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Abstract

Reinforcement learning can solve decision-making
problems and teach an AI agent to behave in an envi-
ronment according to a pre-designed reward function.
However, such an approach becomes very problematic
if the reward function is too sparse and the agent does
not come across the reward during the environmental
exploration. The solution to such a problem may be in
equipping the agent with an intrinsic motivation, which
will provide informed exploration, during which the
agent must is likely to also encounter external reward.
Novelty detection is one of the promising branches of
intrinsic motivation research. We present a two vari-
ants of novelty detector based on distillation of fea-
ture extractor which is learned by contrastive loss. The
results show that such an approach can achieve faster
growth and higher external reward for the same training
time compared to the baseline model, which implies im-
proved exploration in a very sparse reward environment.
The source code is available at https://github.
com/Iskandor/MotivationModels

1 Introduction

The development of reinforcement learning (RL) meth-
ods has achieved much success over the last decade,
since together with advances in computer vision
(Krizhevsky et al., 2012; He et al., 2016), it became pos-
sible to teach agents to solve various tasks, play com-
puter games (Mnih et al., 2013), even surpassing human
players (Mnih and et al., 2015). Nevertheless, these are
still concrete single tasks. Training times are very long
and the agents need a lot of resources. Coping with
complex (continuous) environments such as our world
is still a challenge. There are several research oppor-
tunities. One is the search for more efficient learning
methods. Another is hardware development, which at-
tempts to adapt to the requirements of neural networks
that are currently being used in the RL field.

The most popular approach to make RL more effi-
cient is based on intrinsic motivation (IM) (Baldassarre
et al., 2014). IM has a strong psychological motiva-
tion (Ryan and Deci, 2000), observed in children during
development. If we want to achieve an open-ended de-
velopment with artificial agents, we have to master this

first step and equip them with an ability to generate their
own goals and acquire new skills. Therefore, computa-
tional approaches concerned with IMs and open-ended
development provide the potential in this direction lead-
ing to more intelligent systems, in particular those ca-
pable of improving their own skills and knowledge au-
tonomously and indefinitely (Baldassarre et al., 2014).

In particular, we provide three main contributions:
First, we improved the stability of the Spatio-Temporal
DeepInfoMax algorithm (Anand et al., 2019) in the
conditions of an incomplete dataset (online learning),
which we use for feature extractor training. Second, we
propose a new model for novelty detection (inspired by
Burda et al. (2018b)), which serves as a source of in-
trinsic motivation based on the distillation of the feature
extractor. Third, we hypothesize that a properly trained
feature extractor can serve both as a source of features
for the actor and critic and as a source of internal moti-
vation, leading to a simplification of the model. We also
managed to perform the first tests supporting this idea.

2 Related work

The concept of intrinsic (and extrinsic) motivation was
first studied in psychology (Ryan and Deci, 2000), and
later entered the RL literature where the first taxonomy
of computational models appeared in Oudeyer and Ka-
plan (2009). Following this taxonomy, we can divide
the concept of motivation into external and internal, de-
pending on the mechanism that generates motivation for
the agent. If the source of motivation comes from out-
side, we are talking about external motivation, and it
is always associated with a particular goal in the envi-
ronment. If the motivation is generated within the struc-
tures that make up the agent, it is an internal motivation.

Another dimension for the differentiation, extrin-
sic or intrinsic, is less obvious. Extrinsic motivations
pertain to behaviors whenever an activity is done in or-
der to attain some separable outcome. Some variabil-
ity exists in this context, since these behaviors can vary
in the extent to which they represent self-determination
(see the details in Ryan and Deci (2000)). On the other
hand, intrinsic motivation is defined as doing an activity
for its inherent satisfactions rather than for some sepa-
rable consequence (or instrumental value). It has been
operationally defined in various ways, backed up by dif-
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ferent psychological theories, which point to some un-
certainty in what IM exactly means. Nevertheless, Bal-
dassarre (2019) offers a solution of an operational defi-
nition of IMs as processes that can drive the acquisition
of knowledge and skills in the absence of extrinsic mo-
tivations. Furthermore, he proposes (and explains why)
a new term of epistemic motivations as a suitable sub-
stitution for intrinsic motivations.

According to the prevailing view, the computa-
tional approaches to IM can be divided into two main
categories with adaptive motivations. Knowledge-based
approach is focused on acquisition of knowledge of
the world and draws on the theory of drives, theory
of cognitive dissonance and optimal incongruity theory.
Competence-based approach focuses on acquisition of
skills by motivating the agent to achieve a higher level
of performance in the environment, which means to ac-
quire desired actions to achieve self-generated goals.
Its psychological basis includes the theory of effectance
and the theory of flow.

The knowledge-based category is commonly di-
vided into prediction-based and novelty-based ap-
proaches. Prediction-based approaches often use a for-
ward model (e.g. Stadie et al. (2015); Bellemare et al.
(2013); Pathak et al. (2017)) or a variational autoen-
coder Kingma and Welling (2013) to compute the pre-
diction error (for more details, see Burda et al. (2018a)).
The novelty-based approaches monitor the state novelty
and the intrinsic signal is based on its value. The first
models were based on count-based approach Tang et al.
(2017). This method is impractical for large or contin-
uous state spaces and it was extended by introducing
pseudo-count and neural density models Ostrovski et al.
(2017); Martin et al. (2017); Machado et al. (2018). A
similar method to pseudo-count was used by a random
network distillation (RND) model (Burda et al., 2018b)
with a lower complexity.

Contrastive learning (Chopra et al., 2005) is a ma-
chine learning technique used to learn the general fea-
tures of a dataset without labels by teaching the model
which data points are similar or different. Several differ-
ent objective functions were proposed e.g. Noise Con-
trastive Estimation (NCE) (Gutmann and Hyvärinen,
2010), InfoNCE (van den Oord and andOriol Vinyals,
2018), multi-class N-pair loss (Sohn, 2016). Contrastive
learning also started to be used in the field of state repre-
sentation learning (Lesort et al., 2018) and is proving to
be a suitable method for creating feature space (Anand
et al., 2019) and also finds its use in reinforcement learn-
ing (Srinivas et al., 2020).

3 Methods

The decision making problem in the environment using
RL is formalized as a Markov decision process which
consists of a state space S , action space A, transition

function Ts,a,s′ = p(st+1 = s′|st = s, at = a),
reward function Rsas′ and a discount factor γ. The
main goal of the agent is to maximize the discounted
return Rt =

P∞
k=0 γ

krt+k in each state, where rt is
immediate external reward at time t. Stochastic pol-
icy is defined as a state dependent probability function
π : S ×A → [0, 1], such that πt(s, a) = p(at = a|st =
s) and

P
a∈A π(s, a) = 1 and the deterministic policy

π : S → A is defined as π(s) = a.
An agent following the optimal policy π∗ maxi-

mizes the expected return R. The methods searching for
the optimal policy can be divided into on-policy (family
of actor–critic algorithms), and off-policy (family of Q-
learning algorithms) methods. Actor–critic algorithms
are based on two separate modules: an actor approxi-
mates agent’s policy π and generates actions and a critic
estimates the state value function V π defined as

V π(s) =
X

a

π(s, a)
X

s′

Ts,a,s′ [Rs,a,s′ + γV π(s′)]

or action-state value function Qπ defined as

Qπ(s, a) =
X

s′

Ts,a,s′ [Rs,a,s′ + γV π(s′)]

The actor then updates its policy to maximize return R
based on critic’s value function estimations.

3.1 Random Network Distillation model

The RND model (Burda et al., 2018b) has two compo-
nents: randomly initialized (and fixed) target network
ΦT that generates random features, and the learning net-
work ΦL that tries to predict them. Intrinsic motivation
is computed as the prediction error, defined as

rintr =
1

2
∥(ΦL(st)− ΦT (st))∥2 (1)

using the Euclidean norm. The model is simple and suc-
cessful in the environments with sparse reward but has
two serious disadvantages: (1) It is necessary to prop-
erly initialize the random network; and (2) over time,
the signal of intrinsic motivation disappears due to suffi-
cient adaptation of the learning network (a phenomenon
that could be called generalization).

3.2 RND model extended with action

A simple extension that we propose is to add an action
to the input, yielding the RNDa model. The randomly
initialized target network ΦT and the learning network
ΦL have two branches, one using convolutional neural
network (CNN) to process the state and the other using
multi-layerd perceptron (MLP) for action, and at the end
it mixes both feature vectors into one representation. In-
trinsic motivation is then computed as

rintr =
1

8
∥(ΦL(st, at)− ΦT (st, at))∥2 (2)
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(a) Feature extractor distillation separated model (FEDs)

(b) Feature extractor distillation model (FED)

Fig. 1: The schema of the feature extractor distillation models. In both variant, the target model (implemented as a
convolutional neural network, CNN) transforms the raw state vector into a feature vector. The learning model (also a
CNN) tries to predict the feature vector of the target model and the error between the two vectors serves as an intrinsic
motivation signal. (a) In FEDs variant, the actor and the critic learn from a fixed CNN, whereas in (b) FED variant, they
use the feature vector of the target model for further policy generation and value function estimation.

with an aim to increase the complexity of the input and
thus prevent an early decline in intrinsic motivation.
However, the key problems of the RND model are not
solved.

3.3 Feature extractor distillation (FED)

We propose two models based on concept of distillation
of feature extractor instead of randomly initialized net-
work like RND. The schematic representation of both
models is shown in Fig. 1.

By feature extractor we mean a module that learns
to create a meaningful feature space according to a cer-
tain loss function, which is independent of other mod-
ules that consume the features of this extractor, and
these modules could act properly. In other words, the
error gradient is not back-propagated to the feature ex-
tractor from modules that use its feature vectors as in-
put. By distillation we mean the transmission of the
transformation represented by one neural network to an-
other, whereby both networks will generate similar out-
puts for the same inputs.

In the first stage (denoted as Feature extractor dis-
tillation separated - FEDs - see Fig. 1a), we decided to
design and test a model similar to the RND model, but
with the addition of an objective function for target net-
work training. Such a model has a module for learn-
ing policy and value function, consisting of a CNN that
feeds two MLPs in roles of actor and critic. The goal
of the second module is to generate internal motivation,
which consists of target network ΦT returning feature

vectors and a learning network ΦL that learns the same
transformation and returns estimates of the feature vec-
tors generated by target network. Both networks are
CNNs. To this point, the architecture coincides with
the RND model. The difference is that we added the
learning rule for the target network. Following Anand
et al. (2019), we use the Spatio-Temporal DeepInfo-
Max (ST-DIM) algorithm leveraging multi-class N -pair
losses (Sohn, 2016):

LGL = −
IX

i=1

JX

j=1

log
exp(gi,j)P

s∗t∈Snext
exp(gi,j)

(3)

LLL = −
IX

i=1

JX

j=1

log
exp(fi,j)P

s∗t∈Snext
exp(fi,j)

(4)

where f(.) = f(st, st+1) and g(.) = g(st, st+1)
are score functions for local-local objective LLL and
global-local objective LGL respectively. Function gi,j
is defined as non-normalized cosine similarity between
transformed global feature ΦT (st) and local feature
Φ

(l,i,j)
T (st+1) of intermediate layer l in ΦT , where (i, j)

is spatial location. Analogically fi,j is non-normalized
cosine similarity between transformed local features
Φ

(l,i,j)
T (st) and Φ

(l,i,j)
T (st+1). Details of this algorithm

are provided in Anand et al. (2019). Snext corresponds
to the set of next states, (st, st+1) represents a pair of
consecutive states, (st, st∗) represents a pair of non-
consecutive states and I, J are the width and height
from output shape of intermediate convolutional layer
of the target network. The resulting loss function is then
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defined as
L =

1

IJ
(LGL + LLL) (5)

Following this objective function, the target network be-
comes a good feature extractor adapting to new states
discovered by the agent. However, after initial tests, we
found that the feature space formed by such an objec-
tive function tends to grow exponentially from a certain
point until it eventually explodes. We provide a more
detailed analysis of this problem in Section 5. The solu-
tion to this problem was to find a suitable regularization
that would add to the existing loss function. In total, we
tested three regularization terms:

1. Maximize entropy H to smooth logits represented
by functions f and and g:

HGL = −
IX

i=1

JX

j=1

σ(gi,j) · log σ(gi,j)

HLL = −
IX

i=1

JX

j=1

σ(fi,j) · log σ(fi,j)

where σ(.) is standard softmax function, and the
overall loss

Lreg = −(HGL +HLL). (6)

2. Minimize L2-norm of global features:

Lreg = ∥ΦT (st)∥ (7)

3. Minimize L2-norm of logits represented by func-
tions f and g:

Lreg = pGL+pLL =
IX

i=1

JX

j=1

(∥fi,j∥+∥gi,j∥) (8)

According to the test results we decided to use the
third option (eq. 8) and minimize the L2-norm logits f
and g. The final objective function, with scaling param-
eter β = 0.001, was defined as

L =
1

IJ
(LGL + LLL + βLreg) (9)

In the second stage (FED, see Fig. 1b), we pro-
pose to replace CNN, which is used by the actor and the
critic, with the target network, which is trained using the
ST-DIM algorithm. We assume that the features it gen-
erates could be suitable for the successful functioning of
the actor and the critic. This would reduce the number
of networks needed and reduce the model complexity.
The target network would serve both to generate intrin-
sic motivation and as an input for actors and critics.

In both models, the definition of intrinsic reward
is the same:

rintr =
1

n
∥(ΦT (st)− ΦL(st))∥2 (10)

4 Experiments

For experiments, we chose Montezuma’s Revenge envi-
ronment for the Atari console. This is an environment
with a very sparse reward, where it is almost impossible
to find an optimal policy without internal motivation.
The agent’s goal is to overcome obstacles in individual
rooms and to obtain and use items. The agent receives
a reward of +1 for each increase in the score, regard-
less of its size. It does not receive any other reward or
punishment. The state space consists of 4 consecutive
frames of pixels on grey scale, so the total dimension
of the state space is 4×96×96×256. The action space
is discrete, consisting of 18 actions, of which 5 make
sense, the others have no impact on the environment.

4.1 Training setup

All agents were trained using the PPO algorithm (Schul-
man et al., 2017) with 128 environments and we used
Adam algorithm (Kingma and Ba, 2015) to optimize
the parameters of all modules. The basic agent consists
of an actor and a critic, which are two MLPs sharing a
common CNN that processes the video input. The critic
has two outputs (heads), one for estimating the value
function for the external and the other for the internal re-
ward. The discount factor γ for external reward is 0.998
and for internal reward 0.99. The motivational part con-
sists of two CNNs (target and learning network), which
receive pre-processed input (see 4.2) from 1 frame. The
learning network has two more linear layers to have an
increased capacity over the target network. In the case
of the FED model, the motivation module contains only
one CNN (learning network) and uses a feature extrac-
tor as the target network, which is also connected to the
actor and the critic. Feature extractor receives on the in-
put 4 consecutive frames. More hyper-parameters and
further details of the learning process and architecture
of modules can be found in our source codes.

4.2 State pre-processing study

The state before entering the motivation module of
FEDs model can undergo pre-processing. In the case of
the FED model, it is necessary to enter the full raw state.
We tested three pre-processing methods: (1) Normaliza-
tion of the state using the running mean and standard de-
viation, (2) Subtraction of the running mean value from
the state, (3) Without pre-processing.

We trained two agents for each method in 32M
steps. The test results in Tab. 1 and Fig. 2 show that
state pre-processing did not have a significant effect on
agent’s performance (maximum reward achieved), only
on the speed. This also agrees with our assumption that
operations such as subtraction of the mean or normal-
ization should be able to find the network itself trained
using the contrastive loss function. Therefore it is not
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(a) External reward (b) Intrinsic reward

Fig. 2: Evolution of rewards in case of FEDs model with three state pre-processing methods.

necessary for the designer to put them into the learning
process explicitly. These conclusions will still need to
be confirmed by statistical analysis and show that there
is no significant difference in the results achieved.

Tab. 1: Average cumulative reward per episode for all
three pre-processing methods and average intrinsic re-
ward per step.

Method External reward Intrinsic reward
norm. 3.60 ± 0.14 0.0016 ± 0.00008
mean sub. 4.13 ± 0.12 0.0013 ± 0.00005
none 2.31 ± 0.20 0.0009 ± 0.0001

Tab. 2: Average cumulative external reward per episode
and mean intrinsic reward per step for tested agents.
Compared on 128M steps and 32M steps (because the
FED model has not yet been trained in 128M steps).

Agent (128M) External reward Intrinsic reward
RND 4.78 0.051
RNDa 5.15 0.014
FEDs 6.62 0.001
Agent (32M)
RND 0.93 0.086
RNDa 1.43 0.033
FEDs 2.11 0.001
FED 1.08 0.005

4.3 Results

We trained three agents for the RND and RNDa model,
one agent for the FEDs model and one agent for the
FED model, trained in 32M steps. The results shown
in Fig. 3 and Tab. 2 reveal that there is no significant
difference between the RND and RNDa models, since
both were able to achieve the same average reward at ap-
proximately the same time during the 128M step train-
ing. The addition of an action to the input did not delay
the disappearance of the intrinsic reward (see Fig. 3c),
as we had anticipated, but it brought about changes in
the learned policy, where the agent discovered other
sources of reward, as can be seen in Fig. 3b. The FEDs
model achieved a faster increase in an external reward
and also showed greater stability (although the sample
is not large enough to warrant such a claim). The FED
model achieved a higher intrinsic motivation compared
to the FEDs model (compare Tab. 2 and Fig. 3c, which
we attribute to the differences in their inputs - 4 frames
vs 1 frame). For the FED model, the challenge is to
learn to predict feature vectors for 4 frames, where e.g.
two states may have the same last frame but the pre-
vious 3 may be different and from this point of view
this input appears different for the FED model, while
for FEDs, that only takes the last frame, it would appear
to be the same. Therefore, the FED model explored the
environment more slowly, but according to preliminary
results, it does not seem to have a significant impact on
the agent’s overall performance. Compared to the RND
model, it nevertheless achieved better results.

5 Discussion

We have introduced a simple extension (RNDa) of the
Random Network Distillation model and two variants
of the model with intrinsic motivation derived from the
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(a) External reward

(b) Score

(c) Intrinsic reward

Fig. 3: Evolution of external reward, score and intrinsic
reward that agents received during learning. The agent
FEDs grew faster than the RND and RNDa agents and
achieved the same highest reward. In the score, we see
that the RND, RNDa and FEDs each found a different
policy and collected different items that led to different
scores.

distillation of the feature extractor – the FEDs (which
is similar to RND) and the FED model. Both proposed
variants try to eliminate the identified shortcomings of
the RND model – the need for good initialization and
the loss of the motivational signal caused by the adap-
tation of the learning network. We also simplified he
whole architecture with the FED model and used the
ST-DIM algorithm to train the target network in both
FED variants.

Our experiments revealed that if the ST-DIM al-
gorithm works on an incomplete dataset that takes on
new samples (the authors probably did not test it in such
conditions), there is an instability and an exponential
increase of activity in the feature space at certain mo-
ments. This is related to the use of cross-entropy loss
function in its core (which does not limit the values of
inputs – logits), where derivatives can reach large values
and subsequently inflate the entire feature space.

We also found from observations that old states
occur at the edge of the feature space and thus reach
greater values than the new states that appear closer to
zero. This requires further analysis, though. Therefore,
we think that if a new state emerges that differs sig-
nificantly from all previous ones, there may be a large
growth of the entire feature space, which is further ac-
celerated by large values of feature representations of
the old states located on the edge. For this reason, we
had to introduce a regularization expression into the loss
function of the ST-DIM algorithm.

During the development of the model, it turned out
that it is best to minimize the L2-norm of logits that
enter the cross-entropy. In addition, we tried to maxi-
mize the entropy of the distributions generating the re-
spective logits and minimize the L2-norm of global fea-
tures. However, both described approaches failed to suf-
ficiently stabilize the algorithm.

In the experiments, we tested the overall perfor-
mance of the agents. The RNDa model did not make
a big difference in agent performance compared to the
RND model, which served us as a baseline. Neither
did we observe the expected longer decline in internal
motivation compared to RND. FEDs proved to be very
promising and outperformed both RND and RNDa.

We also compared the effect of state pre-
processing on the performance of the FEDs model. It
turned out that the state pre-processing is not necessary
since it has no significant effect on the agent’s results.
The FED model is proving to be a viable solution that
may not grow as fast as the FEDs, but may ultimately
achieve the same results. From a computational point
of view, however, this is a simpler and faster solution,
where it is not necessary to duplicate the CNN process-
ing of the image input for other modules.

In the future, we plan to analyze more accurately
the behavior of the feature space during training and
verify the performance of FED models in other envi-
ronments. We are also considering extending the input
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of the FED model by an action, similar to the RNDa
model. There is also room for fine-tuning the hyper-
parameters, which could further improve the results.
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