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Abstract

Current conredionist models of bilingual language processng have been largely
restricted to locdist stationary models. To fully capture the dynamics of bili ngual
processng, we present SOMBIP, a self-organizing model of bilingual processing
that has leaning charaderistics. SOMBIP consists of two interconreded self-
organizing reura networks, couped with a reaurrent neural network that computes
lexicd co-occurrence ®nstraints. Simulations with ou model indicae that (1) the
model can acourt for distinct patterns of the bilingual lexicon without the use of
language nodes or language tags, (2) it can develop meaningful lexicd-semantic
caegories through self-organizing processes, and (3) it can acourt for a variety of
priming and interference dfeds based onassciative pathways between phondogy
and semantics in the lexicon, and (4) it can explain lexicd representation in
bili nguals with different levels of proficiency and working memory capadty. These
cgpabiliti es of our model are due to its design charaderistics in that (a) it combines
locdist and dstributed properties of processng, (b) it combines representation and
leaning, and (c) it combines lexicon and sentences in hilingual processng. Thus,
SOMBIP serves as a new model of bhilingual processng and povides a new
perspedive on conredionist bilingualism. It has the potential of explaining a wide
variety of empiricd and theoreticd isesin hbilingual reseach.

Introduction

Conredionism, paralel distributed processing (PDP) models, or neural networks
have significantly influenced reseach in the cgrnitive sciences in the last fifteen
yeas. Language, as one of the most important human cogritive cmporents, has
receved in-depth treadments snce the beginning o connedionist reseach. The
aqquisition d the English past tense (Rumelhart & McClleland, 1986, the
recogntion d speed (McClleland & Elman, 1986, and the processng d sentences
(McClleland & Kawamoto, 1986 are anong the ealiest domains of connedionist
reseach in the origina PDP models. Unfortunately, conredionist models or
modeling have had very limited impad on the field of bilingualism as awhale. To
this date, there ae only a handful of conredionist models that are implemented to



acourt for the processng a representation o the bilingual mental lexicon (seeour
review below). This ladk of interadion between conredionism and Llingualism is
lamentable, and it gives us a goodreason to pursue research that would fill this gap.
In this chapter, we present a mnredionist model, more spedficdly, a self-
organizing reural network model of bili ngual processng and representation.

Let us begin by reviewing a few important lines of reseach in conredionist
bilingualism. In particular, we will examine the Bilingual Interadive Activation
(BIA) model (Grainger, 1993 Dijkstra & van Heuven, 1998 van Heuven, 2000,
the Bilingual Model of Lexicd Access(BIMOLA; Grogean, 1988 1997 Léwy &
Grogean, in progress, and the simple reaurrent network (SRN) model of bili ngual
memory (French, 1998. The first two belong to the so-cdled “locdist” models,
while the last one belongs to “distributed” models. In locdist models, a word o a
concept is represented by a single, unitary processng nock in the network, whereas
in dstributed models, information about a word or a @ncept is distributed acoss
several or many diff erent units of processng.

The locdist models, that is, BIA and BIMOLA, are based onealier interadive
models of word recogrition, that is, the interadive adivation mode (IA) of
McClelland and Rumelhart (1981) and the TRACE model of McClelland and EIman
(1986, respedively. In the |A model, there aethreelevels of nodes, with ascending
complexity: (1) fedures of a letter such as curves, straight lines, or crosdars, (2)
individual letters, and (3) words. Information at all three levels can interad with
ead aher during the word recognition grocess which may flow both “bottom-up”
(fedures to letters to words) and “top-down” (words to letters to feaures). Within
levels, nodes compete for adivation (thus inhibiting ead aher); aadoss levels,
nodes either inhibit or excite ead ather. According to A, it is these inhibitory and
excitatory conredions that give rise to the gpropriate adivation o patterns that
correspondto the perception o words.

The BIA model is a straightforward extension d the A model. It consists of
four levels of nodes: feaures, letters, words, and languages. As in IA, there ae
conredions between nodes at ead level and between nodes acosslevels. All nodes
at the word level are interconneded with mutua inhibition. Feaure units adivate
appropriate letters, and letter units adivate gpropriate words in the gpropriate
language. BIA uses the same parameters to regulate interadions within and aaoss
levels asin the original |A model. What is gedal to the BIA model (apart from the
incorporation d two lexicons) are the language nodes (one for English and ore for
Dutch). Language nodes in BIA function as an important mechanism for the
seledion a inhibition o wordsin ore or the other languege, given that the model
argues for and implements the language-independent access hypathesis, acording
to which words from different langueges are represented in an integrated lexicon
and are simultaneously contaded duing word recogntion. Results from BIA
simulations suggest that the model is able to acourt for empiricd results that
diredly suppat the languege-independent accesshypahesis, while at the same time
is compatible with data previously though to suppat the language-seledive acces
hypahesis (Dijkstra & van Heuven, 1998 van Heuven, 2000).



While the BIA model focuses on visual word recognition, the BIMOLA model
(Grogiean, 1988 1997 Léwy & Grogean, in progres§ aims a handing the
reogrition o spoken words. It was partly inspired by the TRACE model
(McClelland & Elman, 1986, an 1A-based model for acoustic input. Like TRACE,
it consists of threelevels of nodes, correspondng to feaures, phoremes, and words.
There is no separate level of language nodes in BIMOLA, unlike in BIA. The
feaure level is common to bah languages, but the phoreme and word levels are
organized in subsets acording to languages (still in the same extended system).
Fedures adivate phoremes that, in turn, adivate words. Conredions (both
excitatory and inhibitory) are unidirediona (ascending) between fedures and
phoremes, but bidiredional between phoremes and words. Descending connedions
from top down (global language adivation and fhigher lingustic information,
espedally the “bilingual speedy mode”; Grogean, 1997 serve to adivate words
that, in turn, can adivate phoremes. Language adivation (or seledion) takes place
throughthese descending conredions but aso throughwithin-language mnredions
at the phoreme and word levels. Compared to the BIA model, BIMOLA can
acourt for language-spedfic adivation withou the use of language nodes — it is yet
unclea whether language nodes or language tags are necessary comporents of
bilingual processng (Li, 1998&; see &so Genera Discusson). The BIMOLA model
is currently being implemented and evaluated against empiricd data (Léwy, in
progress Léwy & Grosean, in progress.

Both BIA and BIMOLA can be said to be permanent (or stationary) models,
despite their differences in input (visua vs. aooustic) and architedure (with or
withou language nodes). They differ from some @nredionist models with a
leaning medchanism. In BIA and BIMOLA, the representations are fixed and
manually coded, and are designed to capture proficient adult bilingual spesers
mental lexicon (but are not designed to evolve). In contrast, connedionist leaning
models dynamicdly develop representations from computing statisticd characer-
istics of the input data (sentences). Along this diredion, French (1998 presented a
distributed model of bilingual memory based on SRN, a simple reaurrent network
(Elman, 1990 that learns representations onli ne through sentence processng. Asin
the original SRN, the model takes in ore input word at a time from a @ntinuows
stream of sentences and itstask isto predict the next word of the aurrent input in the
sentence Theinpu stream is a series of artificially generated sentences of the N-V-
N structure, with English and French sentences intermixed at the sentence level.
Elman (1990 showed that distinct grammaticd and semantic caegories (e.g., nours
and werbs, animate and inanimate) can emerge in the SRN's hidden-unit
representations once the network has learned the next-word prediction task with a
reasonable size of sentences. This is because the prediction task involves deteding
the ntext in which the aurrent input occurs. With the SRN's exposure to mixed
bilingual inpu, French showed that not only distinct categories emerge within eadh
languege in the hidden-unit representations (as in Elman 1990, but also there ae
distinct patterns of the two langueges. words from the two languages are separated
in spaceon a hierarchicd cluster tree of the hidden-unit adivations. Note that the



network incorporates no mechanism (nodes or tags) to explicitly label words in the
two languages. This model provides suppat to the hypahesis that bilingual memory
is organized as asingle distributed lexicon rather than two separately stored lexicons
acording to language. Thus, the model can display distinct behaviors of the two
lexicons without invoking separate mechanisms for ead language, unlike the BIA
model that uses language nodes to separate the bili ngual lexicon.

The conredionist model of bilingual processng that we present in this paper
has the same spirit of the SRN model, but it differs from the @ove modelsin three
important respeds. First, our model combines both leaning and representational
properties. It is a leaning model in the sense that lexicd representations of bath
languages can emerge from the statisticd leaning o the input speed. This property
is dmilar to that of the SRN, but is based on ou network in explicitly modeling
lexicd co-occurrences in the aquisition d word meanings (Li, 1999 200Q in
press Farkas & Li, 2001, in pres9. On the other hand, our model also has sme of
the representational feaures of BIMOLA: lexicd forms are encoded by articulatory
feaures of the phoremes of words (see &so Li & MacdWhinney, 2001). The
representational charaderistics of the lexicd forms and meanings can also beacome
clealy discernible on a 2-dimensional topdogicd space given the self-organizing
maps used in our model. In addition, given bah word meanings and word formsin
the model, learning can occur in the asciative links between meanings and forms
via Hebbian leaning, abiologicdly plausible mechanism of co-occurrence leaning
(seelater discusgon).

Sewmnd, our model displays both dstributed and locdist properties. Unlike
SRN or other conredionist models that use badk-propagation as the leaning
algorithm, our model employs principles of self-organization, a type of
unsupervised leaning (Kohoren, 1995. Althoughthe inpus in ou self-organizing
network are in the form of distributed representations, the 2-D topdogicd map of
the network (the output) beas sgnificent simil arity to locdist representations in that
ead unit on the map tends to represent one lexicd item. The locdized patterns on
the map alow an “explicit” representation o the lexicon, instead of “implicit”
representations as in the hidden-unit adivations of an SRN (MadWhinney, 200Q).
At the same time, ead unt is surrounced by neighbaing urits on the map that can
beome m-adivated, smulating a distributed lexicon in which similar words or
word properties are grouped together (seedetail s below).

Third, our model relies on the use of redistic lingustic data & inpu to the
network, in particular, child-direded parental speed. In the SRN model of bili ngual
memory (French, 1998 as well as many current conredionist models, reseachers
have relied on the use of highly simplified, artificialy generated input. Although
such inpus are eay to construct and to control for, they are often isolated from
redistic language uses, and run the risk of being succesdul just becaise of the use
of certain propertiesin the inpu (seeLachter & Bever, 1988for an ealier criticism
of conredionist representations). For example, French (1998 structured the input
datain such a way that the input has a fixed probability of 0.001 d switching from
one language to ancther. In ather words, on average, the network will first have



leaned 10M® sentences in ore language before leaning any sentences in the other
languege. We susped that this artificially determined probability is what causes the
network to display disparate behaviors for the two languages. To overcome patential
problems associated with this approach to network modeling, we thus rely on
corpus-based linguistic data that closely approximate the redity of language use (see
also Li, in press for discusson).

In what follows, we first present an owerview of our model, SOMBIP, a
connedionist self-organizing model of bilingual processng. We then discuss ®me
preliminary simulation results from the model. We cnclude by showing hav our
model can shed light on important issues in hilingual lexicd and sentence
processng.

The SOMBIP Model

Background

The design charaderistics of the SOMBIP model are based on ou self-organizing
neural network model of language aquisition by youngchildren (Li, 1999 200Q in
press Farkas & Li, 2001 in presg. Inrecent yeas, self-organizing reura networks
have bemme increasingly important for cogntive and perceptual studies (Hinton &
Senjowski, 1999. Althoughsignificant progress has been made with models based
on bad-propagation, there ae known limitations associated with these models,
including caastrophic forgetting (inability to remember old information with new
leaning), scdability (inability to handle redistic, large-scde problems), and above
all, its error-driven leaning process a procedure which propagates error signals
from the discrepancy between desired and actual outputs to adjust weights. Some of
these problems beaome most transparent when considered in the mntext of language
aqquisition (seeLi, in pres9. Consideration d these problems lead us to look for
models that bea more biologicd and psychologicd plausibility in the cmntext of
languege leaning, and we turn to the self-organizing models.

One of the most widely used self-organizing modelsis Kohoren's (1982 1989
1999 self-organizing map (SOM). SOM belongs to the dass of “unsupervised”
neural networks, becaise leaning in these networks does nat require the presence of
a supervisor or an explicit teader; leaning is achieved by the system’'s if-
organizaion in resporse to the input. During leaning, the self-organizing process
extrads an efficient and compressed internal representation from a high-dimensional
inpu space ad pojeds this new representation orto a 2-D topdogicd structure
(Kohoren, 1982 1989 1995. Several important properties of SOM and related
feaures make it particularly well suited to the study o language.

(1) Self-organization. Self-organizaion in these networks typicdly occursin a
two-dimensional topdogicd map, where eab urit (or node, or neuron) isalocation
on the map that can uriquely represent one or several inpu patterns. At the
beginning d leaning, an inpu pattern randamly adivates a group of the many urits



on the map, acording to how similar by chance the input pattern is to the weight
vedors (codevedors) of the units. Once aunit becomes adive in response to agiven
inpu, the weight vedors of the unit and its neighbaing urnits are ajusted so that
they become more similar to the input and will therefore respond to the same or
similar inpus more strondy the next time. In this way, every time a1 inpu is
presented, an areaof units will become adivated onthe map (the so-cdled adivity
“bubbes’), and the maximally adive units are taken to represent the input. Initialy,
adivation cccurs in large aeas of the map, but gradually leaning becomes more
focused so that only the maximally respondng urit or units are adive. This process
continues urtil al the inputs have foundsome maximally respondng urits.

(2) Representation. As a result of this slf-organizing process the statisticd
structures implicit in the high-dimensional inpu space @e represented as
topdogicd structures on the 2-D space In this new representation, similar inpus
will end upadivating the same units in neaby regions, yielding adivity bubbes
that become dealy visible on the map. Such a self-organizing process and its
representation have dea implicaions for languege aquisition: the formation o
adivity bubbes may capture aiticd proceses for the emergence of semantic
caegories in the aquisition d the lexicon. In particular, the network organizes
information first in large aeas of the map and gadualy zerosin orto smaller areas;
this zeroing-in is a process from diffuse to focused petterns, as a function d the
network’s continuows adaptation to the input structure. This process alows us to
model the emergence of semantic caegories as a gradual process of lexicd
development. It naturally explains many generalizaion errors reported in the
aqquisition literature (e.g., substitutions of put for give or fall for drop as reported
by Bowerman, 1978 1982. It also explains language disorders that result from the
brekdown o focused adivation a the inability to form focused representations
(Miikkulainen, 1997 Spitzer, 1999.

(3) Hebbian learning. Hebbian leaning is not an intrinsic property of SOM,
but several SOMs can be mnreded via Hebbian leaning, such as in the multiple
feauremap model of Miikkulainen (1993 1997. Hebbian leaning is a well-
established biologicdly plausible leaning minciple, acwmording to which the
asciative strength between two neuronsisincreased if the neurons are both adive
at the same time (Hebb, 1949. The anourt of increase may be propationa to the
level of adivation of the two neurons. In the multiple SOM model developed by
Miikkulainen, all units on ore map are initially conreded to al units on the other
map. As slf-organization takes place the ssciations become more focused, such
that in the end orly the maximally adive units on the @rrespondng maps are
asociated. Hebbian leaning combined with SOM has drong implicaions for
languege leaning: it can acount for the process of how the leaner abstrads
relationships between word forms, meanings, and gammaticd morphdogy, on the
basis of how often they co-occur and hav strondy they are w-adivated in the
representation.

Because of these properties, SOM (@) al ows us to trad the development of the
lexicon clealy as an emergent property in the network’s slf-organizaion (from



diffuse to focused patterns or from incomplete to complete a@ciative links); (b)
allows us to model one-to-many or many-to-many associations between forms and
meanings in the development of the lexicon, and (c) provides us with a set of
biologicdly plausible and computationally relevant principles to study hli ngualism
withou relying oncorredive feedbad. It isidedly suited for our task also becaise
the bilingual mental lexiconis constructed for the most part withou supervision and
undergoes continuots slf-organizaion ower time.

Architedure

Our SOMBIP model has been inspired by the multiple self-organizing fegure-map
model of Miikkulainen (1993 1997). Miikkulainen proposed an integrated model of
memory and ratural language processng, in which multiple SOMs dedicaed to
different levels of information are mwnreded. A sub-comporent of this model is
DISLEX, a SOM model of the lexicon, in which dfferent maps correspond to
different lingustic information (orthography, phondogy, or semantics) and are
conreded throughassociative links via Hebbian learning. Our model has also been
inspired by the HyperspaceAnalogue to Language (HAL) model (Burgess& Lund,
1997, 1999. In particular, we derive our meaning representations of the lexicon
throughaword co-occurrence detector (WCD), a mechanism similar to the principle
of HAL computation. HAL attempts to capture meaning by reference to gobal
lexica co-occurrences — how many words co-occur with the target word, and hov
often, in a moving window that runs througha large-scde language @rpus (Usenet
texts of 300 milli on words). A co-occurrence matrix for any number of words in a
given window is derived, and weighted by the frequency of co-occurrences among
words. Thus, aword is represented in HAL as a vedor of the column and the row in
the matrix that encodes the @-occurrence onstraints in a high-dimensional spaceof
language use.

Figure 1 presents a diagrammatic sketch of the different comporents of
SOMBIP. Figure la depicts the two SOMs used in ou model and their
interconredions. During leaning, a lexicd form (phondogicd inpu) adivates a
unit or a group d units on SOM 1, and simultaneously, its word meaning (semantic
inpu) adivates a unit or a group d units on SOM2. Note that in ou current
simulations we have used orly phondogicd inpu in SOM1 to simulate the hili nguel
spoken lexicon;, one can easily use orthographic input in SOM1 to simulate the
bilingual visua lexicon. SOM1 and SOM2 are mnreded via asociative links, such
that the adivation on o map can cause a adivity to form in the other map. If the
diredion o the asciative adivity is from phondogy to semantics, comprehension
is modeled; if it goes from semantics to phondogy, prodiction is modeled. The
asociative links are trained by Hebbian leaning, and the strengths of the
conredions are aljusted acording to the form-meaning pairingsin the inpu, which
leads to adaptive aciations between the two SOMs.
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Figure 1a. SOM1 and SOM?2 that self-organize on word forms and word meanings,
respedively. They are interconneded via asociative pathways, trained by Hebbian
leaning.
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Figure 1b. WCD (lower panel) that computes lexicd co-occurrence statistics.
Layers A and B have full connedivity via modifiable | and r links. Other, one-to-
ore links ®rve to feal the unit adivity from A to B with discrete single time-step
delay. SOM2 recaves distributed word representations extraded from the
modifiable links. The representations are reduced to vedors of uniform length (100
dimensions) asinpusto SOM2 (seeFarkaS & Li, in press 2001, for detail s).

Figure 1b depicts WCD (lower panel), a spedal reaurrent neural network that
leans the lexicd co-occurrence ®nstraints of words. The WCD reals through a
strean of input sentences (one word at a time), and gven a lexicon sized N, it
computes the transitional probabiliti es of words in the lexicon (seeFarkaS & Li, in
press for detail s). Assume that at timet the aurrent word isi, andisrepresented by a
locdist vedor o = [04, ..., O] in layer A. Previous word j is represented by the

vedor ¢ = [cy, ..., C\] in layer B. The alaptable cnredions (I andr links) between



layers A and B serve to approximate the transitional probabilities between
successve words, and as such, they are trained by Hebbian learning with weight
decy so that they become normalized. Spedficdly, the link Iij is upcated to

approximate P(jt1|it), i.e., the probability that the word j precedes the word i. At the
same time, the link r; is updated to approximate P(itfjt-1), that is, the probability that
i follows j. Word i is charaderized by a mncaenation d vedors |, = [l;1, ..., lin]s
andr; =[rq, ..., 'yil, where |; approximates the probability distribution o words
precaling i (left context), and r; the probability distribution o words following i
(right context). The mncaenated vedors, o; = [l;,r;], then serve & distributed word

representations to SOM2 (upper panel in Figure 1b). Because the dimensions of the
vedors are determined by the size of the lexicon (2N for any gven vedor), the
vedors, before they are read by SOM2, are dso submitted to a dimension-reduction
mapping mecdhanism, which reduces the vedors to lower, fixed dmensions (e.g.,
100 urits, seeFarkaS & Li, 2001).

As SOM?2 takes representations from the WCD vedors ¢;, SOM1 also takes as
its input the phondogicd representations of words. To represent the phondogy o
the bilingual lexicon, we have followed a syll able-based template wding originally
developed by MacdWhinney and Leinbach (1991) and receitly by Li and
MadWhinney (2001). This coding scheme has the alvantage over traditional
phoremic representations in that it can acarately capture the phondogicd
similarities of multisyllabic words (most previous connedionist models have used
only monasyll abic words as inpu). In this sheme, the phondogy o aword is made
up by combinations of syllables in a metricd grid, and the dots in ead gid are
made up by bundtks of feaures that correspondto phoremes, C's (consonants) and
V’s (vowsl).

To code our Chinese-English hilingual lexicon, we used 4 C-dotsand 4V-dots
that allowed for the representation o words of one and two syllables, in the
template of CVV CCVVC (eah CVV Cisasyllable thefirst C represents the initial
consonant, and the last C the final consonant). Thus, the Chinese (Cantonese) word
jat (one) is represented in the dots as javVtCVV C and the English word about is
represented as C@V ChaUt. Each C or V is represented by a set of 5 feaure units,
and the feaure values (scded between 0 and 1) are determined acrding to the
articulatory feaures outlined by Ladefoged (1982 for English and by the Hong
Kong Lingustic Society (1997 for Chinese (the 5 articulatory fedures are: Sound
Place Manner, Chromadty, Sonarity). For example, the phoreme /i/ is represented
in bah languages as [.1.0.0.2 .3], indicaing [vowel nore nore high front] for the
5 fedures. A separate set of 12 urits are used to represent lexicd tonesin Cantonese
(6 tones for eath syllable), whereas these units are left empty for English. Thus,
eat word in the bilingual lexicon is represented by a vedor of 52 urits in the
phondogicd representation (5 fedure units for 8 phoreme-dots plus 12 tona
units).1 Note that in neither the phondogicd nor the semantic representations
described abowve is there alabel or tag that tell s which lexicon (English or Chinese) a
given word shoud belongto.



Leaningin the two SOMs is gandard (Kohoren, 1989. Every SOM unit k has
an array of conredions in the form of a mdevedor my = [my, ..., M 5\], Which

leans to approximate the inputs (semantic or phondogicd vedors) in such a way
that every SOM unit becomes “spedalized” for a given word, and that the
neighbaing urits will bemme spedalists (“winners’) to similar words. During
leaning, both neighbahoodradius and leaning rate deaease over time.

Task and Procedure

Upon training o the network, a phondogicd inpu representation o a word is
presented to SOM1, and simultaneously, the semantic representation d the same
word is aso presented to SOM2. By way of self-organizaion, SOM1 forms an
adivity in resporse to the phondogicd inpu, and SOM2 an adivity in resporse to
the semantic input. As the two SOMSs receve inpu and continue to self-organize,
they also simultaneoudy form assciations through Hebbian leaning for al the
adive units in the two maps that respond to the inpus. The network’s task is to
creae an ardered layout for all the input words in the bilingual lexicon and ke ale
to make the gpropriate form-meaning associations.

Because our SOMBIP handles abili ngual lexicon, trandation equivaentsin the
two languages are ssociated with ead ather in the following way: if the phondogy
of an English word is presented to SOM1, the semantics of the English word and
that of its crosslanguage trandation equivalent in Chinese ae dso presented to
SOM2. Similarly, if the semantics of an English word is presented to SOM2, the
phondogy d the English word and that of its translation equivalent in Chinese ae
also presented to SOM1. For example, the word boat and syun are aciated by the
phondogy d boa or syun co-occurring with the semantics of boa and syun, and
vice versa. This procedure works in the same way for words in bah languages,
ensuring that trandlation equivalents have a danceto be asciated. Because of the
difficulty in determining what words ioud be munted as trandation equivalents
(espedally with regard to English and Chinese), this procedure gplied only to the
nours and verbsin our simulations (i.e., disregarding adjedives, adverbs, pronours,
prepaositions, etc.). Multiple trandation equivalents (e.g., English tell and Chinese
gong and waa) were dso associated through co-occurrences in the network,
althoughsuch caseswererarein ou data.

As discused ealier, artificialy generated input data ae often problematic in
matching upwith redistic language use. In this gudy, we used a redistic bili ngual
data set, the Hong Kong Bilingual Corpus from the CHILDES database (Yip &
Matthews, 2000 MadWhinney, 2000h). This corpus contains transcripts of
conversations between a diild and his native English-spe&king father and retive
Cantonese-spe&king mother. The recordings were made when the dild was between
ages 1 and 3 The parents followed the one parent-one language principle when
addressng the dild. The language between the parents was mainly Cantonese with
a grea ded of English mixed in, as is charaderistic of the speed of Hong Kong
middle dassfamilies. Despite the “one parent-one language” principle, the quantity



of input from the two languages was nat al balanced. On the whale, the dild
receved more Cantonese than English inpu in hisfirst threeyeas. Becaise of the
relatively young age & which the recordings were made, there was not enough
prodictive speed from the cild. However, there was plenty of parental speed as
inpu. We therefore extraded al of the parental speed plus the speech of the
student asdstants who made the recrdings during the home visits, forming the
bilingual inpu speed corpus that we used for our simulations. These speed data
also effedively alow us to simulate what the leaning system (human o network)
receivesin a ancurrent bilingual environment and haow the system can, on the basis
of the inpu, develop lexicd representations from sentence processng (we used a
similar procedure in modeling first language aquisition; seel.i, in press Farkas &
Li, 2003, in presy.

A total of 5,154 word types and 185279word tokens are foundin ou bili ngual
parental corpus, acording to the freq (frequency court) output of the CLAN (Child
Language Analysis) program (MadWhinney, 20008. For our purposes we trained
our model on the 400 most frequent word types in this corpus, which effedively
covers 56% of the entire data. These 400 most frequent words happened to contain
184 Chinese words, and 216 English words. During training, SOM1 receved the
phondogicd representations of the 400 words and self-organized on them. The
WCD network of our model recaved the words in the input sentences one & atime,
and bult semantic representations from the lexicd co-occurrence statistics. These
representations were submitted to our dimension-reduction mapping so that all
vedors had a uniform length of 100 urits, and subsequently sent to SOM2 for self-
organizing learning. SOM 1 and SOM2 were acordingly linked by associative links.
Note that training in SOM1 and SOM2 was smultaneous, and therefore leaning in
SOM1 and SOM2 dd nda begin urtil the WCD network and the dimension
reduction had completed their job. In principle, however, SOM2 need na wait until
WCD is dore, given that it can self-organize on ealy stages of semantic
representations as WCD leans online. This method hes aso been implemented in
our model as an incremental leaning process(seeFarkas & Li, 2001).

Results and Discussion

In this ®dion, we report results from several simulations with SOMBIP, and ou
analyses will focus on the network’s performance with resped to distinct behaviors
in the two languages, the formation d lexicd caegories, the interlingual priming
and interference dfeds, and effeds of proficiency and resourcelimitation.

Languag Separation withou Language Nodes

Asdiscused ealier, an important diff erence between dfferent connedionist models
of bili ngualism is whether the model explicitly includes a separate level of language
nodes. The BIA model does, whereas the BIMOLA and the bilingual SRN models



do nd. In BIMOLA, the fedure level is common to bah languages, and the
phoreme axd word levels contain subsets of units for ead language. The
differences between these subsets, couged with dobal language adivation and
higher linguistic information from top dawn, allow the system to separate the two
langueges. The SRN approach of French (1999 is more radicd, in that it makes no
a priori asumptions abou the differences between the two langueges in the
bilingual lexicon, but smply lets the system lean the bilingual (artificial) sentence
data. However, the way inpu was gructured in the SRN was problematic, as we
discused ealier. In our model, there is no dacefor explicit marking o languages,
asin the SRN model. We trained ou model on a redistic parental input corpus with
bilingual speed intermixed between Chinese and English. Figure 2 presents a
sketch of the phondogicd and semantic organizations of the bilingual lexiconin the
two SOMs, after the network has been trained on the 400 target words for 500
epochs (the WCD network was trained on the input sentences for 3 epochs, i.e.,
555837 word tokens).2
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Figure 2. A sketch of the phondogicd and semantic organizaions of the bili ngual
lexicon in SOM1 and SOM2 &fter the network has been trained on the
representations for 500 epochs. The upper panel represents the lexicd form map
(SOM1), and the lower panel the semantic map (SOM2). Shaded areas indicae the
English phondogicd and semantic representations, in contrast to the Chinese
representations.



As can be seen, our network clealy displays distinct clusters of lexicd
representations of Chinese from those of English, on bah the form (SOM1) and the
meaning level (SOM2). Note that because of the topdogicd nature of the maps and
the “buble-filling” nature of SOM leaning (Kohoren, 1995, the border between
the two languages is not a straight line in either case. Because the sketch leaves out
the detail s, cases where the Engli sh and Chinese representations are intermingled are
not shown here (but seeour discusson in interlingual interference). In general, the
intermingled cases are uncommon, and the overall separation d the two lexiconsis
clea onthe 2-D maps.

Our network receved nolabels or tags for which language agiven word shoud
belongto, yet the self-organizing processwas able to separate the two lexicons. On
the phondogicd level (SOM1), it is clea that English and Cantonese differ grealy,
even though some vowels may share the same quality. In ou phondogicd
representation scheme, we have tried to adapt the template in such a way that it
could fit both languages (CVVCCVVC), cutting some rners in Engdlish (e.g.,
eliminating the representation d initial consonant clusters). This adaptation daes not
seam to have much effed on the aosslanguege distinction. Overall, the syllabic
templates, the phoremic inventory, and the lexicd tones have given the leaning
system a grea ded of differences to explore for the identificaion o the two
lexicons.

With resped to semantics, SOM2 shows an even cleaer separation between the
two languages. Note that our network performed essntially a sentence processng
task on the speed corpus, in which the WCD reads through the streams of
sentences, computes the m-occurrence datistics for eady of the 400 words,
disregarding words nat in the target lexicon (treaing them as one unknaown type).
The words that precede and follow ead of the 400 words in the lexicon form the
contextual history for that given word, and it is this contextual history that cgptures
the use and meaning d the word. Thus, the words in the two lexicons will have very
different contextual histories, becaise words in English are typicdly associated with
English words, and words in Chinese ae typicdly associated with Chinese words.
This is true even with a mixed hilingual corpus like ours, in which English and
Chinese sentences are intermixed. From the leaner’s perspedive, the input contains
both English and Chinese sentences, bt it i s relatively consistent whether a given
sentenceis English or Chinese, because the intermixing cccurs at the sentence level,
but rarely within the sentence level. Although it is common for Hong Kong
Cantonese speders to code switch, the most common code-switching situation is
one in which the spe&ker uses an Engdlish guest word in a Chinese sentence (Li,
1996). Given that the aded-switched guest words are often isolated instances and
their associations with the lexicon d the borrowing language ae relatively weék,
our network did na get confused about the identity of the two lexicons.

Overdl, our simulation results match well with empiricd studies of the
bilingual lexicon that argue for the representation d language-spedfic (or distinct)
lexicons, but in an integrated network (e.g., Kirsner et a., 1984).
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Figure 3. Emergence of lexicd caegories (e.g., nours, verbs, and subcategories in
Chinese and English) in SOM2.

Lexcal Categoriesin the Bilingud Lexcon

Given that our model was able to clealy diff erentiate the two lexicons, does it show
any ability in developing categories within ead language? In ather words, is our
network able to organize the phondogicd and semantic feaures into structurally
meaningful clusters? Our previous reseach shows that SOMs are goodat deriving
semantic caegories of the lexicon, even in cases where linguists fail to identify the
caegories with clea labels (e.g., Whorf s cryptotypes; Li, 1999 in presg. A further
examination d Figure 2 reveds that the network developed a mnsiderable anount
of structure on its smantic organizaion.3 Figure 3 presents the same results as in
Figure 2, with ill ustrative labels on the lexicd caegoriesin SOM2.

In Figure 3, we ca seethat the SOM2 treded the nowns and verbs distinctly, in
both Chinese and English. The network also grouped ather words together as
clusters that share the same grammatica caegories (e.g., English prepasitions and
pronours occurred in the same neighbahood. More interestingly, within ead of
the cdegories (asuuming there ae enoughinstances), semanticdly similar words
also occurred together. For example, in English, the state verbs (e.g., know, like,
have, want) were grouped together (the darkest shaded area under the label



“Verbs'), in contrast to ather adivity verbs;# in Chinese, words that are related to
cooking/eaing (within the verb category) were grouped together (e.g., sk ‘ed’, jam
‘drink’, cit ‘cut’, gaau ‘gnaw’). One can also see a ctegory of verbs indicaing
perceptua/mental adivities in Chinese (marked as “Verbsp”, including teng
‘listen’, tai ‘look, gin ‘se€, seong ‘think’). These dfeds of caegoricd emergence
from datisticd leaning match up with results from our previous mondingua
simulations (Li, 199, 200Q in press FarkaS & Li, in press.

Interlingud Priming andinterference

In the empiricd literature, there ae heaed debates on whether bilingual lexicd
representation is language-spedfic or language-independent, and whether the two
lexicons are stored separately or together (see Smith, 1997, for a summary). These
debates determine how reseachers look at well-known effeds of crosslanguage
priming and interferencein empiricd studies (e.g., de Groot & Nas, 1991 Kirsner et
a., 1984. In a way, our above simulation results alrealy indicated that the two
lexicons can reside in an integrated network, but separately in space Given that the
two lexicons exhibit distinct behaviorsin ou network, and that thereis no language-
independent conceptual representation in ou network (as isin many cother bili ngual
models, see Conclusions), how can we acourt for priming effeds or interference
that show that the two lexicons do interad with ead ather? Recdl that our
procedure involved training the mapping between word forms and meanings in such
away that the mapping is not one-to-one, but many-to-many (for nours and verbs,
at least). Thus, words that are mnsidered as trandation equivalents are linked
together throughassociative pathways that are trained by Hebbian leaning.

After training the network onthe bilingual speed corpus for 500 epochs onthe
400 words, we tested the network’s performance on comprehension (from
phondogy to semantics) and production (from semantics to phondogy). Probing
into the network’s asoociative pathways is laborious, which involves examining
ead o the 400words on SOM1 o SOM2 to seewhat words it can adivate on the
other map. Our analyses indicae that there ae dea effeds of priming and
interference To illustrate with examples, the adivation d the following words on
SOM2 (left) led to the adivation d words on SOM1 (right) viathe asciative links
(itemsin parentheses are trandations of Chinese words):

SOM2 SOM1

bear = bear, there, fish, this

jat (one) > jat (one), loeng (two), soeng (think), saam (threé), san (new)
bibi (baby) = bi4bil (baby), maami (mummy), baby, maybe, mummny
sk (ed) > it, eat, sk (ed), maai (buy)

These ae some representative examples that indicae semantic as well as
phondogicd priming effedsin production. For example, bear adivates fish becaise
fish was smanticdly related to bear and SOM2 placal it next to bear. There and



this were adivated becaise of their phondogicd similarity to bear and fish,
respectively (SOM1 placed there next to bear, and this next to fish). The second
example in Chinese (jat) can aso be similarly explained. These two examples sow
only within-language priming effeds — no trandation eguivalents exist in ou
simulated lexicon. The next two examples iow crosslanguage priming effeds:
mumry becane adivated becaise of its emantic similarity to baby, which in turn
was adivated by the Chinese word bibi. In addition, maybe was adivated becaise of
its phondogicd similarity with baby on SOM1. The last example, sk ‘ed’, is a
similarly interesting case. Its drongest response on SOM1 was it and nd eat, a
phondogicdly similar word. Note that these priming effeds represent posshble
interference in language production. Because of strong asociative pathways, the
speaker might have said it instead of sik or eat, espedally in a strong hlingual
speed mode (Grogean, 1997).

Similarly, our model was also able to show crosslanguege interference dfeds
in comprehension. For example:

SOM1 SOM2

look = lok (fall), fall, look, tai (look), ceot (go out).

boa = boa, dog, car, syun (boat), sau (hand)

waan (play) = waarx (play), wan (look for), play, read, find, see
sik (ed) = eat, cut, sik (ea), maai (buy)

Again, crosslanguage priming resulted from both semantic end phondogicd
similarities as a function d the m-adivation o forms (SOM1) and meanings
(SOM2). For example, because of the phondogicd similarity of look and lok on
SOM1, look adivated lok in SOM2, which in turn adivated fall as a result of
semantic similarity (lok means “fall”). Li (19968) found that bilingual Chinese-
English spe&ers do nd need more time to processcrosslanguage homophores like
look/lok than do mondinguals in processing mondingual materials, when the
homophore occurs in a sentence ontext; in other words, there was no switching
cost asociated with the recgrnition o code-switched English words. This finding
contradicts the nation d a language switch or monitor mechanism that says that
switching languages takes time (Mamamara, 1967 Obler & Albert, 1978 see &so
Green, 1998. Li suggested that a parall el adivation mechanism might be involved:
multiple candidates in the bili ngual lexicon are adivated, and sentence @ntext plays
a aucia rolein affeding the final adivation d the target word (see 4so Altarriba &
al., 1996 for asimilar argument). The results siown in this Smulation are consistent
with the view that multiple candidates may be simultaneously adivated and seleded
dueto effeds of crosslanguage priming.

Effeds of Proficiency andIndividud Differences

To extend the scope of the SOMBIP model discussed above, we modeled the dfeds
of proficiency and individual differences in two separate simulations using the same



bilingual lexicon. Proficiency was modeled by having SOM2 self-organize on
“novice” word representations — representations that come out of the WCD
network’s learning d a smaller sample of Engli sh sentences (92,640word tokens, as
compared with 555837 tokens in the @owe), simulating a beginning Chinese
leaner of English. Figure 4 presents a snapshot of the network’ s representation with
the same leaning parametersasin Figures 1 and 2
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Figure 4. Effeds of proficiency in lexicd representations. English semantic
representations in SOM2 were based onthe WCD network’s learning o a limited
amourt of inpu (92,640word tokens).

As is illustrated in SOM2 o Figure 4, the semantic representations of the
English words were squeezeal into the upper right-hand corner, and cccupy orly a
very small portion d the map. Althoughthere was ome rudimentary structure in
these vedors (e.g., goodand bad were neaby onthe map, so were say and tell), the
semantic vedors from the WCD network were still fuzzy and dd na represent the
word meanings acarately; thus the SOM could na fully differentiate them and
acordingly organize them into meaningful structures. This picture shows that for
novice bilingual spe&ers, the bilingual mental lexicon is gill 1argely mondingual,
and words in the seaond language ae largely clamped together. It is also consistent
with the view that the bilingual lexiconis adynamicaly developing system, one that
changes as a function d which language becomes the dominant language (Heredia,



1997. As the bilingual spe&ker beames more proficient and fine-tunes the
semantic system (amongst other developments, e.g., an expanding size of the L2
lexicon), this “dominance” situation may shift to an L2 instead of L1 daminance
(Heredia & Altarriba, in press.

Finally, to simulate individual differences in the representation o bili nguel
lexicon, we mnstructed a smaller-in-size but otherwise identicd network as in
previous smulations. In the simulations reported above, we used 2,500 unts ead (a
50x50 gid) in SOM1 and SOM2. In the new simulation, we used 1,600 urits (a
40%x40 gid). This reduction in map sizeis meant to simulate abilingual processor
that has limited resource (e.g., working memory cgpadty) at disposal. There is
evidencethat individual differencesin language processng are often due to working
memory capadty (Just & Carpenter, 1992. Our network that used a smaller map
size might thus dow disrupted representational structure or processng
abnarmaliti es.

Analyses of this manipulation show that the network was able to display
language separation, lexicd categories, and priming and interference dfeds as in
the bigger network. However, given the same amourt of training (500 epochs), the
network had dfficulty in dstingushing between many words that are dther
phondogicdly or semanticdly similar. In ather words, the same units on the SOM
often represented two or more similar lexicd items. Recogrition rate dropped to
57% for SOM1 (as compared to 74% with the 50x50 map) and to 54% for SOM2
(as compared to 74% with the 50x50 maps).> As a result of the deaease in
recogrition fidelity, the network’s associative links were much more diffuse than
those in the larger networks. Thus, there were stronger within and crosslanguage
priming and interference dfeds as compared with the bigger network, some of
which could na be explained easily. For example, adivation d let on SOM1 caused
bei (let), let, show, and mouse, and red to become adivated on SOM2; adivation o
go on SOM2 caused say, waa (say), waai (bad), hai (be), gong(say), hoei (go), and
know to become adivated on SOM1, and so on These results indicate that the
unwua patterns in hilingual processng may be due to dffuse bilingua
representations, which might in turn be dueto limited processng capaaty.

In sum, manipulations of size of the leaning corpus and size of the network
extend the caabilities of our model in acourting for a variety of bilinguel
phenomena.

General Discussion and Conclusions

In this chapter we provided an owerview of conredionist bilingualism, and
presented a sketch of SOMBIP, a self-organizing conredionist model of bili ngual
procesing. A number of theoreticd and architedural considerations of the model
are discussed, and preliminary simulation results from the model are analyzed. Our
SOMBIP model consists of two interconreded self-organizing reural networks,
couped with a reaurrent neural network that computes lexicd co-occurrence
constraints. Simulations with our model indicate that (1) the model can acourt for



distinct patterns of the bilingual lexicon withou the use of language nodes or
language tags, (2) it can develop meaningful lexicd-semantic caegories through
self-organizing processes, and (3) it can acournt for a variety of priming and
interference dfeds based on asciative pathways between phondogy and
semantics in the lexicon, and (4) it can explain lexicd representation in hilinguals
with dfferent levels of proficiency and working memory capadty. These
cgpabiliti es of our model are due to its design charaderistics in that (a) it combines
locdist and dstributed properties of processng, (b) it combines representation
(through self-organization) with leaning (reaurrent neural network WCD, Hebbian
leaning d aswciative pathways), and finaly (c) it combines lexicon and sentences
in bilingual processng. Most previous conredionist bilingual models (e.g., BIA and
BIMOLA) are stationary models. To fully cagpture the dynamics in hilingual
language processng, a model neels to incorporate the ébove mentioned properties,
espedally the learning charaderistics such asin SOM and WCD.

Green (1998 proposed an inhibitory control (IC) model of bilingual lexicd
processng. Althoughthe IC model is not a cwnnedionist model — on the contrary, it
has guite some symbdlic Al flavor, for example, with gcal-oriented dedsion boxes
and control schemas — it attempts to integrate adivation-based acouns (e.g.,
interadive adivation mechanisms). According to Green, there ae multiple levels of
control, with ead level asociated with a spedfic schema, from high-level event
scripts to low-level articulatory controls. The particular level at which the IC model
operatesis an intermediate level, the lemma level, whereby an inhibitory mecdhanism
suppresses the adivation d lemmas that are tagged as belongng to the language
other than the intended ore. Crucia to the functioning o this mechanism are the
language tags, tags that are believed to be part of the wmnceptual system of the
lexicon. Green likened the language tags to the language nodes in the BIA model,
which function to reinforce lexicd adivation d the airrently adivated language,
while simultaneously deaeasing lexicd adivationin the other lexicon. Interestingly,
in a brief note, Dijkstra and van Heuven (1998 mentioned that the BIA language
nodes might be though to represent abstradions of very different statisticd
regularities in the two languages due to lexicd co-occurrence differences. This view
differs from what Green assumed, but is completely consistent with ou argument
here (in SOMBIP, lexicd co-occurrence statistics are explicitly incorporated through
WCD).

In a commentary on the IC model, Li (1998) questioned the necessty of
language tags. One pieceof evidence ggaingt the nation d language tags in IC is
that some recent studies show that there need nd be a ©st asociated with language
switching, espedally in natural speed situations (Grogean, 1988 1997 Grogean &
Miller, 1994 Li, 1996) — acwrding to |C, language switching takes time, since the
process of switching to ancther language invalves the inhibition o previous
languege tags. In the IC model, the inhibition d a particular stimulus suts down the
adivation d al other related stimuli in the same language from top dawn. This
asamption seems to contradict several adivation-based acourts that the bili nguals
two languages may be dways adivated, thoughthe strength of the adivation dffers



in spedfic lingustic situation, depending onthe frequency of the target words, the
sentence mntext, the speaker’s proficiency in the two languages, and the speedt
mode (Grogiean, 1988 1997 Li, 1996). Thus, Li (19983) argued that it is unclea
whether the languege tags are ad hac oconstructs or necessary comporents of
bilingual procesdng, just as it is unclea whether language nodes are necessry. Li
sugeested that the seemingly separate representations of the two lexicons, and the
related interlingual priming/interference dfeds, might arise & aresult of lexicd and
grammeticd leaning in a self-organizing reural network, in which no dstinct labels
are given to items of the two o more langueges. Spedficdly, words from baoth
languages may exist in the same topdogicd map, but over time the network can
develop locdized petterns of adivity in leaning the mappings between phondogy,
orthography, morphdogy, and semantics. These locdized patterns of adivity may
then correspond to the leaner’s internalized, distinct representations of the two
lexicons. In this gudy, we have implemented predsely such a model, the SOMBIP,
which nicdy acourts for the independent (yet interadive) representations of the
bilingual lexicon. A supra-lexicd level of language nodes or language tags is absent
in SOMBIP, but the dfeds of the language nodes or tags are caotured in the system.

In resporse to Li's commentary, Green agreed that the bilingual lexico-
semantic system is composed o self-organized networks, as a presumption d the
subset hypahesis (Paradis, 1989 adopted by the IC model. But he agued that
languege tags are necessry and that even in self-organizing retworks sich as the
one used by Miikkulainen (1997 there is dill room for language tags. Interestingly,
Miikkulainen (1993 did mention a multiple SOM network that functions exadly as
Green would argue: ead language has its own separate lexicon, stored on dff erent
maps. A high-level control network would determine which language modues are
adive, switching between conversations in two langueges. Such an approach was
intended to model, acording to Miikkulainen, distinct language behaviors in the
representation d the bili ngual lexicon in the brain. But Miikkulainen also speaulated
onadifferent (in ou view a more plausible) model, one that is very similar in spirit
to SOMBIP. This model would represent al word forms from the muiltili nguel
lexiconin asingle lexicd map, and all semantic representations in a single semantic
map. These two maps could be sswciated with ead ather via the sswociative links.
Crosslanguage priming and interference (“dips between languages’ in his terms)
could be modeled by ndsy semantic mapping (like the diffuse map in ou limited-
resource network) or by associative propagation. In this version d the model, there
would till be ahigh-level control network, but the task of the cntrol mechanism
merely moduates language output such that the same sentence parser could work on
different language materials. In SOMBIP, however, this control network was
unrecessary as the WCD network works equally efficiently in bah languages.

The aility of our network to show distinct patterns of the bilingual lexicon
without distinct medhanisms (e.g., separate language tags or nodks) is yet another
case of the dasdcd conredionist argument: moduar lingustic behaviors that are
different or disociated need na arise from dual-medhanisms or dual-routes in the
representational or processng system. They can naturally emerge from leaning the



input charaderistics within a single system, a system that can be operationaized in
terms of dtatisticd or conredionist principles. This argument was advanced by the
original PDP studies of the English past-tense aquisition (Rumelhart & McClelland,
1986, and has snce been suppated by reseach in many damains of language
studies, including languege agquisition, normal and impaired word reading, and
languege organizéion in the brain (e.g., ElIman et al., 1996 Plaut et al., 1996
Miikkulainen, 1997 Small et al., 1995.

As afinal important note, our model departs from the tradition that has been
adopted by many hilingual reseachers (seeKroll & de Groat, 1997, for discusson)
in that it does not asaume there is an integrated level of meaning-concept or meaning
and concept (the “conceptual level”). The mixture of meaning with concept has
creded much confusion, in bah first language and semnd language agquisition
reseach (seeLi & Shirai, 2000. This confusion is further complicated by the fad
that many psychdingusts adopt a languege-spedfic lexicd-semantic level, the
lemma level (Levelt, 1989. To avoid these mnfusions, thus, in ouw mode there is
no language-independent “conceptual” representation. Our semantic representation,
or more acarately, lexicd representation that contains both syntadic and semantic
information, comes out the WCD network’s analyses of global lexicd co-occurrence
information. This level of representation matches more dosely with what linguists
cdl “meaning’, rather than “denctata” (Lyons, 1977 — entities of concepts that
many hilingual researchers usein their picture naming tasks.

To conclude, the SOMBIP model outlined in this chapter serves as a new
model of bilingual processng and provides a new perspedive on connedionist
bilingualism. It has the potential of explaining a wide variety of empiricd and
theoreticd isaues in hilingual reseach. So far, we have tested the SOMBIP model
only on spoken (transcribed) bilingual Chinese-English data. How the model
generalizes to ather bilingual situations shoud be further tested. Chinese differs
significantly from English and aher Indo-European langueges in phondogicd,
syntadic, and lexicd structures and these diff erences are boundto affed language
processng (Li, 1996k 1998h. When ore examines bilingual pairs of languages that
are more similar (e.g., Dutch and German), it is likely that the model will show
more integrated phondogicd and semantic representations of the bilingual lexicon.
Moreover, if the mixed bilingual data contain more intra-sentential code-switches
(rather than inter-sentential as in ou data), the network that recéves sich data &
inpu might also produce more integrated semantic representations. In addition, the
current SOMBIP design could easily be extended to simulate orthographic-semantic
relationships, and ke evaluated against empiricd findings and results from the BIA
model. Other interesting extensions of the model would include smulating impaired
semantic, phondogicd, or orthogaphic structures by adding ndse to the SOM
maps and by damaging the aciative pathways that conread word form and word
meaning. Such modeling efforts could shed light on Llingual representation and
processngin the brain (Fabbro, 1999.



Notes

1 The arrent scheme represents a scded-down version d the full tri-syllabic template
representation d English (seeLi & MadWhinney, 2001, for the full version). As auch, it is
limited in certain respeds; for example, it is not able to represent consonant clusters as in
string /strIN/, which would require aditional C-dlots (e.g., CCCVV C for one syllable).

21tis impaossgble to show al the detail s of the origina figure here becaise eat of the 2-D
maps contains 400words gpread ona50x50 gid of 2,500 urits.

3 The organizaions of the phondogicd representations are mainly based on phoemic and
template simil arities, and are relatively lessinteresting for our purpose here.

4 The distinction between state and adivity verbs has attraded significant debates concerning
the nature and aigin dof this distinction in language aquisition. Some reseachers propose
that this distinction is innately given (Bickerton, 1981, 1984. We have agued that this
distinction can arise from children’s gatisticd leaning of the semantic properties of verbs, in
the same way as it would occur distinctly in ou conredionist networks (Li & Shirai, 2000).

5 The recogrition rate is caculated as the rate of correctly mapped words in the SOM over
the total number of words in the lexicon. Whether a word is mapped corredly is determined
by afunction that cdculates the neaest distance between the input and the mdevedorsin the
map. Note that the remgrnition rate of 74% is not too impressve & first glance This is
becaise the network leans a many-to-many mapping function for the noun and verb
trandation equivalents. If the network leans a one-to-one mapping, the recogntion rate
would go upto 93% and 9% for SOM1 and SOM2, respedively.
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