical categories in SOM2.  
 In Figure 3, we can see that the SOM2 treated the nouns and verbs distinctly, in 
both Chinese and English. The network also grouped other words together as 
clusters that share the same grammatical categories (e.g., English prepositions and 
pronouns occurred in the same neighborhood). More interestingly, within each of 
the categories (assuming there are enough instances), semantically similar words 
also occurred together. For example, in English, the state verbs (e.g., know, li ke, 
have, want) were grouped together (the darkest shaded area under the label 



 

“Verbs” ), in contrast to other activity verbs;4 in Chinese, words that are related to 
cooking/eating (within the verb category) were grouped together (e.g., sik ‘eat’ , jam 
‘drink’ , cit ‘ cut’ , gaau ‘gnaw’) . One can also see a category of verbs indicating 
perceptual/mental activities in Chinese (marked as “Verbs-p” , including teng 
‘ li sten’ , tai ‘ look’ , gin ‘ see’ , seong ‘ think’) . These effects of categorical emergence 
from statistical learning match up with results from our previous monolingual 
simulations (Li, 1999, 2000, in press; Farkaš & Li, in press). 
 

Interlingual Priming and Interference 
 
In the empirical lit erature, there are heated debates on whether bili ngual lexical 
representation is language-specific or language-independent, and whether the two 
lexicons are stored separately or together (see Smith, 1997, for a summary). These 
debates determine how researchers look at well -known effects of cross-language 
priming and interference in empirical studies (e.g., de Groot & Nas, 1991; Kirsner et 
al., 1984). In a way, our above simulation results already indicated that the two 
lexicons can reside in an integrated network, but separately in space. Given that the 
two lexicons exhibit distinct behaviors in our network, and that there is no language-
independent conceptual representation in our network (as is in many other bili ngual 
models, see Conclusions), how can we account for priming effects or interference 
that show that the two lexicons do interact with each other? Recall that our 
procedure involved training the mapping between word forms and meanings in such 
a way that the mapping is not one-to-one, but many-to-many (for nouns and verbs, 
at least). Thus, words that are considered as translation equivalents are linked 
together through associative pathways that are trained by Hebbian learning.  

After training the network on the bili ngual speech corpus for 500 epochs on the 
400 words, we tested the network’s performance on comprehension (from 
phonology to semantics) and production (from semantics to phonology). Probing 
into the network’s associative pathways is laborious, which involves examining 
each of the 400 words on SOM1 or SOM2 to see what words it can activate on the 
other map. Our analyses indicate that there are clear effects of priming and 
interference. To il lustrate with examples, the activation of the following words on 
SOM2 (left) led to the activation of words on SOM1 (right) via the associative links 
(items in parentheses are translations of Chinese words):  
 
 SOM2    SOM1 
 bear 

�
  bear, there, fish, this 

 jat (one) 
�

  jat (one), loeng (two), soeng (think), saam (three), san (new) 
 bibi (baby) 

�
  bi4bi1 (baby), maami (mummy), baby, maybe, mummy 

 sik (eat) 
�

  it, eat, sik (eat), maai (buy) 
 

These are some representative examples that indicate semantic as well as 
phonological priming effects in production. For example, bear activates fish because 
fish was semantically related to bear and SOM2 placed it next to bear. There and 



 

this were activated because of their phonological similarity to bear and fish, 
respectively (SOM1 placed there next to bear, and this next to fish). The second 
example in Chinese (jat) can also be similarly explained. These two examples show 
only within-language priming effects – no translation equivalents exist in our 
simulated lexicon. The next two examples show cross-language priming effects: 
mummy became activated because of its semantic similarity to baby, which in turn 
was activated by the Chinese word bibi. In addition, maybe was activated because of 
its phonological similarity with baby on SOM1. The last example, sik ‘eat’ , is a 
similarly interesting case. Its strongest response on SOM1 was it and not eat, a 
phonologically similar word. Note that these priming effects represent possible 
interference in language production. Because of strong associative pathways, the 
speaker might have said it instead of sik or eat, especially in a strong bili ngual 
speech mode (Grosjean, 1997). 

Similarly, our model was also able to show cross-language interference effects 
in comprehension. For example: 
 
 SOM1    SOM2 
 look �  lok (fall ), fall , look, tai (look), ceot (go out). 
 boat �  boat, dog, car, syun (boat), sau (hand) 
 waan (play) �  waanx (play), wan (look for), play, read, find, see 
 sik (eat) �  eat, cut, sik (eat), maai (buy) 
  

Again, cross-language priming resulted from both semantic and phonological 
similarities as a function of the co-activation of forms (SOM1) and meanings 
(SOM2). For example, because of the phonological similarity of look and lok on 
SOM1, look activated lok in SOM2, which in turn activated fall  as a result of 
semantic similarity (lok means “ fall ” ). Li (1996a) found that bili ngual Chinese-
English speakers do not need more time to process cross-language homophones like 
look/lok than do monolinguals in processing monolingual materials, when the 
homophone occurs in a sentence context; in other words, there was no switching 
cost associated with the recognition of code-switched English words. This finding 
contradicts the notion of a language switch or monitor mechanism that says that 
switching languages takes time (Macnamara, 1967; Obler & Albert, 1978; see also 
Green, 1998).  Li suggested that a parallel activation mechanism might be involved: 
multiple candidates in the bili ngual lexicon are activated, and sentence context plays 
a crucial role in affecting the final activation of the target word (see also Altarriba et 
al., 1996, for a similar argument). The results shown in this simulation are consistent 
with the view that multiple candidates may be simultaneously activated and selected 
due to effects of cross-language priming. 

 

Effects of Proficiency and Individual Differences 
 
To extend the scope of the SOMBIP model discussed above, we modeled the effects 
of proficiency and individual differences in two separate simulations using the same 



 

bili ngual lexicon. Proficiency was modeled by having SOM2 self-organize on 
“novice” word representations – representations that come out of the WCD 
network’s learning of a smaller sample of English sentences (92,640 word tokens, as 
compared with 555,837 tokens in the above), simulating a beginning Chinese 
learner of English. Figure 4 presents a snapshot of the network’s representation with 
the same learning parameters as in Figures 1 and 2. 

 

 
Figure 4. Effects of proficiency in lexical representations. English semantic 
representations in SOM2 were based on the WCD network’s learning of a limited 
amount of input (92,640 word tokens). 
 
 As is ill ustrated in SOM2 of Figure 4, the semantic representations of the 
English words were squeezed into the upper right-hand corner, and occupy only a 
very small portion of the map. Although there was some rudimentary structure in 
these vectors (e.g., good and bad were nearby on the map, so were say and tell ), the 
semantic vectors from the WCD network were still fuzzy and did not represent the 
word meanings accurately; thus the SOM could not fully differentiate them and 
accordingly organize them into meaningful structures. This picture shows that for 
novice bili ngual speakers, the bili ngual mental lexicon is still l argely monolingual, 
and words in the second language are largely clamped together. It is also consistent 
with the view that the bili ngual lexicon is a dynamically developing system, one that 
changes as a function of which language becomes the dominant language (Heredia, 



 

1997). As the bili ngual speaker becomes more proficient and fine-tunes the 
semantic system (amongst other developments, e.g., an expanding size of the L2 
lexicon), this “dominance” situation may shift to an L2 instead of L1 dominance 
(Heredia & Altarriba, in press). 

Finally, to simulate individual differences in the representation of bili ngual 
lexicon, we constructed a smaller-in-size but otherwise identical network as in 
previous simulations. In the simulations reported above, we used 2,500 units each (a 
50×50 grid) in SOM1 and SOM2. In the new simulation, we used 1,600 units (a 
40×40 grid). This reduction in map size is meant to simulate a bili ngual processor 
that has limited resource (e.g., working memory capacity) at disposal. There is 
evidence that individual differences in language processing are often due to working 
memory capacity (Just & Carpenter, 1992). Our network that used a smaller map 
size might thus show disrupted representational structure or processing 
abnormaliti es.  

Analyses of this manipulation show that the network was able to display 
language separation, lexical categories, and priming and interference effects as in 
the bigger network. However, given the same amount of training (500 epochs), the 
network had diff iculty in distinguishing between many words that are either 
phonologically or semantically similar. In other words, the same units on the SOM 
often represented two or more similar lexical items. Recognition rate dropped to 
57% for SOM1 (as compared to 74% with the 50×50 map) and to 54% for SOM2 
(as compared to 74% with the 50×50 maps).5 As a result of the decrease in 
recognition fidelity, the network’s associative links were much more diffuse than 
those in the larger networks. Thus, there were stronger within and cross-language 
priming and interference effects as compared with the bigger network, some of 
which could not be explained easily. For example, activation of let on SOM1 caused 
bei (let), let, show, and, mouse, and red to become activated on SOM2; activation of 
go on SOM2 caused say, waa (say), waai (bad), hai (be), gong (say), hoei (go), and 
know to become activated on SOM1, and so on.  These results indicate that the 
unusual patterns in bili ngual processing may be due to diffuse bili ngual 
representations, which might in turn be due to limited processing capacity. 

In sum, manipulations of size of the learning corpus and size of the network 
extend the capabiliti es of our model in accounting for a variety of bili ngual 
phenomena.  
 

General Discussion and Conclusions 
 
In this chapter we provided an overview of connectionist bili ngualism, and 
presented a sketch of SOMBIP, a self-organizing connectionist model of bili ngual 
processing. A number of theoretical and architectural considerations of the model 
are discussed, and preliminary simulation results from the model are analyzed. Our 
SOMBIP model consists of two interconnected self-organizing neural networks, 
coupled with a recurrent neural network that computes lexical co-occurrence 
constraints. Simulations with our model indicate that (1) the model can account for 



 

distinct patterns of the bili ngual lexicon without the use of language nodes or 
language tags, (2) it can develop meaningful lexical-semantic categories through 
self-organizing processes, and (3) it can account for a variety of priming and 
interference effects based on associative pathways between phonology and 
semantics in the lexicon, and (4) it can explain lexical representation in bili nguals 
with different levels of proficiency and working memory capacity. These 
capabiliti es of our model are due to its design characteristics in that (a) it combines 
localist and distributed properties of processing, (b) it combines representation 
(through self-organization) with learning (recurrent neural network WCD, Hebbian 
learning of associative pathways), and finally (c) it combines lexicon and sentences 
in bili ngual processing. Most previous connectionist bili ngual models (e.g., BIA and 
BIMOLA) are stationary models. To fully capture the dynamics in bili ngual 
language processing, a model needs to incorporate the above mentioned properties, 
especially the learning characteristics such as in SOM and WCD.  

Green (1998) proposed an inhibitory control (IC) model of bili ngual lexical 
processing. Although the IC model is not a connectionist model – on the contrary, it 
has quite some symbolic AI f lavor, for example, with goal-oriented decision boxes 
and control schemas – it attempts to integrate activation-based accounts (e.g., 
interactive activation mechanisms). According to Green, there are multiple levels of 
control, with each level associated with a specific schema, from high-level event 
scripts to low-level articulatory controls. The particular level at which the IC model 
operates is an intermediate level, the lemma level, whereby an inhibitory mechanism 
suppresses the activation of lemmas that are tagged as belonging to the language 
other than the intended one. Crucial to the functioning of this mechanism are the 
language tags, tags that are believed to be part of the conceptual system of the 
lexicon. Green likened the language tags to the language nodes in the BIA model, 
which function to reinforce lexical activation of the currently activated language, 
while simultaneously decreasing lexical activation in the other lexicon. Interestingly, 
in a brief note, Dijkstra and van Heuven (1998) mentioned that the BIA language 
nodes might be thought to represent abstractions of very different statistical 
regularities in the two languages due to lexical co-occurrence differences. This view 
differs from what Green assumed, but is completely consistent with our argument 
here (in SOMBIP, lexical co-occurrence statistics are explicitly incorporated through 
WCD).  

In a commentary on the IC model, Li (1998a) questioned the necessity of 
language tags. One piece of evidence against the notion of language tags in IC is 
that some recent studies show that there need not be a cost associated with language 
switching, especially in natural speech situations (Grosjean, 1988, 1997; Grosjean & 
Mill er, 1994; Li, 1996a) – according to IC, language switching takes time, since the 
process of switching to another language involves the inhibition of previous 
language tags. In the IC model, the inhibition of a particular stimulus shuts down the 
activation of all other related stimuli i n the same language from top down. This 
assumption seems to contradict several activation-based accounts that the bili nguals’ 
two languages may be always activated, though the strength of the activation differs 



 

in specific linguistic situation, depending on the frequency of the target words, the 
sentence context, the speaker’s proficiency in the two languages, and the speech 
mode (Grosjean, 1988, 1997; Li, 1996a). Thus, Li (1998a) argued that it is unclear 
whether the language tags are ad hoc constructs or necessary components of 
bili ngual processing, just as it is unclear whether language nodes are necessary. Li 
suggested that the seemingly separate representations of the two lexicons, and the 
related interlingual priming/interference effects, might arise as a result of lexical and 
grammatical learning in a self-organizing neural network, in which no distinct labels 
are given to items of the two or more languages. Specifically, words from both 
languages may exist in the same topological map, but over time the network can 
develop localized patterns of activity in learning the mappings between phonology, 
orthography, morphology, and semantics. These localized patterns of activity may 
then correspond to the learner’s internalized, distinct representations of the two 
lexicons. In this study, we have implemented precisely such a model, the SOMBIP, 
which nicely accounts for the independent (yet interactive) representations of the 
bili ngual lexicon. A supra-lexical level of language nodes or language tags is absent 
in SOMBIP, but the effects of the language nodes or tags are captured in the system.  

In response to Li’s commentary, Green agreed that the bili ngual lexico-
semantic system is composed of self-organized networks, as a presumption of the 
subset hypothesis (Paradis, 1989) adopted by the IC model. But he argued that 
language tags are necessary and that even in self-organizing networks such as the 
one used by Miikkulainen (1997) there is still room for language tags. Interestingly, 
Miikkulainen (1993) did mention a multiple SOM network that functions exactly as 
Green would argue: each language has its own separate lexicon, stored on different 
maps. A high-level control network would determine which language modules are 
active, switching between conversations in two languages. Such an approach was 
intended to model, according to Miikkulainen, distinct language behaviors in the 
representation of the bili ngual lexicon in the brain. But Miikkulainen also speculated 
on a different (in our view a more plausible) model, one that is very similar in spirit 
to SOMBIP. This model would represent all word forms from the multili ngual 
lexicon in a single lexical map, and all semantic representations in a single semantic 
map. These two maps could be associated with each other via the associative links. 
Cross-language priming and interference (“slips between languages” in his terms) 
could be modeled by noisy semantic mapping (like the diffuse map in our limited-
resource network) or by associative propagation. In this version of the model, there 
would still be a high-level control network, but the task of the control mechanism 
merely modulates language output such that the same sentence parser could work on 
different language materials. In SOMBIP, however, this control network was 
unnecessary as the WCD network works equally eff iciently in both languages.  

The abilit y of our network to show distinct patterns of the bili ngual lexicon 
without distinct mechanisms (e.g., separate language tags or nodes) is yet another 
case of the classical connectionist argument: modular linguistic behaviors that are 
different or dissociated need not arise from dual-mechanisms or dual-routes in the 
representational or processing system. They can naturally emerge from learning the 



 

input characteristics within a single system, a system that can be operationalized in 
terms of statistical or connectionist principles. This argument was advanced by the 
original PDP studies of the English past-tense acquisition (Rumelhart & McClelland, 
1986), and has since been supported by research in many domains of language 
studies, including language acquisition, normal and impaired word reading, and 
language organization in the brain (e.g., Elman et al., 1996; Plaut et al., 1996; 
Miikkulainen, 1997; Small et al., 1995). 

As a final important note, our model departs from the tradition that has been 
adopted by many bili ngual researchers (see Kroll & de Groot, 1997, for discussion) 
in that it does not assume there is an integrated level of meaning-concept or meaning 
and concept (the “conceptual level” ). The mixture of meaning with concept has 
created much confusion, in both first language and second language acquisition 
research (see Li & Shirai, 2000). This confusion is further complicated by the fact 
that many psycholinguists adopt a language-specific lexical-semantic level, the 
lemma level (Levelt, 1989). To avoid these confusions, thus, in our model there is 
no language-independent “conceptual” representation. Our semantic representation, 
or more accurately, lexical representation that contains both syntactic and semantic 
information, comes out the WCD network’s analyses of global lexical co-occurrence 
information. This level of representation matches more closely with what linguists 
call “meaning” , rather than “denotata” (Lyons, 1977) – entities of concepts that 
many bili ngual researchers use in their picture naming tasks.  

To conclude, the SOMBIP model outlined in this chapter serves as a new 
model of bili ngual processing and provides a new perspective on connectionist 
bili ngualism. It has the potential of explaining a wide variety of empirical and 
theoretical issues in bili ngual research.  So far, we have tested the SOMBIP model 
only on spoken (transcribed) bili ngual Chinese-English data. How the model 
generalizes to other bili ngual situations should be further tested. Chinese differs 
significantly from English and other Indo-European languages in phonological, 
syntactic, and lexical structures and these differences are bound to affect language 
processing (Li, 1996b, 1998b). When one examines bili ngual pairs of languages that 
are more similar (e.g., Dutch and German), it is likely that the model will show 
more integrated phonological and semantic representations of the bili ngual lexicon. 
Moreover, if the mixed bili ngual data contain more intra-sentential code-switches 
(rather than inter-sentential as in our data), the network that receives such data as 
input might also produce more integrated semantic representations. In addition, the 
current SOMBIP design could easily be extended to simulate orthographic-semantic 
relationships, and be evaluated against empirical findings and results from the BIA 
model. Other interesting extensions of the model would include simulating impaired 
semantic, phonological, or orthographic structures by adding noise to the SOM 
maps and by damaging the associative pathways that connect word form and word 
meaning. Such modeling efforts could shed light on bili ngual representation and 
processing in the brain (Fabbro, 1999). 

 



 

Notes 
 

1 The current scheme represents a scaled-down version of the full tri-syllabic template 
representation of English (see Li & MacWhinney, 2001, for the full version). As such, it is 
limited in certain respects; for example, it is not able to represent consonant clusters as in 
string /strIN/, which would require additional C-slots (e.g., CCCVVC for one syllable).  
2 It is impossible to show all the details of the original figure here because each of the 2-D 
maps contains 400 words spread on a 50×50 grid of 2,500 units.  
3 The organizations of the phonological representations are mainly based on phonemic and 
template similarities, and are relatively less interesting for our purpose here.  
4 The distinction between state and activity verbs has attracted significant debates concerning 
the nature and origin of this distinction in language acquisition. Some researchers propose 
that this distinction is innately given (Bickerton, 1981, 1984). We have argued that this 
distinction can arise from children’s statistical learning of the semantic properties of verbs, in 
the same way as it would occur distinctly in our connectionist networks (Li & Shirai, 2000).  
5 The recognition rate is calculated as the rate of correctly mapped words in the SOM over 
the total number of words in the lexicon. Whether a word is mapped correctly is determined 
by a function that calculates the nearest distance between the input and the codevectors in the 
map. Note that the recognition rate of 74% is not too impressive at first glance. This is 
because the network learns a many-to-many mapping function for the noun and verb 
translation equivalents. If the network learns a one-to-one mapping, the recognition rate 
would go up to 93% and 97% for SOM1 and SOM2, respectively. 
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