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Abstract—Action understanding undoubtedly involves visual
representations. However, linking the observed action with the
respective motor category might facilitate processing and provide
us with the mechanism to “step into the shoes” of the observed
agent. Such principle might be very useful also for a cognitive
robot allowing it to link the observed action with its own
motor repertoire in order to understand the observed scene. A
recent account on action understanding based on computational
modeling methodology suggests that it depends on mutual inter-
action between visual and motor areas. We present a multi-layer
connectionist model of action understanding circuitry and mirror
neurons, emphasizing the bidirectional activation flow between
visual and motor areas. To accomplish the mapping between two
high-level modal representations we developed a bidirectional
activation-based learning algorithm inspired by a supervised,
biologically plausible GeneRec algorithm. We implemented our
model in a simulated iCub robot that learns a grasping task.
Within two experiments we show the function of the two topmost
layers of our model. We also discuss further steps to be done to
extend the functionality of our model.

Keywords—action understanding, mirror neurons, cognitive
robotics, iCub, neural network

I. INTRODUCTION

Action understanding is one of the crucial capacities of
human and animal cognition. In line with embodied cognition
and the claim that cognition is for action [1], it is very impor-
tant to study how the sensorimotor circuitry works in animals
and humans and how it is related to one’s understanding of the
surrounding world. Among the theories aiming to explain the
nature of action understanding and its neural correlates, two
rival theories can be distinguished [2]. According to the visual
hypothesis, the observed action is assessed solely on the basis
of visual processing and is hence mediated by visual areas
of the brain. On the contrary, the direct matching hypothesis
emphasizes the involvement of motor modality, namely the
mapping of the observed action onto an action in one’s own
motor repertoire and back, to complete visual information
processing. This observation–execution matching property has
been found in mirror neurons. Endowing a humanoid robot
with mirror neuron circuitry might be a valuable step towards
action understanding in cognitive robotics and in human–robot
interaction.

A. Mirror neurons and action understanding

Mirror neurons were originally discovered in area F5 (re-
sponsive to goal-directed hand and mouth movements) of the
ventral premotor cortex of the macaque monkey [3]. Neurons
in F5 discharged not only during the execution of a certain
grasping movement, but also when the monkey observed the

experimenter producing the same action. The core areas of the
postulated observation–execution matching system [4], or the
mirror neuron system (MNS), are areas F5, PF and PG (PFG),
and AIP of the macaque brain. The first evidence suggesting
that action perception and execution are interconnected was
shown on the basis of motor resonance, partial activation of
motor cortices without movement production measured with
non-invasive methods such as EEG, MEG or fMRI (e.g. [5]).
The first single cell recording of mirror neurons in humans
was made on patients with medically intractable epilepsy [6].
However, the measuring sites were not chosen for academic,
but for medical purposes, so they did not contain crucial areas
of interest homologous to monkey’s F5 and related circuitry
(such as Broca’s area). Interestingly, connections between
visual and motor areas are not restricted to what has been
identified as the MNS.

As mentioned above, the core of the MNS consists of
premotor and posterior areas, in which mirror neurons were
discovered. However, important parts of the whole machinery
are also visual areas that project information to mirror neurons.
According to [7], the flow of information between visual and
mirror areas is bidirectional, rather than unidirectional (from
visual to motor areas). The authors have proven their theory on
the basis of computational model briefly described in Sec. I-B.

One of the major areas projecting to the MNS is the supe-
rior temporal sulcus (STS), which is sensitive to a large variety
of biological movements, but lacks multi-modal properties
displayed by mirror neurons. An interesting property of STS
is that it contains many neurons that are sensitive to viewpoint
from which the object is observed (e.g. front view, side view,
etc.) in its posterior part (STSp), but also neurons that are
invariant to it, in anterior part (STSa) [8]. A part of the focus
area F5 (F5c) is connected with STSp through PFG forming
a perspective variant path. Another part of F5 (F5a) is also
connected with STSa through AIP, forming an invariant path
emphasizing the actor and the object acted upon, rather than
the viewpoint from which it is observed [9]. More possible
sources of visual information for area F5 were identified [10],
suggesting the involvement of the prefrontal area BA12.

In addition, view-variant and invariant firing properties
were also recently discovered in area F5 [11]. In the exper-
iment, monkeys observed grasping actions filmed from three
different perspectives, namely the self-observing view (0◦), the
side view (90◦), and the opposite view (180◦). Variant and
invariant mirror neurons were found in roughly 3:1 ratio. In
this paper, we focus on variant and invariant neurons in visual
and motor areas, which have (to our knowledge) not yet been
addressed in the related computational modeling literature.
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B. Computational models

The discovery of mirror neurons gave rise to various com-
putational models, mainly based on artificial neural networks.
Computational models of MNS are considered a powerful tool
for explaining the mirror neuron function and emergence [12].
Most of the models aim at capturing the actual neural circuitry,
by having components that directly represent particular parts of
the monkey’s brain, like FARS, MNS1 and MNS2, MSI, and
other [13]. On the other hand, there are models from the field
of cognitive robotics which attempt to model the emergence
of mirror neurons, such as the RNNPB model [14], which
combines temporal error backpropagation learning and the
self-organized formation of special codes (parametric biases)
that are able to trigger specific behavior of the network without
an actual sensory input. These self-organized parametric biases
can be considered analogous to mirror neurons. Our model
roughly models brain areas at certain level of abstraction but
also aims to allow the robot (simulated iCub) to associate
the observed action with actions in its own motor repertoire.
This mechanism will also allow the robot to make categorical
judgments about the observed movement, and to a certain
degree “understand” this movement.

A different approach to exploring and modeling mirror neu-
rons was taken by Tessitore et al. [7] who aimed to show the
benefit of the bidirectional flow of information between visual
and motor areas. Their main assumption is that mirror neurons
facilitate action recognition and control processes, since they
provide a simplified motor representation that narrows a wide
search space of the visual input. Their model represents a
mapping function from visual representation (an image of the
hand during grasping action) to motor representation (created
with a special recording glove). An interesting property of this
model is that it directly solves the problem of translation of
the perspective, i.e. from the observer to oneself. Most of the
classic MNS models, such as those mentioned above, do not
address this property, but rather assume some kind of visual
preprocessing (in STS) that leads to perspective invariance.
However, as suggested by recent empirical findings [11],
mirror neurons might be tuned to different perspectives as well
as neurons in STSp. Therefore, the perspective information
should be encompassed by a computational model of mirror
neurons as well. In our modeling, we aim at accounting for
the existence of view-dependency of neurons in both STS and
F5 as a possible outcome of their bidirectional connectivity.

II. ROBOTIC MNS MODEL

Our robotic MNS model (Fig. 1) consists of several mod-
ules: the core and the topmost part is the mirror neuron
circuit itself, which is fed with data from low-level (executive)
modules. From the information-flow and neural network type
point of view we distinguish three rather than two levels.
At the lowest level there are executive modules, namely the
motor executive module, feeding sequential motor information
like the joint angles to F5c, and the visual module, which
provides sequential visual information to STSp (encompassing
the observation of another robot producing the movement).
We assume that sensory-motor links are established between
higher level representations, rather than directly between low-
level representations of the movement as a temporal sequence
of the robot arm’s state. At the middle level there are two
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Fig. 1: The sketch of our robotic MSN model.

modules that process the low-level motor and visual informa-
tion, and form high-level representation of movement in F5
and STSp, respectively.

The topmost part of the model includes a three-layer
network, as an abstraction of the F5c–PF–STSp circuit, link-
ing (yet) invariant motor information (area F5) with variant
perceptual information (STSp) via the parietal area (PF) in a
bidirectional fashion, and the F5a–AIP–STSa circuit, linking
motor information with invariant anterior part of the STS. The
latter circuit is a self-organizing map (SOM) [15], representing
the STSa area, where neurons with various degree of invariance
emerge. In the present state we do not divide F5 into F5c and
F5a. Neither do we explicitly model the intermediate areas PF
and F5. Area PF forms a hidden layer of neurons in BAL
network, which we do not access directly, hence its activation
is self-organized by the network behavior. AIP pathway is
represented by the F5–to–STSa part of the model.

For experiments we chose the freely available simulator
[16] of the iCub robot [17] that is considered to be one of
the most “accurate” humanoid robots. Designed to resemble
a 2.5-year-old child, endowed with 53 degrees of freedom
(DoF), movable eyes with color cameras, and various other
sensors, the platform provides a very accurate model of an
actual child’s body and effectors. For generating the grasping
sequences, the simulated iCub was trained using continuous
reinforcement learning algorithm, CACLA [18]. An example
of such a module previously implemented can be found in
[19]. The iCub learned to perform three types of grasp (shown
in Fig. 2) related to objects of various sizes and shapes [20].

The higher areas, F5 and STS, are both implemented
as MSOM [21], the self-organizing maps1 that can process

1We consider topographic maps as a ubiquitous organizing principle in the
brain [22]. Although it is not known whether STS (STSp) and F5 (F5c) areas
are also organized this way, we chose the map organization also because
it lends itself nicely to providing compact distributed representations as
described in Experiment 2.
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sequential data. We assume, in line with our motivation men-
tioned above, that the bidirectional association between these
two areas must be established. We approach this using a su-
pervised bidirectional learning algorithm, which we developed
on the basis of biologically plausible GeneRec algorithm [23].

In the process of acquiring the whole MNS functionality
the robot first learns to produce the three grasps. The infor-
mation from the motor module is processed with the higher
level F5c module (MSOM, Sec. III-A) and gets organized
on the resulting map as clusters of instances of the same
movements. During the production of the movement, the
motor information and the visual information from the self-
observation perspective gets associated bidirectionally using
the BAL algorithm (Sec. III-B). At the same time, we assume
that the robot observes another robot producing the same
actions and creates visual representations of those actions from
different perspectives (self, 90◦, 180◦, and 270◦) in STSp and
associates them with the motor representations as well (using
BAL). Then, if the robot observes an action from various
perspectives, the motor representation of the action is triggered
as well. This motor representation, which is basically invariant
then projects to STSa module together with visual information
from STSp. In line with [7], motor information helps to
form the view-independent representations in the visual areas,
thus forming categorical representations potentially used for
distinguishing and understanding of the movement as such.

III. BUILDING BLOCKS OF OUR MODEL

A. Merge Self-Organizing Map

Since the MSOM model [21] is not widely known, we
describe it briefly here. MSOM is based on the well-known
Kohonen’s self-organizing map but it has recurrent architec-
ture, so it can be used for self-organization of sequential data.
Hence, each neuron i ∈ {1, 2, ..., N} in the map has two
weight vectors associated with it: (1) winp

i ∈ Rn – linked
with an n-dimensional input vector s(t) feeding the network
at time t, and (2) wctx

i ∈ Rn – linked with the so-called
context descriptor q(t) specified below. The output of unit i
at time t is computed as yi(t) = exp(−di(t)), where

di(t) = (1−α) ·‖s(t)−winp
i (t)‖2+α ·‖q(t)−wctx

i (t)‖2 (1)

Parameter 0 < α < 1 trades off the effect of the context and
the current input on the neuron’s profile and ‖ · ‖ denotes the
Euclidean norm. The context descriptor is calculated based on
the affine combination of the weight vectors of the previous
best matching unit (’winner’) b(t− 1) = arg mini{di(t− 1)},

q(t) = (1− β) ·winp
b(t−1)(t) + β ·wctx

b(t−1)(t) (2)

where parameter 0 < β < 1 trades off the impact of the context
and the current input on the context descriptor. The training
sequences are presented in natural order, one input vector a
time, and in each step both weight vectors are updated using
the same form of Hebbian rule:

∆winp
i (t) = γ · hib · (s(t)−winp

i (t)), (3)
∆wctx

i (t) = γ · hib · (q(t)−wctx
i (t)), (4)

where b is the winner index at time t and 0 < γ < 1
is the learning rate. Neighborhood function hib is a Gaus-
sian (of width σ) on the distance d(i, k) of units i and b

in the map: hib = exp(−d(i, b)2/σ2). The ‘neighborhood
width’, σ, linearly decreases in time to allow for forming
topographic representation of input sequences. As a result,
the units (i.e. their responsiveness) get organized according to
sequence characteristics, biased towards their suffixes (most
recent inputs).

B. Bidirectional Activation-based Learning Algorithm

Once the MSOM have been trained, they can generate
map outputs (as described in Experiment 1) that can serve
as patterns to be associated. For learning the association
between sensory and motor representations, we use a three-
layer bidirectional perceptron trained using our Bidirectional
Activation-based Learning algorithm (BAL) [24].

The main purpose of BAL is to establish a bidirectional
mapping between two domains. BAL was inspired by general-
ized recirculation (GeneRec) algorithm [23] that had been de-
signed as a biologically plausible alternative to standard error
backpropagation. In GeneRec, the learning is based on acti-
vation propagation in both directions (i.e. input-to-output, as
well as output-to-input directions), and under certain circum-
stances, it has been shown to approximate the error derivatives
computed in error backpropagation network (without having
to propagate the error). BAL shares with GeneRec the phase-
based activations but differs from it in two features. First, BAL
employs unit activation propagation, allowing the completely
bidirectional associations to be established (GeneRec basically
focuses on input–output mapping). By this we mean that not
only output can be evoked by input presentation, but also input
can be evoked by output presentation.2 Second, in BAL we
do not let the activations to settle but compute them in one
step (GenRec was related to earlier Almeida-Pineda recurrent
backpropagation network model whose core feature is the
settling of unit activations before weight adaptation).

Neurons in BAL are perceptron units with standard (unipo-
lar) sigmoid activation function. Forward (sensory-to-motor)
activation is denoted with subscript F, backward (motor-to-
sensory) activation is denoted with subscript B.3 Let the
activations of sensory (visual) units be denoted v, and motor
units m. The hidden units have activations h. Then during the
forward pass, the sensory units are clamped to vF and we get
the activations vF → hF → mF. During the backward pass,
the motor units are clamped to mB and we get the activations
mB → hB → vB.

The mechanism of weights update partially matches that of
GeneRec. Each weight in BAL network (i.e. belonging to one
of the four weight matrices) is updated using the same learning
mechanism (unlike GenRec), according to which the weight
difference is proportional to the product of the presynaptic
(sending) unit activation ai and the difference of postsynaptic
(receiving) unit activations aj , corresponding to two activation
phases (F and B, in particular order). Specifically, weights in

2Actually, now the input/output distinction loses its meaning, because we
deal with bidirectional associations between two different (sensory and motor)
domains where each domain can serve as input or output.

3O’Reilly uses minus and plus phases that correspond to our F and B phases.
However, since our model is completely bidirectional i.e. both output and input
units can be clamped, we find it more convenient not to follow the notation
in [23].
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v-to-m direction (corresponding to h and m units, respectively)
are updated as

∆wF
ij = λ · aFi (aBj − aFj ) (5)

where λ is the learning rate. Analogically, the weights in m-
to-v direction (corresponding to h and v units, respectively)
are updated as

∆wB
ij = λ · aBi (aFj − aBj ) (6)

All units have trainable thresholds (biases) that are updated in
a similar way as weights (being fed with a constant input 1).

IV. RESULTS

We present results from two experiments. Experiment
1 encompasses processing of visual (preprocessed Cartesian
coordinates) and motor (joint angles) data taken from the
trained iCub during grasping an object. In this task, the data are
self-organized to high-level topographic representations using
the MSOM model. In Experiment 2, we form the association
between the two maps using the BAL algorithm. First, we
focus on learning the associations between various instances
of these movements and their visual representation from the
self-observing view, subsequently we present results also for
associations between all perspectives.

A. Experiment 1: self-organization of sensory and motor in-
puts

For training MSOMs, we first needed to generate the input
data. Both sensory and motor sequences were collected from
the simulated iCub robot that had been trained for three types
of grasp (power, side and precision grasp) using its right
arm [20]. These grasps (shown in Fig. 2) were generated,
with 10 instances per category, in such a way that individual
trajectories slightly differed from one another (which was
achieved by adding small perturbations to arm joints during
the motion execution).

Fig. 2: Examples of three grasp types from the observer’s
perspective. Left to right: power grasp, side grasp and precision
grasp.

1) Collecting the motor and visual data from iCub: The
motor representations are based on proprioceptive information
provided by all joint values from 16 DoF in robot’s right
arm which were stored during the motor execution, i.e. input
vectors for motor MSOM sm ∈ R16. These values are given in
degrees, and so prior to storing them we rescaled them to in-
terval 〈−1, 1〉, independently for each DoF. The corresponding
sensory representations are merely visual, provided by robot’s
camera in its right eye (for simplicity, we used monocular
information). Visual representations were generated for the

corresponding self-execution (self-observing perspective). The
visual information was taken in the form of 3D coordinates
of all 16 arm joints (48 values), plus 3D coordinates of four
finger tips (which turned out to be useful), amounting to 60
coordinates in total (in simulator’s world reference frame).
These were then projected onto the right camera, yielding 2D
coordinates, and hence input vectors sv ∈ R40. As in case of
motor data, the values were rescaled to 〈−1, 1〉, independently
for each coordinate. To generate visual representations for
other perspectives (90◦, 180◦, and 270◦), not directly available
from iCub simulator, we used self-observed trajectories (0◦)
and rotated them correspondingly using appropriate mathemat-
ical apparatus. Afterwards, the trajectories were projected onto
2D retina and rescaled.

2) Finding optimal maps: In order to obtain map represen-
tations, we searched for optimal MSOM parameters. We aimed
at getting the map that would optimally distribute its resources
(units) for best discrimination of input data. Following the
methods from our previous work [25], we calculated three
quantitative measures: (1) winner discrimination (WD) returns
the proportion of different winners (out of all units) at the
end of training; (2) entropy (Ent) evaluates how often various
units become winners, so the highest entropy means most
balanced unit participation in the competition process; (3)
quantization error (QE) calculates the average error at the unit
as a result of quantization process. To get the best MSOMs,
we systematically varied parameters α (eq. 1) and β (eq. 2) in
the interval (0,1) and selected the configuration with highest
WD and Ent and possibly minimal QE. As a result, we chose
αv = αm = 0.3, βv = 0.7, and βm = 0.5.

Using these parameters, we trained the MSOMs and eval-
uated winner hits (i.e. the number of times the particular unit
became the winner), for three categories of grasp type for
both motor (Fig. 3a) and visual dataset (Fig. 3b), and addi-
tionally for four perspectives for the visual dataset (Fig. 3c).
Topographic organization of unit’s sensitivity is evident in all
cases. For visual map, the organization on a coarse level is
arranged according to the perspectives, and on a more fine-
grained level according to the grasp types. Although some
units never became winners, they participated in distributed
map representations as well. Topographic order reflects the
natural separability of classes (types of grasps) both in terms
of their motor and visual features. Visual maps reveal that
perspective is a more strongly distinguishing parameter than
the type of grasp.

3) Generating map output responses: In line with our
modeling assumptions, we considered the map responses in
the form of distributed representations. In biological networks,
these are typically achieved by lateral inhibition, but as a
computational shortcut, we used the k-WTA (winner-take-all)
mechanism, similar to the one described in [26]. This mecha-
nism preselects k maximally responding units (i.e. according
to sorted yi activations) and resets the remaining units to zero.
We used binarization also in order to facilitate the training and
to simplify the assessment of network performance.

B. Experiment 2: learning bidirectional associations

In this experiment we created a two-phase learning design
in order to train the BAL network representing the PF pathway
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(a) Motor map: grasp types (b) Visual map: grasp types

(c) Visual map: perspectives

Fig. 3: Examples of the trained motor and visual maps.

between STS and F5. In phase 1, the agent associates its
own movements with their appearance on the basis of high-
level representations from MSOM binarized using the k-
WTA mechanism. In phase 2, the agent forms bidirectional
associations also with the movement seen from the other
perspectives. Here we use a sort of “scenario-based shortcut”.
The robot first produces the self movement, while observing
its own arm. Right after it, while the generated motor pattern
is assumed to be still residually active, the robot observes the
same movement from another perspective (as if it was playing
an educational game with its parent). It is known that parents
often imitate children’s immediate behavior providing them
with something like a mirror, which may explain how mirror
neurons could emerge as a product of associative learning [27].

In testing the map responses, the output of each unit is
considered correct if it lies in the correct half of the 〈0, 1〉
interval. For assessing the model accuracy, we used three
quantitative measures (separately for F and B directions): (1)
mean squared error (MSE) per output neuron, (2) bit success
measure (bitSucc), which is the proportion of units matching
their target (perfect match equals one), and (3) pattern success
(patSucc), which indicates the proportion of output patterns
that completely match targets.

We examined various sizes of the trained MSOMs and
various numbers of k positive units for k-WTA binarization.
We experimented with k, the free parameter that affects the
variability of map responses (as distributed patterns of activity)
to different inputs, as well as with the size of both maps.
Based on these experiments we decided to use visual maps
with 16×16 units and motor maps with 12×12 units both

TABLE I: BAL performance in two learning phases (50 nets).

phase 1 phase 2
measure F B F B

MSE 0.0 ± 0.0 0.086 ± 0.003 0.002 ± 0.001 0.045 ± 0.004
patSucc 0.999 ± 0.007 0.985 ± 0.025 0.006 ± 0.005 0.495 ± 0.031
bitSucc 1.0 ± 0.0 1.0 ± 0.0 0.906 ± 0.003 0.947 ± 0.005

binarized using km = 16. The BAL network had 196–160–
144 units with randomly initialized weights from 〈−0.1; 0.1〉
and λ = 0.2. Results from 50 networks after two training
phases are displayed in Table I. Fig. 4 displays the network
performance over time in phase 1 (800 epochs) and phase 2
(2000 epochs).
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Fig. 4: BAL performance in two learning phases (50 nets).

The results from phase 1 of learning indicate that BAL
algorithm is able to form error-free associations between
visual and motor representations. Regarding phase 2, it is
clear that the task of bidirectional association of ambiguous
data (1-to-4 associations) cannot be accomplished in one
direction (compare patSuccF and patSuccB). High bitSucc
(up to ≈95%) indicates that the network matches the desired
outcome (at least in v–to–m direction). The 52% success of
the reconstruction of the whole motor patterns (i.e. 100%
bitSucc) does not necessarily mean that the network performs
badly. Combined with high bitSucc and on the basis of closer
observation we noticed that the network only makes small
errors in this direction. Hence, we can conclude that any visual
representation of a particular movement will trigger a proper
motor representation of this movement, representing the role
of mirror neuron activity. The motor information activated on
the basis of the visual input can be further used to facilitate the
process of forming invariant representation of the movement
in STSa.

V. DISCUSSION

We presented pilot results directed toward our model of the
core mirror neuron system that connects visual representations
(STS) with motor representations (F5). In our approach, we
were inspired by empirical findings showing that in STS as
well as F5, most of the neurons are perspective-dependent, and
that this may be the lowest level at which sensory-motor rela-
tionships could be established. Perspective invariance emerged
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on the basis of local interaction might on the other hand serve
for final categorical response of the whole system.

For collecting the sensory and motor data, we used simu-
lated iCub robot that had been trained to reach for and grasp
an object with its right hand. In the first place, we have shown
how high-level sensory and motor representations could be
formed, using recurrent self-organizing maps (MSOM).

Next, we presented our bidirectional activation-based algo-
rithm (BAL) that guides the learning of bidirectional associ-
ations between sensory and motor representations. We have
shown that using BAL motor patterns can be successfully
retrieved based on visual data from various perspectives.
Subsequently we will require the motor code to be involved
in building perspective invariant representation of the action
in STSa. To achieve this, we will add a SOM-based learning
mechanism which will associate visual representations from
STSp, which are clustered strongly according to the viewpoint,
with motor representations from F5, clustered according to the
grasp type. Our preliminary results and observations indicate,
that motor information helps to re-organize the STSp repre-
sentations to form major clusters according to the grasp types
rather than perspectives, suggesting a good direction towards
perspective-invariant representations.

Last but not least, one of the assumptions of our model
is the graded degree of invariance of both visual and motor
neurons. This appears consistent with empirical evidence when
it comes to STS [28], and recent evidence [11] points out
that a similar principle could apply to F5. In our model, it
is a challenge to achieve graded perspective (or grasp type)
invariance in a self-organized manner without prespecifying
which neurons should become invariant to which degree. As
mentioned in [8], at least in the visual system (STS area),
the invariance is built incrementally, possibly by pooling the
responses of lower-level (less invariant) units toward higher-
level (more invariant) units, eventually leading to completely
invariant (categorical) representations. The motor system might
be built in an analogical way.
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