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Abstract—A major role attributed to mirror neurons, accord-
ing to the direct matching hypothesis, is to mediate the link
between an observed action and agent’s own motor repertoire,
to provide understanding “from inside”. The mirror neurons
gave rise to various models but one of the issues not tackled
by them is the perspective in/variance. Neurons in STS visual
areas can be either perspective selective or invariant and the
same variability was later also discovered in premotor F5 area
in macaques, showing the existence of different types of mirror
neurons regarding their perspective selectivity. We model this
as an emergent phenomenom using the data from the simulated
iCub robot, that learns to reach for objects with three types of
grasp. The neural network model learns in two phases. First, the
motor (F5) and visual (STS) modules are trained in parallel to
self-organize modal maps using the corresponding data sequences
from the self-perspective. Then, F5 area is retrained using the
output from the pretrained STS module, to acquire the mirroring
property. Using the optimized model hyperparameters found by
grid search, we show that our model fits very well empirical
observations, by showing how neurons with various degrees of
perspective selectivity emerge in the F5 map.

Index Terms—perspective invariance, mirror neurons, cogni-
tive robotics, iCub, neural network

I. INTRODUCTION

Action understanding is undoubtedly a vital component in
human–robot interaction. The direct matching hypothesis [1]
places the so-called mirror neurons into the role of the medium
that matches the observed action with the closest counterpart
of one’s own motor repertoire. Additionally, the feedback
connection between motor and visual areas of the brain with
projections from mirror neurons to visual areas could facilitate
the very complex task of invariant action recognition in the
visual parts of the mirror neuron system circuitry [2]. In our
previous research we started to develop a modular hierarchical
architecture for a humanoid robot to model rudimentary action
understanding based on the outlined theories [3]. In this paper
we continue our research with a focus on novel evidence on
viewpoint in/variance in the mirror neuron firing [4].

A. Mirror neurons and perspective in/variance

Mirror neurons are cells in ventral premotor area F5 in
the macaque brain that encode goal-directed hand and mouth
movements, which also fire when the monkey is still and solely
observes these actions [5]. Since their discovery in early 1990s,
mirror neurons have gained a lot of attention. There are strong

theories proposing that mirror neurons play an important role
in action understanding, imitation learning and empathy [6],
as well as strong opposition against such theories [7].

Mirror neurons have been postulated to serve for direct
matching of the observed and executed movement representa-
tions to facilitate or at least mediate understanding of actions
of others. Brain areas of the macaque brain that constitute
the original MNS are frontal and parietal areas F5, PF, PG
(PFG) that have been shown to have mirror properties, and
the superior temporal sulcus (STS), which is sensitive to a
large variety of biological movements, but does not react to
stimuli from other modalities (i.e. other than vision), therefore
it is not a true part of the MNS.

The role of STS area in the MNS is to project visual
information to the system. Neurons of STS respond to various
visual stimuli in a view-dependent (in posterior part, STSp),
but also view-independent manner (in anterior part, STSa) [8].
By view-dependent neurons we mean sensitive to viewpoint
or perspective, from which the scene is observed (e.g. front
view, side view, etc.), we will also call it perspective-variant.
Analogically, the view-independent neurons that react to the
same object or movement regardless of the viewpoint will
be called perspective-invariant. Interestingly, STSp projects
to sector F5c in area F5 through PFG forming a connection
that can be seen as a perspective variant path, but also STSa
projects to F5a through AIP, which can be seen as an invariant
path. The invariant path encodes the actor and the object acted
upon, rather than the viewpoint from which it is observed [9].

Perspective-variant and invariant firing properties were also
found in area F5 [4]. In a novel experimental design, monkeys
were watching short films of grasping actions shown in three
different perspectives, the self-observing view (0◦), the side
view (90◦), and the opposite view (180◦). Caggiano and
colleagues report that 52% of all (389) recorded neurons had
mirroring properties, 74% of these visually responsive motor
neurons exhibited perspective-dependent and 26% perspective
invariant properties. In a follow-up research they explored
the rhythmic properties of MN responses with a conclusion
that the perspective from which the action is observed is
reflected in the firing and that self-observing view produces
significantly different response which is more similar to motor
execution. Therefore, it is possible that action observation
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can trigger different processes in F5 based on the viewpoint.
In our current work, we develop a mirror neuron model
that will, along with commonly modeled perspective-invariant
MN, also encompass perspective variant mirror neurons. This
process has not been sufficiently addressed in the modeling
literature, even though this is an important step in the long-
term developmental process of learning abstraction that needs
to be computationally explained (which could also help in
designing artificial agents).

B. Computational models

Computational models of the MNS can be basically divided
into two groups as pointed out in [10], a large overview is
offered centered around clustering and confronting the existing
models with empirical data. FARS, MNS1 and MNS2, MSI
and other models summarized in [11], [12] capture the areas
of the monkey brain with precise connections and focus on
grasping. Models such as HAMMER [13] or RNNPB [14] aim
at endowing the cognitive robotics with action understanding
through implementing the mirroring function without explic-
itly using brain area analogs.

There were several recent approaches trying to model view
invariance. For instance, in [15] it is shown how view indepen-
dence in imitation learning is achieved through a bio-inspired
hybrid model (combining neural networks, conditionals and
radial basis function networks). In recent cognitive robotics,
a Time-Contrastive Network has been proposed for a robot to
learn to imitate the human demostrator in a self-supervised
manner from various perspectives also utilizing motor knowl-
edge [16]. Invariant perception of faces (identities) based
on the recordings from the face-processing network of the
macaque brain has been presented in [17] as an alternative
approach to end-to-end SGD-trained deep networks in the
form of hierarchical architectures trained through biologically
plausible Hebbian learning.

In our previous work [3], we aimed at accounting for the
existence of view-dependency of neurons in both STS and
F5 as a possible outcome of their bidirectional connectivity.
We presented a multi-layer connectionist model of action
understanding circuitry and mirror neurons, emphasizing the
bidirectional activation flow between visual and motor areas
pointed out in [2]. We implemented our model in a simulated
iCub robot that learned a grasping task. Within two experi-
ments we demonstrated the properties of the model and also
discussed further steps to be done to extend the functionality
of our model towards achieving view invariant properties of
neurons in STSa area. In this work, inspired by the existence
of biological data [4], we focus on modeling the emergence
of mirror neurons in F5 area, which has not been attempted
before, using a very similar neural network model. This is
modeled as an emergent self-organized process and the model
properties are shown to match well biological data, including
the observation that invariance is a graded, rather than a binary,
phenomenon. Computational account of this process is the
main contribution of this paper.

II. ROBOTIC MNS MODEL

Our robotic MNS model (Fig. 1) consists of two major
connected modules (F5 and STSp), that are fed with data
from their respective modalities. The model consists of two
levels. At the lower level there are executive modules, namely
the motor executive module, feeding sequential motor infor-
mation like the joint angles, and the visual module, which
provides sequential visual information to the system (from a
concrete perspective). We assume that sensory-motor links are
established between higher level representations, rather than
directly between low-level representations of the movement
as a temporal sequence of the robot arm’s state. At the higher
level, there are two modules that process the low-level motor
and visual information, and form high-level representation of
movement in F5 and STSp, respectively.

Fig. 1: Model schematics. Input mot and vis connections are
updated in Phase A, and sts connections in Phase B.

For experiments we chose the freely available simulator [18]
of the iCub robot [19] that is considered to be one of the
most accurate humanoid robots. For generating the grasping
sequences, we created a preprogrammed routine controlling
iCub’s movements. Both higher areas, F5 and STSp, are
implemented as MSOMs [20], the self-organizing maps1 that
can process sequential data.

In the process of acquiring the whole MNS functionality the
robot first learns to produce the three grasps. The information
from the motor module is processed with the higher level F5c
module (Sec. II-A) and gets organized on the resulting map as
clusters of instances of the same movements. At the same time,
we assume that the robot observes another robot producing the
same actions and creates visual representations of those actions
from different perspectives (self, 90◦, 180◦, and 270◦) in STSp
and associates them with the motor representations. Then, if
the robot observes an action from various perspectives, the
motor representation of the action is triggered as well.

A. Merge Self-Organizing Map

To make the paper self-contained, first we describe the
MSOM model [20]. MSOM is based on the well-known
Kohonen’s map but it has recurrent architecture, so it can
be used for self-organization of sequential data. Each neuron
i ∈ {1, 2, ..., N} in the map has two weight vectors: (1)

1Like in our previous work [3], for modeling STSp and F5, we use
topographic maps as a ubiquitous organizing principle in the brain [21].
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wi ∈ Rn, associated with an n-dimensional input vector
s(t), and (2) ci ∈ Rn, associated with the so-called context
descriptor q(t) specified below. The output of unit i at time t
is computed as yi(t) = exp(−di(t)), where

di(t) = (1− α) · ‖s(t)−wi(t)‖2 + α · ‖q(t)− ci(t)‖2 (1)

Hyperparameter 0 < α < 1 trades off the effect of the context
and the current input on the neuron’s profile and ‖ · ‖ denotes
the Euclidean norm. The context descriptor is calculated from
the information related to the previous best matching unit
(’winner’) b(t− 1) = arg mini{di(t− 1)}, as

q(t) = (1− β) ·winp
b(t−1)(t) + β ·wctx

b(t−1)(t) (2)

where hyperparameter 0 < β < 1 trades off the impact of the
context and the current input on the context descriptor. The
training sequences are presented in natural order, one input
vector a time, and in each step both weight vectors are updated
using the same form of Hebbian rule:

∆wi(t) = γ · hib · (s(t)−wi(t)), (3)
∆ci(t) = γ · hib · (q(t)− ci(t)), (4)

where b is the winner index at time t and 0<γ<1 is the
learning rate. Neighborhood function hib is a Gaussian (of
width σ) on the distance d(i, k) of units i and b in the
map: hib = exp(−d(i, b)2/σ2). The neighborhood width,
σ, linearly decreases in time to allow for forming topo-
graphic representation of input sequences. As a result, the
units (i.e. their responsiveness) get organized according to
sequence characteristics, biased towards their suffixes (most
recent inputs).

B. Mirror neurons training

The training of mirror neurons was performed in two phases
(referred to later in experiments A and B). In Phase A we
trained both F5 and STSs on their own input sequences
representing the paired motor and visual data (self-learning in
a robot). The F5 and STSp module weights (i.e., wmot

i , cmot
i ,

and wvis
i , cvisi pairs, respectively) were updated according to

Eq. 3 and 4. After training (for T episodes), Phase B starts
when the M-MSOM is again trained, using its own motor
inputs (keeping the weights wmot and cmot fixed), as well
as precomputed activation vectors in STSp.2 Activation of
F5 units is based on Eq. 5 (with time indices left out for
simplicity) which is again taken as an affine combination of
the two sources. After presenting the visual input to V-MSOM,
calculating its activations and obtaining the distances dvi we
presented motor inputs to F5, and could calculate the merging
distance dmir

i of neuron i in F5 according to Eq. 6 as

dvi = (1− α)‖y −wsts
i ‖2 + α‖r− cstsi ‖2 (5)

dmir
i = κ · dmi + (1− κ) · dvi (6)

where y is the activation vector from STSp, r is the corre-
sponding context vector (updated according to Eq. 2), and the

2This presumes that F5 units also have inputs from the visual pathway
(STSp map itself) weighted by wsts

i and cstsi , not utilized in phase A.

hyperparameter κ trades off the relative contributions of the
two sources.

During pilot simulations we figured out that in order to
enforce better selectivity of neurons in F5, two additional
mechanisms would be useful in phase B. The first one is
the winner-take-all competition among STSp neurons, yielding
b(t) = arg mini{dvisi (t)}, i.e. the winner for each input
pattern, its activation yb = 1 and activations of other neurons
set to zero, resulting in a one-hot vector y(t). The second
mechanism, applied to F5 neurons, aims at eliminating the
“distance bias”, by calculating the unit’s activations as

yi =
1

1 + exp(k(di − 〈dmir
j 〉))

(7)

where 〈.〉 denotes the mean value (of all units for the current
input), and k is set empirically (we used k = 10). This dis-
tance shift increases the mutual differences among competing
neurons which is also important for better selectivity.

In summary, a regular MSOM algorithm is applied in
two steps. In phase A, M-MSOM and V-MSOM are trained
on respective input sequences, using Eq. 3 and 4, yielding
wmot, cmot,wvis, cvis. In phase B, M-MSOM is trained again
(using weights from phase A), updating only its visual weights
wsts, csts, based on merging distances dmir

i (Eq. 5 and 6),
computed from paired inputs (via dmot and dvis activations).

III. RESULTS

We present results from two experiments. Experiment A
encompasses processing of visual (preprocessed Cartesian
coordinates) and motor (joint angles) data taken from the
trained iCub during grasping an object. The data are self-
organized to high-level topographic representations using the
MSOM model. In Experiment B we let mirror neurons emerge
and develop by linking pretrained motor activations in F5 with
STSp activations. After training, the visual input will cause
(via STSp) the activation of dedicated mirror neurons in F5.

A. Self-organization of sensory and motor inputs

For training MSOMs, we first needed to generate the input
data. Both sensory and motor sequences were artificially
generated in the iCub simulator using forward and inverse
kinematic module. In motorgui (extension to iCub simulator)
we set the final position of arm in one of three different
types of grasp: power, precision and side grasp. These grasps
(shown in Fig. 2) were generated, with 10 instances per
category, in such a way that individual trajectories slightly
differed from one another (which was achieved by adding
small perturbations to arm joints during the motion execution),
(resulting also in slight differences among final positions.

1) Collecting the motor and visual data from iCub: One
instance of the grasp lasted for 4 seconds, and each 1/4 of a
second the values of the individual joints were stored. Thus,
one motor sequence consisted of 16 steps and the represen-
tations are based on proprioceptive information provided by
all joint values from 16 DoF in robot’s right arm which
were stored during the motor execution, i.e. input vectors
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(a) Power (b) Precision (c) Side

Fig. 2: Examples of three grasp types.

sm ∈ R16 for motor map. These values are given in degrees,
and so prior to storing them we rescaled them to the interval
[−1, 1], independently for each DoF. Visual information was
obtained from a camera that is available in the iCub simulator
(Fig. 3) which has been set to four positions representing four
orthogonal perspectives (0◦, 90◦, 180◦, and 270◦).

(a) 0◦ (b) 90◦ (c) 180◦ (d) 270◦

Fig. 3: Four different perspectives taken by iCub’s camera.

As for visual input, for obtaining the coordinates of iCub
fingers, it was necessary to use the iCubFinger extension,
which provided information for thumb, index and middle
fingers assuming they are sufficient for recognition (ring and
pinky fingers are underactuated). We used the chains of joints
from iKin extension to calculate the final values for each
frame. So we could get 3D joint positions with respect to the
robot’s coordinate system, which were then transformed to the
world coordinates. In the next step, using the algorithm, we
extracted coordinates from the projection of frame onto the
camera lens (Fig. 4). Overall we had 14 points in 2D yielding
28 values as input vectors sv ∈ R28 for visual MSOM. As in
the case of motor data, the values were rescaled to [−1, 1],
independently for each coordinate. This preprocessing was
repeated for each frame of each perspective. In total, we used
30 motor and 120 visual sequences.

Fig. 4: Snapshot of right iCub’s arm (on the left) and its visual
kinetic representation in 2D space (on the right).

2) Finding optimal maps: In order to obtain map repre-
sentations, we systematically searched for optimal MSOM
hyperparameters (for maps 12×12 in F5 and 16×16 in STSp).
We aimed at getting the map that would optimally distribute
its resources (units) for best discrimination of input data.
Following the methods from our previous work [22], we
calculated three quantitative measures: (1) winner distribution

(WD) returns the proportion of different winners (out of all
units) at the end of training; (2) entropy (ENT) evaluates how
often various units become winners, so the highest entropy
means most balanced unit participation in the competition
process; (3) quantization error (QE) calculates the average
error at the unit as a result of quantization process. To get
the best MSOMs, we used grid search for hyperparameters
α (eq. 1) and β (eq. 2) in the interval (0,1) and selected the
configuration with highest WD and ENT and possibly minimal
QE. As a result, we chose αv = 0.4 βv = 0.8 for STSp, and
αm = 0.8, βm = 0.9 for F5. Heatmaps for F5, shown in Fig 5
reveal that the map performance is very sensitive to trading off
the context and input (quantified by αm), whereas the other
parameter (βm) weighting the winner’s components is quite
robust. The profiles for STS map were similar.

Fig. 5: Contour plot of results of grid search for F5 hyperpa-
rameters αm (vertical axis) and βm (horizontal axis), for three
evaluated measures (left to right): quantization error, winner
distribution and entropy. The lighter the color, the higher the
value. The best model has high WD and ENT, and low QE.

Using these hyperparameters, we trained both MSOMs and
evaluated winner hits (i.e. the number of times the particular
unit became the winner, for three categories of grasp type for
both visual (Fig. 6b) and motor dataset (Fig. 6c), and addition-
ally for four perspectives for the visual dataset (Fig. 6a). For
better transparency we only plotted units that won at least three
times. Topographic organization of unit’s sensitivity is evident
in all cases. For visual map, the organization on a coarse level
is arranged according to the perspectives, and on a more fine-
grained level according to the grasp types. Topographic order
reflects the natural separability of classes (types of grasps) both
in terms of their motor and visual features. Visual maps reveal
that perspective is a more strongly distinguishing feature than
the type of grasp.

B. Emergence of mirror neurons

Once the F5 and STSp maps have been trained using paired
visual and motor sequences, the second step (phase B) of
training F5 can be initiated. Here we use a sort of “scenario-
based shortcut”. It is known that parents often imitate chil-
dren’s immediate behavior providing them with something
like a mirror, which may explain how mirror neurons could
emerge as a product of associative learning [23]. Hence, in our
approach, the robot first produces the self movement, while
observing its own arm. Right after it, while the generated
motor pattern is assumed to be still residually active, the robot
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(a) Visual map: perspectives (b) Visual map: grasp types

(c) Motor map: grasp types

Fig. 6: Optimal trained visual and motor maps. The shaded
cells in visual maps denote winners for earlier steps within
sequences (reaching phase).

observes the same movement from another perspective (as if
it was playing an educational game with its parent).

Hence, during movement observation the connections from
STSp to F5 are trained, using the residual motor input to F5.
Using grid search, we chose αmir = 0.3 and βmir = 0.6
as optimal hyperparameters for phase B. To three measures
mentioned above, we added the fourth, grasp selectivity
defined as the percentage of grasp type selective neurons
in the map. Variations in hyperparameter κ (eq. 6) led to
different topographic organizations in F5. For κ being close to
zero, the visual information became more influential in map
organization, and for κ close to one, the contribution of the
motor information encoding the grasp type became dominating
(over perspective) for final organization. Setting κ = 0.9 led
to best results.

During the evaluation phase, we presented the inputs only
to STSp module and its sole activation served as the input to
F5 module. The motor input was completely omitted. We then
examined the topographic organization by the same method as
we used previously. We trained several models and compared
the obtained number of invariant and variant neurons with
measured data [4]. The maps that best fitted experimental
data are presented in Fig. 7, revealing the emergence of
neurons responding to various numbers of perspectives (for
a given grasp type), ranging from one (perspective-variant),

two (bivariant), up to all perspectives (invariant).3 Most of
the neurons are grasp type selective, except a few (based
on comparison of both maps). In the top left corner are
neurons (dark grey cells) responding to reaching phase of the
movements (mostly the first five frames of each sequence),
mostly for all grasp types (completely invariant neurons).
However, there are also perspective-invariant grasp-selective
neurons, in each of the grasp-specific areas. Interestingly,
bivariant neurons were always selective for (any of the) two
“neighboring” perspectives (i.e. not the opposing perspectives
that are visually most different).

The quantitative comparison of the best model with bi-
ological measurements is shown in Fig. 8. In the model,
multiple views preference includes neurons responsive to two
or three perspectives (in [4] it was two perspectives, since 270◦

was not measured). The graph shows that overall, around 88
neurons (i.e. 60% of 144) had mirroring properties, of these 28
(20%) are invariant, and around 60 neurons (42%) are variant
(including also partially invariant neurons). In summary, the
graph reveals a good match in relative proportions of different
types of mirror neurons.

Fig. 7: Responses of mirror neurons to visual inputs. Left:
Winners for various grasps from different perspectives. Right:
Winners for different types of grasps.

Fig. 8: Left: Experimental data (from [4]). Right: Neuron
preferences in F5 area of the model. Bars denote the numbers
of neurons.

3Despite the existence of prepared pairs of patterns for learning, we think
we can interpret the invariance as an emergent phenomenon whose variability
cannot be predicted from the data.
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IV. DISCUSSION

We presented pilot results directed toward enriching our
computational model with mirror neurons in F5 area by letting
the visual representations (STSp) affect its organization. In our
approach, we were inspired by empirical findings showing that
in STS as well as F5, most of the neurons are perspective-
dependent, and that this may be the lowest level at which
sensory-motor relationships could be established.

In the first phase, we let the simulated iCub robot learn to
reach for and grasp an object with its right hand. Subsequently,
we let the F5 area be properly reorganized using visual
representations from STSp, to affect the F5 organization by
proper trading off motor and visual information. This self-
organized process resulted in a variety of motor neurons, some
of which also acquired mirror properties to various degrees.
Assumption behind this approach is that mirror neurons are
not predetermined but emerge in early phase of sensorimotor
development. Another assumption behind our approach is the
graded degree of invariance of both visual and motor neurons.
This is consistent with empirical evidence when it comes to
STS [24] and F5 [4]. Indeed, in F5 we observe a variety of
neurons regarding their selectivity to perspectives and/or to
grasp type.

The desirable neuron selectivity was achieved using two
additional mechanisms: (1) winner-based localist output repre-
sentation of STSp map for reorganization of F5 with mirroring
properties, and (2) shifting distances in F5 neurons during
competition to enlarge mutual differences. These mechanisms
turned out to be necessary, since no lateral inhibition in
MSOM map was implemented that could take care of better
selectivity, albeit with an increased computational cost (as
confirmed by preliminary experiments).

Regarding the limitations of our model, we could have
used a more variable data set in terms of final arm and
hand positions. Neither did we apply the classical split to
training and testing data, that would reveal the generalization
property of the mapping. These results are merely a proof of
concept, that such a mapping with desirable properties can
be learned, given optimized (hyper)parameters. Therefore, we
did not provide a more detailed quantitative assessment of
the models. A questionable feature of the model is also the
assumption about the residual activity of the motor system
allowing the pairing of motor and visual sequences which are
crucial for learning the mirroring property.
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