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Abstract. Intrinsic motivation (IM) research is a promising part of re-
inforcement learning which can push artificial agents to completely new
frontiers. Namely, from agents with a simple action repertoire, driven
by the human engineered reward, to more autonomous agents with their
own goals and skill development, able to act successfully in the environ-
ments which are unknown to their human designers. In this paper, we
introduce an IM model, which combines via gating two different moti-
vational signals: a prediction error estimated by the forward model and
a predictive surprise estimated by the meta-critic. This approach accel-
erates the exploration of the environment and hence the agent is able
to find sources of an external reward in a shorter time than the base-
line agents, especially in case of sparse reward. We test this prediction
using two environments with dense reward (HalfCheetah and Ant) and
two with sparse reward (MountainCar and AerisNavigate), and show the
superior performance of an agent with a gated reward in most cases as
expected. The models are also compared using reliability measures re-
lated to dispersion and risk, calculated during learning. The source code
is available at https://github.com/Iskandor/MotivationModels.

Keywords: Reinforcement learning · Intrinsic motivation · Prediction
error · Predictive surprise · Active exploration

1 Introduction

The development of reinforcement learning (RL) methods has achieved much
success over the last decade, since together with advances in computer vision
[15] [11], it became possible to teach agents to solve various tasks, play simple
computer games [20], even surpassing human players [19]. Nevertheless, these
are still concrete single tasks. A lot of computational time has to be spent, and
the agents are given a lot of resources to manage to learn the aforementioned
challenges in a reasonable time. However, coping with a complex (continuous)
environment such as our world is still a challenge. There are several pathways
offering research opportunities. One is the search for new optimization and learn-
ing methods that would shorten the learning time or reduce the amount of re-
sources needed. Another is hardware development, which attempts to adapt to
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the requirements of neural networks that are currently being used in the field of
reinforcement learning.

The most popular approach to make RL more efficient is based on intrinsic
motivation (IM) [2]. IM has a strong psychological motivation [25], since chil-
dren acquire skills and knowledge about the world using their own drive and
experience without obvious reward from the outer environment. If we want to
achieve an open-ended development with artificial agents, we have to master this
first step and equip them with an ability to generate their own goals and acquire
new skills. Therefore, computational approaches concerned with IMs and open-
ended development are thought to have the potential to lead to the construction
of more intelligent artificial systems, in particular systems that are capable of
improving their own skills and knowledge autonomously and indefinitely [2].

In this paper, we introduce a new version of a IM-based agent that is shown
to efficiently learn the tasks at hand. It selects between two different motivation
signals generated by the forward model and the meta-critic. The selection is
based on simple rule performed by the gating module and its output signal is
added to external reward from the environment and serves as input for critic
which in turn generates the learning signal for actor.

In particular, we provide two main contributions: First, inspired by the defi-
nition of the predictive surprise motivation [22], we propose modifications to the
original formula and explored its impact on the learning process of agents. Sec-
ond, we explore a gating approach to exploit the prediction error and predictive
surprise motivation signals generated in the intrinsic module of the agent. The
learning models are statistically compared using the reliability measures.

2 Related work

The concept of intrinsic (and extrinsic) motivation was first studied in psychol-
ogy [25], and later entered the RL literature where the first taxonomy of com-
putational models appeared in [22]. Following this taxonomy, we can divide the
concept of motivation into external and internal, depending on the mechanism
that generates motivation for the agent. If the source of motivation comes from
outside, we are talking about external motivation, and it is always associated
with a particular goal in the environment. If the motivation is generated within
the structures that make up the agent, it is an internal motivation.

Another dimension for the differentiation, extrinsic or intrinsic, is less ob-
vious. Extrinsic motivations pertain to behaviors whenever an activity is done
in order to attain some separable outcome. Some variability exists in this con-
text, since these behaviors can vary in the extent to which they represent self-
determination (see the details in [25]). On the other hand, intrinsic motivation
is defined as doing an activity for its inherent satisfactions rather than for some
separable consequence (or instrumental value). It has been operationally defined
in various ways, backed up by different psychological theories, which point to
some uncertainty in what IM exactly means. Nevertheless, Baldassarre [1] offers
a solution of an operational definition of IMs as processes that can drive the
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acquisition of knowledge and skills in the absence of extrinsic motivations. Fur-
thermore, he proposes (and explains why) a new term of epistemic motivations
as a suitable substitution for intrinsic motivations.

According to the prevailing view, the computational approaches to IM can
be divided into two main categories with adaptive motivations. Knowledge-based
approach is focused on acquisition of knowledge of the world and draws on the
theory of drives, theory of cognitive dissonance and optimal incongruity theory.
Competence-based approach focuses on acquisition of skills by motivating the
agent to achieve a higher level of performance in the environment, which means
to acquire desired actions to achieve self-generated goals. Its psychological basis
includes the theory of effectance and the theory of flow.

The knowledge-based category is commonly divided into prediction-based
and novelty-based approaches. Prediction-based approaches often use a forward
model (e.g. [28,3,23]) or a variational autoencoder [14] to compute the prediction
error (for more details, see [5]). The novelty-based approaches monitor the state
novelty and the intrinsic signal is based on its value. The first models were based
on count-based approach [31]. This method is impractical for large or continuous
state spaces and it was extended by introducing pseudo-count and neural den-
sity models [21,18,17]. A similar method to pseudo-count was used by a random
network distillation model [6] with a lower complexity.

It is an empirical question what is the best IM signal for a given task [26]. The
difficulty increases if an agent is supposed to learn multiple skills in the shortest
time. For instance, in [26] it is shown that intrinsic reinforcements purely based
on the knowledge of the system are not appropriate to guide the acquisition of
multiple skills and that the stronger the link between the IM signal and the
competence of the system, the better the performance. Hence, the combination
of both types seems to be useful. In a recent work [24] it is shown that the
combination of knowledge-based and competence-based IM signals leads to more
efficient exploration and task learning.

The concept of a meta-critic (MC), or a module that learns to predict the
prediction error is not new in reinforcement learning; it was introduced in early
1990s within the adaptive curiosity framework [27], and has been extended in
various forms since then. Also the concept of exploration has been studied inten-
sively, one of the first being the idea of an exploration bonus [30], later analyzed
in alternative ways in [10,29]. Related work on surprise-based approaches in-
cludes Bayesian bio-inspired approach where surprise measures how data affects
an observer, in terms of differences between posterior and prior beliefs about
the world [12]. We use a MC module in a novel role of gating two different
motivational signals, based on a prediction error and predictive surprise.

3 Preliminaries

The decision making problem in the environment using RL is formalized as
a Markov decision process which consists of a state space S, action space A,
transition function T (s, a, s′) = p(st+1 = s′|st = s, at = a), reward function R



4 M. Pecháč and I. Farkaš

and a discount factor γ. The main goal of the agent is to maximize the discounted
return Rt =

∑∞
k=0 γ

krt+k in each state. Stochastic policy is defined as a state
dependent probability function π : S × A → [0, 1], such that πt(s, a) = p(at =
a|st = s) and

∑
a∈A π(s, a) = 1 and the deterministic policy π : S → A is

defined as π(s) = a.
An agent following the optimal policy π∗ maximizes the expected return R.

The methods searching for the optimal policy can be divided into on-policy (fam-
ily of actor–critic algorithms), and off-policy (family of Q-learning algorithms)
methods. Actor–critic algorithms are based on two separate modules: an actor
which approximates agent’s policy π and generates actions and a critic that
estimates the state value function V π defined as:

V π(s) =
∑
a

π(s, a)
∑
s′

T (s, a, s′) [R(s, a, s′) + γV π(s′)] (1)

or action-state value function Qπ defined as:

Qπ(s, a) =
∑
s′

T (s, a, s′) [R(s, a, s′) + γV π(s′)] (2)

The actor then updates its policy to maximize return R based on critic’s value
function estimations.

4 Methods
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Fig. 1: Proposed intrinsic motivation
model with a meta-critic module.

In this section we describe the for-
mal approach to the intrinsic module
based on the prediction error and pre-
dictive surprise as shown in Fig. 1.
The module provides for a short time
a larger amount of intrinsic reward to
the agent, especially in the first phases
of learning. These bursts of intrinsic
reward can be interpreted as predic-
tive surprise, because there is a large
difference between an estimated and
the actual error of the forward model.

We propose two hypotheses: First,
the gating mechanism can take the
best of both reward signals and signif-
icantly improve the learning process
in environments with sparse reward,
so the agent should reach optimal pol-
icy in shorter time and accumulate more external reward during the training.
Second, we expect that performance in environments with dense rewards will be
also improved because of more rapid exploration performed mainly in the first
period of learning process. Both hypotheses are tested in experiments. Now we
describe its individual components.
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4.1 Meta-critic

Our motivational module is based on two prediction modules. The first module
is the forward model Π(st, at) with parameters θfm which predicts the next state
ŝt+1 from current state and action

Π(st, at; θfm) = ŝt+1 (3)

The prediction error et is defined as the normalized squared Euclidean distance
between the predicted state ŝt+1 and the next observed state st+1

et =
1

n
‖st+1 − ŝt+1‖22 (4)

where n is the dimensionality of the state space. The intrinsic reward based on
the prediction error is defined as

rifmt = et (5)

Such intrinsic reward decreases as the FM improves its predictions. That
ideally occurs the transition from state st using action at to the next state st+1

which are well-known to the agent’s FM, because they were experienced several
times, and hence they no longer serve as a source of intrinsic motivation.

The second module estimates predictive surprise motivation which rewards
the states that occur but were not expected, or do not occur but were expected.
To formalize the expectations, we introduce another predictor MetaΠ and refer
to it as a meta-critic.1 It aims to estimate the error et of the first predictor Π
at time t

MetaΠ(st, at; θmc) = êt (6)

where θmc are MC parameters. In this way, we obtain qualitatively new infor-
mation about the state of the agent’s internal model about the environment,
which describes how confident the agent is about its predictions. Based on this
information we propose a new intrinsic reward function

rimc
t =

{
et/êt + êt/et − 2, if |et − êt| > σ

0, otherwise
(7)

If the MC correctly estimates the prediction error, the reward is close to 0 due to
constant 2 which is subtracted from the term. To prevent cases where the error
estimation and prediction error are very small, but still generate some reward,
we introduced a sensitivity threshold σ which has to be exceeded. The reward
function defined in this way can stimulate an agent if the prediction error is low
and its estimate is high, or vice versa, when the prediction error is high and its
estimate is low. The training of the proposed intrinsic module is straightforward
and can be approached as an optimization problem, formulated as

min
θfm,θmc

[
1

n
‖st+1 − ŝt+1‖2 + ‖et − êt‖2

]
(8)

1 There is no connection to a critic estimating the value functions.
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4.2 Intrinsic reward gating

The proposed motivation model has two prediction modules generating two dif-
ferent IM signals. We decided to introduce the gating of reward signals such that
in each step of an episode, only one of the two signals is passed through. This is
aimed to model situations when the rarely occurring, unexpected event overrides
the prediction error reward whose magnitude is much smaller. The final intrinsic
reward added to an external reward is defined as

rit = max(εfm tanh(rifmt ), εmc tanh(rimc
t )) (9)

where the reward signals from both modules are scaled to the interval (−1, 1) and
then independently scaled by a respective factor ε. This procedure was informed
by an observation that predictive surprise motivation often outperforms common
prediction error motivation and leads to an effect of sudden surprise for the agent.
Without surprise the agent is driven by prediction error motivation.

Table 1: Agents with their respective
motivation signals.
Agent type Motivation
Baseline none
Forward model (FM) rifm (eq. 5)
Meta-critic (MC) rimc (eq. 7)
Meta-critic gated (gMC) ri (eq. 9)

The final instantaneous reward rt
provided to the critic is defined as

rt = ret + rit (10)

where ret is the instantaneous external
reward and rit was defined in eq. 9.
The above mentioned types of re-
ward were used in four different agents
listed in Table 1.

5 Experiments

To appreciate the behavior of the proposed models, we tested them in four en-
vironments of different complexity, namely MountainCar available in OpenAI
Gym [4], AerisNavigate available in gym-aeris package, then HalfCheetah and
Ant from PyBullet Gym [8]. All environments have continuous state and action
spaces. MountainCar present a challenge for exploration, because the agent re-
ceives a negative reward according to the magnitude of its action vector, and if
it does not find a positive reward fast enough, the policy will converge into the
agent’s inactivity in the extreme case. AerisNavigate environment is the most
difficult due to a very sparse reward obtained only at the end of an episode. The
goal of MountainCar, and AerisNavigate agents is to reach a specific location
in the state space: the top of the hill and the target area that changes in each
episode, respectively. The next two environments (HalfCheetah, Ant) provide
a dense reward signal, as a mixture of positive and negative rewards per step.
Here the task of the agents is to reach the maximum distance from the starting
location until the step limit is over.

We divided our experiments in two parts. The first consists of testing the
agent with the MC module in described environments to compare the results
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with the baseline models. In the second part, we focus on a statistical analysis
of all models using the specific metrics, measuring model reliability, intrinsic
reward density and distribution.

5.1 Model training setup

All our agents are trained using DDPG algorithm [16] that has been shown to
work well in many tasks. The agent’s deterministic policy is approximated by
an actor and Q-value function is approximated by a critic. The actor and critic
are represented by three-layer neural networks and for parameter optimization
of both modules we used Adam algorithm [13]. The learning rates of actor and
critic in all environments were αact = 0.0001 and αcrit = 0.0002, respectively.
Exploration was performed by adding noise to the actor’s output, generated by
random variable with Gaussian distribution and monotonically decreasing stan-
dard deviation. All environments had a discount factor set to γ = 0.99 and in
all our experiments, εfm = εmc = 1, except the experiments in AerisNavigate
environment, where εfm = εmc = 0.01. More hyper-parameters and further de-
tails of the learning process can be found in our source codes. To model a less
complex environment, with low state space dimension (MountainCar), we used
three-layer neural networks (for both FM and MC) and the models were trained
by Adam algorithm, in online manner adapting to actual samples experienced
by the agent. We chose the learning rate values αfm = 0.0001, αmc = 0.0002,
respectively, slightly increasing the learning speed of MC to improve the speed
of estimation of FM error which represents moving target in this case. Based on
preliminary tests we increased the depth of neural networks for more complex
environments (HalfCheetah and Ant) to increase their capacity and we decided
to use five-layer neural networks. We also employed an experience replay buffer,
often used in off-policy learning algorithms to decorrelate the samples, e.g. [20],
generating batches of size 32 used for learning of FM as well as MC (each having
its own sample batch). Slightly different modules were needed for AerisNavi-
gate environment, where the input was represented as multi-channel tensor of
Lidar signals. To implement the FM we used four 1D-conv operators and then
one transposed 1D-conv followed by one 1D-conv operator to create prediction
about the next states. The MC module has the same structure with an additional
linear layer on the top, estimating the FM error.

Table 2: Average cumulative reward per step for all models and tasks.

Model / Env MountainCar AerisNavigate HalfCheetah Ant

Baseline 53.4 ± 58.4 0.35 ± 0.90 1021.8 ± 414.8 990.4 ± 450.8
Forward model 54.8 ± 59.3 0.44 ± 0.86 1060.1 ± 447.6 1287.9 ± 562.0

Meta-critic 60.2 ± 52.7 0.30 ± 0.89 1010.3 ± 401.6 1178.6 ± 540.1
Meta-critic gated 66.1 ± 55.6 0.48 ± 0.86 1073.7 ± 421.1 1246.6 ± 563.8
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Fig. 2: Simulation results of the four agent types trained in four environments.
The gMC agent was the most successful in MountainCar and AerisNavigate
environments, and also reached interesting performance in Ant environment.
The learned policies of IM-based agents in HalfCheetah environment do not
differ much from the baseline.

(a) AerisNavigate (b) Ant

Fig. 3: Detailed analysis of the gated meta-critic for two chosen environments
showing measured quantities within a single run. The first chart of 3a shows
cumulative rewards and the second chart reveals a distribution of magnitude of
intrinsic reward within the entire training. The same holds for 3b. All charts are
smoothed by a moving average with window size of 10,000 steps (for interpreta-
tion, see the text).

Table 3: Relative proportion (prediction error / predictive surprise) of intrinsic
reward signals (averaged over runs) for the gated meta-critic agents across four
quarters of the training.

Environment Q1 Q2 Q3 Q4

MountainCar 99.64 / 0.36 % 100.00 / 0.00% 100.00 / 0.00% 100.00 / 0.00%

AerisNavigate 97.96 / 2.04% 98.71 / 1.29% 98.64 / 1.36% 98.50 / 1.50%

HalfCheetah 91.15 / 8.85% 93.73 / 6.27% 93.90 / 6.10% 94.38 / 5.62%

Ant 90.28 / 9.72% 90.78 / 9.22% 92.31 / 7.69% 93.03 / 6.97%
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5.2 Model comparison

For all the environments we performed 15 training runs of each variant: the
baseline had no motivation, the FM used the prediction error motivation, MC
had only predictive surprise motivation and finally the gMC combined both pre-
dictive motivations. To evaluate performance of agents we ran basic analysis in
which we calculated mean and standard deviation of accumulated external re-
ward and the results can be found in Tab. 2 and Fig. 2. Each curve represents an
average cumulative external reward for each step smoothed by running average
with window size of 105 steps (10 episodes). According to these metrics, gMC
agent reached the highest values in four environments (MountainCar, AerisNav-
igate and HalfCheetah). In two cases (HalfCheetah, Ant) the results were very
similar to the other agents, hence not supporting our hypothesis. In Fig. 3 we
present single runs of two chosen environments. We can see the evolution of
external and intrinsic rewards (left graph) and a distribution of the prediction
error and predictive surprise rewards (right graph).

To measure how often is predictive surprise the source of intrinsic reward
we divided each training run into 4 quarters (e.g. for run with 1M steps Q1: 0–
0.25M, Q2: 0.25–0.5M, etc.). We evaluated average density of predictive surprise
occurrence for each quarter. The results are provided in Tab. 3. For completeness
and comparison, we also added data for prediction error based reward. In most
cases, we can see a decreasing tendency of predictive surprise average density as
the learning proceeds to its final phase (Q4).

5.3 Assessment of model reliability during learning

To obtain a quantitative comparison of the RL models, we evaluated selected
measures of reliability, following [7]. They proposed three axes of variability,
of which the first two capture reliability “during training”. Across Time mea-
sures the algorithm stability within each run, whereas Across Runs measures
consistently reproducible performances across multiple training runs.

For both axes of variability, two kinds of measures are evaluated: dispersion
and risk. Dispersion, as the width of the distribution, is taken as the Inter-
quartile range (IQR) (i.e. the difference between the 75th and 25th percentiles),
which is suitable for nonnormal distributions. Risk is defined as the heaviness
and extent of the lower tail of the distribution. To measure risk, Conditional
Value at Risk (CVaR) is used, measuring the expected loss in the worst-case
scenarios. For motivation for these measures and more detailed explanation, the
reader is referred to [7].

The RL algorithms are evaluated in Fig. 4, separately for sparse and dense
rewards, in terms of dispersion and risk across runs which were found most
informative. Dispersion profiles are consistent with variability of learning curves
in Fig. 2 and reveal the fact the IM-based agents, and in particular gMC agent,
outperform the baseline in most cases. Risk profiles provide a new information,
since they focus on worst-case behaviors. Here, the evidence shows that gMC
excels in two cases (MountainCar and Ant) and is never inferior to other agents.
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Fig. 4: Selected reliability measures (across runs) assessed for each environment
and four learning agent types. Better reliability is indicated by less positive
values in case of dispersion, and more positive values in case of risk.

6 Discussion

The process of learning with motivation based on gating the predictive surprise
and the prediction error introduces quite complex interactions among all modules
(actor, critic, forward model and meta-critic). Presented analyses suggest that it
is necessary to employ a suitable FM architecture with a sufficient capacity and
an appropriate training technique to take advantage of both signals. In case the
FM cannot adapt quickly and hence exhibits unstable behaviour, it introduces
much more noise into the model. It is also more difficult for the MC to estimate
an error with higher variance, which leads to generating more surprise.

We consider the gMC agent successful in two sparse environments (Mountain-
Car and AerisNavigate), where it outperformed the other agents. For the dense
environment HalfCheetah, the external reward is sufficiently informative, and
hence adding another source of reward did not induce significant improvement.
A different situation occurred in Ant dense environment where the IM agents
converged to more successful policies. There is also an open question of scal-
ing the intrinsic reward. We set the scaling parameter so that the accumulated
intrinsic reward had a magnitude similar to the accumulated external reward
but it would be beneficial to try further experiments with different scales. One
of the shortcomings of our approach is the forgetting in FM and MC despite
their being trained from the replay buffer. This is noticable particularly in case
of AerisNavigate (in Fig. 3). In the late phase of training, when the policy was
quite stable and the agent was experiencing a smaller set of different trajecto-
ries, its actor module became overtrained and the policy collapsed for a short
time. This caused large errors in FM predictions despite the fact, that this worse
policy had been experienced earlier (or similar, resulting in a similar accumu-
lated external reward). A sudden change in the prediction error induced surprise
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which increased the amount of intrinsic reward motivating the agent to further
explore this worsened policy, which obviously had an undesirable effect. We con-
sider the presented method and results of our experiments as a viable proof of
concept of a broader research focusing on combining different motivation signals.
We proposed an intrinsic motivation model based on the prediction error and
the predictive surprise, by introducing another predictor – meta-critic – that
estimates the error of the forward model. Predictive surprise represents a quali-
tatively new information in the form of an intrinsic signal. We performed tests
of models with motivation based on predictive surprise and models combining
prediction error motivation and surprise by simple gating.

With the gating approach we obtained interesting results, which demonstrate
in three tasks the benefit of adding the IM module and also provide insight
that combining two motivation signals is a viable approach with not yet fully
explored potential. Further improvements of the model will be sought, based on
fine-tuning its parameters and modification of its architecture.

We were able to construct intrinsic signals based on the outputs of our predic-
tive modules which can refer to different types of behavior. We plan to identify
some basic behaviours in psychology and create corresponding intrinsic signals
[9]. We believe that combination of these basic rewards could lead to more com-
plex behaviours narrowing the gap between machines and humans.
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